

Lecture Notes in Computer Science 3595
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Lusheng Wang (Ed.)

Computing and
Combinatorics

11th Annual International Conference, COCOON 2005
Kunming, China, August 16-29, 2005
Proceedings

13

Volume Editor

Lusheng Wang
City University of Hong Kong
Department of Computer Science
83 Tat Chee Ave., Kowloon, Hong Kong, China
E-mail: lwang@cs.cityu.edu.hk

Library of Congress Control Number: 2005929995

CR Subject Classification (1998): F.2, G.2.1-2, I.3.5, C.2.3-4, E.1, E.5, E.4

ISSN 0302-9743
ISBN-10 3-540-28061-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-28061-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Olgun Computergrafik
Printed on acid-free paper SPIN: 11533719 06/3142 5 4 3 2 1 0

Preface

The papers in this volume were presented at the Eleventh Annual International
Computing and Combinatorics Conference (COCOON 2005), held August 16–19,
2005, in Kunming, China. The topics cover most aspects of theoretical computer
science and combinatorics related to computing.

Submissions to the conference this year were conducted electronically. A total
of 353 papers were submitted, of which 96 were accepted. So the competition is
very fierce. The papers were evaluated by an international program committee
consisting of Tatsuya Akutsu, Vineet Bafna, Zhi-Zhong Chen, Siu-Wing Cheng,
Francis Chin, Sunghee Choi, Bhaskar DasGupta, Qizhi Fang, Martin Farach-
Colton, Raffaele Giancarlo, Mordecai Golin, Peter Hammer, Tsan-sheng Hsu,
Sorin C. Istrail, Samir Khuller, Michael A. Langston, Jianping Li, Weifa Liang,
Guohui Lin, Bernard Mans, Satoru Miyano, C. K. Poon, R. Ravi, David Sankoff,
Shang-Hua Teng, H. F. Ting, Seinosuke Toda, Takeshi Tokuyama, Peng-Jun
Wan, Lusheng Wang, Todd Wareham, Jinhui Xu, Xizhong Zheng, Kaizhong
Zhang and Binhai Zhu.

The authors of submitted papers came from more than 25 countries and
regions. In addition to the selected papers, the conference also included three
invited presentations by Alberto Apostolico, Shang-Hua Teng, and Leslie G.
Valiant. This year’s Wang Hao Award (for young researchers) was given to the
paper Approximating the Longest Cycle Problem on Graphs with Bounded Degree
by Guantao Chen, Zhicheng Gao, Xingxing Yu and Wenan Zang.

I would like to thank all the people who made this meeting possible and en-
joyable: the authors for submitting papers and the program committee members
and external referees for their excellent work. I would also like to thank the three
invited speakers and the local organizers and colleagues for their assistance.

August 2005 Lusheng Wang

Organization

COCOON 2005 was sponsored by the Academy of Mathematics and System
Sciences of the Chinese Academy of Sciences.

Program Committee Chair

Lusheng Wang (City University of Hong Kong, Hong Kong, China)

Program Committee

Tatsuya Akutsu (Kyoto University, Japan)
Vineet Bafna (University of California, San Diego, USA)
Zhi-Zhong Chen (Tokyo Denki University, Japan)
Siu-Wing Cheng (The Hong Kong University of Science and Technology, China)
Francis Chin (The University of Hong Kong, China)
Sunghee Choi (KAIST, Korea)
Bhaskar DasGupta (University of Illinois at Chicago, USA)
Qizhi Fang (Ocean University of China, China)
Martin Farach-Colton (Rutgers University, USA)
Raffaele Giancarlo (University of Palermo, Italy)
Mordecai Golin (Hong Kong Univ. of Science and Technology, China)
Peter Hammer (Rutgers University, USA)
Tsan-sheng Hsu (Academia Sinica, Taiwan)
Sorin C. Istrail (Celera, USA)
Samir Khuller (University of Maryland, USA)
Michael A. Langston (University of Tennessee, USA)
Jianping Li (Yunnan University, China)
Weifa Liang (The Australian National University, Australia)
Guohui Lin (University of Alberta, Canada)
Bernard Mans (Macquarie University, Australia)
Satoru Miyano (The University of Tokyo, Japan)
C. K. Poon (City University of Hong Kong, China)
R. Ravi (Carnegie Mellon University, USA)
David Sankoff (University of Ottawa, Canada)
Shanghua Teng (Boston University, USA)
H. F. Ting (The University of Hong Kong, China)
Seinosuke Toda (Nihon University, Japan)
Takeshi Tokuyama (Tohoku University, Japan)
Peng-Jun Wan (City University of Hong Kong, China)
Todd Wareham (Memorial University of Newfoundland, Canada)
Jinhui Xu (State University of New York, USA)

Organization VII

Xizhong Zheng (Brandenburg University of Technology Cottbus, Germany)
Kaizhong Zhang (University of Western Ontario, Canada)
Binhai Zhu (Montana State University, USA)

Organizing Committee

Xiaodong Hu (Chinese Academy of Sciences, China) (Chair)
Degang Liu (Chinese Academy of Sciences, China)
Jie Hu (Chinese Academy of Sciences, China)

Referees

Dimitris Achilioptas
Hee-Kap Ahn
Tetsuo Asano
Martin Baca
Tanya Berger-Wolf
Arijit Bishnu
Rhonda Chaytor
Shihyen Chen
Dave Churchill
Michael Elkin
Thomas Erlebach
Rohan Fernandes
Amos Fiat
Stanley Fung

Matthew Hamilton
Rafi Hassin
Yoo-Ah Kim
P. Dwight Kuo
Yan Li
Tien-Ching Lin
Bruce Litow
Azarakhsh Malekian
Miguel Mostiero
Hyeon-Suk Na
Sheung-Hung Poon
Kirk Pruhs
Balaji Raghavachari
Kenneth W. Regan

Robert Rettinger
Xiaojun Shen
Igor Shparlinski
Aravind Srinivasan
Ron Steinfeld
Hisao Tamaki
Tatsuie Tsukiji
Caoan Wang
Yajun Wang
Chuan-Kun Wu
Xiaodong Wu
Huaming Zhang
Yan Zhang

Table of Contents

Invited Lectures

Completeness for Parity Problems . 1
Leslie G. Valiant

Monotony and Surprise . 9
Alberto Apostolico

Smoothed Analysis of Algorithms and Heuristics . 10
Shang-Hua Teng

Bioinformatics

Gene Network: Model, Dynamics and Simulation . 12
Shiquan Wu and Xun Gu

Conserved Interval Distance Computation Between Non-trivial Genomes . . 22
Guillaume Blin and Romeo Rizzi

RNA Multiple Structural Alignment with Longest Common Subsequences . 32
Sergey Bereg and Binhai Zhu

Perfect Sorting by Reversals . 42
Marie-France Sagot and Eric Tannier

Genome Rearrangements with Partially Ordered Chromosomes 52
Chunfang Zheng and David Sankoff

Quartet-Based Phylogeny Reconstruction from Gene Orders 63
Tao Liu, Jijun Tang, and Bernard M.E. Moret

Algorithmic and Complexity Issues of Three Clustering Methods
in Microarray Data Analysis . 74

Jinsong Tan, Kok Seng Chua, and Louxin Zhang

RIATA-HGT: A Fast and Accurate Heuristic
for Reconstructing Horizontal Gene Transfer . 84

Luay Nakhleh, Derek Ruths, and Li-San Wang

A New Pseudoknots Folding Algorithm for RNA Structure Prediction 94
Hengwu Li and Daming Zhu

Rapid Homology Search with Two-Stage Extension and Daughter Seeds . . 104
Miklós Csűrös and Bin Ma

X Table of Contents

On the Approximation of Computing Evolutionary Trees 115
Vincent Berry, Sylvain Guillemot, François Nicolas,
and Christophe Paul

Networks

Theoretically Good Distributed CDMA/OVSF Code Assignment
for Wireless Ad Hoc Networks . 126

Xiang-Yang Li and Peng-Jun Wan

Improved Approximation Algorithms
for the Capacitated Multicast Routing Problem . 136

Zhipeng Cai, Guohui Lin, and Guoliang Xue

Construction of Scale-Free Networks with Partial Information 146
Jianyang Zeng, Wen-Jing Hsu, and Suiping Zhou

Radio Networks with Reliable Communication . 156
Yvo Desmedt, Yongge Wang, Rei Safavi-Naini, and Huaxiong Wang

Geometric Network Design with Selfish Agents . 167
Martin Hoefer and Piotr Krysta

Bicriteria Network Design via Iterative Rounding . 179
Piotr Krysta

Interference in Cellular Networks:
The Minimum Membership Set Cover Problem . 188

Fabian Kuhn, Pascal von Rickenbach, Roger Wattenhofer, Emo Welzl,
and Aaron Zollinger

Routing and Coloring for Maximal Number of Trees . 199
Xujin Chen, Xiaodong Hu, and Tianping Shuai

Share the Multicast Payment Fairly . 210
WeiZhao Wang, Xiang-Yang Li, and Zheng Sun

On Packing and Coloring Hyperedges in a Cycle . 220
Jianping Li, Kang Li, Ken C.K. Law, and Hao Zhao

Fault-Tolerant Relay Node Placement in Wireless Sensor Networks 230
Hai Liu, Peng-Jun Wan, and Xiaohua Jia

String Algorithms

Best Fitting Fixed-Length Substring Patterns for a Set of Strings 240
Hirotaka Ono and Yen Kaow Ng

String Coding of Trees with Locality and Heritability 251
Saverio Caminiti and Rossella Petreschi

Table of Contents XI

Finding Longest Increasing and Common Subsequences
in Streaming Data . 263

David Liben-Nowell, Erik Vee, and An Zhu

O(n2 logn) Time On-Line Construction of Two-Dimensional Suffix Trees . . 273
Joong Chae Na, Raffaele Giancarlo, and Kunsoo Park

Scheduling

Min-Energy Voltage Allocation for Tree-Structured Tasks 283
Minming Li, Becky Jie Liu, and Frances F. Yao

Semi-online Problems on Identical Machines
with Inexact Partial Information . 297

Zhiyi Tan and Yong He

On-Line Simultaneous Maximization of the Size
and the Weight for Degradable Intervals Schedules . 308

Fabien Baille, Evripidis Bampis, Christian Laforest,
and Nicolas Thibault

Off-Line Algorithms for Minimizing Total Flow Time
in Broadcast Scheduling . 318

Wun-Tat Chan, Francis Y.L. Chin, Yong Zhang, Hong Zhu,
Hong Shen, and Prudence W.H. Wong

Complexity

Oblivious and Adaptive Strategies for the Majority
and Plurality Problems . 329

Fan Chung, Ron Graham, Jia Mao, and Andrew Yao

A Note on Zero Error Algorithms Having Oracle Access
to One NP Query . 339

Jin-Yi Cai and Venkatesan T. Chakaravarthy

On the Complexity of Computing the Logarithm
and Square Root Functions on a Complex Domain . 349

Ker-I Ko and Fuxiang Yu

Solovay Reducibility on D-c.e Real Numbers . 359
Robert Rettinger and Xizhong Zheng

Steiner Trees

Algorithms for Terminal Steiner Trees . 369
Fábio Viduani Martinez, José Coelho de Pina, and José Soares

XII Table of Contents

Simple Distributed Algorithms
for Approximating Minimum Steiner Trees . 380

Parinya Chalermsook and Jittat Fakcharoenphol

A Truthful (2− 2/k)-Approximation Mechanism
for the Steiner Tree Problem with k Terminals . 390

Luciano Gualà and Guido Proietti

Graph Drawing and Layout Design

Radial Coordinate Assignment for Level Graphs . 401
Christian Bachmaier, Florian Fischer, and Michael Forster

A Theoretical Upper Bound for IP-Based Floorplanning 411
Guowu Yang, Xiaoyu Song, Hannah H. Yang, and Fei Xie

Quantum Computing

Quantum Noisy Rational Function Reconstruction . 420
Sean Hallgren, Alexander Russell, and Igor E. Shparlinski

Promised and Distributed Quantum Search . 430
Shengyu Zhang

Randomized Algorithms

Efficient and Simple Generation of Random Simple Connected Graphs
with Prescribed Degree Sequence . 440

Fabien Viger and Matthieu Latapy

Randomized Quicksort and the Entropy of the Random Source 450
Beatrice List, Markus Maucher, Uwe Schöning, and Rainer Schuler

Subquadratic Algorithm for Dynamic Shortest Distances 461
Piotr Sankowski

Randomly Generating Triangulations of a Simple Polygon 471
Q. Ding, J. Qian, W. Tsang, and C. Wang

Geometry

Triangulating a Convex Polygon with Small Number
of Non-standard Bars . 481

Yinfeng Xu, Wenqiang Dai, Naoki Katoh, and Makoto Ohsaki

A PTAS for a Disc Covering Problem Using Width-Bounded Separators . . 490
Zhixiang Chen, Bin Fu, Yong Tang, and Binhai Zhu

Table of Contents XIII

Efficient Algorithms for Intensity Map Splitting Problems
in Radiation Therapy . 504

Xiaodong Wu

Distributions of Points in d Dimensions and Large k-Point Simplices 514
Hanno Lefmann

Exploring Simple Grid Polygons . 524
Christian Icking, Tom Kamphans, Rolf Klein, and Elmar Langetepe

Approximation Algorithms for Cutting Out Polygons
with Lines and Rays . 534

Xuehou Tan

Efficient Non-intersection Queries on Aggregated Geometric Data 544
Prosenjit Gupta, Ravi Janardan, and Michiel Smid

An Upper Bound on the Number of Rectangulations of a Point Set 554
Eyal Ackerman, Gill Barequet, and Ron Y. Pinter

Codes

Opportunistic Data Structures for Range Queries . 560
Chung Keung Poon and Wai Keung Yiu

Generating Combinations by Prefix Shifts . 570
Frank Ruskey and Aaron Williams

Error-Set Codes and Related Objects . 577
An Braeken, Ventzislav Nikov, and Svetla Nikova

Finance

On Walrasian Price of CPU Time . 586
Xiaotie Deng, Li-Sha Huang, and Minming Li

On-Line Algorithms for Market Equilibria . 596
Spyros Angelopoulos, Atish Das Sarma, Avner Magen,
and Anastasios Viglas

Interval Subset Sum and Uniform-Price Auction Clearing 608
Anshul Kothari, Subhash Suri, and Yunhong Zhou

Facility Location

Improved Algorithms for the K-Maximum Subarray Problem
for Small K . 621

Sung E. Bae and Tadao Takaoka

XIV Table of Contents

Server Allocation Algorithms for Tiered Systems . 632
Kamalika Chaudhuri, Anshul Kothari, Rudi Pendavingh,
Ram Swaminathan, Robert Tarjan, and Yunhong Zhou

An Improved Approximation Algorithm
for Uncapacitated Facility Location Problem with Penalties 644

Guang Xu and Jinhui Xu

The Reverse Greedy Algorithm for the Metric K-Median Problem 654
Marek Chrobak, Claire Kenyon, and Neal E. Young

On Approximate Balanced Bi-clustering . 661
Guoxuan Ma, Jiming Peng, and Yu Wei

Graph Theory

Toroidal Grids Are Anti-magic . 671
Tao-Ming Wang

Optimally Balanced Forward Degree Sequence . 680
Xiaomin Chen, Mario Szegedy, and Lei Wang

Conditionally Critical Indecomposable Graphs . 690
Chandan K. Dubey, Shashank K. Mehta, and Jitender S. Deogun

Graph Algorithms

A Tight Analysis of the Maximal Matching Heuristic 701
Jean Cardinal, Martine Labbé, Stefan Langerman, Eythan Levy,
and Hadrien Mélot

New Streaming Algorithms for Counting Triangles in Graphs 710
Hossein Jowhari and Mohammad Ghodsi

A New Approach and Faster Exact Methods
for the Maximum Common Subgraph Problem . 717

W. Henry Suters, Faisal N. Abu-Khzam, Yun Zhang,
Christopher T. Symons, Nagiza F. Samatova,
and Michael A. Langston

On the Power of Lookahead in On-Line Vehicle Routing Problems 728
Luca Allulli, Giorgio Ausiello, and Luigi Laura

Efficient Algorithms for Simplifying Flow Networks . 737
Ewa Misio�lek and Danny Z. Chen

Approximation Algorithms for the b-Edge Dominating Set Problem
and Its Related Problems . 747

Takuro Fukunaga and Hiroshi Nagamochi

Table of Contents XV

Bounded Degree Closest k-Tree Power Is NP-Complete 757
Michael Dom, Jiong Guo, and Rolf Niedermeier

A New Algorithm for the Hypergraph Transversal Problem 767
Leonid Khachiyan, Endre Boros, Khaled Elbassioni,
and Vladimir Gurvich

On Finding a Shortest Path in Circulant Graphs with Two Jumps 777
Domingo Gómez, Jaime Gutierrez, Álvar Ibeas, Carmen Mart́ınez,
and Ramón Beivide

A Linear Time Algorithm for Finding a Maximal Planar Subgraph Based
on PC-Trees . 787

Wen-Lian Hsu

Algorithms for Finding Distance-Edge-Colorings of Graphs 798
Takehiro Ito, Akira Kato, Xiao Zhou, and Takao Nishizeki

On the Recognition of Probe Graphs of Some Self-Complementary Classes
of Perfect Graphs . 808

Maw-Shang Chang, Ton Kloks, Dieter Kratsch, Jiping Liu,
and Sheng-Lung Peng

Power Domination Problem in Graphs . 818
Chung-Shou Liao and Der-Tsai Lee

Complexity and Approximation of Satisfactory Partition Problems 829
Cristina Bazgan, Zsolt Tuza, and Daniel Vanderpooten

Distributed Weighted Vertex Cover via Maximal Matchings 839
Fabrizio Grandoni, Jochen Könemann, and Alessandro Panconesi

On the Complexity of the Balanced Vertex Ordering Problem 849
Jan Kára, Jan Kratochv́ıl, and David R. Wood

An O(2O(k)n3) FPT Algorithm
for the Undirected Feedback Vertex Set Problem . 859

Frank Dehne, Michael Fellows, Michael Langston, Frances Rosamond,
and Kim Stevens

Approximating the Longest Cycle Problem on Graphs
with Bounded Degree . 870

Guantao Chen, Zhicheng Gao, Xingxing Yu, and Wenan Zang

Others

Bin Packing and Covering Problems with Rejection . 885
Yong He and György Dósa

XVI Table of Contents

Query-Monotonic Turing Reductions . 895
Lane A. Hemaspaandra and Mayur Thakur

On Sequential and 1-Deterministic P Systems . 905
Oscar H. Ibarra, Sara Woodworth, Hsu-Chun Yen, and Zhe Dang

Global Optimality Conditions and Near-Perfect Optimization in Coding . . 915
Xiaofei Huang

Angel, Devil, and King . 925
Martin Kutz and Attila Pór

Overlaps Help: Improved Bounds for Group Testing
with Interval Queries . 935

Ferdinando Cicalese, Peter Damaschke, Libertad Tansini,
and Sören Werth

New Efficient Simple Authenticated Key Agreement Protocol 945
Eun-Jun Yoon and Kee-Young Yoo

A Quadratic Lower Bound for Rocchio’s Similarity-Based Relevance
Feedback Algorithm . 955

Zhixiang Chen and Bin Fu

The Money Changing Problem Revisited:
Computing the Frobenius Number in Time O(k a1) . 965

Sebastian Böcker and Zsuzsanna Lipták

W -Hardness Under Linear FPT-Reductions:
Structural Properties and Further Applications . 975

Jianer Chen, Xiuzhen Huang, Iyad A. Kanj, and Ge Xia

Some New Results on Inverse Sorting Problems . 985
Xiao Guang Yang and Jian Zhong Zhang

Author Index . 993

Completeness for Parity Problems�

Leslie G. Valiant

Division of Engineering and Applied Sciences, Harvard University
Cambridge, MA 02138, USA

Abstract. In this talk we shall review recent work on holographic algo-
rithms and circuits. This work can be interpreted as offering formulations
of the question of whether computations within such complexity classes
as NP, ⊕P, BQP, or #P, can be efficiently computed classically using
linear algebra. The central part of the theory is the consideration of gad-
gets that map simple combinatorial constraints into gates, assemblies of
which can be evaluated efficiently using linear algebra. The combinato-
rial constraints that appear most fruitful to investigate are the simplest
ones that correspond to problems complete in these complexity classes.
With this motivation we shall in this note consider the parity class ⊕P
for which our understanding of complete problems is particularly lim-
ited. For example, among the numerous search problems for which the
existence of solutions can be determined in P and the counting problem
is known to be #P-complete, the #P-completeness proof does not gener-
ally translate to a ⊕P-completeness proof. We observe that in one case it
does, and enumerate several natural problems for which the complexity
of parity is currently unresolved. We go on to consider two examples of
NP-complete problems for which ⊕P-completeness can be proved but is
not immediate: Hamiltonian circuits for planar degree three graphs, and
satisfiability of read-twice Boolean formulae.

1 Introduction

The class ⊕P is the class of sets S such that there is a polynomial time nonde-
terministic Turing machine that on input x ∈ S has an odd number of accepting
computations, and on input x �∈ S has an even number of accepting compu-
tations ([V79], [PZ83], [GP86]). It formalizes the question of the parity of the
number of solutions to combinatorial problems. It is known that ⊕P has at least
the computational power of NP, since NP is reducible to ⊕P via (one-sided) ran-
domized reduction [VV86]. Also, the polynomial hierarchy is reducible to it via
two sided randomized reductions [TO92]. The class FewP of sets for which there
exist NP machines with few accepting computations is a subclass of it [CH90].
Further, there exist decision problems, such as graph isomorphism, that are not
known to be in P but are known to be in ⊕P [AK02]. The class ⊕P has been
related to other complexity classes via relativization [BBF98].

� This research was supported in part by grants NSF-CCR-03-10882, NSF-CCR-98-
77049, and NSF-CCF-04-27129.

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 1–8, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

2 Leslie G. Valiant

2 Some Easily Computed Parity Problems

There are several problems for which counting the number of solutions is #P-
complete while computing the parity, i.e. whether there is an odd or even number
of solutions, is polynomial time computable. The prime example is that of perfect
matchings in bipartite graphs where exact counting corresponds to computing
the permanent of a 0/1 matrix. The parity problem corresponds to computing
the permanent modulo two, which is the same as the determinant modulo two,
and is therefore computable in polynomial time via linear algebra computations.
Many variants of this matching problem, such as those in which the matchings
need not be perfect, or the graph bipartite, also have polynomially computable
parity problems for similar reasons.

A further category of problems with polynomially computable parity is that
of read-twice formulae. These are formulae where each variable occurs at most
twice. In particular, we consider formulae that are conjunctive in the sense that
they consist of conjunctions of clauses that each depend on at most three vari-
ables. In [V02] it is shown, by parity preserving reductions to matchings, that the
parity of such read-twice formulae can be computed in P provided the clauses
are (any mixture) of the following forms: a clause dependent on at most two
variables, or a clause of any of the forms xyz, x(y = z), x′yz+xy′z+xyz′, x(y+
z), x ⊕ y ⊕ z = 1, xy + yz + zx, x + (y = z), xy + (y = z), where each of these
forms also allows any of x, y, z to be replaced by their negations x′, y′, or z′. (We
note that with respect to the existence of solutions, a complete analysis of the
relative expressivity of read-twice formulae composed of any one of these forms
can be found in [CB05]).

Remarkably, there are a large number of natural parity problems for which
we currently have no hint as to their complexity. In particular, almost any #P-
complete problem for which existence of solutions is known to be in P, but
not via matchings, is a potential such open problem. The following are notable
examples:

(i) ⊕2SAT - the parity of the number of solutions of 2-CNF formulae.
(ii) The parity of the number of solutions of read-twice monotone formulae.
(iii) The parity of the number of solutions of read-twice 3-CNF formulae.

All three are open even if the formulae is restricted to be planar, and (ii) and
(iii) are open if the formulae are not restricted to be read-twice.

3 Some ⊕P-Complete Problems

One can define ⊕P-completeness with respect to various reductions. In this pa-
per we shall use the term in the sense of polynomial time many-one (Karp)
reductions.

We first consider NP search problems for which the existence of solutions
can be decided in polynomial time. There are numerous NP search problems
for which the existence of solutions can be determined in P but counting their

Completeness for Parity Problems 3

number is #P-complete [V79]. For the vast majority of these, however, the #P-
completeness reduction does not translate to a ⊕P-completeness proof. For ex-
ample, the general technique of evaluation and interpolation requires an un-
bounded number of field elements for the interpolation process. For some other
reductions such as for the permanent, even integer constants are needed, and
the parity problem is, in fact, known to be polynomial time computable.

The one natural problem we know for which existence is in P but parity is
⊕P-complete concerns monotone formulae. If we denote by ⊕MonFormulaSat
the problem of determining whether a monotone Boolean formula is satisfied by
an odd or even number of solutions then we have:

Theorem 1. ⊕MonFormulaSat is ⊕P-complete.

Proof. In [V79] it is shown that any CNF formula F over variables x can be
written as a formula J = G(y, z)∧¬H(y, z) where G and H are monotone for-
mulae and y, z are new variables, such that J has the same number of solutions
as F . But the number #J of solutions to J is clearly the difference

#G(y, z)−#(G(y, z) ∧H(y, z))

between the numbers of solutions of two monotone formulae. Hence if one could
compute ⊕MonFormulaSat in polynomial time for these two monotone formulae,
then by taking the difference one could compute ⊕F . �

We now consider problems where the existence of solutions is NP-complete.
For the majority of natural such problems there are reductions mapping the
solutions of any polynomial time nondeterministic computation one-to-one (i. e.
parsimoniously) to the solutions of the given problem. These then are #P- and
⊕P-complete by virtue of these reductions. Here we shall give ⊕P-completeness
proofs for two NP-complete problems for which such a proof was not available
before. For the first we use an NP-completeness proof that is not parsimonious,
but for which we can show that parity is preserved nevertheless. We shall denote
the following problem by ⊕ReadTwiceOppositeSat:

Input: A Boolean formula F consisting of the connectives ∧ and ∨ , where each
variable occurs once negated and once unnegated.
Output: The parity of the number of satisfying assignments of F .

We can prove the following by adapting the proof of the NP-completeness of
the same problem due to Hunt and Stearns [HS90].

Theorem 2. ⊕ReadTwiceOppositeSat is ⊕P-complete.

Proof. First it is well known that any 3-CNF formula can be reduced parsimo-
niously to a read-thrice formula by replacing each occurrence of a literal by a
new variable, and for each old variable conjoining the formula with a 2-CNF cy-
cle. For example if the five new variables for the old variable x are a, b, c, d, and
e, which represent occurrences x, x, x′, x′, x respectively, then the cycle would be

4 Leslie G. Valiant

(a+ b′)(b + c)(c′ + d)(d′ + e′)(e + a′). Clearly every way of satisfying this cycle
will have exactly a half of the literals true and hence exactly one literal in each
conjunct true. Also, the satisfied literals will be either all the first ones in the
clauses or all the second ones. Hence the a, b, c, d, and e can be satisfied only in
a way consistent with the sequence x, x, x′, x′, x.

We now map this formula F to a formula F ∗ that is read-twice and such
that the parities of the number of solutions of F and F ∗ are the same. For
each variable a in F we do the following: The positive occurrence of a in a
cycle we leave unchanged, the occurrence of a outside the cycle we replace by a
companion variable a∗, and the negated occurrence of a′ in the cycle we replace
by the conjunction a′a∗′. Thus formula F fragment

(a+ b+ c)(a+ b′)(e+ a′)

we modify to F ∗ fragment

(a∗ + b∗ + c∗)(a+ b′b∗′)(e + a′a∗′).

Clearly for assignments in which for every variable z, the values of z and z∗ are
the same, exactly those assignments satisfy F ∗ that satisfy F also.

Now the only way of satisfying a cycle in F ∗ remains that of satisfying ex-
actly one term in each clause, since the cycle has become only more constrained
by the introduction of the starred variables. If v is a vector of n variable values
for F , let (v, v∗) be a vector of 2n variable values for F ∗. We denote by v∗ ≤ v
the condition that any variable vi, if vi = 0 then v∗i = 0. �

Claim: The vector (v v∗) satisfies F ∗ if and only if (i) v∗ ≤ v, (ii) v satisfies F ,
and (iii) v∗ satisfies all the noncycle clauses of F ∗.
Proof of Claim: In the backward direction suppose (i) and (ii) hold. Then the
cycles in F ∗ will be satisfied since the v∗ variables will either equal the v vari-
ables, or will be negative. Hence if (iii) holds also, then (v, v∗) will satisfy F ∗. In
the forward direction, if we assume that (v, v∗) satisfies F ∗, then (i) is necessary
since otherwise the number of terms satisfied in the cycles will be fewer than
the number of clauses. Also, if (v, v∗) satifies F ∗ then v∗ satisfies the noncycle
clauses of F ∗, and (iii) follows. But then v also satisfies the noncycle clauses
since v∗ ≤ v. Further if (v, v∗) satisfies F ∗ then v satisfies the cycle clauses of
F , and hence v satisfies F .

It follows from the above claim that for each solution v of F the solutions
(v, v∗) of F ∗ are exactly those such that v∗ ≤ v and v∗ satisfies the noncycle
clauses of F ∗. If v satisfies two literals in i noncycle clauses, and three literals
in j noncycle clauses in F , then there will be 3i7j such choices of v∗, which is
an odd number. Hence we have a reduction from 3-SAT to read-twice formulae
that preserves the parity of the numbers of solutions. �

As an aside we note that from the above construction the #P-completeness
of the corresponding counting problem can be deduced as follows. From F one

Completeness for Parity Problems 5

constructs Fk to be the same formula, but with each clause repeated k times.
The F ∗

k will have (3i7j)k solutions whenever F ∗ had 3i7j solutions, and F just
one. By counting the solutions of F ∗

k for enough values of k one can recover the
number of solutions of F by polynomial interpolation.

Next we consider the problem of Hamiltonian circuits in planar degree three
graphs. This has an a long history for the case of 3-connected regular degree
three graphs. In 1880 Tait conjectured that all such graphs are Hamiltonian
[T1880]. After many years Tutte found a counterexample [T46]. Subsequently,
Garey, Johnson and Tarjan [GJT76] showed that the question of whether such
graphs had Hamiltonian cycles was, in fact, NP-complete. Their reduction from
3SAT was not parsimonious. Recently Liskiewicz, Ogihara and Toda [LOT03]
were able to find a reduction from 3SAT that for all solutions produced the
same (even) number of Hamiltonian circuits in the constructed graph, thereby
showing that this problem was #P-complete. Both these completeness proofs
used the Tutte gadget, a graph used by Tutte in his original counterexample.
Tutte had also shown that in any regular degree three graph the number of
Hamiltonian circuits through any edge is always even. From this it can be easily
deduced that any gadget with the sought after traversal properties of a Tutte
gadget, will always be traversed an even number of times through any pair of
external nodes, and hence that no reduction based on them can lead to a ⊕P-
completeness result. We therefore consider the slightly less constrained problem
PlHamDeg3 in which nodes of degree two are also allowed:

Input: Undirected planar graph G with nodes all of degree two or three.
Output: The parity of the number of Hamiltonian circuits in G.

For this problem we can show that a parsimonious reduction from 3SAT is
possible and therefore that it is ⊕P-complete.

Theorem 3. There is a parsimonious reduction from 3SAT to PlHamDeg3.

Proof. We follow the proof for the regular degree three case given by Liskiewicz,
Ogihara and Toda, [LOT03], which itself elaborates on [GJT76]. First we define
the problem #3SAT* as follows:

Input: A Boolean CNF formula F where one clause has one literal and each of
the remainder exactly three literals, such that in any satisfying assignment to F
in each 3-clause(x+ y+ z) containing three literals x, y, z in that order, it is the
case that either exactly one literal is true, or x and y are true and z is false.
Output: The number of satisfying assignments to F .

We first observe that there is a parsimonious reduction from the standard
#3SAT to #3SAT*. To see this we note that (x + y + z) is logically equivalent
to the formula

∃u(x+ y + u′)((x+ y)⇒ u)(u + z)
≡ ∃u(x+ y + u′)(x⇒ u)(y ⇒ u)(u+ z)
≡ ∃u(x+ y + u′)(x′ + u)(y′ + u)(u + z)
≡ ∃u∃w(x + y + u′)(x′ + u+ w′)(y′ + u+ w′)(u+ z + w′)(w)

6 Leslie G. Valiant

Fig. 1. A gadget such that any Hamiltonian circuit enters and leaves through {A,B}
or {A,C}, but not {B,C}.

Fig. 2. Upper left figure shows OR-gadget. Remaining figures show the possible paths
that can be part of a global Hamiltonian circuit. Note that the global construction is
such that any Hamiltonian circuit entering at some Ai must next traverse Bi before it
can traverse an Aj or Bj with j �= i. Note also that for 3SAT* formulae the last of the
cases shown never arises.

with the solutions mapping parsimoniously. Applying this construction to each
3-clause in the 3CNF formula, using a different u but the the same w for each

Completeness for Parity Problems 7

clause, will give the required construction. Then w′ will be false in any satisfying
assignment, as will u′ in any clause in which either of the first two literals are
true.

Next we construct the graph shown in Figure 1 that replaces the Tutte gadget
used in [GJT76] and [LOT03]. It is clear that any Hamiltonian path will enter
and leave either through {A, B} or {A, C}, but never through {B, C}. Further,
unlike the Tutte gadget, there will be exactly one such transiting path in each
of the two cases.

We then follow the construction of Liskiewicz, Ogihara and Toda [LOT03]
that translates a CNF formula with one 1-clause and otherwise all 3-clauses to
an undirected graph. We depart from their construction by using our Figure 1
graphs instead of Tutte gadgets, and using the graph shown in Figure 2 instead
of their OR-gadgets. The special property of our Figure 2 gadget is that for each
of the four allowed solutions of a clause (x+y+z) in F , there will be exactly one
state (as shown) that can be part of a Hamiltonian circuit in the overall graph.
Further, there are no other states that can be part of such a global Hamiltonian
circuit, exept for the one corresponding to x = z = 1, y = 0 which never arises.

We leave it to the reader to verify that this construction is a parsimonious
mapping from 3SAT* to PlHamDeg3. �

The following is then an immediate consequence.

Corollary 1. ⊕PlHamDeg3 is ⊕P-complete. �

References

[AK02] V. Arvind and P.P. Kurur. Graph isomorphism is in SPP. Elec-
tronicColloquium on Computational Complexity, Report 37, 2002.

[BBF98] R. Beigel, H. Buhrman, and L. Fortnow. NP might not be as easy as detecting
single solutions, STOC98, ACM Press, pp.203-208 (1998).

[C71] S.A. Cook, The complexity of theorem proving procedures, Proceedings of the
3rd Annual ACM Symposium on Theory of Computing (1971), pp. 151–158.

[CB05] M. Cook, and J. Bruck, Implementability among predicates. Technical Report.
California Institute of Technology, Pasadena, CA (2005).

[CH90] J.-Y. Cai and L. A. Hemachandra. On the power of parity polynomial time.
Math. Syst. Theory. 23:2 (1990) 95-106.

[GJT76] M. R. Garey, D. S. Johnson and R. E. Tarjan, The Planar Hamiltonian Circuit
Problem is NP-Complete, SIAM J. Computing, 5 (1976), pp. 704-714.

[GP86] L.M. Goldschlager and I. Parberry. On the construction of parallel computers
from various bases of Boolean functions. Theoretical Computer Science, 43
(1986) 43-58.

[HS90] H. B. Hunt III and R. E. Stearns. The complexity of very simple Boolean
formulas with applications. SIAM J. Comput., 19:1 (1990) 44-70.

[LOT03] M. Liskiewicz, M. Ogihara, and S. Toda, The Complexity of Counting
Self-avoiding Walks in Subgraphs of Two-dimensional Grids and Hyper-
cubes,Theoretical Computer Science, 304 (2003), 129-156

[PZ83] C. H. Papadimitriou, and S. Zachos.Two remarks on the power of counting.
Theoretical Computer Science, (1983) 269-276.

8 Leslie G. Valiant

[T1880] P.G. Tait, Remarks on coloring of maps. Proc. Royal Soc. Edinburgh 10
(1880) 729.

[TO92] S. Toda and M. Ogiwara, Counting classes are at least as hard as the poly-
nomial time hierarchy. SIAM J. Comput., 21:2 (1992) 316-328.

[T46] W. T. Tutte, On Hamiltonian circuits, J. London Math. Soc. 21, (1946), pp.
98-101.

[V79] L. G. Valiant. The complexity of computing the permanent. Theoretical Com-
puter Science, 8 (1979) 189- 201.

[V02] L. G. Valiant, Quantum circuits that can be simulated classically in polyno-
mial time, SIAM J. on Computing, 31:4 (2002) 1229-1254.

[V04] L. G. Valiant, Holographic algorithms, Proc. 45th Annual IEEE Symposium
on Foundations of Computer Science, Oct 17-19, (2004). IEEE Press, 306-
315.

[V05] L. G. Valiant, Holographic circuits, Proc. 32nd ICALP, LNCS, Springer,
(2005), to appear.

[VV86] L. G. Valiant and V. V. Vazirani. NP is as easy as detecting unique solutions.
Theoretical Computer Science, 47:85–93, 1986.

Monotony and Surprise

Alberto Apostolico1,2

1 Dipartimento di Ingegneria dell’ Informazione
Università di Padova, Padova, Italy
2 Department of Computer Sciences

Purdue University, West Lafayette, IN, USA
axa@cs.purdue.edu

Abstract. The extraction of recurrent patterns from sequences is a pop-
ular and intensive application, ubiquitous to many domains. Often, how-
ever, the process exposes more candidates than one can afford to inspect,
thereby defying its whole purpose. While part of this problem is endemic,
part of it can be attributed to the traditional definitions of what con-
stitutes a pattern, that hinge alternatively on syntactic or statistical
properties alone. It has been seen recently that this part of the problem
may be mitigated by more prudent paradigms, in which the syntactic
description of a pattern and the list of all of its occurrences are tightly
intertwined. This approach leads to identify regions of monotonicity for
some scores of surprise in use, within which it is enough to consider
and weigh only extremal terms and values. This talk reviews concepts,
constructs, and application results obtained along this line of research.

L. Wang (Ed.): COCOON 2005, LNCS 3595, p. 9, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Smoothed Analysis of Algorithms and Heuristics

Shang-Hua Teng

Boston University, Boston, MA 02215, USA
steng@cs.bu.edu

http://www.bu.edu/~steng

The theorists have long been challenged by the existence of remarkable algo-
rithms and heuristics that are known by scientists and engineers to work well in
practice, but whose theoretical analyses have been are negative or unconvincing.
The root of the problem is that algorithms are usually analyzed in one of two
ways: by worst-case or average-case analysis. The former can improperly suggest
that an algorithm will perform poorly, while the latter can be unconvincing be-
cause the random inputs it considers may fail to resemble those encountered in
practice.

We introduce smoothed analysis to help explain the success of some of these
algorithms and heuristics. Smoothed analysis is a hybrid of worst-case and
average-case analyses that inherits advantages of both. The smoothed complex-
ity of an algorithm is the maximum over its inputs of the expected running time
of the algorithm under slight random perturbations of that input, measured as
a function of both the input length and the magnitude of the perturbations. If
an algorithm has low smoothed complexity, then it should perform well on most
inputs in every neighborhood of inputs.

In this talk, we will explain how smoothed analysis can help explain the
excellent observed behavior of several algorithms of practical importance. We
will survey progresses on applying smoothed analysis to the simplex method,
Gaussian elimination, interior point methods, and some other optimization al-
gorithms and heuristics. In particular, we show that the simplex algorithm has
polynomial smoothed complexity. The simplex algorithm is the classic example
of an algorithm that performs well in practice but takes exponential time in the
worst case.

This is joint work with Daniel Spielman of MIT, and with John Dunagan
(Microsoft Research) and Arvind Sankar (MIT).

References

[2004] Spielman D. A., Teng S.-H.: Smoothed analysis of algorithms: Why the simplex
algorithm usually takes polynomial time. Journal of ACM. 51 (3) (2004) 385–
463.

[2003] Spielman D. A., Teng S.-H.: Smoothed Analysis of Termination of Linear Pro-
gramming Algorithms, Mathematical Programming, Series B, Vol 97, (2004)
275–404.

[2005] Sankar A., Spielman D. A., Teng S.-H. Smoothed Analysis of Condition Num-
bers and Growth Factors of Matrices, SIMAX, (2005 to apprear).

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 10–11, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Smoothed Analysis of Algorithms and Heuristics 11

[2005] Duangan J., Spielman D. A., Teng S.-H. Smoothed Analysis of Condition Num-
bers and Complexity Implications for Linear Programming. Mathematical Pro-
gramming, Series A. (2005 to apprear)

[2004] Beier R., Vöcking B. Typical properties of winners and losers in discrete opti-
mization. ACM STOC, (2004) 343–352.

[2003] Becchetti L., Leonardi S., Marchetti-Spaccamela A., Schafer G., Vredeveld T.
Average Case and Smoothed Competitive Analysis of the Multi-Level Feedback
Algorithm. IEEE FOCS (2003) 462-471.

Gene Network: Model, Dynamics and Simulation

Shiquan Wu and Xun Gu�

Center of Bioinformatics and Biological Statistics
Iowa State University, Ames, IA 50011, USA
sqwu@cs.iastate.edu, xgu@iastate.edu

Abstract. A gene network is modeled as a dynamical random graph
whose vertices and edges represent genes and gene-gene interactions,
respectively. The network grows through three biological mechanisms: (1)
gene duplication and loss; (2) gene-gene interaction adding and removing;
and (3) genome duplication. The evolutionary dynamics of gene networks
is discussed. It is shown that: (1) the vertex degree distribution (i.e.,
the distribution of the number of the gene-gene interactions per gene)
always follows power laws and the power law exponents may be changed
by genome duplications; and (2) the network degree distribution (i.e.,
the distribution of the total number of the gene-gene interactions in the
network) has a complex behavior: If no genome duplication occurs, it
follows a power law. If a genome duplication occurs, it may be away
from the power law state. However, after a sufficient long evolutionary
time, it approaches to a power law tail. The dynamics is confirmed by
computer simulations. By allowing genome duplications, our model and
dynamics (describing the dynamic behavior of gene networks) are more
realistic than other previous ones (containing only static behavior).

1 Introduction

Systems biology on genetic networks is an important area in bioinformatics. Its
primary goal is to understand biological organisms at a system-level [1–3], be-
cause many cellular functions can only be understood by simultaneously studying
a group of genes, proteins, and other biological components that interact each
other. Various biological networks have been extensively studied (see [4] for a
general review), including cellular functional links, regulatory pathways, signal
transductions, protein interactions, and metabolic correlations [5–10].

Mathematically, the growth of a large complex network can be governed
by two mechanisms [4, 11]: (1) the network grows continuously by adding new
vertices and edges, and (2) new vertices connect preferentially to those already
well connected. Under these assumptions, it has been shown that the degree
distribution of every vertex in the network follows a power law [4, 12]; the power
law exponent only depends on the network growth process, not the initial state of
the network (e.g. mechanisms decide dynamics) [13]. It is also possible that the
network diameter is small and the cluster coefficients of nodes are large [14–17].

� Corresponding author

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 12–21, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Gene Network: Model, Dynamics and Simulation 13

The duplications of both genes and genomes are the major resources for gene
network growth and functional divergence [18]. Although several gene network
models considered gene/genome duplications [6, 13, 19, 20], the mechanisms peo-
ple introduced are somewhat artificial, due to mathematical convenience rather
than biological reality [4, 10, 12, 13, 15, 16, 19–21]. Therefore, it is very inter-
esting and important to develop gene networks allowing duplications for both
genes and genomes under more biological realistic frameworks. This motivates
our study.

In this paper, a gene network is formulated as a dynamical random graph
whose vertices denote genes and whose edges represent gene-gene interactions
among the genes. During evolution, the network grows through three biological
mechanisms: (1) gene duplication and loss, (2) edge (i.e., gene-gene interaction)
adding and removing, and (3) genome duplication. Moreover, preferential at-
tachment is applied, i.e. a gene network is scale-free.

Based on these mechanisms, we study the network dynamics, focusing on the
vertex degree distribution (i.e., the distribution of the gene-gene interactions per
gene, which is a local statistical property in the netwotk) and the network degree
distribution (i.e., the distribution of the gene-gene interactions in the network,
which is a global statistical property in the netwotk). We show that the vertex
degree distribution always follows power laws with different exponents, which can
be changed by genome duplications. A genome duplication drives the network
degree distribution away from its power law state. However, after a sufficient
long time, the network degree distribution will somehow gradually recover to its
power law state. The dynamics is verified by computer simulations. The genome
duplication we allow makes our model and dynamics more general and realistic
than the previous ones [2, 4, 13], which contain static behavior, whereas ours
describe the dynamic behavior of gene networks. Our model and simulation also
provide an efficient way to explore large scale complex biological networks.

2 Mathematical Model of Gene Network

A gene network is defined as a dynamical random graph G whose vertices rep-
resent genes and edges stand for gene-gene interactions. The network grows
through three mechanisms: (1) gene duplication and loss; (2) gene-gene interac-
tion adding and removing; and (3) genome duplication. A set of rates control
gene duplication, gene loss, edge adding, edge removing, and genome duplication.
Denote the graph

G = (V,E; gd, gl;λ, μ;Gd, Gl).

The terms of the gene network G are defined as follows:
(1) V is the set of all vertices which represent genes (other biological com-

ponents can be included, but here we restrict the discussion on genes).
(2) E is the set of all edges which stand for the gene-gene interactions (or

influences) among the genes. For any two genes, if there exists any gene-gene
interaction between them, the two genes are joined by an edge.

14 Shiquan Wu and Xun Gu

Initially, V = V0 and E = E0, forming a simple network, see Fig.1(a). Start-
ing from the initial state (V0 = {g1, g2, g3, g4} and E0 = {g1g3}), the vertices and
edges are randomly changed due to the duplications of both genes and genomes.

(3) gd is the rate of a gene duplication.
(4) gl is the rate of a gene loss.
Any gene can be duplicated with the rate gd. When a gene duplication occurs,

a new duplicated copy of the gene is created. The duplicated gene at first inherits
all gene-gene interactions from its original (i.e. parent) gene, which means that
the new duplicated vertex is joined to all vertices connecting to the original ver-
tex. The new duplicated vertex is also joined to its original vertex (see Fig.1(b),
gc
1 is duplicated from g1 and then joined to g1). The duplicated gene can be lost

(i.e., the vertex is removed) with the rate gl during evolution.
(5) λ is the rate of edge adding for a new duplicated vertex to be joined to

other unconnected vertex in the network.
(6) μ is the rate of edge removing for an existing edge to be removed.
The duplicated gene may undergo a series of edge adding and edge removing

if it is not lost. Its existing edges are removed with the given rate μ, see Fig.1(c).
When an edge is removed, it means that the corresponding gene-gene interaction
is eliminated, i.e. its corresponding functions are unnecessary and disappeared.

(7) Gd denotes the rate of a genome duplication.
(8) Gl is the rate that a gene in the duplicated genome is lost or removed.
When a genome duplication occurs, all genes together with all of their in-

teractions (i.e. edges) are duplicated. In addition, each duplicated gene is joined
to its original gene by a new edge, see Fig.1(d). After a genome duplication,
each duplicated gene in the new duplicated genome is removed with the rate
Gl, see Fig.1(e). If all duplicated genes in the duplicated genome are kept, i.e.,
no duplicated gene is lost (or Gl = 0), the genome duplication is called perfect.
Otherwise, the genome duplication is called imperfect [13].

Usually, genome duplications occur much less than gene duplications [4, 13].
Furthermore, preferential-attachment principle is applied while adding new edges
to the gene network, i.e., a new duplicated vertex is preferentially joined to those
already well connected vertices in the network. The network is scale-free [4].

3 Dynamics of Gene Networks

Biological observations show that any organism contains a gene regulatory net-
work starting from a simple initial state with fewer genes and gene-gene inter-
actions. During evolution, through a series of gene duplications, new genes and
gene-gene interactions are added into the network one by one. Occasionally, a
genome duplication occurs, the genes are doubled and meanwhile the gene-gene
interactions increase rapidly. On the other hand, after the genome duplication,
most duplicated genes and duplicated edges are removed. A new state of the
gene network is formed. The gene network keeps growing from the new state,
and so on. We are interested in the growth dynamics of gene networks. The
gene-gene interactions of gene networks play an important role in the dynamics.

Gene Network: Model, Dynamics and Simulation 15

Fig. 1. Gene network growth: (a) A simple initial gene network with four genes, one
pair of which has interaction relation. (b) Gene duplication: A gene is duplicated with
a given rate and later lost with another rate. The new duplicated gene inherits all edges
from its original gene together with an additional new edge connecting to the original
gene. Here g1 is duplicated into gc

1. The edge gc
1g3 is inherent from the edge g1g3.

The new edge g1g
c
1 is created. (c) Edge adding and edge removing: Each duplicated

gene undergoes a series of edge adding and edge removing based on two given rates,
respectively. Here g1g

c
1 is removed and gc

1g2 is added. (d) Genome duplication: All
vertices and edges are duplicated. (e) Gene loss in the duplicated genome with a given
rate: The duplicated gc

1 and the duplicated gc
2 are removed from the duplicated genome

For any vertex vi in a gene network, the degree of vi refers to the number of its
gene-gene interactions (i.e. edges). The degree distribution of vi is defined as the
probability Pr(k) that vi has k edges (k ≥ 0). Denote di the number of the ver-
tices that exactly have i edges. The network degree distribution is defined by all
di/

∑n
i=1 di (0 ≤ i ≤ n). Therefore, vertex degree distribution describes the local

distribution of gene-gene interactions in networks, wheras network degree dis-
tribution describes the global distribution of gene-gene interactions in networks,
i.e., how many genes exactly have i gene-gene interactions for all 0 ≤ i ≤ n. It
is shown in this section that the vertex degree distribution always follows power
laws, but the network degree distribution may not (due to genome duplications),
instead, it approaches to a power law tail.

3.1 Vertex Degree Distributions

Denote n(t) = |N(t)| and b(t) = |E(t)| the numbers of all vertices and edges
of the network at time t, respectively. Suppose that at time t, the i−th ver-
tex vi has xi(t) edges in the network. While joining the new duplicated vertex
to other vertices in the network, preferential-attachment principle is applied.
It means that any new duplicated vertex is connected to vi with the probabil-
ity π(xi(t)) = xi(t)∑n(t)

i=1
xi(t)

. Because genome duplications can greatly change the

degree distributions of vertices and networks, we have two cases.
Case 1 No genome duplication occurs
If no genome duplication occurs, vertices and edges are gradually added into

the network by gene duplications. We have the following equations:⎧⎪⎪⎨⎪⎪⎩
Δn(t) = (gd − gl)Δt,
Δb(t) = (λ − μ)Δn(t) = (λ− μ)(gd − gl)Δt,
Δxi(t) = [λπ(xi(t)) + λ

n(t) −
2μ

n(t)]Δt,

b(t) = 1
2

∑n(t)
i=1 xi(t).

16 Shiquan Wu and Xun Gu

Similar to some previous studies [4, 11], we obtain that xi follows a power law:
There exist some constants c, k0, and γ such that Pr(xi = k) = c

(k+k0)γ , k ≥ 0.
Since no genome duplication occurs, we similarly obtain that the network

degree distribution also follows the same power law.
Case 2 One genome duplication occurs
If a genome duplication occurs, the network size is at first doubled and then

decreased to a certain scale by the follow-up gene loss in the duplicated genome.
Both the vertices and edges may be greatly changed. The original power law
may also be invalid. For each i, suppose vd

i is duplicated from vi in the network.
Assume vd

i has xd
i (t) edges. Just after a genome duplication, xd

i = xi, both
degrees increase from xi to 2xi + 1.

(2a) A perfect genome duplication
If a perfect genome duplication occurs, the total vertices are exactly doubled.

And the edges are also doubled together with one more new edge for each pair of
the original genes and duplicated ones. Therefore, the vertex degree distribution
keeps unchanged. We show this fact as follows:{

Δxi(t) = λ(2xi(t)+1)
[4(λ−μ)+1](gd−gl)t

+ λ−2μ
2(gd−gl)t

,

Δxd
i (t) = λ(2xd

i (t)+1)
[4(λ−μ)+1](gd−gl)t

+ λ−2μ
2(gd−gl)t

.

Similar to Case 1, the solution also has the form: Pr(xi = k) = Pr(xd
i = k)

= c
(k+k0)γ ,k ≥ 0. It is still a power law distribution. This implies that after a

perfect genome duplication, the vertex degree distribution still follows a power
law, and so does the network degree distribution.

(2b) An imperfect genome duplication
If an imperfect genome duplication occurs, the duplicated genes in the du-

plicated genome are removed with a certain rate after the genome duplication.
The network is taken as a new initial state to continue to grow.

Since a gene is lost with the rate Gl, it is kept in the network with the rate
Gk = 1−Gl. For each vi, its degree number increases from xi to (1+Gk)xi. For
each vd

i , if vd
i is removed, then xd

i = 0. If vd
i is kept, xd

i = (1 +Gl)xi. We have{
Δxi(t) = λ(1+Gk)xi(t)

2(1+Gk)(λ−μ)(gd−gl)t
+ λ−2μ

(1+Gk)(gd−gl)t
,

Δxd
i (t) = λ(1+Gk)xd

i (t)
2(1+Gk)(λ−μ)(gd−gl)t

+ λ−2μ
(1+Gk)(gd−gl)t

.

It follows that its solution also has the form: Pr(xi = k) = Pr(xd
i = k) =

c
(k+k0)γ , k ≥ 0. Thus, the vertex degree distribution follows a power law.

3.2 Network Degree Distributions

After a genome duplication, some vertices may have doubled their degrees, but
some may have decreased theirs. The gene-gene interactions in the network are
greatly changed. The network degree distribution is then changed. Therefore, the
power law of the network degree distribution may not hold. However, because
the vertex degree distribution for all vertices still follows the power law, after a

Gene Network: Model, Dynamics and Simulation 17

long evolutionary time, the network degree distribution will somehow gradually
recover to its power law state, which is shown as follows.

Suppose each vertex vi has yi edges (i ≥ 1). From the above results, we can
show that the vertex degree distribution follows the power law p(x|yi) = c

xγ (x ≥
yi). Denote p(x|yi) = 0 for all x < yi. An initial network degree distribution
P0(x) is defined by all yi/

∑
j yj . Let Pi(x) denote the network degree distribu-

tion at the i−th gene duplication after the genome duplication. From the initial
distribution P0(x), we recursively have Pi(x) =

∑+∞
y=1 p(x|y)Pi−1(y)(i ≥ 1).

We show that Pi(x) approaches to p(x): limi→+∞ Pi(x) = p(x) for x ≥ x̄,
where x̄ =

∑
k≥1 kp(k). By induction, it follows that Pi(x) has the form: Pi(x) =

ci

xγ for x ≥ 1 (ci may depend on x). We now show that Pi(x) → c
xγ and the

power law starts at the average vertex degree x̄ of the gene network.

Table 1. Pi(x) is cumulated by a series of power laws: p(x|j)Pi−1(j)

x p(x|1)pi−1(1) p(x|2)pi−1(2) p(x|3)pi−1(3) ... p(x|j)pi−1(j) ...

1 c
1γ

ci−1
1γ - - - - ...

2 c
2γ

ci−1
1γ

c
2γ

ci−1
2γ - - - ...

3 c
3γ

ci−1
1γ

c
3γ

ci−1
2γ

c
3γ

ci−1
3γ - - ...

· · · · · ·
j c

jγ

ci−1
1γ

c
jγ

ci−1
2γ

c
jγ

ci−1
3γ - c

jγ

ci−1
jγ ...

· · · · · ·

At first, each Pi(x) is cumulated by a series of power law terms p(x|j)Pi−1(j),
i.e., Pi(x) =

∑∞
j=1 p(x|j)Pi−1(j) (see Table 1). Rewrite Pi(x) = c

xγ

∑x
j=1

ci−1
jγ

(see Table 2). By induction principle,
∑x

j=1
ci−1
jγ → 1. It follows that Pi(x) → c

xγ

as i→ +∞, i.e. the network degree distribution approaches the power law.

Table 2. The coefficients of all terms for Pi(x)

Terms Coefficients
c
1γ

ci−1
1γ

c
2γ

ci−1
1γ +

ci−1
2γ

c
3γ

ci−1
1γ +

ci−1
2γ +

ci−1
3γ

c
4γ

ci−1
1γ +

ci−1
2γ +

ci−1
3γ +

ci−1
4γ

· · · · · · · · ·
c

jγ

ci−1
1γ +

ci−1
2γ +

ci−1
3γ +

ci−1
4γ + · · · + ci−1

jγ

· · · · · · · · ·

Next, we find the starting point of the power law of limi→+∞ Pi(x). Each
power law term p(x|j)Pi−1(j) starts at j and its rate (i.e., probability) is P0(j),
which comes from the initial network degree distribution defined by all yi. There-
fore, the expected starting point of the power law of limi→+∞ Pi(x) is given by
the expectation

∑∞
j=1 j P0(j) = x̄, which is the average vertex degree of the

gene network when the genome duplication is completed.

18 Shiquan Wu and Xun Gu

Therefore, after a genome duplication, the network degree distribution may
not follow a power law. However, it gradually approaches to the power law of
the vertex degree distribution over the tail [x̄,+∞). The dynamics is as follows.
Network Dynamics Let G = (V,E; gd, gl;λ, μ;Gd, Gl) be a gene network. Then
(1) The vertex degree distribution always follows power laws. Genome duplica-
tions may change the power law exponents (See Fig.2 (a)(b)).
(1a) Before a genome duplication, it follows a power law: p1(k) = c1

(k+k01)γ1 .

(1b) After a genome duplication, it may follow a new power law:p2(k)= c2
(k+k02)γ2 .

(2) The network degree distribution has a power-law-tail property (See Fig.2(b)):
(2a) Before a genome duplication, it follows the power law of the vertex degree
distribution: p1(k) = c1

(k+k01)γ1 .

(2b) After a genome duplication, Pi(k) denotes the network degree distribution at
the i−th gene duplication. Then limi→+∞ Pi(k) = p2(k), k ≥ x̄ =

∑
j≥1 jP0(j).

It means that a genome duplication drives the network degree distribution away
from its power law states. However, after an efficient large number of gene du-
plications, the network degree distribution gradually approaches to the power law
of the vertex degree distribution over the tail starting at the average vertex degree
when the genome duplication is completed, i.e., the tail [x̄,+∞) of the power law
(see Fig.2(b)).

Fig. 2. Network growth: (a) Before a genome duplication: the degree distributions of
vertices and network follow a power law. (b) After a genome duplication: the degree
distribution of vertices follow a new power law, but the network degree distribution
may not. It approaches to the power law of the vertex degree distribution over [x̄, +∞)

The dynamics shows the evolutionary process of a gene network: The network
starts at a simple initial state and is enlarged by a series of gene duplications
that occur during the network growing. Before a genome duplication, the degree
distributions for both the vertices and the network follow the same power law.
After a genome duplication, the vertex degree distribution follows a new power
law, but the network degree distribution may not. However, after a large number
of gene duplications, the network degree distribution gradually approaches to the

Gene Network: Model, Dynamics and Simulation 19

power law of the vertex degree distribution over the tail part, which starts at the
average vertex degree. The gene network always repeats this growing process. A
genome duplication may change the power law to a new one for the vertex degree
distribution and drive the network degree distribution away from the power law
states. The network always gradually recovers to the power law states.

4 Simulations

It is shown in last section that the (local) vertex degree distribution always
follows power laws and the (global) network degree distribution may not, but
approach a power law tail. In this section, we examine the dynamics of gene
networks by computer simulations. A simulation program is designed for the
purpose and is available at http://xgu.zool.iastate.edu.

The simulations are conducted for the model with the following parameters:
N0 = 4, E0 = 1, gd = 1/n, gl = 0, λ = 0.3, 0 ≤ μ ≤ 0.1, Gl = 0.9. One
genome duplication occurs at N = 2000, i.e., Gd ≈ 1

8800 ≈ 0.00011. We focus on
observing the vertex degree distributions and the network degree distributions
through a series of simulations.

Initially, we start from a simple network consisting of four vertices with only
one pair of them joined by an edge. Next, the network grows for 2000 gene
duplications (one by one), followed by a genome duplication, which doubles the
network size. Then, the network keeps only 10% of the genes in the duplicated
genome and continue to grow until the network contains 9000 genes (i.e., about
8800 gene duplications occurs).

We take the average values for all parameters from ten groups of our simu-
lations. By linear regressions on the log-log plots of the generated distributions
from the simulations, we find that power law distributions best fit the data.
Table 3 and Figure 3 show the vertex degree distributions and the network de-
gree distributions. Table 3 also shows the average degrees and diameters of the
networks, which are consistent with general biological systems [14–17].

Table 3 and Figure 3 show that: The vertex degree distribution always fol-
lows power laws with different exponents, but the network distribution may not.
Under 2000 gene duplications, i.e., before the genome duplication, the network

Table 3. The parameters of the simulated gene network

Number Exponent for Exponent for Network Network
of vertices vertex degree network degree average average

N distribution distribution degree diameter

500 2.31 2.31 23.26 2.80
1000 2.16 2.16 28.91 3.12
2000 2.41 2.41 146.25 2.63
4000 2.48 N/A 198.58 2.50
5000 2.46 2.00∗ 219.38 2.51
9000 2.55 2.43∗ 401.21 2.50

∗ This is the approximated power-law exponent of the tail [x̄,∞).

20 Shiquan Wu and Xun Gu

Fig. 3. Network growth process: (a1), (a2), and (a3) are the network degree distribu-
tions before genome duplication for N=500, 1000, and 2000, respectively. They follow
power laws. (A1), (A2), and (A3) are the network degree distributions after a genome
duplication for N=4000, 5000, and 9000, respectively. They may not be power laws,
but very close to power law tails

degree distribution also follows power laws. However, when a genome duplica-
tion occurs at n = 2000, the network degree distribution does not follow a power
law. The network keeps growing and the network degree distribution gradually
recovers to its power law state. When the network contains 9000 genes, several
thousands of gene duplications have occurred. The network degree distribution
becomes very close to the power law of the vertex degree distribution over the
tail starting at the average vertex degree. The network dynamics is verified.

5 Comparison and Discussion

Our gene network model has two advantages. At first, it includes more biolog-
ical mechanisms [4, 13] (e.g., allowing genome duplications) and becomes more
general and realistic than other previous ones [4, 13]. Secondly, our model and
dynamics describe the dynamic behavior of gene networks. However, other previ-
ous ones contain only static behavior. Our dynamics shows that during the gene
network growth, the vertex degree distribution always follows power laws with
different exponents, but the network degree distribution may not. A genome du-
plication brings a new power law for the vertex degree distribution and drives
the network degree distribution away from the power law state. However, after
a sufficient long evolutionary time, the network degree distribution gradually
recover to its power law state over the tail part. The gene networks under our
mechanisms have a power-law behavior similar to those in [4, 15, 19]. After a
genome duplication, the gene network continues to grow from a new state and

Gene Network: Model, Dynamics and Simulation 21

follows a new power law. The results again confirm that mechanisms decide dy-
namics, i.e., a power law exponent only depends on the network growth process,
not the initial state of the network [4, 13]. In addition, our model and simulation
provide an efficient way to explore large scale complex biological networks, whose
large scale interactions are impossible to be dealt with by means of experiment.
Moreover, the model can be generalized to deal with multiple organisms.

Acknowledgement

Research is supported by NIH Grant RO1 GM62118 (X.G.) and the research
grant from the Plant Science Institute at Iowa State Univerity.

References

1. Kitano, H.: Systems Biology: A Brief Overview, Science 295(2002)1662-1664.
2. Strogatz, S. H.: Exploring complex networks, Nature, 410(2001)268-276.
3. Oltvai,Z., Barabási,A.-L.: Life’s complexity pyramid, Science,298(2002)763-764.
4. Albert, B. and Barabási, A.-L.: Statistical mechanics of complex networks, Review

of Modern Physics, 74(2002)47-97.
5. Sali, S.: Functional links between proteins, Nature, 402(1999)23-26.
6. Wagner, A.: The yeast protein interaction network evolves rapidly and contains few

redundant duplicate genes, Molecular Biology and Evolution, 18(2001)1283-1292.
7. Wagner, A.: How large protein interaction networks evolve. Proc. R. Soc. Lond.,

B 270(2003)457-466.
8. Uetz, P., Giot, L., etc.: A comprehensive analysis of protein-protein interactions in

Saccharomyces cerevisiae, Nature, 403(2001)623-627.
9. Jeong, H., Tombor, B., Albert, R., Oltvai, Z.N., and Barabási, A.-L.: The large-

scale organization of metabolic networks,Nature 407(2000)651-654.
10. Ravasz, E., Somera, A., Mongru, D. A., Oltvai, Z. and Barabási, A.-L.: Hierarchical

organization of modularity in metabolic networks, Science, 297(2002)1551-1555.
11. Barabási, A. and Albert, A.-L.: Emergence of scaling in random networks, Science,

286(1999)509-512.
12. Azevedo, R. and Leroi, A. M.: A power law for cells, PNAS, 98(2001)5699-5704.
13. Chung, F., Lu, L., Dewey, T. G., and Galas, D. J.: Duplication Models for Biological

Networks, Journal of Computational Biology, 10(2002)677-687.
14. Albert, R., Jeong, H. and Barabási, A.-L.: Diameter of the World Wide Web,

Nature, 401(1999)130-131.
15. Chung, F. and Lu, L.: The average distances in random graphs with given expected

degrees, PNAS, 99(2002)15879-15882.
16. Givan, M. and Newman, E. J.: Community structure in social and biological net-

works, PNAS, 99(2002)7821-7826.
17. Watts, D. J. and Strogatz, H.: Collective dynamics of ‘small-world’ networks, Na-

ture, 393(1998)440-442.
18. Ohno, S.: Evolution by Gene Duplication, Springer, New York (1970).
19. Bhan, A., Galas, D. J. and Dewery, T. G.: A duplication growth model of gene

expression network, Bioinformatics, 18(2002)1486-1493.
20. Wolfe, K. and Shields, D.: Molecular evidence for an ancient duplication of the

entire yeast genome, Nature, 387(1997)708-13.
21. Stillman, B.: Genomic Views of Genome Duplication, Science, 294(2001)2301-2304.

Conserved Interval Distance Computation
Between Non-trivial Genomes�

Guillaume Blin1 and Romeo Rizzi2

1 LINA FRE CNRS 2729 Université de Nantes, 2 rue de la Houssinière
BP 92208, 44322 Nantes Cedex 3, France

blin@lina.univ-nantes.fr
2 Università degli Studi di Trento, Dipartimento di Informatica e Telecomunicazioni

Via Sommarive, 14, I38050 Povo, Trento (TN), Italy
Romeo.Rizzi@unitn.it

Abstract. Recently, several studies taking into account the ability for a
gene to be absent or to have some copies in genomes have been proposed,
as the examplar distance [6, 11] or the gene matching computation be-
tween two genomes [3, 10]. In this paper, we study the time complexity
of the conserved interval distance computation considering duplicated
genes using both those two strategies.

Keywords: Conserved interval distance, Exemplar string, Matching,
Computational complexity, Longest Common Substring, Duplicated
genes.

1 Introduction

In comparative genomics, gene order study in a set of organisms has been inten-
sively led essentially in phylogenetic research field [2, 4, 5]. Most of the methods
associated to gene order study are based on a distance computation. This dis-
tance has to reflect the number of genetic operations needed to transform a
source genome into a target genome. For this purpose, a set of distances and
associated methods have been developed in the past decade. Among others, we
can mention three intensively studied distances: edit [9, 12], breakpoint [3], and
conserved interval [1] distances.

From an algorithmic point, distances can roughly be defined as follows: given
a set F of gene families, two genomes G and H , represented as sequences of
signed elements (genes) from F , and a set of evolutionary operations that oper-
ate on segments of genes (like reversals, transpositions, insertions, duplications,
deletions for example), the distance between G and H is the minimum number
of operations needed to transform G into H .

Until recently, the assumption that in a genome there is no copy of a gene
was a requirement of most of the methods associated to gene order study. This
restriction reduces the problem to the comparison of signed permutations [8]. It
� This work was partially supported by the French-Italian PAI Galileo project number

08484VH

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 22–31, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Conserved Interval Distance Computation Between Non-trivial Genomes 23

is known that this assumption is very restrictive and is only justified in small
virus genomes, therefore one needs to consider genomes containing duplicated
genes.

In [11], Sankoff has proposed a method to select, from the set of copies of
a gene, the common ancestor gene such that the distance between the reduced
genomes is minimized. In [6], Bryant proved that the corresponding problem, so
called exemplar string, was NP-complete for two distances: the signed reversals
and the breakpoint distances. Marron et al. have proposed in [12] methods re-
lying on a matching between genes of two genomes. Provided with a matching
between genes of the two genomes, one can, by a rewriting of the genomes ac-
cording to the matching, create genomes without duplicated genes and solve the
reduced problem.

In this paper, we investigate the complexity of both the use of exemplar
strategy and of matchings to compute the conserved interval distance between
genomes containing duplicated genes. First we prove that the use of both strate-
gies unfortunately induces NP-completeness. To overstep NP-hardness of prob-
lems, many techniques have been developed: heuristic, parameterized complexity
and approximation algorithm. For biological problems those alternative tech-
niques have been intensively used, since in most cases specific properties of the
problem are not taken into account in the NP-hardness proof.

This paper is organized as follows. After presenting some preliminaries in
Section 2, we show in Section 3 that both the use of exemplar strategy and of
matchings to compute the conserved interval distance between genomes contain-
ing duplicated genes induces NP-completeness. Then in Section 4, we present
a heuristic approach based on the Longest Common Substring which have been
implemented and tested over a set of 20 bacteria.

2 Preliminaries

Genomes, Gene Families and Gene. Following terminology introduced in [11],
a genome G is a sequence of elements of an alphabet F (referred as the set of
gene families) such that each element is provided with a sign (+ or −). Each
occurrence of a gene family from F in G is called a gene. Given a genome
G = g1g2 . . . gn, we say that gene gi precedes gene gi+1. For two genomes G and
H and a gene family f , the number of occurrences of f in G and H is called the
cardinality of family f . A gene family f is said to be trivial if f has cardinality
exactly 1 or 2. Otherwise, f is said to be non-trivial. A gene belonging to a trivial
(resp. non-trivial) family is said to be trivial (resp. non-trivial). A segment (i.e.
a substring) of G that contains only non-trivial genes is called a non-trivial
segment. We say that two genomes G and H are balanced if, for any gene family
f , there are as many occurrences of f in G as in H .

Conserved Interval, Conserved Interval Distance. Following terminology intro-
duced in [1], given a set of n genomes G and two genes a, b ∈ F , an interval
[a, b] is a conserved interval of G if (1) either a precedes b, or -b precedes -a in
each genome of G and (2) the set of unsigned genes (i.e. not considering signs)

24 Guillaume Blin and Romeo Rizzi

appearing between genes a and b is the same for all genomes of G. For example,
given two genomes G1 = a b c g e f -d h and G2 = a g -c -b e -f -d h, there are
seven conserved intervals between G1 and G2: [a, -d], [a, e], [a, h], [b, c], [e, -d],
[e, h] and [-d, h].

Given two set of genomes G and H, the conserved interval distance between
G and H is defined by d(G,H) = NG + NH − 2NG

⋃
H where NG (resp. NH

and NG
⋃

H) is the number of conserved intervals in G (resp. H and G
⋃
H). For

example, let G = {G1, G2} and H = {H1, H2} be two sets of genomes where G1

and G2 are as above and H1 = a e -f b g c -d h and H2 = a f -c -g b -e -d h.
We obtain d(G,H) = 7 + 3− 4 = 6. In the rest of the paper, for readability, we
denote the conserved interval distance between two singleton sets d({G}, {H})
by d(G,H).

Gene Matching. Let G = g1g2 . . . gn and H = h1h2 . . . hm be two genomes on
F . A gene matching M between G and H is a maximal matching between genes
of G and H such that, for every pair (gi, hj) ∈ M, gi and hj belong to the
same family. By maximal matching, we mean that for any gene family f , it is
forbidden to have at the same time an occurrence of f in G and one in H that
do not belong to M. It follows from the maximality condition of matchings that
in any matching M between balanced genomes G and H , every gene of G is
matched to a gene of H and conversely. Given a matching M and a segment
s = s1s2 . . . sm of G if, for all 1 ≤ i ≤ m, (si, ti) ∈ M such that: (1) si = ti
and t = t1t2 . . . tm is a segment of H or (2) si = −ti and t = tmtm−1 . . . t1 is a
segment of H then s is perfectly matched inM; not-perfectly matched otherwise.

Minimum Conserved Interval Matching. Given two genomes G, H and a gene
matching M, we denote by d(G,H,M) the conserved interval distance between
G and H with respect to M, and by d(G,H) the conserved interval distance
between G and H , defined as the minimum d(G,H,M) among all matchings
M. The matching M such that d(G,H,M) = d(G,H) is a minimum conserved
interval matching.

3 Hardness Results

In this section, we first prove that, even if there is no non-trivial segment contain-
ing more than one gene, Exemplar Conserved Interval Distance (ECID)
problem (formalized hereafter) is NP-complete. Then, we prove that, even with
just one non-trivial gene family, the problem of finding a Minimum Conserved
Interval Matching (MCIM) is NP-complete. This last result is based on a
polynomial time reduction which is inspired from the one presented in [3] which
proves that a connected problem, Minimum Breakpoint Matching, is NP-
complete.

Theorem 1. Exemplar Conserved Interval Distance problem is NP-
complete even when all non trivial segments are composed of only one duplicated
gene.

Conserved Interval Distance Computation Between Non-trivial Genomes 25

To prove the correctness of Theorem 1, we provide a polynomial time reduction
from the NP-complete problem Minimum Set Cover [7]. Following terminol-
ogy introduced in [7], we recall that given a collection C of subsets of a finite
set E, a cover for E is a subset C′ ⊆ C such that every element of E belongs
to at least one member of C′. For the sake of clarity, we now state formally the
two decision problems we consider: ECID and Minimum Set Cover. Given
two genomes G and H , and a positive integer k, ECID problem asks whether it
is possible to find two exemplar genomes G′ and H ′ of resp. G and H such that
d(G′, H ′) ≤ k. Given a collection C of subsets of a finite set E and a positive
integer k′, Minimum Set Cover problem asks whether C contains a cover C′

for E s.t. |C′| ≤ k′.
Hereafter, we consider, w.l.o.g., that in each Ci ∈ C, any ej ∈ Ci is also in

Cj with 1 ≤ i, j ≤ m and i �= j. In fact, by definition, if an element is covered
by only one subset then this subset must be part of C′. In the following, we
will prove that, even if G does not contain more than one occurrence of each
duplicated gene, ECID problem is NP-complete. Given an integer k′, two ex-
emplar genomes G′ and H ′, one can compute polynomially d(G′, H ′) and check
if d(G′, H ′) ≤ k′ (see [1]). Therefore, ECID problem is in NP. The remainder of
the section is devoted to proving that it is also NP-hard. For this purpose, we re-
duce Minimum Set Cover problem to ECID problem. Let C = {C1, C2 . . . Cm}
be a collection of m subsets of a finite set E = {e1, e2 . . . en} of n elements.

In the rest of this section, we consider that F ⊆ N but any genome is built
with elements of F provided with signs (i.e. R). In other words, genes 3 and −3
are of the same family. Let us detail the construction of the two genomes G and
H . Let y = |E|+ 2 if |E| is even, y = |E|+ 1 otherwise. Let zi = (y + 2).(i− 1)
for any 1 ≤ i ≤ m + 1. From (C,E), we construct two genomes G and H as
described below (an illustration is given in Figure 1):

G1 = γ|E|+1 γ|E|+2 . . . γ|E|+m−1α1 β1 . . . αm βm γ1 γ|E|+m γ2 γ|E|+m+1

. . . γ2|E|+m−1 γ|E|
H1 = α1 θ1 γ|E|+1 α2 θ2 γ|E|+2 . . . γ|E|+m−1 αm θm γ|E|+m γ|E|+m+1 . . . γ2|E|+m−1

We now detail the substrings that compose G1 and H1:

– for 1 ≤ i ≤ m, we construct the sequences of genes αi = zi and βi =
zi+1 zi+2 . . . zi+y+1;

– for 1 ≤ i ≤ 2|E|+m− 1, we construct a gene γi = zm+1 + i;
– for 1 ≤ i ≤ m, we construct a gene θi = zi+2 zi+4 . . . zi+y zi+1 zi+3 . . . zi+
y-1 zi+y+1.

Note thatG1 andH1 are two exemplar genomes. GenomeG is, thus, a copy ofG1.
We now turn to transform H1 into a non-exemplar genome H : for 1 ≤ i ≤ m and
1 ≤ j ≤ |E|, if ej ∈ Ci then gene γj is inserted between the jth and the j+1th

genes of θi. We denote by ECID-construction any construction of this type.
An illustration of an ECID-construction is given in Figure 1. Intuitively, θi is a
shuffle of βi with some inserted γjs (i.e. no conserved adjacencies) for 1 ≤ i ≤ m.
Clearly, our construction can be carried out in polynomial time. Moreover, the
result of such a construction is indeed an instance of ECID problem.

26 Guillaume Blin and Romeo Rizzi

Fig. 1. Example of an ECID-construction where E = {e1, e2, e3} and y = 4

We now turn to proving that our construction is a polynomial time reduc-
tion from Minimum Set Cover to ECID problem where G is an exemplar
genome whereas H is not. Let first note that, by construction, there are only |E|
duplicated gene families in G and H , namely the γis for 1 ≤ i ≤ |E|.

Lemma 1. The only conserved intervals that can exist between G and any ex-
emplar genome H ′ of H are intervals [αi, zi + y + 1] such that all the γjs of
[αi, zi + y + 1] in H ′ have been deleted, with 1 ≤ i ≤ m and 1 ≤ j ≤ |E|.

Lemma 2. Let I = (C,E, k′) be an instance of the problem Minimum Set
Cover with a collection C = {C1, C2 . . . Cm} of m subsets of a finite set E =
{e1, e2 . . . en}, and I ′ = (G,H, k) an instance of ECID problem obtained by
an ECID-construction from I. C contains a cover C′ of E of size less than
or equal to k′ iff d(G,H ′) ≤ k where H ′ is an exemplar genome of H and
k = |G|.|G− 1| − 2(m− k′).

Proof. (⇒) Suppose C contains a cover C′ of E of size less than or equal to
k′. Let f : ei → {C1, C2, . . . Cm} be the function which, given an element of E,
returns the index of the subset covering this element in C′. Let I ′ = (G,H, k) be
the instance obtained from an ECID-construction of I. We look for an exemplar
genome H ′ of H such that d(G,H ′) ≤ k. We define H ′ as follows: for each
ej ∈ E, delete γj of θp for all p ∈ {1, 2, ..,m}/{f(ej)}.

By construction, E denotes the set of duplicated gene families and by con-
struction the only duplicated genes in H are the γis. Therefore, H ′ is exemplar
since one deletes all occurrences but one of γi with 1 ≤ i ≤ |E|. Remains us
to prove that d(G,H ′) ≤ k. By definition, for each Cj �∈ C′ and each ei ∈ Cj ,
f(ei) = p with p �= j and γi of θj has been deleted. Since all the γis of θj in H ′

have been deleted, there is a conserved interval [αj , zj +y+1] between G and H ′.
Globally, there are at leastm−k′ such subsets. Therefore, there are at leastm−k′
conserved intervals between G and H ′. Thus, d(G,H ′) ≤ |G|.|G−1|−2(m−k′),
since the number of conserved intervals between a genome G and itself is |G|.|G−1|

2
and |G| = |H ′|.

(⇐) Suppose we have an exemplar genome H ′ of H such that d(G,H ′) ≤ k.
Assume, w.l.o.g., that d(G,H ′) = d′ ≤ k. We define C′ as follows: in H ′, if
γj ∈ θp then f(ej) = p and Cp ∈ C′. We now turn to proving that C′ defines

Conserved Interval Distance Computation Between Non-trivial Genomes 27

a cover of E of size at most k′. Since H ′ is an exemplar genome of H , there is
exactly one occurrence of each gene family in H ′. Therefore, C′ contains a set
of subsets that covers E. Remains us to prove that |C′| ≤ k′.

By definition, since d′ ≤ |G|.|G − 1| − 2(m − k′), there are at least m − k′

conserved intervals between G and H ′. By Lemma 1, the only conserved intervals
that can exist between G and any exemplar genomeH ′ of H are intervals [αi, zi+
y+ 1] such that all the γjs of [αi, zi + y+ 1] in H ′ have been deleted. Therefore,
by construction, there are at least m − k′ such intervals [αi, zi + y + 1] in H ′.
Correctness of Theorem 1 follows. ��

Given Theorem 1, one can ask if instead of deleting the duplicated genes, one
can compute the interval distance taking into account duplicated genes [3, 12].
For this purpose, we propose the MCIM problem: finding a minimum conserved
interval matching between two genomes. Unfortunately, as we will show here-
after, this problem is also NP-complete.

Theorem 2. Minimum Conserved Interval Matching problem is NP-
complete.

To prove the correctness of Theorem 2, we provide a polynomial time reduction
from the NP-complete problem Minimum Bin Packing [7]. For the sake of
clarity, we now state formally the two decision problems we consider: MCIM
and Minimum Bin Packing. Given two genomes G and H , and an integer
k, MCIM problem asks whether it is possible to find a matching between G
and H such that d(G,H) ≤ k. Given a finite set U = {u1, u2, . . . , un}, a size
s(u) ∈ Z+ for each u ∈ U and two positive integers k′ and C, Minimum Bin
Packing problem asks whether there is a partition of U into k′ disjoint sets
U1, U2, . . . , Uk′ such that

∑
(s(u)|u ∈ Ui) ≤ C for each Ui.

It is easily seen that MCIM is in NP since given an integer k and a set of
matchings between two genomes we can polynomially compute the number of
conserved intervals between G and H and thus check if the distance is less than
or equal to k (see [1]). The remainder of the section is devoted to proving that
MCIM is also NP-hard even when there is only one non trivial family in F ,
which implies Theorem 2. For this, we reduce Minimum Bin Packing problem
to MCIM problem. Let N = k′.C −

∑n
i=1 s(ui).

Let us first detail the construction of genomes G and H from a Minimum
Bin Packing instance (U, k′, C). The gene families are F = {α, β,x, A1, A2

. . . , An+N , B1, B2, . . . , Bk′+1}. On the whole, there are k′ + N + n + 4 fam-
ilies of genes, and x is the unique non-trivial family. For 1 ≤ i ≤ n (resp.
n + 1 ≤ i ≤ n + N), we denote by u′

i a sequence of s(ui) consecutive genes x
(resp. one gene x). For 1 ≤ j ≤ k′, U′

j represents a sequence of C consecutive
genes x. G and H are defined as follows:
G = α u′

1 A1 u′
2 A2 . . . u′

n+N An+N B1 B2 . . . Bk′+1 β

H = α B1 U′
1 B2 U′

2 . . . Bk′ U′
k′ Bk′+1 A1 A2 . . . An+N β

An illustration of such a construction, that can obviously be achieved in poly-
nomial time, is given in Figure 2. To complete the construction of the instance

28 Guillaume Blin and Romeo Rizzi

of MCIM, it remains to us to define k: k = |G|.(|G|−1)
2 + |H|.(|H|−1)

2 − 2q with
q = 1 +

∑n
i=1

s(ui).(s(ui)−1)
2

In the next three lemmas, that establish that MCIM is NP-complete, we
consider an instance (U, k′, C) of Minimum Bin Packing and the corresponding
instance (G,H, k) of MCIM according to the above construction.

Lemma 3. Given a matching M, a non trivial segment of size p perfectly
matched in M induces more conserved intervals (i.e. p(p−1)

2) than a non-trivial
segment of size k not-perfectly matched.

Lemma 4. d(G,H) ≥ k and in any matching M between G and H, any con-
served interval I with respect to M is either [α, β] or I = [p, q] with S[p..q] being
a non trivial segment.

Lemma 5. There is a partition of U into k′ disjoint sets U1, U2, . . . , Uk′ such
that the sum of the sizes of the elements in each Ui is at most C if and only if
d(G,H) ≤ k.

Proof. (⇐) Suppose that d(G,H) ≤ k. By Lemma 4, we know that d(G,H) = k,
and any conserved interval I with respect to a minimum conserved interval
matching between G and H is either [α, β] or I = [p, q] with S[p..q] being a
non trivial segment. Moreover, if d(G,H) = k then the number of conserved
intervals should be maximal (i.e. 1+

∑n
i=1

s(ui).(s(ui)−1)
2). Therefore, by Lemma

3, any non-trivial segment u′i, with 1 ≤ i ≤ n, in G should be matched with a
sequence of consecutive genes x in H . Precisely, for any 1 ≤ i ≤ n, there is a
given 1 ≤ j ≤ k′ such that the sequence u′i is perfectly matched with a substring
of U ′

j as illustrated in Figure 2.

Fig. 2. Instance of MCIM associated to the Minimum Bin Packing instance where
k′ = 3, C = 8 and U = {u1, . . . , u6} with s(u1) = s(u5) = 5, s(u2) = s(u6) = 4,
s(u3) = 3 and s(u4) = 2 and the gene to gene matching corresponding to the following
partition of U : U1 = {u1, u3}, U2 = {u2, u6} and U3 = {u4, u5}

Therefore, such a matching induces a partition P of the set of sequences
{u′1, u′2, . . . , u′n} into at most k′ disjoint sequences U ′

1, U
′
2, . . . , U

′
k′ . As, by con-

struction, |U ′
i | = C for 1 ≤ i ≤ k′, P corresponds to an answer to the corre-

sponding Minimum Bin Packing instance.
(⇒) Suppose we have a partition P of U into disjoint sets U1, U2, . . . , Uk′

each of cardinality at most C. We compute a gene matching M between G and
H as follows: (1) each trivial gene in G is matched with its corresponding gene

Conserved Interval Distance Computation Between Non-trivial Genomes 29

in H and (2) for 1 ≤ j ≤ k′, for each ui ∈ U , if ui ∈ Uj, then the sequence
of genes x of u′i in G is perfectly matched with the first free (i.e. not already
matched) sequence of genes x of U ′

j in H .
Since M is built according to P , we claim that each non-trivial segment u′i,

with 1 ≤ i ≤ n, is matched to a contiguous sequence of genes x in H . Thus, any
non-trivial segment u′i, with 1 ≤ i ≤ n, in G induces s(ui).(s(ui)−1)

2 conserved
intervals. Therefore, M induces 1 +

∑n
i=1

s(ui).(s(ui)−1)
2 conserved intervals (see

proof of Lemma 4). This leads to d(G,H,M) ≤ k, and so to d(G,H) ≤ k.
Correctness of Theorem 2 follows. ��

4 Using the L.C.Substring to Approximate MCIM

In this section, we present a heuristic approach to solve MCIM problem that
performs well on real data. This approach uses the following intuition: long
segments of genes that match, up to a complete reversal, in two genomes are likely
to belong to a Minimum Conserved Interval Matching. Remark that given two
trivial genomes this intuition gives the optimal solution. Unfortunately, this is
not always the case when considering non trivial genomes. Even so, this approach
works very well on real genomes. In the rest of this section, we consider two
genomes G and H build with elements of F ⊆ N and provided with signs.

Our approach to solve MCIM problem is based on the following loop:

1. Identify a longest common segment s of genes between G and H (by common
segment, we mean a segment appearing, up to a complete reversal, both in
G and H);

2. Replace s in both genomes by an integer gc, further call compressed gene,
s.t. gc �∈ F (this induces that gc is a trivial gene);

3. Mark gc as treated;
4. Store the number of genes of s in Ns[gc] and the set of genes of s in C[gc].

While a common segment of unmarked genes exists, the algorithm performs
the loop described above on the modified genomes. In the following, we will
refer to the modified versions of the genomes G and H as G′ and H ′. Once
the algorithm exits of the loop, any unmarked gene gu of G′ and H ′ is deleted
since, by definition, gu is not common (i.e. there are more genes gu in one of
the genomes). This first step of the algorithm leads to the computation of two
exemplar genomesG′ andH ′ of resp.G andH . Clearly, this step gives the gene to
gene matching of G and H in a compressed version: the corresponding matching
M is obtain by perfectly matching the segments of genes corresponding to each
compressed gene of G as illustrated in Figure 3.

In a second step, the algorithm computes the interval distance induced by
M. By Lemma 3, each compressed gene gc of G′ induces k(k−1)

2 conserved in-
tervals between G and H with k = Ns[gc]. Moreover, some conserved intervals
between G′ and H ′ may exist. Therefore, since G′ and H ′ are trivial genomes,
the algorithm computes the set of conserved intervals Sci between G′ and H ′ in
polynomial time using the algorithm defined in [1]. SinceG′ andH ′ are composed

30 Guillaume Blin and Romeo Rizzi

Fig. 3. The matching of the genes of G and H deduced from the exemplar genomes G′

and H ′

of compressed genes, for each conserved interval [gc1, gc2] ∈ Sci, Ns[gc1].Ns[gc2]
conserved intervals between G and H are induced. Indeed, if [gc1, gc2] ∈ Sci

then a segment of genes gc1λgc2 appears in G′ and either a segment of genes
gc1λ

′gc2 or −gc2λ
′ − gc1 appears in H ′ with λ and λ′ being similar segments of

genes not considering genes order and sign. Therefore, considering M, for any
genes gi ∈ C[gc1] and gj ∈ C[gc2], [gi, gj] is a conserved interval between G and
H . This step returns d(G,H,M) = |G|.|G − 1| − 2(

∑
gc∈G′

Ns[gc].(Ns[gc]−1)
2 +∑

[gc1,gc2]∈Sci
Ns[gc1].Ns[gc2])

We implemented our approach using a suffix tree. Indeed, longest common
segments between G and H can be found in linear time by browsing a suffix tree
built on G, H and the reversed of H . To test our algorithm and get an estimate
of its performance in practice, we applied our heuristic approach to a set of 20
bacteria from NCBI.

Data and programs used and mentioned in this article can be found at
http://www.sciences.univ-nantes.fr/info/perso/permanents/blin/Cocoon05/

Interesting characteristics of this set are given on the web page. We im-
plemented the brute force algorithm which consists in computing all possible
matchings and we compared the obtained results. In average, the gap between
the optimal solution opt and the solution given by our algorithm is less than
0, 12% of opt. We noticed that more than 2

3 of the bacteria have duplicated
genes with, for most of them, duplicated families of cardinality 2. The effective-
ness of our algorithm relies on the fact that the number of duplicated genes are
not significant compared to the size of the genomes. Moreover, since our algo-
rithm gives the optimal solution for trivial genomes, duplicated genes have a
very little impact on the results.

5 Conclusion

The assumption of uniqueness of each gene in a genome has been a requirement
of traditional methods in comparative genomics but is only justified in small
virus genomes, since in general, there are more than one copy of a gene in
a genome. In this paper, we investigate the time complexity of the conserved
interval distance computation considering duplicated genes. We proved that both
use of exemplar and matching methods leads to NP-completeness. We are doing
thorough experimental testing which will determine how well our algorithm does
in practice under different regimes of duplication, but our preliminary results are
extremely encouraging.

Conserved Interval Distance Computation Between Non-trivial Genomes 31

Note that, since the Brute Force Algorithm is in O(kk.ln) with k being the
maximal cardinality of any non-trivial gene family, l being the number of non-
trivial families and n being the size of the genomes, MCIM problem is in FPT
for parameter k and l. In order to be usable in many reconstruction algorithms, it
would be of interest to determine if the problem is in FPT for other parameters.

References

1. A. Bergeron and J. Stoye. On the similarity of sets of permutations and its appli-
cations to genome comparison. Proceedings of COCOON 03, 2697 of LNCS:68–79,
2003.

2. M. Blanchette, T. Kunisawa, and D. Sankoff. Gene order breakpoint evidence in
animal mitochondrial phylogeny. J. Mol. Evol., 49(2):193–203, 1999.

3. G. Blin, C. Chauve, and G. Fertin. The breakpoints distance for signed sequences.
In Actes de CompBioNets 2004, volume 3 of Texts in Algorithms, pages 3–16. KCL
Publications, 2004.

4. G. Bourque and P. A. Pevzner. Genome-scale evolution: Reconstructing gene orders
in the ancestral species. Genome Res., 12(1):26–36, 2002.

5. G. Bourque, P.A. Pevzner, and G. Tesler. Reconstructing the genomic architecture
of ancestral mammals: lessons from human, mouse and rat genomes. Genome Res.,
14(4):507–516, 2004.

6. D. Bryant. The complexity of calculating exemplar distances. In D. Sankoff and
J. Nadeau, editors, Comparative Genomics: Empirical and Analytical Approaches
to Gene Order Dynamics, Map Alignment, and the Evolution of Gene Families,
pages 207–212. Kluwer Acad. Pub., 2000.

7. M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman and Company, 1979.

8. O. Gascuel, editor. Mathematics of Evolution and Phylogeny. Oxford Univ. Press,
2004. To appear.

9. M. Marron, K.M. Swenson, and B.M.E. Moret. Genomic distances under deletions
and inversions. Proceedings of COCOON 03, 2697 of LNCS:537–547, 2003.

10. B. M. E. Moret, A. C. Siepel, J. Tang, and T. Liu. Inversion medians outperform
breakpoint medians in phylogeny reconstruction from gene-order data. In WABI
2002, volume 2452 volume of LNCS, pages 521–536. Springer Verlag, 2002.

11. D. Sankoff. Genome rearrangement with gene families. Bioinformatics, 15(11):909–
917, 1999.

12. K.M. Swenson, M. Marron, J.E Earnest-DeYoung, and B.M.E. Moret. Approx-
imating the true evolutionary distance between two genomes. Technical Report
TR-CS2004-15, Department of Computer Science, University of New Mexico, 2004.

RNA Multiple Structural Alignment
with Longest Common Subsequences�

Sergey Bereg1 and Binhai Zhu2

1 Department of Computer Science, University of Texas at Dallas
Richardson, TX 75083-0688, USA

besp@utdallas.edu
2 Department of Computer Science, Montana State University

Bozeman, MT 59717-3880, USA
bhz@cs.montana.edu

Abstract. In this paper, we present a new model for RNA multiple
sequence structural alignment based on the longest common subsequence.
We consider both the off-line and on-line cases. For the off-line case, i.e.,
when the longest common subsequence is given as a linear graph with n
vertices, we first present a polynomial O(n2) time algorithm to compute
its maximum nested loop. We then consider a slightly different problem –
the Maximum Loop Chain problem and present a factor-2 approximation
which runs in O(n2.5) time. For the on-line case, i.e., given m RNA
sequences of lengths n, compute the longest common subsequence of
them such that this subsequence either induces a maximum nested loop
or the maximum number of matches, we present efficient algorithms using
dynamic programming when m is small.

1 Introduction

In the study of noncoding RNA (ncRNA), it is well known that the corresponding
genes are very active among genomic DNA. There are four such genes (polymers
of nucleotides): A, C, G and U. Different from regular genes, ncRNAs fold di-
rectly into secondary and tertiary structures and the stability of the foldings are
mainly determined by A-U, C-G and G-U bonds.

However, it is still not completely known how such a ncRNA folds into sec-
ondary and tertiary structures. One of the method is to take a multiple sequence
of ncRNAs and investigate their common folding patterns or secondary struc-
tures [4, 19, 20]. In [4], it is proposed that the largest common nested linear
subgraph of m given linear graphs (induced by m ncRNA sequences of length
n) presents a solution for this problem. This problem is NP-complete and the
authors presented an O(log2 n) approximation for this problem [4].

In this paper, we follow the general methodology of [4]. However, we think
that computing largest common nested linear subgraph cannot perfectly solve

� This research is partially supported by EPSCOR Visiting Scholar’s Program and
MSU Short-term Professional Development Program.

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 32–41, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

RNA Multiple Structural Alignment with Longest Common Subsequences 33

the problem in many situations. For example, if we have two ncRNA sequences:
AGUU and CAGG, even though they induce the same largest common nested
linear subgraph, the corresponding bonds and letters are completely different.
(A letter cannot form a bond or match with a neighboring letter.)

The above idea forms the basis of our research. In this paper, we propose
to use the Longest Common Subsequence (LCS) of m given ncRNA sequences
as the basis to tackle this problem. We consider two general cases: off-line and
on-line cases. In the off-line case, the LCS is already given and we want to find
meaningful properties of such a LCS, namely, whether this LCS admits a special
kind of fold. In the on-line case, we want to compute the LCS which admits
certain kind of folding.

In general, the longest common subsequence of two sequences is not unique.
Rick [17] developed an algorithm for finding all longest common subsequences.
The number of longest common subsequences can be quite large. Greenberg [9]
proved an exponential lower bound for the maximum number of distinct longest
common subsequences of two sequences of length n. Therefore, in a lot of biolog-
ical applications we believe that merely finding a longest common subsequence is
not quite meaningful. In fact, finding a longest common subsequence satisfying
a useful property is the goal of this paper. To the best of our knowledge, this has
never done before, though there have been a lot of related work on identifying a
(sub)string which is close to a set of given strings [13, 14] and close to a set of
‘bad’ strings and far from a set of ‘good’ strings [5].

In this paper, we mainly focus on three kinds of folding: maximum nested
loop, maximum loop chains and maximum number of total matches. For the
off-line case the problem is more of a graph theoretical one and we present both
exact and approximation solutions. For the on-line case, the problem is NP-
complete in general as computing LCS of multiple sequences, even without any
other constraints, is NP-complete. We try to present efficient algorithms for cases
when m is relatively small.

2 Preliminaries

Two characters (letters) a, b ∈ {A,C,G,U} match or form a bond if {a, b} =
{A,U}, or {a, b} = {C,G}, or {a, b} = {G,U}. Given a sequence t = a1a2...an,
ai ∈ {A,C,G,U}, the corresponding linear graph G(t) is defined as follows.
The vertices of G(t) are integers 1, 2, ..., n and there is an edge between i and
j(j > i + 1) if ai and aj match each other. For the obvious reason ai cannot
match ai+1 for i = 1, 2, ..., n− 1. In other words, there is no edge between i and
i + 1 for i = 1, 2, ..., n− 1. This linear graph certainly characterizes the general
folding possibilities of all the letters in t. In [7], a similar graph called contact
map graph is also used for identifying protein structure similarity.

Given two edges e1, e2 in G(t) and the intervals I1 = [a, b], I2 = [c, d] spanned
by them, we say e1 intersects e2 if exactly one of a, b lies on [c, d] and vice
versa. Therefore, if e1 does not intersect e2, then either I1 and I2 are disjoint
or I1 is contained in I2 (assuming I2 is longer). For the latter case we simply

34 Sergey Bereg and Binhai Zhu

denote I1 ⊂ I2 with the understanding that e1 does not intersect e2. A set
of edges e1, e2, ..., ep in G(t) form a nested loop with depth p if the intervals
I1, I2, ..., Ip spanned by e1, e2, ...ep is properly contained in one another, i.e.,
I1 ⊂ I2 ⊂ · · · ⊂ Ip (Figure 1 (1)).

A A U UC GC A C U UA G G UA A U U

A

A

C

G

U

U

C

A

A

G

C

U

U A
A

G

U

U
U

(1) (2)

Fig. 1. An illustration of ncRNA folding with maximum loop and maximum loop
chains.

Given a linear graph G(t), two loops overlap if the edges in one loop L1

intersect all the edges in the other loop L2. Such an overlap is legal if no two
edges from L1, L2 share the same vertex in G(t). We define a chain of loops (or
loop chains) as a set of loops L1, L2, ..., Lw such that Li overlaps with Li+1 but
does not overlap with Li+x for i ≤ w− 1, x > 1; moreover, each overlap is legal.
The motivation behind this is that a chain of (relatively deep) loops provide a
special kind of stable folding for a given ncRNA sequence (Figure 1 (2)).

In this paper, we propose to study several problems based on the Longest
Common Subsequence (LCS). The LCS problem has been throughly studied
in Hirschberg’s PhD thesis [10]. Its application in computational biology dated
back to 1960s [2, 3]. Some other applications of LCS in computational biology
can be found in [11, 18]. Basically, for a set of m (m being a constant) sequences
of length n, the corresponding LCS can be computed in O(nm) time. If m is
not a constant, then the problem is NP-complete; moreover, if the alphabet is
unbounded then it is difficult to find an approximation solution (in fact, as hard
as approximating the Maximum Clique problem) [12].

3 The Off-Line Case: When the LCS Is Already Given

For the ncRNA multiple structural alignment problem, in general we want to
compute a LCS with some additional constraints. In this section, we consider

RNA Multiple Structural Alignment with Longest Common Subsequences 35

the off-line case when a LCS of some ncRNA sequences is already computed.
The first problem is based on the idea that the (maximum) deepest nested loop
is likely to occur in ncRNA folding (Figure 1 (1)). The second problem is based
on the idea that a chain of loops is likely to fold compactly with some specified
regions (Figure 1 (2)).

3.1 The Maximum Nested Loop Problem

Given a sequence (which is the LCS of some ncRNA sequences) t = a1a2...an, ai∈
{A,C,G,U}, and the corresponding linear graph G(t), compute the maximum
or the deepest nested loop (MNL) in G(t). We have the following theorem.

Theorem 1. Given a sequence t = a1a2...an, ai ∈ {A,C,G,U}, and the corre-
sponding linear graph G(t), the maximum nested loop can be computed in O(n2)
time.

Proof. For 1 ≤ i ≤ j ≤ n, let ti,j denote the sequence ai, ai+1, . . . , aj . Let S be
a two-dimensional array where S[i, j] is the maximum depth of a nested loop in
the sequence ti,j . The values of the array S can be computed as follows. For any
1 ≤ i ≤ n, S[i, i] = 0.

Suppose that, for 1 ≤ i < j ≤ n, ai and aj match. Then there is a maximum
nested loop of ti,j that contains the edge (ai, aj). Thus S[i, j] = S[i+1, j−1]+1.

Suppose that ai and aj do not match. Then either ai or aj is not an endpoint
of the outermost edge of a maximum nested loop of ti,j . Thus, S[i, j] = max(S[i+
1, j], S[i, j − 1]). We summarize all the cases in pseudo-code (Algorithm MNL).

The depth of maximum nested loop in the input sequence is S[1, n]. In or-
der to compute the nested loop we store auxiliary arrays A and B such that
(A[i, j], B[i, j]) is the outermost edge of a maximum nested loop of ti,j . The
values A[i, j] and B[i, j] can be updated at the time when S[i, j] is updated.

The algorithm clearly takes O(n2) in the worst case. ��

A slightly different O(n3) time result on loop matching in programming lan-
guage research was known long time ago [16]. That result has been used in RNA
folding [4]. Although the Maximum Nested Loop problem is slightly more easier
to solve, in biology it could be a very important subroutine. In ncRNAs, A-U,
C-G and G-U bonds almost always occur in a nested fashion [4]; so finding such
maximum nested loop is very meaningful, at least it will allow biologists to try
different alternatives in folding.

3.2 The Maximum Loop Chain Problem

In this subsection we investigate a slightly different problem. When a ncRNA
sequence (with its corresponding linear graph) and a set of nested loops are
given, we have the following problem of computing the maximum loop chain.

36 Sergey Bereg and Binhai Zhu

Algorithm MNL
for l = 1 to n

for i = 1 to n− l + 1
j = i+ l − 1
if l = 1 then
S[l, l] = 0

elseif ai and aj match then
S[i, j] = S[i+ 1, j − 1] + 1
A[i, j] = i
B[i, j] = j

elseif S[i+ 1, j] > S[i, j − 1] then
S[i, j] = S[i+ 1, j]
A[i, j] = A[i+ 1, j]
B[i, j] = B[i + 1, j]

else
S[i, j] = S[i, j − 1]
A[i, j] = A[i, j − 1]
B[i, j] = B[i, j − 1]

The Maximum Loop Chain problem: Given a ncRNA sequence t = a1a2...
an, ai ∈ {A,C,G,U}, the corresponding linear graph G(t) and a set of nested
loops in G(t), compute a loop chain out of these loops such that its size is
maximized.

The size of a loop chain is the sum of depths of those loops in it. The moti-
vation of this problem is that between two overlapping loops some edges might
share the same vertices (i.e., illegal), which violates rules in ncRNA bonding
(Figure 2). In the case of Figure 2, there is one node (corresponding to U) in the

A C U UA G G UA A

A

A

U

G

U

G

A
A

G

C
G

U

violation

Fig. 2. A violation in ncRNA folding with two loop chains.

RNA Multiple Structural Alignment with Longest Common Subsequences 37

corresponding linear graph which is shared by two overlapping loops. Among
the edges (A,U), (U,G) we can only pick up one of them. So the problem is a
matter of identifying the right loops and eliminating illegal edges in them.

It is not known yet whether this problem is NP-complete. We have the fol-
lowing approximation results.

Theorem 2. The Maximum Loop Chain problem can be approximated in the
following sense: in O(n2.5) time a loop chain can be computed whose size is at
least 1

2 of the corresponding optimum.

Given a set of nested loops we can construct a graph G′ as follows: each node
vi corresponds to a nested loop Li, there is an edge eij between two nodes vi, vj

if their corresponding loops Li, Lj overlap. Given two nested loops Li, Lj with
depths |Li|, |Lj | respectively, let |Li∩Lj | be the number of nodes (letters) shared
by edges in Li, Lj . The weight of eij can be defined as |Li|+ |Lj | − |Li ∩ Lj|.

Then, the Maximum Loop Chain problem is to compute a path in G′ such
that between two neighboring nodes vi and vj , we need to throw away at most
|Li ∩ Lj| edges in either Li or Lj (to obtain two new, smaller loops) such that
eventually no two neighboring loops overlap illegally and the total number of
edges in the loop chain is maximized. Notice that the weights on the edges in
the final path corresponding to the maximum loop chain might not be the same
as those initially in G′. It is very much a longest (heaviest) path problem with
varying edge weights. We believe that this problem is NP-complete.

We will use the maximum weighted matching in G′ to obtain an approxima-
tion solution for this problem. We claim that this provides at least 1

2 number
of bonds in the optimal loop chain. First assume that G′ is also laid out from
left to right on a line L: the vertex in G′ which corresponds to a loop touching
the leftmost vertex in G(t) is the leftmost on L and a tie is broken arbitrar-
ily. The optimal loop chain then corresponds to a path with length k in G′:
< v11, v12, ..., v1k >. If we take edges along this path at odd (even) positions
(these two subsets of edges are disjoint), one subset of them contains at least
half of the total bonds (edges in G(t)) in the optimal solution. Certainly the
solution from the maximum weighted matching in G′ is at least half of the total
bonds (edges in G(t)) in the optimal solution for maximum loop chain.

Given a weighted graph with |V | vertices and |E| edges, the maximum
weighted matching can be constructed in O(|V |3) time by Gabow [8], this was
further improved to O(

√
|V ||E|) time by Micali and Vazirani [15]. In our prob-

lem, G′ clearly has O(n) vertices and O(n2) edges as we are only interested in
maximal nested loops. So the running time for computing the maximum weighted
matching is O(n2.5).

4 The On-Line Case: When the LCS Is Not Given

In this section, we study the problem when the LCS of a set of m ncRNA se-
quences are not given in advance. We study two versions of this general problem:
LCSMNL and LCSBM. As computing LCS for multiple sequences is in general

38 Sergey Bereg and Binhai Zhu

NP-complete, both of these problems are NP-complete. We are interested in ef-
ficient solutions when m is relatively small. Recall that there might be too many
LCS’s for some given sequences, our goal is to identify a LCS with some useful
property.

4.1 LCSMNL

We first consider the problem of computing the longest common subsequence
with maximum nested loop (LCSMNL).
LCSMNL Problem. Given a set S of strings s1, s2, . . . , sm, each of length n,
where si = ai1ai2 . . . ain and aij ∈ {A,C,G,U}, compute the longest common
subsequence s = b1b2 . . . bK of s1, s2, ..., sm such that the maximum nested loop
induced by s is at least L.

Theorem 3. The LCSMNL problem can be solved in O(nm+2) time. When
m = 2, the problem can be solved in O(n4) time.

Proof. We show the algorithm for m = 2 only. It is straightforward to ex-
tend it to general m ≥ 2. We use a simplified notation s1 = a1, a2, . . . , an

and s2 = b1, b2, . . . , bn. Let ai,j , resp. bi,j, denote the substring ai, ai+1, . . . , aj ,
resp. bi, bi+1, . . . , bj . We store four four-dimensional arrays L,D,A,B defined as
follows. For 1 ≤ i ≤ j ≤ n and 1 ≤ k ≤ l ≤ n, let Ξ(i, j, k, l) denote the set of
all longest common subsequences of ai,j and bk,l. Then

• L[i, j, k, l] is the length of the longest common subsequence of ai,j and bk,l,
• D[i, j, k, l] is the depth of the maximum nested loop induced by a sequence
ξ ∈ Ξ(i, j, k, l),

• (A[i, j, k, l], B[i, j, k, l]) is an outermost edge of a maximum nested loop in-
duced by a sequence ξ ∈ Ξ(i, j, k, l).

The items of the array L[] can be computed in the same way as the computa-
tion of longest common subsequences. The value of D[i, j, k, l] can be computed
as in the pseudo-code shown in Algorithm LCSMNL. The theorem follows. ��

4.2 LCSBM

Finally, we study the problem of computing a LCS which induces the maximum
number of total matches, or longest common subsequence with bounded matches
(LCSBM).
LCSBM Problem. Given a set S of strings s1, s2, . . . , sm, each of length n,
where si = ai1ai2 . . . ain and aij ∈ {A,C,G,U}, compute the longest common
subsequence s = b1b2 . . . bK of s1, s2, ..., sm such that the total number of matches
among non-adjacent bi and bj is at least Q.

We assume that m = 2, and the algorithm can be easily extended to m ≥ 3.
We use a simplified notation s1 = a1, a2, . . . , an and s2 = b1, b2, . . . , bn. Let
b : {A,C,G,U} → {A,C,G,U} be the mapping between a character and another

RNA Multiple Structural Alignment with Longest Common Subsequences 39

one such that they form a bond. Then, b(A) = U, b(C) = G, b(G) = U and vice
versa. Adding another character x ∈ {A,C,G,U} to the end of a string, x induces
a number of matches to its non-adjacent characters following the above setting.

Algorithm LCSMNL
// Initialize L[..]
for i = 1 to n

for j = i− 1 to n
for k = 1 to n
L[i, j, k, k − 1] = 0
L[k, k − 1, i, j] = 0

// Compute L[..]
for i = 1 to n

for j = i to n
for k = 1 to n

for l = k to n
if aj = bk then
L[i, j, k, l] = L[i, j − 1, k, l− 1] + 1

else L[i, j, k, l] = max(L[i, j − 1, k, l], L[i, j, k, l− 1])
// Compute D[..]
for l1 = 1 to n

for i = 1 to n− l1 + 1
j = i+ l1 − 1
for l2 = 1 to n

for k = 1 to n
l = k + l2 − 1
if j = i or k = l then
D[i, j, k, l] = 0

elseif ai �= bk then
D[i, j, k, l] = max(D[i+ 1, j, k, l], D[i, j, k + 1, l])

elseif aj �= bl then
D[i, j, k, l] = max(D[i, j − 1, k, l], D[i, j, k, l− 1])

elseif ai matches aj then
D[i, j, k, l] = D[i+ 1, j − 1, k + 1, l− 1] + 1

else
D[i, j, k, l] = D[i+ 1, j − 1, k + 1, l− 1]

Let LCS[i, j] be the length of the longest common subsequence of the se-
quences s1 = a1a2 . . . ai and s2 = b1b2 . . . bj. The array LCS[i, j] can be com-
puted in O(n2) time [1].

Let a, c, g and u be integers and x be any letter from {A,C,G,U}. A sequence
s is called (a, c, g, u, x)-sequence if s contains a letters A, c letters C, g letters
G, u letters U and the last letter of s is x.

We use 6-dimensional array M [n, n, n, n, n, 4] whose elements are defined
as follows. Let 1 ≤ i, j, k ≤ n and x ∈ {A,C,G,U} and l = LCS[i, j]. Let

40 Sergey Bereg and Binhai Zhu

0 ≤ a, c, g ≤ l be any integers such that u = l − a − c − g ∈ [0, l]. The value
M [i, j, a, c, g, x] is -1 if there is there is no (a, c, g, u, x)-sequence s of length l that
is the common subsequence of a1, a2, . . . , ai and b1, b2, . . . , bj such that the last
letter of s is x. If such a subsequence exists, then M [i, j, a, c, g, x] is the maximum
number of matches of s. The pseudo-code is listed as Algorithm LCSBM.

Algorithm LCSBM
Initialize M [i, j, i1, j1, k1, x] to -1 if i ≥ 1 or j ≥ 1 and to 0 if i = 0 or j = 0.
Compute LCS[]
for i = 1 to n

for j = 1 to n
l = LCS[i, j]
for a = 0 to l // a is the number of A in LCS

for c = 0 to l − a // c is the number of C in LCS
for g = 0 to l − a− c // g is the number of U in LCS

u = l − a− c // u is the numbers of U in LCS
if ai = bj and ai is counted at least one time in (a, c, g, u) then

Let (a′, c′, g′, u′) be the the same numbers as (a, c, g, u)
with one letter ai removed

for each x ∈ {A,C,G,U}
if M [i, j, a′, c′, g′, x] ≥ 0 then

Let z be the total matches induced by ai

if added to a (a′, c′, g′, u′, x)-sequence
M [i, j, a, c, g, ai] = max(M [i, j, a, c, g, ai],M [i, j, a′, c′, g′, x] + z)

if ai �= bj then
for each x ∈ {A,C,G,U}
M [i, j, a, c, g, x] = max(M [i− 1, j, a, c, g, x],M [i, j − 1, a, c, g, x])

Theorem 4. The LCSBM problem can be solved in O(nm+3) time. When m =
2, the problem can be solved in O(n5) time.

5 Concluding Remarks

In this paper, we study several versions of the problem for RNA multiple struc-
tural alignment using a LCS model. There are several interesting open problems
related to this work: (1) When a sequence t (say, the LCS of m RNA sequences)
and a set of nested loops from the inducing linear graph are given, is the problem
of computing Maximum Loop Chain NP-complete? (2) In [4], given a multiple
number of linear graphs, each with n vertices, computing the maximum common
non-intersecting subgraph was shown to be NP-complete. But the O(log2 n) ap-
proximation factor is too high to make the result practically meaningful. Can it
be further reduced?

RNA Multiple Structural Alignment with Longest Common Subsequences 41

References

1. T. Cormen, C. Leiserson, R. Rivest, C. Stein. Introduction to Algorithms, second
edition, MIT Press, 2001.

2. M. Dayhoff. Computer aids to protein sequence determination. J. Theoret. Biology,
8(1):97-112, 1965.

3. M. Dayhoff. Computer analysis of protein evolution. Scientific American,
221(1):86-95, 1969.

4. E. Davydov and S. Batzoglu. A computational model for RNA multiple structural
alignment. Proc. 15th Ann. Symp. Combinatorial Pattern Matching, LNCS 3109,
pp. 254-269, 2004.

5. X. Deng, G. Li, Z. Li, B. Ma and L. Wang. A PTAS for distinguishing (sub)string
selection. Proc. ICALP’02, pp. 740-751, 2002.

6. S.R. Eddy. Computational genomics of noncoding RNA genes. Cell, 109:137-140,
2002.

7. D. Goldman, S. Istrail and C. Papadimitriou. Algorithmic aspects of protein
structure similarity. Proc. 40th Ann. Symp. Foundations of Computer Science
(FOCS’99), pp. 512-522, 1999.

8. H. Gabow. An efficient implementation of Edmond’s algorithm for maximum
matching on graphs. J. ACM, 23(2):221-234, 1976.

9. R. I. Greenberg. Bounds on the Number of the Longest Common Subsequence
Problem. CoRR cs.DM/0301030, 2003.

10. D. Hirschberg. The longest common subsequence problem. PhD Thesis, Princeton
University, 1975.

11. W.J. Hsu and M.W. Du. Computing a longest common subsequence for a set of
strings. BIT, 24:45-59, 1984.

12. T. Jiang and M. Li. On the approximation of shortest common supersequences and
longest common subsequences. SIAM J. Comput., 24(5):1122-1139, 1995.

13. K. Lanctot, M. Li, B. Ma, S. Wang and L. Zhang. Distinguishing string selection
problems. Proc. 6th Ann. ACM-SIAM Symp. on Discrete Algorithms, pp. 633-642,
1999.

14. M. Li, B. Ma and L. Wang. Finding similar regions in many strings. Proc. 31st
ACM Symp. on Theory of Computing (STOC’99), pp. 473-482, 1999.

15. S. Micali and V. Vazirani. An O(
√|V ||E|2) algorithm for finding maximum match-

ing in general graphs. Proc. 21st Ann. Symp. Foundations of Computer Science
(FOCS’80), pp. 17-27, 1980.

16. R. Nussinov, G. Pieczenik, J. Griggs and D. Kleitman. Algorithms for loop match-
ing. SIAM J. Applied Math., 35:68-82, 1978.

17. C. Rick. Efficient Computation of All Longest Common Subsequences. Proc. 7th
Scandinavian Workshop on Algorithm Theory (SWAT’00), pp. 407-418, 2000.

18. T.F. Smith and M.S. Waterman. Identification of common molecular subsequences.
J. Molecular Biology, 147:195-197, 1981.

19. M. Zucker and P. Stiegler. Optimal computer folding of large RNA sequences
using thermodynamics and auxiliary information. Nucleic Acids Research, 9:133-
148, 1981.

20. M. Zucker. Computer prediction of RNA structure. Methods in Enzymology,
180:262-288, 1989.

Perfect Sorting by Reversals�

Marie-France Sagot and Eric Tannier

INRIA Rhône-Alpes, Université de Lyon 1, France
{Eric.Tannier,Marie-France.Sagot}@inrialpes.fr

Abstract. In computational biology, gene order data is often modelled
as signed permutations. A classical problem in genome comparison is to
detect conserved segments in a permutation, that is, genes that are co-
localised in several species, indicating that they remained grouped during
evolution. A second largely studied problem related to gene order data
is to compute a minimum scenario of reversals that transforms a signed
permutation into another. Several studies began to mix the two prob-
lems, and it was observed that their results are not always compatible:
often parsimonious scenarios of reversals break conserved segments. In a
recent study, Bérard, Bergeron and Chauve stated as an open question
whether it was possible to design a polynomial time algorithm to decide
if there exists a minimum scenario of reversals that transforms a genome
into another while keeping the clusters of co-localised genes together. In
this paper, we give this polynomial algorithm, and thus generalise the
theoretical result of the aforementioned paper.

1 Introduction

In computational biology, it is commonly accepted, using a parsimony argument,
that if a group of homologous genes (that is genes having a common ancestry)
is co-localised in two different species, then these genes were probably together
in the common ancestor and were not later separated during evolution. The
detection of such conserved clusters of homologous genes, also called conserved
segments, has already been the subject of several algorithmic studies (see for
instance [1, 8]).

In the theory of rearrangements, applying the parsimony principle means
minimising the number of events in a reconstruction of possible evolutionary
events between species. The algorithmics related to the rearrangements theory
has also been intensively studied. The main results have been obtained on the
problem of sorting by reversals [4, 7], which is a common event in evolution. The
problem in this case concerns finding an optimal scenario of reversals, that is a
shortest sequence of reversals that transforms one genome into the other.

A drawback of the methods developed so far for finding such parsimonious
scenarios is that they do not respect the principle of conserved segments: despite
� This work is funded by the French program ACI “New interfaces of Mathematics:

Mathematical and algorithmical aspects of biochemical and evolutionary networks”,
and by the INRIA coordinated action ARC “Integrated Biological Networks”.

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 42–51, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Perfect Sorting by Reversals 43

the promising title of a former paper, Common Intervals and Sorting by Rever-
sals: A Marriage of Necessity [3], it has indeed been noticed several times that
in the case of reversals, the two criteria are not always compatible. A minimum
rearrangement scenario may break conserved segments and then put them back
together later again. A few studies [2, 6] began to mix the two principles. We go
further in this direction, thus answering an open question mentioned in [2]. The
question concerned the possibility of designing a polynomial time algorithm to
decide whether there exists a minimum scenario of reversals that transforms a
genome into another while keeping the clusters of co-localised genes together. In
this paper, we give this polynomial algorithm, and thus generalise the theoretical
result of the aforementioned paper.

We describe the usual model for dealing with gene order and orientation in
the next section. In Section 3, we recall some basic facts about the structure of
conserved segments of a permutation, as well as a padding operation described
in [7] and adapted here to conserved segments. Finally, we give our main result
and algorithm in Section 4.

2 Chromosomes as Signed Permutations

2.1 Generalities

Genome rearrangements such as reversals may change the order of the genes in
a genome, and also the direction of transcription. We identify the genes with
the integers 1, . . . , n, with a plus or minus sign to indicate their orientation.
The order and orientation of genomic markers will be represented by a signed
permutation of {1, . . . , n}, that is, by a bijective function π over [−n, n] \ {0}
such that π−i = −πi, where πi = π(i).

To simplify exposition, we adopt the usual extension which consists in adding
π0 = 0, and πn+1 = n + 1 to the permutation. We therefore often define a
signed permutation by writing (0 π1 . . . πn n + 1). The identity permutation
(0 1 . . . n+ 1) is denoted by Id.

For all i ∈ {0, . . . , n}, the pair πiπi+1 is called a point of π, and more precisely
an adjacency if πi+1 = πi+1 and a breakpoint otherwise. The number of points of
a permutation π is denoted by p(π), and the number of its breakpoints by b(π).

The reversal of the interval [i, j] ⊆ [1, n] (i ≤ j) is the signed permutation
ρi,j = (0 . . . i−1 −j . . . −i j+1 . . . n+1). Note that π ·ρi,j is the permutation
obtained from π by reversing the order and flipping the signs of the elements in
the interval [i, j]:

π · ρi,j = (π0 . . . πi−1 − πj . . . − πi πj+1 . . . πn+1)

If ρ1, . . . , ρk is a sequence of reversals, we say that it sorts a permutation π
if π · ρ1 · · ·ρk = Id. The length of a shortest sequence of reversals that sorts π is
called the reversal distance of π, and is denoted by d(π). A shortest sequence of
reversals sorting π is called a parsimonious sequence.

A segment of a permutation π is a set {|πa|, . . . , |πb|}, with 1 ≤ a < b ≤ n.
The numbers πa and πb are the extremities of the segment. Two segments are

44 Marie-France Sagot and Eric Tannier

said to overlap if they intersect but one is not contained in the other. A reversal
ρi,j breaks {|πa|, . . . , |πb|} if [i, j] and [a, b] overlap. A sequence of reversals breaks
a segment S if at least one reversal of the sequence breaks S.

2.2 The Breakpoint Graph

The breakpoint graph is a usual tool for dealing with signed permutations. It is
present in almost every study on sorting by reversals. We use it intensively in
the proofs of correctness of our method.

The breakpoint graph BG(π) of a permutation π is a graph with vertex set V
defined as follows: for each integer i in {1, . . . , n}, let i− and i+ be two vertices
in V ; add to V the two vertices 0+ and (n+ 1)−. Observe that all vertex labels
are non negative numbers, but for simplicity and to avoid having to use absolute
values, we may later refer to vertex (−i)+ (or (−i)−): this is the same as vertex
i+ (or i−).

The breakpoint graph of a signed permutation has sometimes been called the
diagram of desire and reality due to the edge set E of BG(π), which is the union
of two perfect matchings of V , denoted by R, the reality edges and D, the desire
edges:

– D contains the edges i+(i + 1)− for all i ∈ {0, . . . , n};
– R contains an edge for all i ∈ {0, . . . , n}, from π+

i if πi is non negative, and
from π−

i otherwise, to π−
i+1 if πi+1 is non negative, and to π+

i+1 otherwise.

Reality edges define the permutation π (what you have), and desire edges
define Id (what you want to have).

To avoid case checking, in the notation of an edge, the mention of the expo-
nent + or − may be omitted. For instance, πiπi+1 is a reality edge, indicating
nothing as concerns the signs of πi and πi+1.

It is easy to check that every vertex of BG(π) has degree two (it has one
incident edge in R and one in D), so the breakpoint graph is a set of disjoint
cycles. By the cycles of a permutation π, we mean the cycles of BG(π). The
number of cycles of π is denoted by c(π).

2.3 Conserved Segments

Let π be a signed permutation of {1, . . . , n}, and S = {|πa|, . . . , |πb|} a segment
of π, for [a, b] ⊆ [1, n]. Let m = mini∈[a,b] |πi| and M = maxi∈[a,b] |πi|.

The segment S is said to be oriented if there exist i, j ∈ [a, b], such that πi

and πj have different signs, and unoriented otherwise.
The segment S is said to be sorted if for all i ∈ [a, b − 1], the point πiπi+1

is an adjacency. A sorted segment is always unoriented. It is sorted positively if
πa > 0 and negatively if πa < 0. In π = (0 − 7 3 − 1 4 2 8 − 6 − 5 9), {6, 5}
is sorted negatively.

The segment S is said to be conserved if M −m = b− a. In π = (0 − 7 3 −
1 4 2 8 − 6 − 5 9), {3, 1, 4, 2} is conserved.

Perfect Sorting by Reversals 45

0 7 7 3 3 1 1 4 4 2 2 8 8 6 6 5 5 9
+ + + + + ++ + +− − − − − − − − −

r

d

r’

d’

0 −7 3 −1 4 2 8 −6 −5 9

Fig. 1. The breakpoint graph of the permutation (0 − 7 3 − 1 4 2 8 − 6 − 5 9).
Reality edges are represented in bold, and desire edges are represented by thin lines.

The segment S is said to be isolated if it is conserved, either πa = m and
πb = M , or πa = −M and πb = −m, and it is minimal, in the sense that
the first and last point of the segment are breakpoints, and not adjacencies. In
π = (0 − 7 − 4 2 − 3 − 1 8 − 6 − 5 9), the segment {4, 2, 3, 1} is isolated.

The segment S is said to be highly conserved if there exists a parsimonious
sequence of reversals which does not break S.

A highly conserved segment is conserved, but the converse is not true. For
example, in (0 − 2 − 3 1 4), {2, 3} is conserved but any parsimonious scenario
breaks it.

An isolated segment is not always highly conserved. However, the permuta-
tions for which this is not the case are rare and irrelevant for our study, as we
shall see in Section 2.4.

According to [2], we say that a sorting sequence of reversals is perfect if
it breaks no conserved segment. If a permutation has a perfect parsimonious
scenario, then all its conserved segments are highly conserved. The converse is
however not true: for example, in (0 − 3 4 − 1 2 5), both {1, 2} and {3, 4}
are highly conserved, but any parsimonious sequence of reversals breaks one of
them.

Perfect sorting sequences of minimum size have been studied in [6]. It is
proved that given a permutation and a subset S of its conserved segments, it is
NP-hard to compute the minimum scenario that does not break the segments of
S. The problem of finding a perfect sequence of reversals of minimum length is
still open, to our knowledge. In [6], the following easy but fundamental lemma
is presented.

Lemma 1. If a sequence of reversals sorts a permutation and does not break
a segment S, then there exists a sorting sequence of same size (with the same
reversals), in which all the reversals contained in S (they sort S) are before all
the other reversals (they sort outside S).

The parsimonious scenario such that as few reversals as posible break some
conserved segments is evoked in [2], but not solved. The authors study a special
class of permutations for which there exists a perfect parsimonious scenario, and

46 Marie-France Sagot and Eric Tannier

the question is asked whether it is possible to decide in polynomial time, given a
permutation, if there is a perfect parsimonious scenario that sorts it. In Section
4, we give this algorithm. Before that, we still need some preliminaries.

2.4 Sorting by Reversals

The main result about sorting by reversals is a theorem of Hannenhalli and
Pevzner [7], which yielded the first polynomial algorithm to find a parsimonious
sequence of reversals sorting any signed permutation.

We mention here a weaker version of this theorem, to avoid introducing no-
tions which are useless for our purpose. One of the consequences of the general
version of Hannenhalli and Pevzer’s theorem is that it is possible to charac-
terise the permutations for which all parsimonious sequences of reversals have
to break some isolated segment. According to the standard vocabulary, they are
the permutations that need a “hurdle merging”. They can be characterised in
this way.

Lemma 2. [7] A permutation has an isolated segment which is not highly con-
served if and only if it has at least three unoriented isolated segments A,B,C,
such that either A ⊂ B ⊂ C, or A ⊂ B and C ∩B = ∅.

We call such permutations fools. They will obviously never have a perfect
parsimonious scenario. We therefore start by assuming that the permutations
we treat are not fools. It is easy to decide in linear time if a permutation is a
fool or not (see for example [4]). We denote by u(π) the number of unoriented
isolated segments in a permutation π.

Theorem 1. [7] Let π be a permutation but not a fool. Then d(π) = p(π) −
c(π) + u(π).

This means that any reversal in a parsimonious scenario increases the num-
ber of cycles of the permutation (p(π) = n+1 does not change after a reversal),
except one (the first one) for each unoriented isolated segment. Each isolated seg-
ment is sorted separately (by definition, they do not overlap), and independently
from the rest of the permutation.

3 Isolating Conserved Segments

As mentioned in the previous section, two isolated segments cannot overlap, and
so each isolated segment is treated separately in any sorting algorithm. This
is not immediately the case in general for conserved segments, but conserved
segments of a permutation have a nested structure as well. This structure and a
padding operation first described in [7] will allow to “isolate” conserved segments,
and sort them independently from the rest of the permutation when it is possible.

Perfect Sorting by Reversals 47

3.1 The Structure of Conserved Segments

We recall basic facts about the structure of conserved segments, that are useful
for our purpose. The reader may refer to [5] for a general presentation on modular
structures.

A conserved segment is called strong if it does not overlap any other con-
served segments. By definition, the family of strong conserved segments is nested.
Strong segments can be of two types. Suppose all non trivial strong conserved
segments strictly contained in a strong segment S have been contracted into a
single representative number, and the result of these contractions is {a, . . . , b}.
If {a, . . . , b} is an increasing or decreasing sequence of consecutive numbers, S
is called linear. If no proper subset of {a, . . . , b} is conserved, S is called prime.

Lemma 3. If S is a strong segment, then it is either linear, or prime.

We sort each strong segment independentely, assuming that all the strong
segments strictly included in it are already sorted (we start by the inclusionwise
minimal ones).

3.2 Padding a Permutation

Isolating a conserved segment is done by an operation called padding that is
described in [7], where it is used to transform a permutation into a simpler
one, with equivalent properties. We show that it can be used to deal with con-
served segments as well. To begin with, we want to be able to add elements to
a permutation without changing the existing indices. To do so, we deal with
“generalised” signed permutations in the sense that the permutations will be
bijective functions from a set of indices to a set of values, both being ordered
sets of reals instead of integer numbers. For example, (0 3.5 − 3 1 2 4) is
a generalised permutation, where π0 = 0, π0.5 = 3.5, π1 = −3, π2 = 1, π3 = 2,
π4 = 4.

A padding of a permutation π consists in adding an index k such that i <
k < i + 1, for some existing index i, and its image through π, such that j <
|πk| < j + 1, for some existing value j (πk may be positive or negative). For
example, if π = (0 − 3 1 2 4) is a signed permutation over {0, 1, 2, 3, 4},
π′ = (0 3.5 − 3 1 2 4), is a padding of π with 0 < k < 1 and 3 < |πk| < 4.
The resulting generalised permutation π′ has the same breakpoint graph as π,
except that the two edges r = πiπi+1 and d = j(j + 1) are now each split into
two edges r1, r2 and d1, d2. Examples of padding are shown in Figures 2 and 3.

A padding is said to be safe if the resulting permutation π′ has one cycle
more than π, and no new unoriented isolated segment, that is, according to
Theorem 1, if d(π′) = d(π). Any sequence sorting π′ also sorts π (just ignore
the added element). If the transformation is safe, a parsimonious scenario for π′

will therefore provide a parsimonious scenario for π. By extension, a sequence of
paddings is safe if the resulting permutation π′ satisfies d(π′) = d(π).

Let S = {|πa|, . . . , |πb|} ([a, b] ⊆ [1, n]) be a conserved segment, M =
maxi∈[a,b] |πi|, and m = mini∈[a,b] |πi|. We say that S has a positive padding if it

48 Marie-France Sagot and Eric Tannier

is safe to pad it with an index k1, such that a−1 < k1 < a, and m−1 < πk1 < m,
and then with an index k2, such that b < k2 < b+1, and M < πk2 < M +1. We
say that S has a negative padding if it is safe to pad it with an index k1, such
that a− 1 < k1 < a, and M < −πk1 < M + 1, and then with an index k2, such
that b < k2 < b+ 1, and m− 1 < −πk2 < m.

For example, in Figure 2, there is a negative padding of the conserved segment
{3, 1, 4, 2} in the permutation (0 − 7 3 − 1 4 2 8 − 6 − 5 9). There is no
positive padding of the same segment, as shown later in Figure 3.

r1 r2

d1

d2

r’1r’2

d’1

d’2

b cde a fgh

0 −7 −4.5 3 −1 4 2 −0.5 8 −6 −5

Fig. 2. A negative padding of segment {3, 1, 4, 2} in the permutation (0 − 7 3 −
1 4 2 8 − 6 − 5 9). Note that there are four cycles in the breakpoint graph, and no
unoriented isolated segment. The segment {4.5, 3, 1, 4, 2, 0.5} is isolated, but oriented.
There was two cycles in (0 − 7 3 − 1 4 2 8 − 6 − 5 9), so the padding is safe.

After a padding of a segment S, positive or negative, S∪{πk1 , πk2} is isolated.
The number of cycles of the breakpoint graph increases by two since the two
paddings are safe. The proof of the following lemma is not included here, it is
an easy verification.

Lemma 4. A segment is highly conserved if and only if it has a padding (positive
or negative).

We now have the possibility to identify strong conserved segments, and test
whether they are highly conserved or not. The remaining difficulty is to choose
between a positive and a negative padding when both are possible.

4 Perfect Parsimonious Sequences of Reversals

As noticed in [6], the main difficulty in finding perfect sequences of reversals of
minimum length (among all perfect sequences) is that it is sometimes impossible
to decide whether to sort a particular segment positively or negatively. We shall
see that in the case of parsimonious scenarios, this choice is constrained by the
data.

We denote by d+(S) the minimum number of reversals needed to sort a
conserved segment S positively, and d−(S) the minimum number of reversals

Perfect Sorting by Reversals 49

needed to sort it negatively. Of course, |d+(S) − d−(S)| ≤ 1, because if it is
sorted in one direction, then one reversal is sufficient to have it sorted in the
other. If d+(S) = d−(S), the segment S is called neutral.

If there is a perfect parsimonious scenario, any conserved segment is highly
conserved, so has a safe padding from Lemma 4. However, the converse is not
true. The possibility of designing a simple algorithm to decide the existence of
a perfect parsimonious scenario is given by the following lemma.

Lemma 5. If a segment is neutral, then it cannot have both a positive and a
negative padding.

Proof. Let [a, b] ⊆ [1, n], such that S = {|πa|, . . . , |πb|} is a neutral conserved
segment. Let M = maxi∈[a,b] |πi|, and m = mini∈[a,b] |πi|. Suppose S has a
negative padding, call π− the resulting permutation. This means it is safe to
pad S with an index k1, such that a − 1 < k1 < a, and M < −π−

k1
< M + 1,

and an index k2, such that b < k2 < b+ 1, and m− 1 < −π−
k2
< m. Let r and d

be the reality and desire edges deleted after the padding with the index k1, and
r′ and d′ the reality and desire edges deleted after the padding with the index
k2 (see Figures 1 and 2 for an example). Suppose S has also a positive padding,
and call π+ the resulting permutation. This means that it is safe to pad S with
the index k1, with m− 1 < π+

k1
< m, and the index k2, with M < π+

k2
< M + 1.

The deleted edges are the same ones, except that r and d′ are deleted after the
padding with k1, and r′ and d are deleted after the padding with k2.

As both paddings are safe, the number of cycles has to increase for each
padding operation. We therefore have that r and d belong to the same cycle of
π, as well as r′ and d′, r and d′, r′ and d. So r, d, r′ and d′ all belong to the
same cycle in the breakpoint graph of π. Observe that because S is conserved,
r, d, r′ and d′ are the only edges that have one extremity with a label inside S,
and the other outside S.

In π−, d and d′ are both replaced by two edges, say d1, d2, and d′1, d′2.
One edge among the two has its extremities with labels inside S, and the other
outside S. As in Figure 2, say d2 = ab, and d′2 = cd have their extremities with
labels inside S.

In π+, the edges which replace d and d′ and have their extremities with labels
inside S are ad and cb (see Figure 3 for an example).

Recall that d, d′, r, r′ are the only edges affected by the paddings, the re-
maining of the breakpoint graph is unchanged. So if ab and cd belong to different
cycles in π−, then ad and cb belong to the same cycle in π+, and vice-versa. In
this case however, the segment S would not be neutral as d−(S) �= d+(S) from
Theorem 1. Since S is neutral, the edges ab and cd have to belong to the same
cycle both in π− and in π+. It is the case in the example of Figures 2 (for π−)
and 3 (for π+).

We now repeat the argument for the edges that have their extremities with
labels outside S, that is d1, d′1. In π−, let d1 = ef and d′1 = gh. Then in π+,
d1 = eh and d′1 = gf . If d1 and d′1 are in different cycles in π−, they are in the
same cycle in π+, and vice-versa. We therefore have that either c(π−) = c(π)+1,

50 Marie-France Sagot and Eric Tannier

b d

d2

d’2
d1

d’1

ae fh c g

0 −7 0.5 3 −1 4 2 4.5 8 −6 −5

Fig. 3. An attempt of a positive padding of the segment {3, 1, 4, 2} in the permutation
(0 − 7 3 −1 4 2 8 − 6 − 5 9). The graph is almost the same as for the negative
padding. However edges are changed from ab and cd to ad and bc, so in one case there
are two cycles outside the segment while in the other case there is only one such cycle.
This explains why both paddings are impossible.

or c(π+) = c(π) + 1, and one the paddings is not safe, because in this case,
either d(π+) > d(π), or d(π−) > d(π). This is what happens in Figure 3, where
d(π+) > d(π−) = d(π).

As a consequence, a neutral segment cannot have both a positive and negative
padding. ��

The principle of the algorithm follows immediately.

Theorem 2. Given a permutation π, it is possible to design in polynomial time
a perfect parsimonious sequence of reversals sorting π if one exists.

Proof. We apply the usual techniques to sort oriented isolated segments by re-
versals. We do not describe this in detail. One can see for instance [9] for a fast
method to do so.

Let π be an arbitrary permutation. We first check if it is not a fool (see
Lemma 2). If it is, there is no perfect parsimonious sorting sequence.

We now treat each isolated segment separately, starting with the inclusion-
wise minimal ones, up to the whole permutation, or stopping when a contradic-
tion is found.
- Sorting an oriented isolated segment

Suppose first that the considered isolated segment I (possibly {0, . . . , n+1})
is oriented. Let now S be any inclusion-wise minimal strong conserved segment
inside I. We try both paddings of S to see if it is highly conserved. If S is
not highly conserved, then there is no perfect parsimonious sequence. If both
paddings exist, then by Lemma 5, the segment S is not neutral. In this case, we
choose the positive padding if d+(S) < d−(S), and the negative one otherwise.
If d+(S) = d−(S), the choice of the padding is constrained. In every case, the
permutation is padded with two values πk1 and πk2 , and S ∪ {πk1 , πk2} is now
isolated. By Lemma 3, either no proper subset of S is conserved, or all its proper
subsets are conserved. We examine the two cases separately.

In the first case, we sort S with, for example, the method of [9], for isolated
segments. This preserves all conserved segments because there is none inside S,
and the way S is sorted does not affect the remaining of the permutation.

Perfect Sorting by Reversals 51

In the second case, the only allowed reversals are the reversals of singletons
(the reversals of the whole interval is not an admitted operation, since otherwise
the opposite padding is chosen). The reversals of singletons never overlap, so they
may be applied in any order. If the padding is positive, we reverse all negative
numbers, and if the padding is negative, we reverse all the positive numbers. At
the end, the segment S is sorted.

We apply the same method to all the strong segments, starting with inclusion-
wise minimal ones, up to the segment I itself.
- Sorting an unoriented isolated segment

Let us suppose now that I is unoriented. The first reversal will make it
oriented, and then the aforementioned method (“Sorting an oriented isolated
segment”) is applied. To orient I, we choose a reversal that does not break
any conserved segment, nor decreases c(π). Every such reversal has to be tried.
There are at most |I|2 of them, and they are applied only at the first step, so
this operation yields a polynomial algorithm.
- Conclusion

We have seen how to sort an isolated segment. All are sorted the same way,
and separately. If there is a perfect parsimonious sequence sorting π, then the
algorithm produces it, because the way an isolated segment is sorted never affects
the permutation outside the segment.

This method therefore decides if there is a perfect parsimonious sequence
sorting π in polynomial time. ��

References

1. Beal M.-P., Bergeron A., Corteel S., Raffinot, M., “An Algorithmic View of Gene
Teams”, Theor. Comput. Sci. 320(2-3):395-418, 2004.

2. Bérard S., Bergeron A., Chauve C., “Conserved structures in evolution scenarios”,
2nd RECOMB Comparative Genomics Satellite Workshop, to appear in Lecture
Notes in BioInfomatics, 2004.

3. Bergeron A., Heber S., Stoye J., “Common Intervals and Sorting by Reversals: A
Marriage of Necessity”, Bioinformatics, 1:1-10, 2002.

4. Bergeron A., Mixtacki J., Stoye J., “The inversion distance problem”, in Mathe-
matics of evolution and phylogeny (O. Gascuel Ed.) Oxford University Press, 2005.

5. Bui Xuan B. M., Habib M., Paul C., “From permutations to Graph Algorithms”,
Research Report LIRMM RR-05021, 2005.

6. Figeac M., Varré J.-S., “Sorting by reversals with common intervals”, Proceedings
of WABI 2004, Lecture Notes in Computer Science, vol. 3240, 26-37, 2004.

7. Hannenhalli S., Pevzner P. , “Transforming cabbage into turnip (polynomial algo-
rithm for sorting signed permutations by reversals”, Proceedings of the 27th ACM
Symposium on Theory of Computing, 178-189, 1995.

8. Heber S., Stoye J., “Finding all Common Intervals of k Permutations”, Proceedings
of CPM 2001, Lecture Notes in Computer Science, vol. 2089, 207-218, 2001.

9. Tannier E., Bergeron A., Sagot M.-F., “Advances on Sorting by Reversals”, to
appear in Discrete Applied Mathematics, 2005.

Genome Rearrangements
with Partially Ordered Chromosomes

Chunfang Zheng1 and David Sankoff2

1 Department of Biology
University of Ottawa, Canada K1N 6N5

czhen033@uottawa.ca
2 Department of Mathematics and Statistics

University of Ottawa, Canada K1N 6N5
sankoff@uottawa.ca

Abstract. Genomic maps often do not specify the order within some
groups of two or more markers. The synthesis of a master map from
several sources introduces additional order ambiguity due to markers
missing from some sources. We represent each chromosome as a partial
order, summarized by a directed acyclic graph (DAG), to account for
poor resolution and of missing data. The genome rearrangement prob-
lem is then to infer a minimum number of translocations and reversals
for transforming a set of linearizations, one for each chromosomal DAG
in the genome of one species, to linearizations of the DAGs of another
species. We augment each DAG to a directed graph (DG) in which all
possible linearizations are embedded. The chromosomal DGs represent-
ing two genomes are combined to produce a single bicoloured graph.
From this we extract a maximal decomposition into alternating coloured
cycles, determining an optimal sequence of rearrangements. We test this
approach on simulated partially ordered genomes.

1 Introduction

1.1 Formalizing Genomes and Their Evolutionary Mechanisms

The genetic structure of a genome can be modeled as a set χ = {χ1, · · · , χk}
of k ≥ 1 chromosomes, where each chromosome χi consists of ni > 0 genes
or other genetic markers, signed and totally ordered: e.g., g1 < · · · < gni , also
written simply as g1 · · · gni , where each g is a positive or negative integer, and
where each g appears only once in all of χ. Without loss of generality, we may
assume each integer between 1 and n = n1 + · · · + nk appears exactly once in
χ, either with a plus or minus sign. n is the size of the genome. An example
of a genome of size 8 is thus {χ1, χ2, χ3}, where χ1 = 5 − 1 − 4, χ2 = 7 8 3,
and χ3 = −2 6. Henceforward we will use the term gene to refer to either genes
or genetic markers of any kind. The order relation abstracts the position of the
gene on the linear chromosome, and the sign carries information about which of
the two DNA strands the gene is located.

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 52–62, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Genome Rearrangements with Partially Ordered Chromosomes 53

Genome evolution can be modeled by the transformation of a genome χ of
size n to a genome ψ of the same size, by means of reversals within a chromosome
and translocations between chromosomes. A reversal transforms any contiguous
part of an order to its reverse order, changing the polarity of all genes in its scope,
e.g., g h i j k → g− j− i−h k is a reversal of the “segment” h i j. A (reciprocal)
translocation exchanges any prefixes of two chromosomes (or equivalently, any
suffixes of two chromosomes) or the reversed prefix of one with the reversed suffix
of the other, for example g h i, x y z → g h y z, x i; g h i, x y z → g−x,−i−h y z.
There are two special cases: g h i, x y z → g h i x y z; g h i x y z → g h i, x y z
where a null prefix of one chromosome x y z is exchanged with the largest prefix
of the other g h i (chromosome fusion) and where a null chromosome translocates
with g h i x y z (chromosome fission), respectively. To make biological sense,
since a chromosome does not change its nature when it is moved around in
space, a reversal of an entire chromosome is considered to leave it unchanged:
g1 · · · gni = −gni · · · − g1.

The Hannenhalli-Pevzner algorithms [2, 3] for comparing genomes, and their
improvements (e.g., [1], [4]), infer d(χ, ψ), the smallest number of reversals and
translocations necessary to transform genome χ into ψ, as well as a sequence of
such operations that actually achieves this minimum.

1.2 Partially Ordered Genomes

The representation of a genome as a set of totally ordered chromosomes must
often be weakened in the case of real data, where mapping information only
suffices to partially order the set of genes on a chromosome. The concepts and
methods of genome rearrangement, however, pertain only to totally ordered sets
of genes or markers, and are meaningless in the context of partial orders.

Our approach is to extend genome rearrangement theory to the more general
context where all the chromosomes are general DAGs rather than total orders
[5]. The use of DAGs reflects uncertainty of the gene order on chromosomes in
the genomes of most advanced organisms. This may be due to lack of resolution,
where several genes are mapped to the same chromosomal position, to missing
data from some of the datasets used to compile a gene order, and/or to conflicts
between these datasets.

We construct the chromosomal DAGs for each species from two or more
incomplete data sets, or from a single low-resolution data set. The frequent lack
of order information in each data set, due to missing genes or missing order
information, is converted into parallel subpaths within each chromosomal DAG
in a straightforward manner.

Outright conflicts of order create cycles that must be broken to preserve
a DAG structure. We suggest a number of reasonable alternative conventions
for breaking cycles. This is not the focus of our analysis, however; whatever
convention is adopted does not affect our subsequent analysis.

The rearrangement problem is then to infer a transformation se-
quence (translocations and/or reversals) for transforming a set
of linearizations (topological sorts), one for each chromosomal

54 Chunfang Zheng and David Sankoff

DAG in the genome of one species, to a set of linearizations of the
chromosomal DAGs in the genome of another species, minimizing
the number of translocations and reversals required. To do this, we
embed the set of all possible linearizations in each DAG by appropriately aug-
menting the edge set, so that it becomes a general directed graph (DG). We
combine the two sets of chromosomal DGs representing two genomes to produce
a single large bicoloured graph from which we extract a maximal decomposition
into alternating coloured cycles, so that a Hannenhalli-Pevzner type of proce-
dure can then generate an optimal sequence of rearrangements. We focus here
on obtaining the cycle decomposition; this is equivalent to optimally linearizing
the partial orders, so that finding the rearrangements themselves can be done
using the previously available algorithms.

2 Gene Order Data

2.1 The Methodological Origins of Incomplete Maps

Maps of genes or other markers produced by recombination analysis, physical
imaging and other methods, no matter how highly resolved, inevitably are miss-
ing some (and usually most) genes or markers and fail to order some pairs of
neighbouring genes with respect to each other. Even at the ultimate level of
resolution, that of genome sequences, the application of different gene-finding
protocols usually gives maps with different gene content.

Moreover, experimental methodologies and statistical mapping procedures
inevitably give rise to some small proportion of errors, two neighbouring genes
incorrectly ordered, a gene mapped to the wrong chromosome, a gene incorrectly
named or annotated. However it is not these errors we focus on in this paper,
but the more widespread issues of lack of resolution and genes missing from a
map. These should not be considered errors; they are normal and inherent in
all ways of constructing of a map except for highly polished genome sequencing
with accurate gene identification (something that has not yet been achieved in
the higher eukaryotes, even for humans).

2.2 Simulating Incomplete Maps of Pairs of Two Related Genomes

How incomplete maps arise may perhaps be best understood through a descrip-
tion of how we simulate them.

Simulating the Genomes. For a given n, we pick a small integer k, as well
as positive n1, · · · , nk with the constraint n = n1 + · · ·+ nk. Then we define

χ = {m1 · · ·n1,m2 · · ·n2, · · · ,mk · · ·nk}, (1)

where m1 = 1, nk = n and the remaining mi = ni−1 + 1. It is well known that
the genes in two genomes being compared through translocation and reversal

Genome Rearrangements with Partially Ordered Chromosomes 55

distance may always be relabeled in so that in one of the genomes they have
they all have positive sign and have the form in (1).

To obtain the second genome ψ, we perform r reversals distributed at ran-
dom among the k chromosomes of χ, reversing randomly chosen segments, and t
reciprocal translocations between random pairs of chromosomes, exchanging ran-
domly sized prefixes or suffixes, plus f1 fusions and f2 fissions. The operations
are performed in random order, each one applied to the transformed genome
produced by the preceding operation.

The non-negative parameters n, k, n1, · · · , nk, r, t, f1 and f2 are specified in
advance, as is the random choice procedure, depending on the kind of genomes
we wish to model and compare. For n = 25, k = 4, n1 = 7, n2 = 8, n3 = 5, n4 =
5, r = 4, t = 4, f1 = 0 and f2 = 1, (2) shows genome χ and an example of ψ.

(2)

 {1 2 3 4 5 6 7, {–17 –3 –2 –1 18 –5 –4 –16,
 = 8 9 10 11 12 13 14 15, = 8 –13 –12 –11 –22 –21,

 16 17 18 19 20, –7 –20 10 –24 –23 25,
 21 22 23 24 25} 14 15,

 9 –19 6}

Simulating the Maps. Once we have obtained simulated genomes χ and ψ,
we fix probabilities pmissing and pgroup, and numbers of data sets Nχ and Nψ.

For each of the two genomes we construct each of the Nχ or Nψ data sets
independently, as follows. For each chromosome, each gene on the chromosome
except the last one is submitted to a grouping event with probability pgroup,
which determines whether or not the gene position can be distinguished from
that of the next gene. Then each gene is submitted independently to a deletion
event with probability pmissing, conditioned on the event that the gene cannot
be deleted from all the datasets. Note that if a gene g1 is grouped with the next
gene g2, which is subsequently deleted, and if g2 was not itself grouped with the
next gene g3, then g1 is not grouped with g3 in the data set.

Note that this procedure cannot produce two data sets on the same genome
with conflicting order relations (a < b in one, b < a in the other), nor with the
same gene on two different chromosomes. Three data sets produced from the
genomes in (2) are shown in (3), with boxes around unresolved groups of genes.

(3)

{ 1 2 4 5 7, { 2 3 6 7, { 2 4 6,

 = 8 10 11 15, 8 9 12 14, 9 11 12 13 14 15,

 16 17 20, 17 18 19, 16 18 20,

 22 23 25} 21 24 25} 21 23 24}

 { –17 –2 18 –4, {–17 –3 –2 –1 –5 –4 –16, { –2 18 –5 –16,

 = –13 –12 –11 –22 –21, 8 –13 –12 –11 –22, 8 –13 –11 –21,

 –7 –20 10 –24 –23 25, –7 –20 10 –24 25, –20 10 –24 –23,
 14 15, 14 15, 14 15,

 9 –19} –19 6} 9 6}

56 Chunfang Zheng and David Sankoff

3 Constructing the Chromosomal DAGs

A linear map of a chromosome that has several genes or markers at the same
position π, because their order has not been resolved, can be reformulated as a
partial order, where all the genes before π are ordered before all the genes at π
and all the genes at π are ordered before all the genes following π, but the genes
at π are not ordered amongst themselves. We call this procedure make po.

Fig. 1. Construction of DAGs from individual databases each containing partial infor-
mation on genome, due to missing genes and missing order information, followed by
construction of combined DAG representing all known information on the genome. All
edges directed from left to right.

For genomes with two or more gene maps constructed from different kinds of
data or using different methodologies, there is only one meaningful way of com-
bining the order information on two (partially ordered) maps of the same chro-
mosome containing different subsets of genes. Assuming there are no conflicting
order relations (a < b, b < a) nor conflicting assignments of genes to chromo-
somes among the data sets (as in the data sets on our simulated genomes), for
each chromosome we simply take the union of the partial orders, and extend this
set through transitivity. This procedure is combine po.

All the partial order data on a chromosome can be represented in a minimal
DAG whose vertex set is the union of all gene sets on that chromosome in the
contributing data sets, and whose edges correspond to just those order relations
that cannot be derived from other order relations by transitivity. The outcome
of this construction, dagger, is illustrated in Figure 1.

In real applications, different maps of the same genome do occasionally con-
flict, either because b < a in one data set while a < b in the other or because
a gene is assigned to different chromosomes in the two data sets. There are a
variety of possible ways of resolving order conflicts or, equivalently, of avoiding

Genome Rearrangements with Partially Ordered Chromosomes 57

Fig. 2. Edges added to DAG to obtain DG containing all linearization as paths (though
not all paths in the DG are linearizations of the DAG!). Each arrow represents a set
of directed edges, one from each element in one set to each element of the other set.

any cycles in the construction of the DAG. One way is to delete all order rela-
tions that conflict with at least one other order relation. Another is to delete a
minimal set of order relations so that all conflicts can be resolved. Still another is
to ignore a minimum set of genes that will accomplish the same end. The latter
method also resolves conflicts due to gene assignment to different chromosomes.
Any of these approaches, or others, which we denote by the generic routine name
resolve, will produce results appropriate for our subsequent analysis.

4 The DG Embedding of Topological Sorts

A DAG can generally be linearized in many different ways, all derivable from a
topological sorting routine. All the possible adjacencies in these linear sorts can
be represented by the edges of a directed graph (DG) containing all the edges
of the DAG plus two edges of opposite directions between all pairs of vertices,
which are not ordered by the DAG. This is illustrated in Figure 2. The routine
for constructing this graph is dgger.

5 The Algorithm

5.1 Background

Before discussing our algorithm for comparing DGs derived from our DAG rep-
resentations, we review the existing technology for the special case when the
DAG and the associated DG represent a total order, which is the traditional
subject of computational comparative genomics.

Hannenhalli and Pevzner [2] showed how to find a shortest sequence of re-
versals and translocations that transform one genome χ with n genes on k chro-
mosomes into another genome ψ of the same size but with h chromosomes, in
polynomial time. As described in [4], this construction begins by combining the
signed order representations of all the chromosomes in the two genomes. The
following procedure, make-bicoloured, produces a bicoloured graph on 2n + 2k

58 Chunfang Zheng and David Sankoff

vertices that decomposes uniquely into a set of alternating-coloured cycles and
set of h + k alternating-colour paths. First, each gene or marker x in χ deter-
mines two vertices, xt and xh, to which two additional dummy vertices ei1 and
ei2 are added to the ends of each chromosome χi. One colour edge, say red, is
determined by the adjacencies in χ. If x is the left-hand neighbour of y in χ,
and both have positive polarity, then xh is connected by a red edge to yt. If they
both have negative polarity, it is xt that is joined to yh. If x is positive and y
negative, or x is negative and y positive, xh is joined to yh, or xt is joined to yt,
respectively. If x is the first gene in χi, then ei1 is joined to xt or xh depending
on whether x has positive or negative polarity, respectively. If x is the last gene,
then ei2 is joined to xt or xh depending on whether x is negative or positive.

Black edges are added according to the same rules, based on the adjacencies
in genome ψ, though no dummy vertices are added in this genome.

It can be seen that each vertex is incident to exactly one red edge and one
black edge, except for the dummy vertices in χ, which are each incident to only
a red edge, plus the two (non-dummy) vertices at the ends of each chromosome
in ψ, which are also each incident only to a red edge. The bicoloured graph
decomposes uniquely into a number of alternating cycles plus h+ k alternating
paths terminating in either the dummy vertices of χ or the end vertices of ψ, or
one of each. Suppose the number of these paths that terminate in at least one
dummy vertex (good paths) is j ≤ h + k. If the number of cycles is c, then the
minimum number of reversals r and translocations t necessary to convert χ into
ψ is given by the Hannenhalli- Pevzner equation:

r + t = n− j − c+ θ (4)

where θ is a correction term that is usually zero for simulated or empirical data.
For simplicity of exposition, we ignore this correction here, though an eventual
full-scale program will incorporate it with little or no computational cost.

5.2 Generalization to Partial Orders

The routine make bicoloured can also be applied to the set of edges in the
DGs for two partially ordered genomes. In the resulting graph, each of the DAG
edges and both of the edges connecting each of the unordered pairs in the DG
for each chromosome represent potential adjacencies in our eventual lineariza-
tion of a genome. The n genes or markers and 2k dummies determine 2n + 2k
vertices and the potential adjacencies determine the red and black edges, based
on the polarity of the genes or markers. Where the construction for the totally
ordered genomes contains exactly n+ k red edges and n− h black edges, in our
construction in the presence of uncertainty there are more potential edges of
each colour, but only 2n+ k − h can be chosen in our construction of the cycle
graph, which equivalent to the simultaneous linearization by topological sorting
of each chromosome in each genome. It is this problem of selecting the
right subset of edges that makes the problem difficult (and, we
conjecture, NP-hard.

Genome Rearrangements with Partially Ordered Chromosomes 59

The choice of certain edges generally excludes the choice of certain other
ones. This is not just a question of avoiding multiple edges of the same colour
incident to a single vertex. There are more subtle conflicts particularly involving
the non-DAG edges, as illustrated in Figure 3. Our approach to this problem is a
depth-first branch and bound search, find cycle decomp, in the environment
of h + k continually updated partial orders, one for each chromosome in each
genome. The strategy is to build cycles and paths one at a time.

Fig. 3. If ab and cd are DAG edges, then the two non-DAG edges da and bc are mutually
exclusive, since using them both leads to the wrong order for a and b.

Initially all edges in the DG for each chromosome are “eligible” and all ver-
tices are“unused”. We choose any initiating vertex u in the bicoloured graph
and an edge ε connecting it to another vertex v. All remaining edges of the same
colour incident to either u or v then become ineligible. For certain choices of
ε, the partial order associated with that chromosome must be updated through
the addition of the order relation represented by ε, plus all others involving one
vertex ordered before u and one ordered after v.

At each successive stage of the search we add an eligible edge ε that does not
conflict with the current partial order, incident to the most recently included
vertex u to extend the current cycle or path to some as yet unused vertex v
or, preferably, to close a cycle or complete a cycle or path. A complication is
that when the construction reaches a potential end vertex in a chromosome of
ψ, it is not always clearly the termination of a path since the DAG may contain
several competing end vertices. (This is not a problem with the chromosomes in
χ because the dummies ei1 and ei2 are always at the ends of the chromosomes.)
In this case, the choice of path termination or not becomes one of the branches
to explore in the branch and bound.

When an edge ε is added, the partial order for the chromosome containing ε
is updated, if necessary, including whenever ε is not a DAG edge. If ε is in the
DAG, no update is necessary (since the initial partial orders for the branch and
bound are determined by the DAGs) unless u or v is incident to more than one
eligible path of the same colour as ε, in which case additional order is imposed
by the choice of ε. All remaining edges of the same colour incident to u or v are
made ineligible and u is now “used”.

When a cycle is completed, the initiating vertex also becomes “used”. When
a path is complete, both the initiating and terminating vertices become “used”.
Any unused vertex can then be chosen as to initiate a new cycle or path. (In our
implementation, we increase the efficiency of the search by choosing a dummy
or an end vertex whenever possible, including the very first choice of u.)

The search is bounded by using the fact that a cycle has at least two edges,
and that a complete solution, representing some linearization, optimal or not,

60 Chunfang Zheng and David Sankoff

always has 2n + k − h edges. Suppose the current best solution has c∗ cycles
and (necessarily) h+ k paths of which j∗ are “good” as in (4). Suppose further
the construction now underway is at a point where there are c′ cycles and l
paths, with j′ good ones, and this has used m edges. This means there are only
2n+ k − h−m edges left to chose of which at least h+ k − l must be in paths.
Then the final number of cycles when the current construction is terminated will
be no more than c′ + (2n+ k − h−m− h− k + l)/2 = c′ + n− h− (m− l)/2.
The final number of “good” paths will be no more than j′ + h+ k − l. So if

c′ + n− h− (m− l)/2 + j′ + h+ k − l = c′ + j′ + n + k − (m+ l)/2
< c∗ + j∗, (5)

this branch of the search is abandoned and backtracking begins.
Backtracking is also invoked if no cycles or paths can be made up of the

unused vertices. During backtracking, when an edge is removed, so are the extra
partial order relations it induced. The “eligible” and “unused” status it annulled
are restored. An initial value of c∗ can be found using any linearizations of the
chromosomal DAGs of the two genomes or simply by running the depth-first
algorithm until a first complete decomposition of the bicoloured graph is found.

6 Summary of the Analysis

The steps in our analysis, starting from several sets of incomplete chromosomal
orders for each of two genomes, and outputting two genomes with totally ordered
chromosomes, as well as a minimum number of reversals and translocations
necessary to convert one to the other, are as follows.

Input: A number of incomplete maps for each genome
Remove: Genes or markers that do not appear in at least one map for each genome
For each chromosome in each map,

make po
For each genome,

resolve
For each chromosome,

combine po
dagger

dgger

make bicoloured

find cycle decomp

Output: Optimal cycles, paths and linearizations

The major time and space costs of our method are of course due to the branch
and bound procedure in find cycle decomp. The number of potential edges to
be considered for inclusion in the decomposition can grow asO(n2S2), where S is
the maximum number of parallel paths through the DAGS, but the depth of our
search tree remains O(n). The costs at each step are dominated by the necessity

Genome Rearrangements with Partially Ordered Chromosomes 61

of checking and updating a partial order matrix of size O(n2/h2), assuming
h = k, and all chromosomes are about the same size.

7 Analyzing the Simulated Incomplete Data

We submitted the data in (2) to our analysis. In (6) we compare the results to
the original genomes in (2).

(6)

True genomes:
 {1 2 3 4 5 6 7, {-17 –3 –2 –1 18 –5 –4 –16,

 = 8 9 10 11 12 13 14 15, = 8 -13 -12 –11 –22 –21,
 16 17 18 19 20, -7 –20 10 –24 –23 25,
 21 22 23 24 25} 14 15,

 9 –19 6}
Reconstructed genomes:

 {1 3 2 5 4 6 7, {-17 –2 –3 –1 18 –4 –5 –16,
 = 8 9 10 11 12 13 14 15, = 8 -13 -12 –11 –21 –22,

 16 17 18 19 20, -7 –20 10 –24 –23 25,
 22 21 23 24 25} 14 15,

 9 –19 6}

The only reconstruction errors appear to be the reverse order of genes 2 and
3, 4 and 5, and 21 and 22 in both reconstructed genomes. An inspection of the
simulated incomplete data in (3), however, shows that no information is present
in any of the data sets for either genome that bears on the ordering within any
of these pairs.

In addition, the reconstructed linearized chromosomes of χ in (6) require 4
translocations, 1 fission and four inversions to be transformed into the recon-
structed ψ, exactly how ψ was originally obtained from χ in (2).

8 Performance and Future Work

The experimental version of our program can handle moderate size maps. Tests
on simulated 6-chromosome maps with 100 genes, of which 10 % were missing,
and 20% unresolved from each of three datasets for both of the two genomes
being compared (d(χ, ψ) = 20), executed in less than a second on a Macintosh
G4. With 20% missing and 40% unresolved, an analysis usually required about
3 minutes. Increasing uncertainty beyond this quickly led to run times of several
hours.

The current implementation is fairly straightforward, and there are a number
of promising possibilities for increasing efficiency. Since many comparative maps
have only a few hundred genes our method seems quite practical.

The one-sided version of our problem, where the chromosomes of one of the
genomes being compared are totally ordered is of great interest. If one genome
is known in great detail, we can then resolve many of the uncertainties in less
densely mapped species, despite somewhat rearranged genomes, using our tech-
nique.

62 Chunfang Zheng and David Sankoff

Acknowledgements

Research supported in part by grants from the Natural Sciences and Engineering
Research Council of Canada (NSERC). DS holds the Canada Research Chair in
Mathematical Genomics and is a Fellow of the Evolutionary Biology Program
of the Canadian Institute for Advanced Research.

References

1. Bader, D. A., Bernard M.E. Moret, B. M. E. and Yan, M. 2001. A linear-time
algorithm for computing inversion distance between signed permutations with an
experimental study. Journal of Computational Biology 8, 483–91.

2. Hannenhalli, S. and Pevzner, P.A. 1995. Transforming men into mice (polynomial
algorithm for genomic distance problem. Proceedings of the IEEE 36th Annual
Symposium on Foundations of Computer Science. 581–92.

3. Hannenhalli, S. and Pevzner, P.A. 1999. Transforming cabbage into turnip (polyno-
mial algorithm for sorting signed permutations by reversals). Journal of the ACM
48, 1–27.

4. Tesler, G. 2002. Efficient algorithms for multichromosomal genome rearrangements.
Journal of Computer and System Sciences 65, 587–609.

5. Zheng, C., Lenert, A. and Sankoff, D. 2005. Reversal distance for partially ordered
genomes. Bioinformatics 21, supplementary issue, Proceedings of ISMB 2005.

Quartet-Based Phylogeny Reconstruction
from Gene Orders

Tao Liu1, Jijun Tang2, and Bernard M.E. Moret1,�

1 Department of Computer Science, U. of New Mexico, Albuquerque, NM 87131
moret@cs.unm.edu

2 Department of Computer Science & Engineering, U. of South Carolina, Columbia, SC 29208

Abstract. Phylogenetic reconstruction from gene-rearrangement data is attract-
ing increasing attention from biologists and computer scientists. Methods used
in reconstruction include distance-based methods, parsimony methods using se-
quence encodings, and direct optimization. The latter, pioneered by Sankoff and
extended by us with the software suite GRAPPA, is the most accurate approach;
however, its exhaustive approach means that it can be applied only to small
datasets of fewer than 15 taxa. While we have successfully scaled it up to 1,000
genomes by integrating it with a disk-covering method (DCM-GRAPPA), the re-
cursive decomposition may need many levels of recursion to handle datasets with
1,000 or more genomes. We thus investigated quartet-based approaches, which
directly decompose the datasets into subsets of four taxa each; such approaches
have been well studied for sequence data, but not for gene-rearrangement data.
We give an optimization algorithm for the NP-hard problem of computing opti-
mal trees for each quartet, present a variation of the dyadic method (using heuris-
tics to choose suitable short quartets), and use both in simulation studies. We
find that our quartet-based method can handle more genomes than the base ver-
sion of GRAPPA, thus enabling us to reduce the number of levels of recursion
in DCM-GRAPPA, but is more sensitive to the rate of evolution, with error rates
rapidly increasing when saturation is approached.

1 Introduction

Modern techniques can yield the ordering and strandedness of genes for genomes; each
chromosome can then be represented by an ordering of signed genes, where the sign
indicates the strand. Rearrangement of genes under inversion, transposition, and other
operations such as duplications, deletions and insertions, is an important evolutionary
mechanism [7]. Reconstructing phylogenies from gene-order data has been studied in-
tensely since the pioneering papers of Sankoff [2, 23]. Because they capture the com-
plete genome, gene-order data do not suffer from the gene tree vs. species tree problem;
and because rearrangements of genes are rare genomic events [19], gene-order data en-
able the reconstruction of evolutionary events far back in time. Many biologists have
embraced this new source of data in their phylogenetic work [7, 17, 18], while com-
puter scientists are slowly solving the difficult problems posed by the manipulations of
these gene orders [16]. Studies conducted by our group [15, 26, 29–31] confirm that
gene-order data support very accurate reconstructions.

� Contact author

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 63–73, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

64 Tao Liu, Jijun Tang, and Bernard M.E. Moret

The main software package for analyzing gene-order data is GRAPPA, based on the
BPAnalysis software of Sankoff and Blanchette [23]. GRAPPA achieved a billion-
fold speed-up over BPAnalysis [15]; it can analyze datasets of 13 genomes in 20
minutes on a laptop. Extensive testing has shown that the trees returned by GRAPPA
are better than those returned by other methods based on gene orders, such as distance-
based methods and parsimony based on encodings [6, 31]. However, since GRAPPA ex-
amines every possible tree, it can only handle small datasets – a 17-taxon analysis would
take a month on today’s most powerful computers. We integrated GRAPPA with DCM,
a divide-and-conquer approach pioneered by Warnow [11], to produce DCM-GRAPPA
[29], which can analyze datasets of up to 1,000 taxa without loss of accuracy.

DCM-GRAPPAworks in three steps: it first decomposes the dataset into overlapping
subproblems (disks), then runs GRAPPA on the subproblems, and finally uses a special-
ized supertree method [20] to build a tree for the original dataset from the trees returned
by GRAPPA for the subproblems. Because the decomposition technique of DCM can
still produce subproblems too large for GRAPPA to handle, we call DCM recursively
until each subproblem size falls below a given threshold. Because the threshold is small
(14), large problems require many levels of recursive decomposition, which is time-
consuming and also risks propagating and amplifying errors in the assembly of the
subtrees. On 1,000 genomes, DCM-GRAPPA needs 6–7 levels of recursion if limited to
disks of at most 14 genomes, but only 2–3 levels if allowed disks of up to 20 genomes.

One can also decompose the set of taxa into the smallest possible subsets for which
meaningful answers exist, namely quartets, sets of four taxa. (Sets of two or three taxa
can produce only one tree, but a quartet can give rise to three distinct unrooted trees.)
While there are many such quartets, their tiny size should make them easy to compute.
If every quartet tree is computed correctly from noiseless data, then there is a single tree
compatible with all

(
n
4

)
resolved quartets and that tree is the true tree [4]; in practice,

of course, many of the resolved quartets are in error and no single tree is compatible
with all resolved quartets. With sequence data, biologists have long used the heuristic
method known as quartet-puzzling [25], while computer scientists have developed sev-
eral theoretical methods, such as quartet cleaning [1, 3, 12] – see [24] for a review and
experimental comparison of these methods. In the case of gene orders, however, opti-
mally resolving a quartet is NP-hard – it includes finding the median of three genomes,
a known NP-hard problem [5], as a special case.

We present algorithmic and experimental results that lead to a reconstruction method
from gene-order data which overcomes some of the problems associated with quar-
tet methods. After some background review and definitions, we describe in Section 3
our exact method to compute optimal quartet trees under breakpoint distances; in Sec-
tion 4.1 we present our experimental studies to find the best methods to resolve the
quartets, as well as our use of the dyadic inference rule (see [10]) to obtain a sufficient
set of quartets from a selected subset of short quartets (inspired from the short-quartet
method [8, 32]); in Section 5, we summarize our experiments on simulated and bi-
ological datasets, the results of which suggest that our method can produce accurate
topologies (much more accurate than neighbor-joining) for datasets of up to 25 taxa
within reasonable time, provided that the genomes are large enough to avoid saturation.

Quartet-Based Phylogeny Reconstruction from Gene Orders 65

2 Definitions and Notation

A quartet is a quadruple of taxa; a quartet tree is an unrooted binary tree for such a
quadruple. Given a quartet {a, b, c, d}, we say that a quartet tree on this set is unresolved
if it is a star (four edges, each touching a leaf) and denote it by (abcd). If the quartet tree
has an internal edge separating two pairs of leaves we say that it is resolved and, if the
pairs are a, b and c, d, denote it by ab | cd. The four possible quartet trees induced by a
quartet are depicted in Figure 1. We will use quartet in lieu of quartet tree or resolved
quartet when the sense is clear.

Quartet tree ab | cd agrees with tree T if all four of its taxa are leaves of T and the
path from a to b in T does not intersect with the path from c to d in T . Equivalently,
ab | cd agrees with a tree if the subtree induced in T by the four-taxon subset {a, b, c, d}
is the quartet tree itself. Quartet ab | cd is in error with respect to the tree T if it does not
agree with T . If QT denotes the set of all quartets that agree with T , then T is uniquely
characterized by QT ; moreover, T can be reconstructed in polynomial time from QT

[8]. (Of course, the set Q of
(
n
4

)
quartets that we can construct is only an approximation

of QT .) In Figure 2, quartet ac | bd would be in error, since it does not appear in QT .
Quartet-based methods operate in two phases. First, they construct a set Q of re-

solved quartets – usually by determining the preferred tree for each of the
(
n
4

)
quar-

tets. Because each dataset has size 4, any phylogenetic method can be used to estimate
the quartet tree, including maximum likelihood and maximum parsimony (see [27]),
neighbor-joining [21], the relaxed four-point method [9], and the ordinal quartet method
[13]. In the second phase, the resolved quartets are used to build a single tree on the full
set of taxa. This second phase is simple when all quartets are compatible, but a chal-
lenge when some of the quartets conflict with others – a common occurrence when
insufficient data are present [24].

3 Inferring Quartet Topologies

We can identify maximally parsimonious quartet trees by examining each of the three
possible trees, assigning gene orders to the two internal nodes so as to minimize the
score (the sum of the lengths of the five edges) of each tree, and returning the tree with
the lowest score. However, identifying such gene orders is NP-hard even for just one
internal node and the simplest distance measures [5].

An easy approach is to use GRAPPA to construct a tree for each quartet; although the
result need not be optimal, our experiments, as well as earlier ones [14], show that op-
timality is reached in most realistic cases. If we limit ourselves to breakpoint distances,

Star (abcd)

a

b d

c

ab | cd

a

c d

b

ac | bd

d b

c

ad | cb

a

b

a

d

c

Fig. 1. The four possible quartet trees for quartet {a, b, c, d}.

66 Tao Liu, Jijun Tang, and Bernard M.E. Moret

e

ab | ce
ab | de
ac | de
bc | de

a

b

c

d

ab | cd

Fig. 2. An evolutionary tree T and its set QT of induced quartet trees.

we can solve the NP-hard optimization problem directly, using variants of the reduction
to TSP devised by Sankoff and Blanchette [22]; we devised two such variations, which
we call Qtsp and Qedge.

Sankoff’s reduction to TSP can be summarized as follows. Given three genomes
with n genes, we build the complete graph K2n on the 2n vertices g1, −g1, g2, −g2,
. . ., gn, −gn. Edge (g, h) in this graph is assigned a weight as follows: if we have
g = −h, then we set the weight to a large negative value to ensure that (g, h) is part of
any solution, otherwise we set it to 3−adj(g, h), where adj(g, h) is the number of times
that −g and h are adjacent in the given genomes. If s = s1,−s1, s2,−s2, · · · sn,−sn

is the solution to the TSP, then the median of the given genomes is g = s1, s2, · · · , sn.
This result applies to one unknown genome, but we need to identify two such for

quartets. Our first algorithm views the two as forming a pair and remaps the problem
into a universe where pairs form the unit of computation and where a single tour (of
pairs) defines both genomes; our second algorithm retains the original formulation, but
looks for a pair of tours.

3.1 The Qtsp Method

We look for one permutation of size n, each entry of which consists of a pair of genes
(gi, gj). Let the two desired internal genomes be e and f , where genome e is connected
to genomes a, b, and f , and genome f is connected to genomes c, d, and e. Build a
complete graph, here on (2n)2 vertices, each a pair of signed genomes. For each edge
{(gi1, gi2), (gj1, gj2)} in this graph, we set the weight of the edge as follows: if we have
gi1 = gj1 and gi1 = gj1, then we set the weight to a large negative value to ensure that
this edge is part of any solution, otherwise, we set it to 4− u1(gi1, gj1)− u2(gi2, gj2),
where u1(gi1, gj1) is the number of times −gi1 and gj1 are adjacent in the genomes a
and b and u2(gi2, gj2) is the number of times −gi2 and gj2 are adjacent in the genomes
c and d.

Proposition 1. If s = (s11, s12), (−s11,−s12), · · · , (sn1, sn2), (−sn1,−sn2) is the
solution to the TSP on G, then the optimal internal genomes are e = s11, s21, · · · , sn1

and f = s12, s22, · · · , sn2.

After transforming the problem, we can use the efficient TSP routine of GRAPPA to
search for the optimal solution (after modifying it to introduce one more bucket of costs,
since now the edge costs of interest are 1, 2, and 3, not just 1 and 2). The problem is
that the instance thus created is of size quadratic in the number of genes; combined with

Quartet-Based Phylogeny Reconstruction from Gene Orders 67

the extra bucket of costs, the large instance size makes it difficult to obtain solutions to
sizeable instances.

3.2 The Qedge Method

This method uses the original TSP formulation, of size linear in the number of genes,
but seeks simultaneously to optimize tours in two separate graphs. Let a, b, c, d, e, and
f be as before. We set up two complete graphs on 2n vertices each – one for e and
one for f . For each edge {g, h}, we set its weight as follows: if we have g = −h, we
set the weight to a large negative value to force its inclusion; otherwise, we set it to
2 − u(gh), where u(gh) is the number of times −g and h are adjacent in the genomes
a and b (for an edge in the first graph) or in the genomes c and d (for an edge in the
second graph). Now, when adding an edge to the two tours under construction, we can
either pick different edges from the two graphs, each with the minimum weight in its
own graph, and add one breakpoint between e and f to the total cost; or pick the same
edge in both graphs, even if not locally optimal, thereby saving a breakpoint between
e and f ; our algorithm computes the cost of each choice and picks the choice of lower
cost.

3.3 Experimental Results for Qtsp and Qedge

We ran tests for these two methods and GRAPPA on quartets of 10, 20, 30, 40, and
50 genes under evolutionary rates (the expected numbers of events per edge of the
model tree) of r = 1, 2, 3, 4, and 5. The running times of Qtsp and Qedge are
shown in Figure 3. As expected, Qedge runs much faster than Qtsp; however, its
running time depends strongly on the quartet score, so that it may prove unusable in the
reconstruction of large trees, where many of the quartets will have very large scores.
Both Qtsp and Qedge reconstructed the same optimal quartet trees (except for ties),
which were the same as the model tree in 97% of cases (though their scores were usually
lower than the model tree scores); most of the 3% came from the 10-gene case, which
gets quickly saturated for evolutionary rates above r = 3. GRAPPA did almost as well:
96% of the quartets it returned matched the model tree – and it returned answers in a few

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 5 10 15 20 25 30

ru
nn

in
g

tim
e

(s
ec

on
d)

quartet score

Qedge Running-time

ngenes=10, median
ngenes=20, median
ngenes=30, median
ngenes=40, median
ngenes=50, median

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

ru
nn

in
g

tim
e

(s
ec

on
d)

quartet score

Qbbtsp Running-time

ngenes=10, median
ngenes=20, median
ngenes=30, median
ngenes=40, median

Fig. 3. Running times of Qtsp (left) and Qedge (right) as a function of quartet score.

68 Tao Liu, Jijun Tang, and Bernard M.E. Moret

microseconds. Since reconstructing phylogenies from quartets requires the computation
of a large set of quartets, the running time is critical. Therefore, based on our results,
we chose GRAPPA as the method to resolve the quartets.

4 Phylogenetic Reconstruction from Quartets

The computational challenge of quartet recombination (building a single tree from the
collection of quartet trees) is how to deal with quartet errors. Most optimization prob-
lems related to tree reconstruction from quartets are NP-hard, such as the Maximum
Quartet Compatibility problem [12], which seeks a tree T for a given set of quartet Q
such that |QT ∩Q| is maximized. Various methods have been designed to handle quar-
tet errors. The dyadic-closure method simply issues an error message and quits [10].
The Q∗ method seeks the maximum resolved tree T ′ that obeys Q(T ′) ⊆ Q, a conser-
vative method that generally produces many polytomies [4]. Quartet-cleaning methods
establish a bound on the number of quartet errors around each reconstructed tree edge
[1, 3, 12]. None of these methods produces satisfactory results on sequence data [24]. It
is theoretically possible to produce the true tree by selecting a subset of short quartets
and adding to these further quartets derived according to an inference rule [8], but this
result assumes perfect data and gives no simple method by which to select the subset
of quartets. We thus set out to design a selection rule and investigate its performance,
using the dyadic inference rules [10]:

1. If ab | cd is a valid quartet, so are ba | cd and cd | ab.
2. If ab | cd and ac | de are valid quartets, so are ab | ce, ab | de, and bc | de.
3. If ab | cd and ab | ce are valid quartets, so is ab | de.

4.1 Selecting a Subset of Quartets

Figure 4 shows two possible resolutions for quartet {a, b, c, d}. In the first topology, the
two pairs of genomes {a, b} and {c, d} are far apart from each other, but in the second
topology the two pairs {a, c} and {b, d} are quite close: the first topology is more likely
to be correct, an observation supported by the relaxed four-point method [9]:
Compute pairwise distances among a, b, c, and d; return ab | cd if we have dab +dcd <
min(dac + dbd, dad + dbc), but return a star if all sums are equal. Since computing all(
n
4

)
quartets takes too long, we can use this relaxed four-point method to choose quartets

and reduce the overall running time. After resolving the quartets, we can assign a weight
to each resolved quartet to measure our confidence in that quartet: for example, we can
use the inversion distance between the two internal nodes.

a c

ab | cd

b d

c

ac | bd

a

db

Fig. 4. Two quartet trees; the left has a higher probability of correctness.

Quartet-Based Phylogeny Reconstruction from Gene Orders 69

4.2 Fixing Quartet Errors

Although GRAPPA is reliable and although we can pick only quartets of larger weight,
quartet errors still arise, especially when we are forced to select some quartets of low
weight in order to resolve every internal tree edge. We propose a simple new method,
quite distinct from quartet cleaning, to handle errors. Since the quartets are weighted
and since we place more trust in quartets of higher weight, we examine the source of
quartet errors and, whenever two quartets are incompatible, we remove the one with
lower weight.

Starting from a large initial set of resolved quartets only returns us to a version of the
NP-hard problem Maximum Quartet Compatibility. Instead, we proceed incrementally.
We select a high weight threshold and only retain quartets (computed on the fly with
GRAPPA) with weights above that threshold; if we find quartet errors, we remove the
incompatible quartets of lower weight. We then apply the dyadic inference rules to
augment our collection of compatible quartets. Finally, if the resulting set of quartets
fully resolves the tree, we are done (a method like Q∗ will recover the tree), otherwise
we lower the threshold and add to our set the newly eligible quartets. By controlling the
decrease in the weight threshold, we can control the tradeoff between running time and
quality.

Since we do not know the weight of a quartet until we resolve it, but want to avoid
resolving useless quartets, we need a fast method to select quartets to resolve. Given
quartet q = {a, b, c, d}, define the width of q as
qw = max(dab + dcd, dac + dbd, dad + dbc)−min(dab + dcd, dac + dbd, dad + dbc)
As qw increases, the two pairs of genomes move further apart and the weight increases:
hence we can decide which quartets to resolve by comparing their width with the weight
threshold. Even if the threshold is lowered to zero, the set of compatible quartets may
remain inadequate to resolve the tree – in which case we have no choice but to leave
these unresolved polytomies in the output.

5 Experimental Results

If the true tree has an edge defining a bipartition with no equivalent in the reconstructed
tree, that edge is a false negative (FN); conversely, if the reconstructed tree has an edge
with no equivalent in the true tree, that edge is a false positive (FP). FP edges are more
problematic than FN edges.

We generated model tree topologies from the uniform distribution on binary trees,
each with 12, 16 and 20 leaves respectively. On each tree, we evolved signed permuta-
tions of 40, 60 and 80 genes, using evolutionary rates (the expected numbers of events
along a tree edge) of 2, 4, 6. For each combination of parameters, we generated 20 trees;
the final results are averaged on the 20 datasets. We computed quartets using GRAPPA
and built the resulting tree using our algorithms for selecting quartets of high weight,
eliminating conflicting quartets, and expanding the set with the dyadic rules. Figure 5
shows FP and FN rates for datasets with 80 genes. Our method did well, but saturation
(high evolutionary rates leading to ill-defined estimates of distances) causes a small in-
crease in the error rate. This observation is confirmed by our results on datasets with 40
genes, where saturation occurs much sooner and the results are unacceptable, as seen
in Figure 6. It can also be seen in Figure 5 that, with very low evolutionary rates, many

70 Tao Liu, Jijun Tang, and Bernard M.E. Moret

 20

 15

 10

 5

 0
 6 4 2 0

F
P

 r
at

e

Evolutionary rate (r)

n=12
n=16
n=20

 20

 15

 10

 5

 0
 6 4 2 0

F
N

 r
at

e

Evolutionary rate (r)

n=12
n=16
n=20

Fig. 5. Performance of our method on genomes of 80 genes.

 30

 25

 20

 15

 10

 5

 0
 4 3 2

F
P

 r
at

e

Evolutionary rate (r)

n=12
n=16
n=20 30

 25

 20

 15

 10

 5

 0
 4 3 2

F
N

 r
at

e

Evolutionary rate (r)

n=12
n=16
n=20

Fig. 6. Performance of our method on genomes of 40 genes.

quartets cannot be satisfactorily resolved (we get equalities and thus star topologies),
leading to poor resolution and many false negatives.

Our tests verified that a small subset of quartets suffices to infer the complete set of
quartets. For datasets with 12 genomes, only 75 quartets (15% of the total) are needed;
with 20 genomes, only 270 quartets (6%) are needed. Our selection rule worked well:
of the quartets selected, fewer than 2% overall were found to be incompatible. Inter-
estingly, the set of resolved quartets produced by our method produced very accurate
reconstructions, while the set produced directly by the relaxed four-point method gave
very poor results.

We compared the results obtained by our method with those obtained by simply
running the (very fast) neighbor-joining (NJ) method on breakpoint and inversion dis-
tance matrices (computed by GRAPPA) for each dataset. For 80-gene genomes, the
Robinson-Foulds rate (the average of FP and FN rates) for NJ varied from 20% (for
r = 2) down to 2–5% (for r = 6, with lower rates for 12 genomes and larger rates
for 20 genomes), compared to a maximum of 10% (for r = 2) down to 1.5–4.5% (for
r = 6) for our method. For 40-gene genomes, as we observed, our method suffers from
saturation effects with 16 or 20 genomes, where its error rate roughly matches that of
NJ (10-20%); for 12 genomes, where saturation is less of a problem, our method again
easily surpasses NJ, with a median error rate of 8.5% compared to NJ’s rate of 14%.

6 Conclusions

We have presented a quartet-based phylogeny reconstruction method for gene-order
data and reported its performance on simulated datasets. Our method produces accurate

Quartet-Based Phylogeny Reconstruction from Gene Orders 71

topologies for trees with up to 25 leaves in reasonable time when the datasets do not
exhibit significant saturation. The results we have obtained promise well, especially be-
cause we have many possible avenues of improvement. For instance, we have recently
developed a linear-programming method that can accurately estimate the edge lengths
of fairly small trees [28]; by using this method to estimate the length of quartet edges,
we can further improve our quartet selection, in terms of both speed and accuracy. Such
improvement should also enable us to handle datasets with larger pairwise distances.
We designed this method to extend the range of base methods that can be used in con-
junction with a disk-covering method: thus the limitation to sets of 20–30 taxa is not an
issue, but in fact a potentially significant gain over the direct use of GRAPPA as a base
method, since this last is limited to 12–15 taxa.

Acknowledgments

This work is supported by the US National Science Foundation under grants EF 03-
31654, IIS 01-13095, IIS 01-21377, and DEB 01-20709, by the US National Institutes
of Health under grant 2R01GM056120-05A1 (through a subcontract to the U. of Ari-
zona), and by the Dept. of Computer Science and Engineering at the U. of South Car-
olina.

References

1. V. Berry, T. Jiang, P. Kearney, M. Li, and T. Wareham. Quartet cleaning: improved algorithms
and simulations. In Proc. Europ. Symp. Algs. (ESA99), volume 1643 of Lecture Notes in
Computer Science, pp. 313–324. Springer Verlag, 1999.

2. M. Blanchette, G. Bourque, and D. Sankoff. Breakpoint phylogenies. In S. Miyano and
T. Takagi, editors, Genome Informatics 1997, pp. 25–34. Univ. Academy Press, 1997.

3. D. Bryant, V. Berry, T. Jiang, P. Kearney, M. Li, T. Wareham, and H. Zhang. A practical
algorithm for recovering the best supported edges of an evolutionary tree. In Proc. 11th Ann.
ACM/SIAM Symp. Discrete Algs. (SODA’00), pp. 287–296. ACM Press, New York, 2000.

4. P. Buneman. The recovery of trees from measures of dissimilarity. Edinburgh University
Press, 1971.

5. A. Caprara. Formulations and hardness of multiple sorting by reversals. In Proc. 3rd Ann.
Int’l Conf. Comput. Mol. Biol. (RECOMB’99), pp. 84–93. ACM Press, New York, 1999.

6. M.E. Cosner, R.K. Jansen, B.M.E. Moret, L.A. Raubeson, L. Wang, T. Warnow, and S.K.
Wyman. An empirical comparison of phylogenetic methods on chloroplast gene order data
in Campanulaceae. In D. Sankoff and J.H. Nadeau, editors, Comparative Genomics, pp. 99–
122. Kluwer Academic Publishers, 2000.

7. S.R. Downie and J.D. Palmer. Use of chloroplast DNA rearrangements in reconstructing
plant phylogeny. In P. Soltis, D. Soltis, and J.J. Doyle, editors, Plant Molecular Systematics,
pp. 14–35. Chapman and Hall, 1992.

8. P. Erdős, M. A. Steel, L. A. Székely, and T. Warnow. A few logs suffice to build (almost) all
trees I. Random Structs. and Algs., 14:153–184, 1997.

9. P. L. Erdős, M. A. Steel, L. A. Székely, and T. Warnow. Constructing big trees from short se-
quences. In Proc. 24th Int’l Colloq. on Automata, Languages, and Programming (ICALP97),
volume 1256 of Lecture Notes in Computer Science. Springer Verlag, 1997.

72 Tao Liu, Jijun Tang, and Bernard M.E. Moret

10. P. L. Erdős, M. A. Steel, L. A. Székely, and T. Warnow. Local quartet splits of a binary tree
infer all quartet splits via one dyadic inference rule. Computers and Artif. Intell., 16(2):217–
227, 1997.

11. D. Huson, S. Nettles, and T. Warnow. Disk-covering, a fast converging method for phyloge-
netic tree reconstruction. J. Comput. Biol., 6(3):369–386, 1999.

12. T. Jiang, P.E. Kearney, and M. Li. A polynomial-time approximation scheme for infer-
ring evolutionary trees from quartet topologies and its application. SIAM J. Computing,
30(6):1942–1961, 2001.

13. P.E. Kearney. The ordinal quartet method. In Proc. 2nd Ann. Int’l Conf. Comput. Mol. Biol.
(RECOMB’98), pp. 125–134. ACM Press, New York, 1998.

14. B.M.E. Moret, A.C. Siepel, J. Tang, and T. Liu. Inversion medians outperform breakpoint
medians in phylogeny reconstruction from gene-order data. In Proc. 2nd Int’l Workshop
Algs. in Bioinformatics (WABI’02), volume 2452 of Lecture Notes in Computer Science, pp.
521–536. Springer Verlag, 2002.

15. B.M.E. Moret, J. Tang, L.-S. Wang, and T. Warnow. Steps toward accurate reconstructions
of phylogenies from gene-order data. J. Comput. Syst. Sci., 65(3):508–525, 2002.

16. B.M.E. Moret, J. Tang, and T. Warnow. Reconstructing phylogenies from gene-content and
gene-order data. In O. Gascuel, editor, Mathematics of Evolution and Phylogeny, pp. 321–
352. Oxford University Press, 2005.

17. J.D. Palmer. Chloroplast and mitochondrial genome evolution in land plants. In R. Herrmann,
editor, Cell Organelles, pp. 99–133. Springer Verlag, 1992.

18. L.A. Raubeson and R.K. Jansen. Chloroplast DNA evidence on the ancient evolutionary split
in vascular land plants. Science, 255:1697–1699, 1992.

19. A. Rokas and P.W.H. Holland. Rare genomic changes as a tool for phylogenetics. Trends in
Ecol. and Evol., 15:454–459, 2000.

20. U. Roshan, B.M.E. Moret, T. Warnow, and T.L. Williams. Performance of supertree methods
on various dataset decompositions. In O.R.P. Bininda-Edmonds, editor, Phylogenetic Su-
pertrees: Combining information to reveal the Tree of Life, pp. 301–328. Kluwer Academic
Publishers, 2004.

21. N. Saitou and M. Nei. The neighbor-joining method: A new method for reconstructing phy-
logenetic trees. Mol. Biol. Evol., 4:406–425, 1987.

22. D. Sankoff and M. Blanchette. The median problem for breakpoints in comparative ge-
nomics. In Proc. 3rd Int’l Conf. Computing and Combinatorics (COCOON’97), volume 1276
of Lecture Notes in Computer Science, pp. 251–264. Springer Verlag, 1997.

23. D. Sankoff and M. Blanchette. Multiple genome rearrangement and breakpoint phylogeny.
J. Comput. Biol., 5:555–570, 1998.

24. K. St. John, T. Warnow, B.M.E. Moret, and L. Vawter. Performance study of phylogenetic
methods: (unweighted) quartet methods and neighbor-joining. J. Algorithms, 48(1):173–193,
2003. A preliminary version appeared in SODA’01, pp. 196–205.

25. K. Strimmer and A. von Haeseler. Quartet puzzling: A quartet maximum likelihood method
for reconstructing tree topologies. Mol. Biol. Evol., 13:964–969, 1996.

26. K.M. Swenson, M. Marron, J.V. Earnest-DeYoung, and B.M.E. Moret. Approximating the
true evolutionary distance between two genomes. In Proc. 7th SIAM Workshop on Algorithm
Engineering & Experiments (ALENEX’05). SIAM Press, Philadelphia, 2005.

27. D.L. Swofford, G.J. Olsen, P.J. Waddell, and D.M. Hillis. Phylogenetic inference. In D.M.
Hillis, B.K. Mable, and C. Moritz, editors, Molecular Systematics, pp. 407–514. Sinauer
Assoc., Sunderland, MA, 1996.

28. J. Tang and B.M.E. Moret. Linear programming for phylogenetic reconstruction based on
gene rearrangements. In Proc. 16th Ann. Symp. Combin. Pattern Matching (CPM’05), Lec-
ture Notes in Computer Science, 2005.

Quartet-Based Phylogeny Reconstruction from Gene Orders 73

29. J. Tang and B.M.E. Moret. Scaling up accurate phylogenetic reconstruction from gene-order
data. In Proc. 11th Int’l Conf. on Intelligent Systems for Mol. Biol. (ISMB’03), volume 19 of
Bioinformatics, pp. i305–i312. Oxford U. Press, 2003.

30. J. Tang, B.M.E. Moret, L. Cui, and C.W. dePamphilis. Phylogenetic reconstruction from
arbitrary gene-order data. In Proc. 4th IEEE Symp. on Bioinformatics and Bioengineering
BIBE’04, pp. 592–599. IEEE Press, Piscataway, NJ, 2004.

31. L.-S. Wang, R.K. Jansen, B.M.E. Moret, L.A. Raubeson, and T. Warnow. Fast phylogenetic
methods for genome rearrangement evolution: An empirical study. In Proc. 7th Pacific Symp.
on Biocomputing (PSB’02), pp. 524–535. World Scientific Pub., 2002.

32. T. Warnow, B.M.E. Moret, and K. St. John. Absolute convergence: true trees from short
sequences. In Proc. 12th Ann. ACM/SIAM Symp. Discrete Algs. (SODA’01), pp. 186–195.
SIAM Press, 2001.

Algorithmic and Complexity Issues of Three
Clustering Methods in Microarray Data Analysis

(Extended Abstract)

Jinsong Tan1, Kok Seng Chua2, and Louxin Zhang1,�

1 Department of Mathematics
National University of Singapore, Singapore 117543

{matzlx,mattjs}@nus.edu.sg
2 The Inst. of High Performance Computing

Singapore 117528

Abstract. The complexity, approximation and algorithmic issues of sev-
eral clustering problems are studied. These non-traditional clustering
problems arise from recent studies in microarray data analysis. We prove
the following results. (1) Two variants of the Order-Preserving Subma-
trix problem are NP-hard. There are polynomial-time algorithms for the
Order-Preserving Submatrix Problem when the condition or gene sets
are given. (2) The Smooth Subset problem cannot be approximable with
ratio 0.5 + δ for any constant δ > 0 unless NP=P. (3) Inferring plaid
model problem is NP-hard.

1 Introduction

Clustering analysis is a vital step in microarray experiment. It gives a readout
of the distinct patterns of genes switched on or off in a cell and hence allows a
researcher have a comprehensive snapshot of the cellular dynamics in a condition
(such as tissues, environments) (e.g. [1, 9, 20]). The analysis is divided into
two steps for revealing common patterns of gene expressions across different
conditions. The first step is to arrange gene-expression values into a matrix, in
which the rows represent genes, the columns represent conditions, and hence
each entry is a measure of the expression strength of a gene in a condition.
Based on this matrix, we may treat each gene as a vector (or point) in an n-
dimensional metric space, where n is the number of the conditions. The genes
are then clustered into groups by a method that measures the distances between
their corresponding vectors. Clustering analysis can also group conditions that
show similar patterns of genome-wide gene expression.

Traditional methods include k-means, self-organizing maps [20], and hierar-
chical clustering [9]. Many new methods have also been proposed for the fol-
lowing reasons. First, the traditional methods are best suited to determining

� Corresponding Author. This work was partially supported by the grant
BMRC01/1/21/19/140.

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 74–83, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Algorithmic and Complexity Issues of Three Clustering Methods 75

relationships among a small number of variables, rather than deriving expres-
sion patterns involving thousands of genes. Secondly, microarray experiments
have relatively low sensitivity. When rare diseases are studied, there are not
enough samples and hence gene expression data missing occurs inevitably. For
instance, in the gene expression data with 4026 genes and 96 conditions used in
[1], there are 47639 missing values, which is about 12% of the total values.

Here, we study the complexity and algorithmic issues of non-traditional clus-
tering methods that are recently proposed in [4], [17], and [24]. Being motivated
by the fact that a subset of genes co-express under some but not all conditions,
the authors of these works focused on finding local expression patterns on a
subset of genes and/or experimental conditions.

In [4], Ben-Dor et al. studied the problem of identifying order-preserving
submatrices, in which all genes co-express in the same magnitude under the
conditions. In this paper, we prove the NP-hardness of two versions of the order-
preserving submatrix problem and presents a quadratic-time algorithm for two
practical subcases of the problem. We also validate the proposed algorithms on
real data sets.

Based on the so-called smooth score, Zhang and Zhu proposed a clustering
method aiming for overcoming data errors such as data missing [21] and data in-
consistency [6] in the stage of clustering analysis. The smooth score is not defined
as a pairwise dissimilarity measure like Euclidean distance; instead, it measures
the deviation of the expression level of a gene from the average expression level
of all concerned genes under a condition (see Formula (1) for details). In the
paper [24], they proposed efficient greedy algorithms for the Smooth Clustering
problem: given a set of conditions, find a largest cluster of genes with its smooth
score below a threshold under the given conditions. They also looked for a largest
smooth ‘bicluster’, grouping genes and conditions simultaneously as proposed in
[7]. Here, we study the approximation issue of a variant of the smooth clustering
problem. The smooth clustering problem is similar to the tiling problem with
rectangles [5].

Finally, in their paper [17], Lazzeroni and Owen introduced the so-called plaid
model for exploratory analysis of microarray data in statistical approach. The
plaid model seeks the decomposition of a gene expression matrix into submatrices
with uniform entries. This is a very general statistical model. The decomposi-
tion methods related to it include singular value decomposition, semidiscrete
decomposition [14], and non-negative matrix factorization [18]. Here, we show
that inferring an optimal plaid model is NP-hard. This answers an open problem
posed in [17].

For basic notations and knowledge on NP-hardness and approximation algo-
rithms, the reader is referred to [2, 10, 13].

2 The Order-Preserving Submatrix Problem

In the rest of this paper, we use A = (aij) to denote a gene expression matrix
with gene set X and condition set Y , in which aij denotes the expression value of
the ith gene in the jth condition. We also use |X | and |Y | to denote the numbers
of genes in X and conditions in Y respectively.

76 Jinsong Tan, Kok Seng Chua, and Louxin Zhang

2.1 The Problem

Each gene (in the gene expression data A = (aij)) induces an ordering of all the
conditions in terms of its expression values. Obviously, two genes in rows i and
j induce the same linear ordering if for any different k, k′ ∈ Y , aik �= aik′ and
aik − aik′ has the same sign as ajk − ajk′ .

An order-preserving submatrix of A corresponds to a subset X ′ of genes and
a subset Y ′ of conditions such that, within conditions in Y ′, the expression levels
of all the genes in X ′ have the same linear ordering. The problem of identifying
a large order-preserving submatrix is formally defined as [3]:
Order-Preserving Submatrix (OPSM)
Instance: A gene expression matrix A = (aij) with gene set X and condition
set Y .
Question: Find an order-preserving submatrix A(I, J), I ⊆ X and J ⊆ Y , that
maximizes min{|I|, |J |}.

2.2 NP-Completeness

We first prove the following variant of the OPSM problem is also NP-complete:
Order-Preserving Submatrix II
Instance: A gene expression matrix A = (aij) with gene set X and condition
set Y , and an positive integer k
Question: Find an OPSM A(I, J) of k entries, where I ⊆ X and J ⊆ Y .

Theorem 1. The Order-Preserving Submatrix II problem is NP-complete.

Proof. (Sketch of the proof) The NP-completeness proof is through a reduction
from the Maximum Edge Biclique problem:
Instance: A bipartite graph G = (V,E), and positive integer k ≤ |E|.
Question: Does G contain a complete bipartite subgraph with at least k edges.
which is proved to be NP-complete in [19] recently. ��

We then consider the following problem that is closely related to the OPSM
problem. It arises from finding genetic features in cancer class discovery and
prediction.
Maximum Differential Gene Subset
Instance: A gene expression matrix A = (aij) with gene set X and condition
set Y , and two positive integers k ≤ |X | and s ≤ |Y |/2.
Question: Are there a gene subset X ′ ⊆ X and two disjoint condition subsets
Y ′, Y ′′ ⊂ Y such that |X ′| = k, |Y ′| = |Y ′′| = s and such that for each i ∈ X ′,
j′ ∈ Y ′, j′′ ∈ Y ′′, aij′ < aij′′?

Theorem 2. The Maximum Differential Gene Subset problem is NP-complete.

Proof. It is proved through a reduction from the Balanced Complete Bipartite
Subgraph (BCBS) problem. The details are omitted.

Algorithmic and Complexity Issues of Three Clustering Methods 77

2.3 Efficient Algorithms for Special Cases

Since the OPSM problem is NP-hard, it is unlikely polynomial-time solvable. In
this subsection, we present an efficient algorithm for two practical cases of this
problem, which leads to a feasible approach for microarray data analysis.

Theorem 3. For a given gene expression matrix A = (aij) with gene set X and
condition set Y , the following two variants of the OPSM problem are linear-time
and quadratic-time solvable, respectively.

i) Given a subset J ⊆ Y , find a largest subset I ⊆ X such that A(I, J) is
order-preserving.

ii) Given a subset I ⊆ X, find a largest subset J ⊆ Y such that A(I, J) is
order-preserving.

Proof. i). The idea of the proof in this case is simple. Each gene induces a linear
ordering on the condition subset J . Note that A(I, J) is order-preserving if and
only if all the genes in I induce same ordering. Hence, we can sort the orderings
induced by all the genes in X and take the largest subset of genes that incur the
same ordering. With radix sort [8], this algorithm can be implemented in O(|X |)
time since the size of J is fixed.

ii). It is less obvious how to find a largest subset J ⊆ Y , given I ⊆ X , such
that A(I, J) is order-preserving in polynomial time. Here, we reduce it to the
problem of finding a longest path in acyclic graphs. Given a gene expression
matrix A = (aij) with gene set X and condition set Y and a gene subset I ⊆ X ,
we define a directed graph DA = (VA, EA), where VA contains |Y | vertices each
corresponding to a condition in Y , and there is an arc (u, v) ∈ EA from u to v if
their corresponding conditions ju and jv satisfy that for any i ∈ I, aiju < aijv .
Obviously, DA is acyclic and can be constructed in quadratic time. Furthermore,
for any condition subset J , A(I, J) is order-preserving if and only if the vertices
corresponding to conditions in J form a directed path in DA. This implies that
we only need to find a longest path in the directed graph DA, which is solvable
in linear time O(|VA|+ |EA|) (see for example [15]). The algorithm will be given
in the full version of this manuscript. ��

2.4 Validation Experimental Test

Most of the microarray data usually contain about 10 to 30 conditions. Given
an integer k ≤ 20, there are only about one million different k-condition subsets.
Therefore, by applying Theorem 3 on each of such condition subset, we are able
to find a k-condition subset J ⊆ Y and I ⊆ X such that A(I, J) is order-
preserving and |I| is maximal. We implemented a program based on the first
algorithm in Theorem 3 and validated it through a real microarray dataset.

On an input expression matrix A with gene set X and condition set Y , for
each value k ≤ |Y |, the program identifies all the largest order-preserving sub-
matrices induced by some k-condition subset by enumerating all the k-condition
subsets. Then, the statistical significance of each obtained submatrix is evaluated
for acceptance.

78 Jinsong Tan, Kok Seng Chua, and Louxin Zhang

We test the program on the breast tumor dataset reported in [12] on a Linux
machine with 2.4G Pentium 4 CPU. The dataset consists of 3226 genes and
22 conditions. We compared our program to the original OPSM program in [4]
and another program in [16]. We find that our algorithm found not only all the
biologically meaningful clusters reported in [4] and [16], but also many more
other statistically significant clusters. The testing details can be obtained from
the authors.

3 The Smooth Clustering Problems

3.1 Definitions

Any subsets I ⊆ X and J ⊆ Y specify a submatrix A(I, J). We associate it with
a smooth score

s(I, J) = max
j∈J

(max
i∈I

|aij −
1
|I|

∑
k∈I

akj |), (1)

where 1
|I|

∑
k∈I akj denotes the average expression value of a gene in I under con-

dition j. The smooth score s(I, J) is actually a refinement of L∞-distance d∞(,),
a popular metric in functional analysis. Recall that, for any two n-dimensional
vectors x = (xi) and y = (yi), d∞(x,y) = maxi |xi − yi|. If a gene expression
level is considered as a function with condition as variable, clustering process
aims to classifying genes into groups each containing genes with similar expres-
sion functions. Thus, the smooth score was proposed for gene expression analysis
in [24]. If A(I, J) has the smooth score s(I, J), then, for any rows v and v′ in
A(I, J), d∞(v, v′) ≤ 2s(I, J).

Given a small number ε > 0, A(I, J) is an ε-smooth cluster if s(I, J) ≤ ε. We
formulate the following clustering problem:
Smooth Clustering Problem [24]
Instance: A gene expression matrix A = (aij) with gene set X and condition
set Y , a subset J ⊆ Y , and a number ε > 0;
Question: Find a largest subset I ⊆ X such that A(I, J) is an ε-smooth cluster.

In [23], Zhang and Zhu show that the Smooth Clustering problem is NP-hard;
therefore, it is desirable to develop efficient approximating algorithms for it. How-
ever, this task is difficult too in general. In fact, the proof of the NP-hardness of
Smooth Clustering problem (see [23]) gives an approximation-ratio-preservation
reduction from the INDEPENDENT SET problem (see [13]). Therefore, there
is an ε > 0 such that approximating the Smooth Clustering problem within a
factor nε is NP-hard, where n is the number of rows in the input gene expres-
sion matrix. In the rest of this section, we shall focus on matrices with only one
column, where the Smooth Clustering problem is equivalent to
Smooth Subset Problem: Given a finite set S, a weight w(s) ≥ 0 for each
s ∈ S, and a positive number ε, find a largest ε-smooth subset S′ ⊆ S, i.e.
|w(s) − 1

|S′|
∑

t∈S′ w(t)| ≤ ε for every s ∈ S′.
Zhang and Zhu [23] show that for Smooth Subset problem, there exists a

simple 1
2 -approximation algorithm; they also show that there does not exist

Algorithmic and Complexity Issues of Three Clustering Methods 79

an approximation algorithm with ratio better than 0.8 unless NP=P. In the
following, we improve this inapproximability result by showing there does not
exist an approximation algorithm with ratio better than 1

2 unless NP=P.

Theorem 4. Let k(S, ε) be the size of the largest ε-smooth subsets of S for any
weighted set S and ε > 0. For any small constant δ > 0, there is no polynomial-
time algorithm that can always output an ε-smooth subset of size at least (1

2 +
δ)k(S, ε) on an input S unless NP=P.

Proof. Let δ be a small positive constant. Suppose A is a polynomial time ap-
proximation algorithm with approximation factor 1

2 + δ for the Smooth Subset
problem. We will show that A can be used to derive a polynomial time al-
gorithm for the PARTITION problem, contradicting its NP-completeness [10].
Recall that the PARTITION problem is to, given a finite set B and an inte-
ger size s(b) > 0 for each b ∈ B, decide if there is a subset B′ ⊆ B such that∑

b∈B′ s(b) =
∑

b∈B−B′ s(b).
For a weighted set B as an instance of the PARTITION problem, we set

σ =
∑
b∈B

s(b), γ = (�n/δ�+ 1/2)σ, m = n+ �n/δ�.

We construct an instance (D, ε) of the Smooth Subset problem from B as follows.
First, we set ε = (2m+ 3)σ. The set D contains 2m xi’s of weight 0, m yi’s of
weight 2ε and �n/δ� vi’s of weight 2ε− σ; for each b ∈ B, D contains a unique
element ub of weight 2ε− s(b) > 0; in addition, D also contains an element z of
weight ε+ γ. In total, D contains 4m+ 1 elements as illustrated below.

2ε−s(b)

x1
x2...
x2m

v1
v2...

n/δv

y1
y2...
ymδ

0 2εε+γε

u b

Fact If there is a solution to the PARTITION instance B, then D has an ε-
smooth subset of size at least 2m+ 2�n/δ�+ 1. Otherwise, any ε-smooth subset
of D has size at most 2m+ 1.
Proof. Suppose B has a subset B′ such that

∑
b∈B′ s(b) =

∑
b∈B−B′ s(b) = 1

2σ.
Then D′ = {xi, yj | i ≤ m + �n/δ� + |B′|, j ≤ m} ∪ {vk, ub | k ≤ �n/δ�, b ∈
B′} ∪ {z} is a desired ε-smooth subset since it contains 2(m+ �n/δ�+ |B′|) + 1
elements and ∑

d∈D′ w(d)
=
∑

j≤m w(yj) +
∑

k≤
n/δ� w(vk) +
∑

b∈B′ w(ub) + w(z)
= 2mε+ (2ε− σ)�n/δ�+ (2ε|B′| − 1

2σ) + (ε+ γ)
= (2(m+ �n/δ�+ |B′|) + 1)ε+ (γ − σ(�n/δ�+ 1

2))
= (2(m+ �n/δ�+ |B′|) + 1)ε,

where w(d) denotes the weight of the element d. This proves the first part of the
fact.

80 Jinsong Tan, Kok Seng Chua, and Louxin Zhang

If there is no solution to the PARTITION instance B, then,
∑

b∈B′ s(b) �= 1
2σ

for any subset B′ ⊂ B. Let D′′ be a largest ε-smooth subset of D. Recall that,
for each d ∈ D, we use w(d) to denote its weight. Let μ = 1

|D′′|
∑

d∈D′′ w(d). We
consider the following three cases.

Case 1: μ > ε. Then, D′′ does not contain any of the 2m elements of weight
0 and hence |D′′| ≤ 2m+ 1.

Case 2: μ < ε. First, it does not contain any of the yj ’s of weight 2ε. We
further show that either it does not contain more than m elements with weight
0 or it does not contain any of the elements ub, b ∈ B, and vk, 1 ≤ k ≤ �n/δ�.
This implies that |D′′| ≤ 2m+ 1.

Assume |D′′| ≥ 2m + 2 and there are m + l (l ≥ 1) elements of weight
0 in D′′. Since D′′ does not contains any of the elements with weight 2ε and
|D′′| ≥ 2m+ 2,

μ = 1
|D′′|

∑
d∈D′′ w(d)

≤ 1
|D′′| [w(z) +

∑
1≤k≤
n/δ� w(vk) +

∑
b∈B w(ub)]

= 1
|D′′| [(ε+ γ) + (2ε− σ)�n/δ�+ (2nε− σ)]

= 1
|D′′| [(2m+ 1)ε− 1

2σ]
≤ 2m+1

2m+2ε.

For each b ∈ B, ub has weight 2ε− s(b). Since

(2ε− s(b))− μ ≥ ε− s(b) +
1

2m+ 2
ε = ε+ (

2m+ 3
2m+ 2

σ − s(b)) > ε,

ub is not in D′′. Similarly, we can show that all the vk (1 ≤ k ≤ �n/δ�) are not
in D′′.

Case 3: μ = ε. In this case, we have |D′′| ≤ 2m by proving the fact that D′′

does not contain any elements from {z, ub, vk|b ∈ B, 1 ≤ k ≤ �n/δ�}. If the fact
is not true, we assume D′′ contains l more weight-0 elements xi than weight-(2ε)
elements yj. Let D1 = D′′ ∩ {ub|b ∈ B} and D2 = D′′ ∩ {vi|1 ≤ k ≤ �n/δ�}. We
consider the following two subcases.

Case 3.1: z �∈ D′′. Then, since μ = ε, we have

(l+|D1|+|D2|)ε =
∑

ub∈D1

w(ub)+
∑

v∈D2

w(v) = 2ε(|D1|+|D2|)−
∑

b:ub∈D1

s(b)−|D2|σ.

This implies
∑

b:ub∈D1
s(b) + |D2|σ = (|D1| + |D2| − l)ε, a contradiction since

the left side is non-zero but smaller than ε.
Case 3.2: z ∈ D′′. Similarly, we have

(1 + l + |D1|+ |D2|)ε = ε+ γ +
∑

ub∈D1
w(ub) +

∑
v∈D2

w(v)
= ε+ (�n

δ �+ 1
2)σ + 2ε(|D1|+ |D2|)

−
∑

b:ub∈D1
s(b)− |D2|σ.

or equivalently (|D1|+ |D2|− l)ε = (|D2|− �n/δ�)σ+(
∑

b:ub∈D1
s(b)− 1

2σ). This
implies that �n/δ� = |D2| and 1

2σ =
∑

b:ub∈D1
s(b), contradicting to that there

is no solution to the PARTITION instance B. This finishes the proof of the fact.

Algorithmic and Complexity Issues of Three Clustering Methods 81

By assumption, A is a polynomial time algorithm with approximation factor
1
2 + δ for the Smooth Subset problem. Now, we apply A to the instance D. If A
outputs an ε-smooth subset of size at most 2m+ 1, then, the largest ε-smooth
subset has size at most

2m+1
1/2+δ = 2n+2
n/δ�+1

1/2+δ < 2n+ 4�n/δ�+ 1 = 2m+ 2�n/δ�+ 1

since A is a (1
2 +δ)-approximation algorithm. Thus, we conclude that there is no

solution to the PARTITION instance B by the fact proved above. If A outputs
an ε-smooth subset of size at least 2m+2, then, by the fact, there is a solution to
the PARTITION instance B. Therefore, we derive a polynomial time algorithm
for the PARTITION problem using A, contradicting NP-completeness of the
PARTITION problem. ��

4 Inferring Plaid Model Problem

With present microarray technology, a gene expression matrix can contain as
many as tens of thousands of entries. Therefore, even visualization of a microar-
ray data is challenging. One natural way to do this is to first form a color image
of the data A = (aij) on an |X | by |Y | grid, with each cell colored according to
the value of aij . Then, it proceeds with reordering the rows and columns so that
similar rows and columns are grouped together and hence an image with blocks
of similar color is formed. For instance, the rows and columns can be reordered
after running a hierarchical clustering method on genes [9].

An ideal reordering of the array would produce an image with K rectan-
gular blocks each being nearly uniformly colored. Mathematically, this ideal
corresponds to the existence of a disjoint K ′-partition of genes and a disjoint
K ′′-partition of conditions such that K ′K ′′ = K and

aij = c0 +
K′∑

k′=1

K′′∑
k′′=1

λk′k′′ (i, j)ck′k′′

where c0 is a background color, ck′k′′ is the color in the block specified by the
k′th gene-block Xk′ and the k′′th condition block Yk′′ , and λk′k′′ (i, j) is 1 if
i ∈ Xk′ and j ∈ Yk′′ , and 0 otherwise.

However, it is more likely that the blocks will overlap in some places in
real data. By removing the constraints that K color blocks are disjoint, we
obtain the plaid model that represents the microarray data as a sum of possible
overlapping ‘constant’ layers. Algebraically, the plaid model corresponds to the
decomposition of A into K ‘uniform’ matrices Bk = (bij)’s that are defined over
gene subset Xk and condition subset Yk such that aij =

∑K
k=1 c

′
k(i, j), where

c′k(i, j) = bij if i ∈ Xk and j ∈ Yk, and 0 otherwise. Let ρik be 1 if i is in the
gene subset Xk and 0 otherwise. To capture biological interests of identifying
genes that had identically, though not constantly, co-expressed in a subset of
conditions, the model allows each matrix Bk = (bij) takes one of the following
forms ([17]):

82 Jinsong Tan, Kok Seng Chua, and Louxin Zhang

bij = ck
bij = ck + αik

bij = ck + βkj

bij = ck + αik + βjk

where if αik is used, we request that
∑

i ρikαik = 0 to avoid overparameteriza-
tion, with similar condition on βjk.

The clustering problem under the plaid model is to seek a model that best
fits the data, i.e. with a smallest value of

∑
i

∑
j

[aij −
K∑

k=1

c′k(i, j)]2.

In this paper, we study the following decision version of the above clustering
problem. For simplicity, we say a matrix to be uniform if all its entries are
identical. Furthermore, we use (b) to denote the uniform matrix whose entries
are b.
Plaid Model Fitting
Instance: A gene expression matrix A = (aij) with gene set X and condition
set Y , and positive integer K ≤ |X ||Y |.
Question: Are there K uniform submatrices Bk = (bk) (bk ≥ 0, 1 ≤ k ≤ K)
with gene subset X ′

i and condition subset Y ′
i such that for each i and j, aij =∑K

k=1 λk(i, j)bk, where λk(i, j) is 1 if i ∈ X ′ and j ∈ Y ′, and 0 otherwise?

Theorem 5. The Plaid Model Fitting problem is NP-complete.

Proof. . Here we only give the sketch of the proof due to the page limitation. A
complete proof can be found in the full version of this work. We prove the above
theorem via a reduction from the following graph decomposition problem:
Complete Bipartite Subgraph Decomposition
Instance: A weighted bipartite graph G = (V,E) in which each edge has a
positive weight, and integer K.
Question: Can G be decomposed into K positively-weighted completed bipar-
tite graphs Gi such that all the edges in Gi have same weight, and for each edge
in E, its weight in G is equal to the sum of its weights in Gi’s.

Such a reduction is more or less straightforward since a matrix A = (aij) with
non-negative matrix gives a unique weighted bipartite graph, in which the edge
from the vertex corresponding to row i to the vertex corresponding to column j
is assigned weight aij . ��

References

1. A. Alizadeh et al., Distinct types of diffuse large B-cell lymphoma identified by
gene expression profiling, Nature 403(2000), 503-510.

2. G. Ausiello et al., Complexity and Approximation, Springer Verlag, 1999.
3. A. Ben-Dor, Z. Yakhini. Clustering gene expression patterns. In Proc. RE-

COMB’99, 33-42.

Algorithmic and Complexity Issues of Three Clustering Methods 83

4. A. Ben-Dor, B. Chor, R. Karp, and Z. Yakhini, Discovering local structure in
gene expression data: The order-preserving submatrix problem. In Proceedings of
RECOMB’02, 49-57.

5. P. Berman, B. DasGupta, S. Muthukrishnan and S. Ramaswami, Efficient approxi-
mation algorithm for tiling and packing problems with rectangles. J. Alg. 41(2001),
443-470.

6. Y. Chen, E. Dougherty, M. Bitter, Ratio-based decisions and the quantitative
analysis of cDNA microarray images. J. Biomed. Optics 2(1997), 364-374.

7. Y. Cheng and G. Church, Biclustering of expression data, In Proceedings of
ISMB’2000, 93-103.

8. T. H. Cormen et al. Introduction to Algorithms (2nd Ed.), McGraw-Hill, 2001.
9. M.B. Eisen et al., Clustering Analysis and display of genome-wide expression pat-

tern. Proc. Natl. Amer. Sci. 95(1998), 14863-68.
10. M. R. Garey and D. Johnson, Computers and Intractability: A Guide to the Theory

of NP-completeness. San Francisco: Freeman, 1979.
11. E. Hartuv et al., An algorithm for clustering cDNAs for gene expression analysis,

In Proceedings of Recomb’99, 188-197.
12. I. Hedenfalk et al. Gene-expression profiles in hereditary breast cancer, New Eng-

land Journal of Medicine, 344:539-548, 2001.
13. D.S. Hochbaum, Approximation Algorithms for NP-hard Problems, PWS Publish-

ing Co., 1995.
14. T.G. Kolda and D.P. O’Leary, A semidiscrete matrix decomposition for latent

semantic indexing in information retrieval, ACM Trans. on Information Systems
16(1998), 322-346.

15. E. L. Lawler, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart
and Winston Inc., 1976.

16. J. Liu, J. Yang and W. Wang, Biclustering in gene expression data by tendency,
in Proceedings of CSB’04, 182-193, 2004.

17. L. Lazzeroni and A. Owen, Plaid Models for Gene Expression Data, Statistica
Sinica 12(2002), 61-86. See http://www-stat.stanford.edu/∼owen for more about
Plaid model.

18. D.D. Lee and H.S. Seung, Learning the parts of objects by non-negative matrix
factorization, Nature 401(1999), 788-791.

19. R. Peeters, The maximum edge biclique problem is NP-complete, Discrete Applied
Mathematics 131 (2003), 651-654.

20. P. Tamayo et al., Interpreting patterns of gene expression with self-organizing
maps: methods and application to hematopoietic differentiation. Proc. Natl. Acad.
Sci. 96(1999), 2907-12.

21. O. Troyanskaya et al., Missing value estimation methods for DNA microarrays.
Bioinformatics 17(2001), 520-525.

22. M. Yannakakis, Node-and edge-deletion NP-complete problems, in Proceedings of
the 10th Annual STOC, 253-264, 1978.

23. L. Zhang and S. Zhu, Complexity Study on Two Clustering Problems. In Proceed-
ings of the Annual Inter. Symposium on Alg. and Comput., 660-669, 2001.

24. L. Zhang and S. Zhu, A new approach to clustering gene expression data. In Pro-
ceedings of IEEE Symposium on Bioinformatics, 268-275, 2002.

RIATA-HGT: A Fast and Accurate Heuristic
for Reconstructing Horizontal Gene Transfer

Luay Nakhleh1, Derek Ruths1, and Li-San Wang2

1 Department of Computer Science, Rice University
Houston, TX 77005, USA

{nakhleh,druths}@cs.rice.edu
2 Department of Biology, University of Pennsylvania

Philadelphia, PA 19104, USA
lswang@mail.med.upenn.edu

Abstract. Horizontal gene transfer (HGT) plays a major role in microbial
genome diversification, and is claimed to be rampant among various groups of
genes in bacteria. Further, HGT is a major confounding factor for any attempt to
reconstruct bacterial phylogenies. As a result, detecting and reconstructing HGT
events in groups of organisms has become a major endeavor in biology. The prob-
lem of detecting HGT events based on incongruence between a species tree and
a gene tree is computationally very hard (NP-hard). Efficient algorithms exist for
solving restricted cases of the problem.
We propose RIATA-HGT, the first polynomial-time heuristic to handle all HGT
scenarios, without any restrictions. The method accurately infers HGT events
based on analyzing incongruence among species and gene trees. Empirical per-
formance of the method on synthetic and biological data is outstanding. Being
a heuristic, RIATA-HGT may overestimate the optimal number of HGT events;
empirical performance, however, shows that such overestimation is very mild.
We have implemented our method and run it on biological and synthetic data.
The results we obtained demonstrate very high accuracy of the method. Current
version of RIATA-HGT uses the PAUP tool, and we are in the process of im-
plementing a stand-alone version, with a graphical user interface, which will be
made public. The tool, in its current implementation, is available from the authors
upon request.

1 Introduction

Horizontal (also known as lateral) gene transfer (HGT) plays a major role in micro-
bial genome diversification [7, 20], and is claimed to be rampant among various groups
of genes in bacteria [8]. M.-W. Ho also has written of the risks that HGT poses to
humans, which include (1) antibiotic resistance genes spreading to pathogenic bacte-
ria; (2) disease-associated genes spreading and recombining to create new viruses and
bacteria that cause diseases; and (3) transgenic DNA inserting into human cell, trigger-
ing cancer [11]. Furthermore, the occurrence of HGT confounds or completely defeats
any attempt to reconstruct evolution (especially for bacterial organisms) as has been
famously summarized by Ford Doolittle [8]

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 84–93, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

RIATA-HGT: A Fast and Accurate Heuristic 85

Molecular phylogeneticists will have failed to find the “true tree,” not because
their methods are inadequate or because they have chosen the wrong genes, but
because the history of life cannot properly be represented as a tree.

In light of all this evidence supporting the significance of HGT as an evolutionary
mechanism, its risks, and its confounding effects on evolution reconstruction, much re-
search in biology today is dedicated to the problems of understanding the nature of HGT
events and detecting and reconstructing them (their numbers as well as their donors and
recipients).

In order to reconstruct genomic changes, what we usually seek is the species (organ-
ismal) phylogeny – the tree that traces the history of the replicating cell lineages that
transmit genes and genomes to successive generations [15]. This species phylogeny
provides the backdrop against which events such as HGT have occurred. In their study,
Lerat et al. identified a set of genes resistant to HGT (those, according to the authors,
are usually single-copy orthologous genes), combined them and built a species tree [15].
They tested whether a given gene had been horizontally transferred by comparing its
tree (topology) against the species trees. Based on this study, the problem of detecting
and reconstructing HGT is formulated as follows: given a species tree ST and a setG of
gene trees, compute the minimum-cardinality set of HGT events whose occurrence on
tree ST give rise to the gene trees in G (we give a mathematical definition of the prob-
lem in Section 2.1). The problem’s formulation as an optimization problem, in which a
minimum-cardinality set of HGT events is sought, is a reflection of Occam’s razor: in
the absence of any additional biological knowledge, HGT events should be used spar-
ingly to explain data features otherwise explainable under a tree model. Further, the
actual set of HGT events may not be computationally identifiable in certain cases since
multiple (equally optimal) solutions may exist for the problem. The problem of finding
a minimum-cardinality set of HGT events whose occurrence of species tree ST would
give rise to the gene trees in set G is computationally NP-hard [4]. Efficient solutions
for the problem exist, but for limited special cases [10, 19].

In this paper, we propose a polynomial-time method, RIATA-HGT, for solving a
relaxed version of the problem, where we drop the optimality criterion in the problem
definition. Although the cardinality of the HGT set computed by our method is not
guaranteed (theoretically) to be the minimum (among all such sets), experimental re-
sults of our method, on both biological and synthetic data, demonstrate that, in practice,
the method almost always infers the correct set of HGT events. Whenever the method
overestimates the minimum amount of HGT events, such an overestimation is very mild
(often one or two additional HGT events). RIATA-HGT takes as input a species tree and
a set of gene trees, and computes HGT events to explain all of those gene trees.

The rest of the paper is organized as follows. In Section 2 we briefly review the
biology behind HGT, and give an overview of the techniques and tools for analyzing it.
In Section 2.1 we mathematically define the problem of species-tree/gene-tree incon-
gruence and HGT reconstruction. Section 3 describes RIATA-HGT and the underlying
algorithms Further, we analyze the theoretical properties of the method. In Section 4
we show the performance of our method on biological as well as synthetic data. We
conclude in Section 5 with final remarks and directions for future research.

86 Luay Nakhleh, Derek Ruths, and Li-San Wang

2 Horizontal Gene Transfer and Its Detection: A Brief Overview

In horizontal gene transfer (HGT), genetic material is transferred from one lineage to
another, such that certain sites (specified by a specific substring within the DNA se-
quence of the species into which the horizontally transferred DNA was inserted) are
inherited through horizontal transfer from another species, while all others are inher-
ited from the parent. Horizontal transfers are believed to be ubiquitous among bacteria
and still quite common in other branches of the Tree of Life [7] – although this view has
recently been challenged [9, 13, 23, 24]. The three major modes of HGT in the Archaea
and Bacteria are transformation (uptake of naked DNA from the environment), conju-
gation (transfer of DNA by direct physical interaction between a donor and a recipient),
and transduction (transfer of DNA by phage infection) [21].

The goal of much biological research has been to identify those genes that were
acquired by the organism through horizontal transfers rather than inherited from its
ancestors. In one of the first papers on the topic, Medigue [17] proposed the use of
multivariate analysis of codon usage to identify such genes; since then various authors
have proposed other intrinsic methods, such as using GC content, particularly in the
third position of codons (e.g., [14]). An advantage of intrinsic approaches is their abil-
ity to identify and eliminate genes that do not obey a tree-like process of evolution
and thus could prevent classical phylogenetic methods from reconstructing a good tree.
With the advent of whole-genome sequencing, more powerful intrinsic methods be-
come possible, such as the location of suspect genes with each genome: such locations
tend to be preserved through lineages, but a transfer event can place the new gene in a
more or less random location. Thus, biologists often consider the neighbors of a gene in
the prokaryotic genome to identify horizontal transfers. However, differential selection
pressure, uneven evolutionary rates, and biased gene sampling can all give rise to false
identification of HGT [9].

Non-intrinsic approaches involve phylogenetic reconstruction. These methods use
phylogenetic reconstructions to identify discrepancies that could tag transfer events. An
old question in phylogenetic reconstruction has been “to combine or not to combine?”
– that is, given DNA sequences for several genes, are we better off concatenating the
sequences or analyzing each set separately (e.g., [6])?
The common sense conclusion that many genes inherited through lineal descent would
override the confusing signal generated by a few genes acquired through horizontal
transfer appears wrong [5, 27]. Of course, one must first resolve the old problem of gene
trees vs. species trees: discrepancies between the trees derived from different genes do
not necessarily indicate reticulate evolution, but may simply testify to the incongruent
evolution of two or more genes, all within a valid, tree-shaped evolution of the species
(e.g., [16, 22]). Distinguishing between the two is difficult in the absence of additional
information.

With whole-genome sequencing, such information becomes available. Huynen [12]
advocate two types of data: the fraction of shared orthologs and gene synteny. Synteny
(the conservation of genes on the same chromosome) is not widely applicable with
prokaryotes, but its logical extension, conservation of gene order, definitely is – and
Huynen and Bork proposed to measure the fraction of conserved adjacencies.

RIATA-HGT: A Fast and Accurate Heuristic 87

2.1 The Graph-Theoretic Approach

From a graph-theoretic point of view, the problem can be formulated as pure phyloge-
netic network reconstruction [18, 19]. In the case of HGT, a phylogenetic network is
a pair (T,Ξ), where T is the species (organismal) tree, and Ξ is a set of HGT edges
whose addition to T creates a directed acyclic graph (DAG) N , referred to as a phylo-
genetic network. We say that a network N (interchangeably, pair (T,Ξ)) induces a tree
T ′ if T ′ can be obtained fromN by the following two steps: (1) for each node in N that
has two edges coming into it, remove one of the two edges, and (2) suppress each node
that has one incoming edge and one outgoing edge.

The problem of resolving incongruence between a species tree ST and a set G of
gene trees is then defined as follows.

Problem 1. (The HGT Reconstruction Problem)

Input: A species tree ST and a set G of gene trees.
Output: Set Ξ of minimum cardinality such that the pair (ST,Ξ) induces each of
the gene trees in G.

As mentioned before, the minimization criterion reflects the fact that the simplest solu-
tion is sought; in this case, the simplest solution is one with the minimum number of
HGT events. Hallett and Lagergren [10] gave an efficient algorithm for solving the HGT
Reconstruction Problem; however, their algorithm handles limited special cases of the
problem in which the number of HGT events is very small, and the number of times a
gene is transferred is very low (also, their tool handles only binary trees; [2]). Boc and
Makarenkov [3] solve the problem by reconstructing the species tree from a sequence
alignment, and then add edges to the tree to minimize a distance-based optimization
criterion. Since the original alignment contains HGT events, the starting tree may be in-
accurate, which results in the addition of arbitrary HGT events. Further, distance-based
approaches suffer from a lack of accurate techniques for estimating branch lengths.
Nakhleh et al. [19] gave efficient algorithms for solving the problem, but for limited
special cases referred to as gt-networks; further, they handled only binary trees. In the
next section, we describe our method, RIATA-HGT, which is a heuristic for solving the
HGT Reconstruction Problem, and demonstrate its empirical performance in Section 4.
RIATA-HGT is the first method for solving the general case of the HGT Reconstruction
Problem.

3 RIATA-HGT

3.1 Terminology and Notation

A rooted phylogenetic tree T over set S of taxa is a rooted tree with |S| leaves, each
labeled by a unique element of S. We denote by r(T) the root of T and by L(T) the
leaf set of T . Let T be a rooted phylogenetic tree over set S of taxa, and let S′ ⊆ S. We
denote by T (S′) the minimal rooted subtree of T that connects all the element of S′.
Furthermore, the restriction of T to S′, denote T |S′ is the rooted subtree that is obtained
from T (S′) by suppressing all vertices (except for the root) whose number of incident

88 Luay Nakhleh, Derek Ruths, and Li-San Wang

edges is 2. Let S′ be a maximum-cardinality set of leaves such that T1|S′ = T2|S′,
for two trees T1 and T2; we call T1|S′ (equivalently, T2|S′) the maximum agreement
subtree of the two trees, denoted MAST (T1, T2). A clade of a tree T is a complete
subtree of T . Let T ′ = MAST (T1, T2); then, T1 − T ′ is the set of all maximal clades
whose pruning from T1 yields T ′ (we define T2 − T ′ similarly). In other words, there
do not exist two clades u and u′ in T1 − T ′ such that either u is a clade in u′, or u′ is a
clade in u.

We say that node x reaches node y in tree T if there is a directed path from x to
y in T . We denote the root of a clade t by r(t). We say that clade t1 reaches clade t2
(both in tree T) if r(t1) reaches r(t2). The sibling of node x in tree T is node y, denoted
siblingT (x) = y whenever x and y are children of the same node in T . We denote by
Tx the clade rooted at node x in T . The least common ancestor of a set X of taxa in tree
T , denoted lcaT (X) is the root of the minimal subtree of T that contains the leaves of
X . The edge incoming into node x in tree T is denoted by inedgeT (x).

3.2 The Algorithm

We describe the algorithm underlying RIATA-HGT in terms of a species tree and a
gene tree. Our implementation of RIATA-HGT allows the user to specify a set of gene
trees, and it iterates over each pair of the species tree and a gene tree, and summarizes
the results for all trees. The core of RIATA-HGT is the divide-and-conquer algorithm
ComputeHGT algorithm (outlined in Fig. 1). The algorithm starts by computing the
MAST , T ′, of the species tree ST and gene tree GT ; tree T ′ forms the basis for
detecting and reconstructing the HGT events (computing T ′ is done in Step 1 in Fig. 1).
The algorithm then decomposes the clade sets U1 and U2 (whose removal from ST and
GT , respectively, yields T ′) into maximal clades such that each maximal clade in one
of the two sets is “matched” by a maximal clade on the same leaf set in the second set.
The algorithm for this decomposition is outlined in Fig. 2. The algorithm then recurses
on each maximal clade and its matching maximal clade (Steps 5.c.(1) and 5.d.(5).(1) in
Fig. 1) to compute the HGT events whose recipients form sub-clades of those maximal
clades. Finally, we add a single HGT event per each maximal clade to connect it to
its “donor” in the ST ; this is achieved through the calls to AddSingleHGT (Fig. 3) in
Steps 5.c.(2) and 5.d.(5).(3) in Fig. 1. We have the following properties of the method,
which we present without proofs due to space constraints: (1) ComputeHGT always
terminates, (2) The pair (ST,Ξ) (the output of ComputeHGT) induces the tree GT ,
and (3) ComputeHGT takes O((h2 + logn)n2) time.

4 Experimental Results and Discussion

We have implemented RIATA-HGT using the Python language [1], and used the PAUP∗

tool [26] for computing the maximum agreement subtree of two trees. We studied the
empirical performance of our method on synthetic as well as biological datasets. We
tried to run the tool of [10], but, unfortunately, the program crashed on almost all
datasets.

To obtain synthetic datasets, we have written a simulator that takes a (species) tree
ST as input, and adds a randomly generated set Ξ of HGT events to T , where the

RIATA-HGT: A Fast and Accurate Heuristic 89

PROCEDURE COMPUTEHGT(ST ,GT)
Input: Species tree ST , and gene tree GT , both on the same
set S of taxa.
Output: Computes the set Ξ of HGT events such that the pair
(ST, Ξ) induces GT .

1. T ′ = MAST (ST, GT);
2. If T ′ = ST then

(a) Return;
3. U1 = ST − T ′; U2 = GT − T ′;
4. V = ∅;
5. Foreach u2 ∈ U2

(a) Decompose(U1, u2, T
′, V);

6. U2 = V ;
7. While V �= ∅

(a) Let u2 be an element of V ;
(b) Let u1 ∈ U1 be such that L(u2) ⊆ L(u1);
(c) Y = {y ∈ U2 : L(y) ∩ L(u1) �= ∅};
(d) Z = {y|(L(y) − L(u1)) : y ∈ Y };
(e) V = V − Y ; V = V ∪ Z;
(f) X = {u1|L(y) : y ∈ Y };
(g) Foreach y ∈ Y

i. Let x ∈ X be such that L(x) ∩ L(y) �= ∅;
ii. ComputeHGT (x, y);

iii. AddSingleHGT (ST,GT, y, U2, T
′);

Fig. 1. The main algorithm for detecting and reconstructing HGT events based on a pair of species
tree and gene tree.

number of events in Ξ is specified by the user. The simulator also implements certain
constraints so that the network N resulting from adding Ξ to ST is a directed acyclic
graph. Once the pair (ST,Ξ) is generated, the simulator outputs a (gene) tree GT that
uses all the edges in Ξ . In other words, GT results from N by

1. for each node v in N such that there are two edges incoming into v, remove the
edge that is not in Ξ; and

2. suppress all nodes that has only one incoming edge and one outgoing edge.

To generate a species tree, ST , we used the r8s tool [25], which generates random
birth-death trees, with a number of leaves specified by the user.

We studied the performance of RIATA-HGT on ten different sizes k of Ξ , where k
ranges from 1 to 10. For each k, we generated 30 triplets (ST,Ξ,GT), with |Ξ| = k,
as described above, and ran RIATA-HGT on (ST,GT). We studied the performance of
RIATA-HGT in terms of the number of HGT events it predicts compared to the actual
number of HGT events. We looked at the predictions in each of the runs (Fig. 4(a)), and
at the averages (Fig. 4(b)).

The box-and-whisker plot in Fig. 4(a) show that RIATA-HGT computed the cor-
rect set of HGT events in most cases. In particular, RIATA-HGT obtained the exact
number of HGT events (with the exception of very few outliers) in the cases when

90 Luay Nakhleh, Derek Ruths, and Li-San Wang

PROCEDURE DECOMPOSE(U1,u2 , T , U ′)
Input: Set U1 of clades from ST , clade u2 from GT , the back-
bone clade u2, and U ′ which will contain the “refined” clades
of u2.
Output: Decompose u2 so that no clade in U ′ has a leaf set
that is the union of leaf sets of more than one clade in U1.

1. If ∃u1 ∈ U1 such that L(u2) ⊆ L(u1) then
(a) U ′ = U ′ ∪ {u2};
(b) B(u2) = T ;
(c) Return u2;

2. Else
(a) If ∃u1 ∈ U1 such that r(u2) = r(u2|L(u1))

i. t = u2|L(u1);
ii. U ′ = U ′ ∪ {t};

iii. B(t) = T ;
iv. Let X = u2 − t;
v. Foreach x ∈ X

A. Decompose(U1, x, t, U ′);
vi. Return t;

(b) Else
i. Let c1, . . . , ck be the children of r(u2);

ii. x = Decompose(U1, Tc1 , T, U ′);
iii. For i = 2 to k

A. Decompose(U1, Tci , x,U ′);
iv. Return x;

Fig. 2. The algorithm for decomposing the clades in U1 and U2 such that for all u1 ∈ U1 and
u2 ∈ U2 we have L(u1) �⊂ L(u2).

PROCEDURE ADDSINGLEHGT(ST , GT , u2 , U2 , T ′)
Input: Species tree ST , gene tree GT , clade u2 of GT , set U2

of clades of GT , and MAST T ′ of ST and GT .
Output: Add to Ξ a single HGT event whose donor is
determined in this procedure and whose recipient is clade u2.

1. Q = L(u2) ∪ L(B(u2));
2. T ′′ = GT |Q; p = lcaT ′′ (L(u2));
3. tq = lcaST (L(u2)); te = inedgeST (tq);
4. If p is a child of r(T ′′) and |L(B(u2))| > 1 then

(a) sq = lcaST (L(B(u2)));
(b) Ξ = Ξ ∪ (sq → te);

5. Else
(a) O =

⋃
{p′:p′=siblingT ′′ (p)} L(Tp′);

(b) sq = lcaST (O); se = inedgeST (sq);
(c) Ξ = Ξ ∪ (se → te);

Fig. 3. The algorithm for detecting and reconstructing the single HGT event in which clade u2 is
the recipient.

RIATA-HGT: A Fast and Accurate Heuristic 91

1 2 3 4 5 6 7 8 9 10

2

4

6

8

10

12

14

N
um

be
r

of
 d

et
ec

te
d

H
G

T
 e

ve
nt

s

Number of actual HGT events in dataset

Distribution of Number of Detected HGT Events

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

11
Average Number of Detected HGT Events

A
ve

ra
ge

 n
um

be
r

of
 d

et
ec

te
d

H
G

T
 e

ve
nt

s

Number of actual HGT events in dataset

Expected number of HGT events
Number of detected HGT events

(a) (b)

Fig. 4. (a) A box-and-whisker plot for the predictions of HGT event numbers made by RIATA-
HGT. (b) The averages of HGT event numbers estimated by RIATA-HGT vs. the actual number
of HGT events.

the actual number of HGT events was between 1 and 5. For datasets with 6 to 10
HGT events, RIATA-HGT predicted the correct number in a large number of the cases.
When RIATA-HGT underestimated the actual number, the method found the minimum
number of HGT events, as opposed to the actual number (for reasons outlined in Sec-
tion 2.1). In the absence of any additional biological knowledge, computing the mini-
mum number of such events amounts to finding the simplest solution. The cases where
RIATA-HGT overestimates the number of HGT events are a reflection of the heuristic
nature of the method. Nonetheless, the overestimation is very mild, as Fig. 4(a) shows.
In Fig. 4(b), we plot the average predictions of RIATA-HGT versus the expected num-
ber of HGT events in the input. The figure shows a very mild deviation of the average
predicted numbers of HGT events from the expected numbers.

For the biological dataset, we considered the species tree and two gene trees of the
γ-Proteobacteria group, as reported in [15]. The species tree (shown in Figs. 5(a) and
5(b)) was reconstructed by the authors using a phylogenetic analysis on a sequence
dataset obtained by concatenating 203 orthologous gene datasets, all of whose gene
trees were concordant. Fig. 5(c) shows the gene tree of the biotin synthase enzyme
(BioB), and Fig. 5(d) shows the gene tree of the virulence factor MviN. Both gene trees
are incongruent with the species tree of Fig. 5(a).

RIATA-HGT computed the set Ξ of HGT events shown in Fig. 5(a) when invoked
on the species tree and the biotin gene tree, and the set Ξ of HGT events shown in Fig.
5(b) when invoked on the species tree and the virulence gene tree. Those two sets of
HGT events were hypothesized in [15], and RIATA-HGT computed them. In summary,
RIATA-HGT performed very well on the synthetic datasets we generated, as well as on
the biological dataset we used.

5 Conclusions and Future Work

We proposed a new method, RIATA-HGT, for detecting and reconstructing horizontal
gene transfer events. Our method is a polynomial-time heuristic that, given a species

92 Luay Nakhleh, Derek Ruths, and Li-San Wang

pa

xf

st

vc

pm

hi

wb

ba

ypk

ypc

ec

Z

Y

W

X

xc

xa

vc

pa

xa

xc

x1

X

W

Y

Z

ec

s1

ypc

ypk

ba

wb

hi

pm

ypk

st

xf

xa

xc

ec

hi

pm

pa

vc

wb

ba

ypc

xf

st

xa

xc

ec

hi

pm

pa

vc

wb

ba

ypc

ypk

(a) (b) (c) (d)

Fig. 5. The species tree of the γ-Proteobacteria group, as reported in [15], is shown by the solid
lines in (a) and (b). The two HGT events were computed by RIATA-HGT using the gene tree in (c)
are shown by the dotted arrows in (a), and the two HGT events were computed by RIATA-HGT
using the gene tree in (d) are shown by the dotted arrows in (b).

tree and a set of gene trees as input, attempts to compute the set of HGT events that
explain all the gene trees. Despite the lack of theoretical bounds on the performance
of our method, we demonstrated, using synthetic and biological datasets, that RIATA-
HGT has excellent performance in practice. RIATA-HGT is the first fast heuristic, with
proven empirical performance, that handles the general case of the HGT Reconstruction
Problem.

We plan to provide a standalone version of RIATA-HGT (along with a graphical
user interface) to the research community. Future work includes testing the method on
more biological datasets, more efficient handling of multiple gene trees (instead of the
iterative process currently implemented), and extending the method to handle cases in
which not all homologs of genes are found across all species.

References

1. Python software foundation, 2005. www.python.org.
2. L. Addario-Berry, M.T. Hallett, and J. Lagergren. Towards identifying lateral gene transfer

events. In Proc. 8th Pacific Symp. on Biocomputing (PSB03), pages 279–290, 2003.
3. A. Boc and V. Makarenkov. New efficient algorithm for detection of horizontal gene transfer

events. In Proc. 3rd Int’l Workshop Algorithms in Bioinformatics (WABI03), volume 2812,
pages 190–201. Springer-Verlag, 2003.

4. M. Bordewich and C. Semple. On the computational complexity of the rooted subtree prune
and regraft distance. Annals of Combinatorics, pages 1–15, 2005. In press.

5. J.R. Brown, C.J. Douady, M.J. Italia, W.E Marshall, and M.J. Stanhope. Universal trees based
on large combined protein sequence data sets. Nat. Genet., 28:281–285, 2001.

6. J.J. Bull, J.P. Huelsenbeck, C.W. Cunningham, D. Swofford, and P. Waddell. Partitioning and
combining data in phylogenetic analysis. Syst. Biol., 42(3):384–397, 1993.

7. F. de la Cruz and J. Davies. Horizontal gene transfer and the origin of species: lessons from
bacteria. Trends Microbiol., 8:128–133, 2000.

8. W.F. Doolittle. Phylogenetic classification and the universal tree. Science, 284:2124–2129,
1999.

9. J.A. Eisen. Horizontal gene transfer among microbial genomes: New insights from complete
genome analysis. Curr Opin Genet Dev., 10(6):606–611, 2000.

RIATA-HGT: A Fast and Accurate Heuristic 93

10. M.T. Hallett and J. Lagergren. Efficient algorithms for lateral gene transfer problems. In
Proc. 5th Ann. Int’l Conf. Comput. Mol. Biol. (RECOMB01), pages 149–156, New York,
2001. ACM Press.

11. M.-W. Ho. Recent evidence confirms risks of horizontal gene transfer, 2002.
http://www.i-sis.org.uk/FSAopenmeeting.php.

12. M.A. Huynen and P. Bork. Measuring genome evolution. Proc. Nat’l Acad. Sci., USA,
95:5849–5856, 1998.

13. C.G. Kurland, B. Canback, and O.G. Berg. Horizontal gene transfer: A critical view. Proc.
Nat’l Acad. Sci., USA, 100(17):9658–9662, 2003.

14. J.G. Lawrence and H. Ochman. Amelioration of bacterial genomes: rates of change and
exchange. J. Mol. Evol., 44:383–397, 1997.

15. E. Lerat, V. Daubin, and N.A. Moran. From gene trees to organismal phylogeny in prokary-
otes: The case of the γ-proteobacteria. PLoS Biology, 1(1):1–9, 2003.

16. W. Maddison. Gene trees in species trees. Syst. Biol., 46(3):523–536, 1997.
17. C. Medigue, T. Rouxel, P. Vigier, A. Henaut, and A. Danchin. Evidence for horizontal gene

transfer in E. coli speciation. J. Mol. Biol., 222:851–856, 1991.
18. B.M.E. Moret, L. Nakhleh, T. Warnow, C.R. Linder, A. Tholse, A. Padolina, J. Sun, and

R. Timme. Phylogenetic networks: modeling, reconstructibility, and accuracy. IEEE/ACM
Transactions on Computational Biology and Bioinformatics, 1(1):13–23, 2004.

19. L. Nakhleh, T. Warnow, and C.R. Linder. Reconstructing reticulate evolution in species–
theory and practice. In Proc. 8th Ann. Int’l Conf. Comput. Mol. Biol. (RECOMB04), pages
337–346, 2004.

20. H. Ochman, J.G. Lawrence, and E.A. Groisman. Lateral gene transfer and the nature of
bacterial innovation. Nature, 405(6784):299–304, 2000.

21. P.J. Planet. Reexamining microbial evolution through the lens of horizontal transfer. In
R. DeSalle, G. Giribet, and W. Wheeler, editors, Molecular Systematics and Evolution: The-
ory and Practice, pages 247–270. Birkhauser Verlag, 2002.

22. A. Rokas, B.L. Williams, N. King, and S.B. Carroll. Genome-scale approaches to resolving
incongruence in molecular phylogenies. Nature, 425:798–804, 2003.

23. S.L. Salzberg and J.A. Eisen. Lateral gene transfer or viral colonization? Science, 293:1048,
2001.

24. S.L. Salzberg, O. White, J. Peterson, and J.A. Eisen. Microbial genes in the human genome
– lateral transfer or gene loss? Science, 292(5523):1903–1906, 2001.

25. M. Sanderson. r8s software package. Available from http://loco.ucdavis.edu/r8s/r8s.html.
26. D.L. Swofford. PAUP*: Phylogenetic analysis using parsimony (and other methods), 1996.

Sinauer Associates, Underland, Massachusetts, Version 4.0.
27. S.A. Teichmann and G. Mitchison. Is there a phylogenetic signal in prokaryote proteins?

J. Mol. Evol., 49:98–107, 1999.

A New Pseudoknots Folding Algorithm
for RNA Structure Prediction�

Hengwu Li1,2 and Daming Zhu1

1 School of Computer Sci and Tech, Shan Dong Univ, Jinan 250100, P.R. China
hengwuli@mail.sdu.edu.cn, dmzhu@sdu.edu.cn

2 Department of Computer, Shan Dong Economic Univ, Jinan 250014, P.R. China

Abstract. A new dynamic programming algorithm with O(n4) time
and O(n3) space is presented to predict the RNA secondary structure
including nested pseudoknots and a subclass of crossed pseudoknots.
Compared with the Jens algorithm of O(n4) time and O(n2) space, this
algorithm can predict more complex pseudoknots. Compared with the
Rivas algorithm of O(n6) time and O(n4) space, this algorithm has the
same power for the planar pseudoknots prediction.

1 Introduction

Energy minimization method for RNA secondary structure predication appears
very useful and interests many researchers in recent years. The Zuker algorithm
is used to predict the secondary structure without pseudoknots. This algorithm
requires O(n3) time and O(n2) space for a sequence of length n and is imple-
mented by MFOLD[1] and ViennaRNA[2] programs.

Pseudoknots are functionally important in several known RNAs[3]. Finding
the best structure including arbitrary pseudoknots has been proved to be NP-
hard[4]. One method for folding RNA pseudoknots adopts heuristic search, such
as quasi-Monte Carlo searches[5] and genetic algorithms[6]. Another method
resorts to more simplistic energy model to fold RNA pseudoknots, such as the
O(n4) time and O(n3) space algorithm for base pair maximization[7], and the
O(n3) time algorithm for maximum weight matching[8].

Recently, the method for folding a tractable subclass of pseudoknots under
the established thermodynamic model demonstrates more vital forces. The Rivas
algorithm can recognize the class of arbitrary planar and restricted non-planar
pseudoknots in O(n6) time and O(n4) space[3]. Further improvements have been
shown to be possible for more restricted classes. For example, an O(n5) time and
O(n3) space algorithm only considers the class of one planar pseudoknot[4], the
O(n5) time and O(n4) space algorithms consider the class of arbitrary planar
pseudoknots and partial non-planar pseudoknot[9, 10], and an O(n4) time and
O(n2) space algorithm only considers the class of simple nested pseudoknots[11].

In this paper, a new dynamic programming algorithm with O(n4) time and
O(n3) space is presented to predict the RNA secondary structure including pla-
� The work is supported by NSFC: 60273032.

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 94–103, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A New Pseudoknots Folding Algorithm for RNA Structure Prediction 95

nar pseudoknots and restricted crossed pseudoknots. Our programming exper-
iment confirms that the algorithm can compute 252 of 253 pseudoknots in the
PseudoBase[12]. Two new structures, semi-extensible structures and k-stems, are
added to the computational model of the RNA folding in [11]. The new model
can represent any nested pseudoknots and part of crossed pseudoknots. Thus we
can design a dynamic programming algorithm to implement the computation of
the model in O(n4) time and O(n3) time.

2 Algorithm for Compatible Structures

Let s=s1,s2, . . . ,sn be a RNA sequence, base si ∈ {A,U,C,G}, 1 ≤ i ≤ n. The
subsequence si,j = si, . . . , sj is a segment of s, 1 ≤ i ≤ j ≤ n.

If si and sj are complementary bases {AU,CG,UG}, then si and sj may
constitute a base pair (i, j). RNA secondary structure S is a set of base pairs
(i, j) for s. Each base can at most take part in one base pair.

Suppose that (i, j) ∈ S and i < r < j. If no (i ′, j ′) ∈ S where i < i ′ <
r < j ′ < j, then we say r is accessible from (i, j). The pair (p, q) ∈ S is to be
accessible from (i, j) if both p and q are accessible, i < p < q < j. The u(≥ 0)
unpaired bases and k − 1(≥ 0) pairs, accessible from (i, j) ∈ S, constitute the
k-loops closed by (i, j). 1-loops are called hairpins. 2-loops for u = 0 are called
stacked pairs stems, for p− i− 1 > 0 and j − q− 1 > 0 are called internal loops,
else for p− i− 1 = 0 or j− q− 1 = 0 are called bulges. k-loops (k ≥ 3) are called
multi-loops. Let Ek(i, j) be the energy of k-loops closed by base pair (i, j) ∈ S,
especially E2(i, k : l, j) denotes the energy of 2-loops closed by base pair (i, j)
and (k, l) ∈ S, i < k < l < j.

Base pairs (i, j) and (k, l) are said to be compatible if they are juxtaposed
(e.g. i < j < k < l) or nested (e.g. i < k < l < j). Otherwise they are called a
pseudoknot (e.g. i < k < j < l).

RNA secondary structure is represented by Feyman diagram as Fig.1. Solid
continuous level line represents an RNA sequence. Solid arcs represent base pairs,
and dashed arcs represent that the relation between two nonadjacent bases is
uncertain. Any pseudoknot whose representation in Feyman diagram requires
crossing lines is called a non-planar pseudoknot, otherwise called a planar pseu-
doknot.

Let W (i, j) be the minimum energy possible for si,j , and V (i, j) be the mini-
mum energy for si,j , where si and sj constituting a base pair (i, j). The recursions
of W and V can be expressed as (1) and (2). M denotes the score for generating

S B S H S IL H IL B S P NP

M

Fig. 1. The representation of RNA secondary structures including pseudoknot.
H(hairpin) S(Stem) B(bulge) IL(internal loop) M(Multi-loop) P(pseudoknot) NP(non-
planar pseudoknot)

96 Hengwu Li and Daming Zhu

a multi-loop. P denotes the score for each pair in a multi-loop. WM has identical
recursions but different parameters with W .

V (i, j)=min

⎧⎨⎩
E1(i, j)
min{E2(i, j) + V (k, l)}, i < k < l < j, u = k − i+ j − l − 2 < U
min{WM (i+ 1, h) +WM (h + 1, j − 1) +M + P}, i < h < j − 1

(1)

W (i, j)=min

{
V (i, j),W (i+ 1, j),W (i, j − 1), min

i<k<j−1
{W (i, k) +W (k + 1, j)}

(2)
In practice, for 2-loops, the value of u actually encountered are rarely large,

say u ≤ U , U is a constant [13]. This inherent feature is great important for the
Zuker algorithm to reduce time complexity from O(n4) to O(n3). Our algorithm
also applies it to reduce calculation.

3 Algorithm Including Pseudoknots

The Jens algorithm computes pseudoknots consisting of two crossed stems, and
two pseudoknots can only be in nested or parallel position. In practice, the
pseudoknots composed of internal loops and bulges often occur in the secondary
structure. The crossed pseudoknots are also great important, and shouldn’t be
ignored. We design a new algorithm to predict the RNA secondary structure
including the above-mentioned cases.

3.1 Basic Principle

Definition 1. For subsequence si,j, if (i, j), (i+1, j−1), . . . , (k, l) are base pairs,
i ≤ k < l ≤ j , then the structure closed by (i, j) and (k, l) ∈ S is called 1-stem
S1[i, j]. If S1[i, j] closed by (i, j) and (r, s) ∈ S, S1[r′, s′] closed by (r′, s′) and
(k, l) ∈ S, i ≤ r < r′ ≤ k < l ≤ s′ < s ≤ j and u = r′ − r + s − s′ > 2, then
the structure closed by (i, j) and (k, l) ∈ S is called 2-stems S2[i, j]. Equally if
S1[i, j] closed by (i, j) and (r, s) ∈ S, (k− 1) nested 1-stems closed by (r′, s′) and
(k, l) ∈ S, i ≤ r < r′ ≤ k < l ≤ s′ < s ≤ j and u = r′ − r + s − s′ > 2, then
the structure closed by (i, j) and (k, l) ∈ S is called k-stems Sk[i, j]. The optimal
energy of Sk[i, j] is denoted as ESk(i, j). Correspondingly the lengths of optimal
Sk[i, j] are denoted as LSk(i, j) = k − i+ 1 and RSk(i, j) = j − l + 1.

Arbitrary pseudoknots can be decomposed into k-stems and multi-loops. In
the PseudoBase[12], there are 244 RNA sequences including 253 pseudoknots.
Pseudoknots composed of 1-stem get up to 58.5 percent, and those composed of
k-stems get up to 94.5 percent, and those composed of k-stems and multi-loops
get up to 100 precent of all pseudoknots.

Let LS(i, j)∈ {LS1(i, j), LS2(i, j)}, RS(i, j)∈ {LS1(i, j), RS2(i, j)}, ES(i, j)
∈ {ES1(i, j), ES2(i, j)}. Note that S2[i, j] is composed of two nested 1-stems and
their internal unpaired bases. ES2(i, j) = ES1(i, j)+E2(r, r′ : s′, s)+ES1(r′, s′).

A New Pseudoknots Folding Algorithm for RNA Structure Prediction 97

Equally ESk(i, j) is composed of k nested 1-stem and their internal unpaired
bases, ESk(i, j) = ES1(i, j) + E2(r, r′ : s′, s) +ESk−1(r′, s′).

In our algorithm, the free energies of 1-stems and 2-stems are pre-computed
and stored in triangular matrices ES1(i, j) and ES2(i, j) in O(n3) time as proce-
dure1. Meanwhile the lengths of k-stems (k ≤ 2) are stored in matrices LS(i, j)
and RS(i, j) .

Procedure 1: Computing the energies of 1-stem and 2-stems.
/* (i, j) denotes base pair composed of base si and sj . g denotes the penalty

for 2-loops in a pseudoknot. P ′ denotes the score for each pair in a pseudoknot.
Q′ denotes the score for an unpaired base in a pseudoknot.*/

for r=4 to n
for i = 1 to n− r

j = i+ r;ES1(i, j) = ES2(i, j) = 0;
if (i, j) k = i; l = j;

//Compute the energy of 1-stem
while (k, l) and (k + 1, l− 1) and ((l − k) > 4)

ES1(i, j) = ES1(i, j) + g ∗ E2(k, k + 1 : l − 1, l) + P ′;
k + +; l −−;

loop
ES1(i, j) = ES1(i, j) + P ′; ES2(i, j) = ES1(i, j);

//Compute the energy of 2-stem
if (k = i and l = j)

for k = i+ 1 to i+ U + 1
for l = j − U − 1 + k − i to j

ES2(i, j)=min{ES1(i, j) + g ∗ E2(i, k : l, j)+
ES1(k, l) + (k − i+ j − l − 2) ∗Q′}

end for
end for

else ES2(i, j) = ES1(i, j) + ES2(k, l);
end if

end if
end for

end for

Definition 2. A semi-extensible structure is defined to be two connected seg-
ments si,k and sl,j , i < k < l < j, satisfying (1) or (2):

(1) There exists p and q, i < p < q < k, such that sp,q and sl,j consti-
tute k-stems or multi-loops. Let F [i, k : j] denote the semi-extensible struc-
ture. Correspondingly EF (i, k : j) denotes the optimal energy of the semi-
extensible structure. The length of the optimal semi-extensible structure is de-
noted as LF (i, k : j) = j − l + 1.

(2) There exists p and q, l < p < q < j, such that si,k and sp,q constitute
k-stems or multi-loops. Let F [i : l, j] denote the semi-extensible structure. Cor-
respondingly EF (i : l, j) denotes the optimal energy of the semi-extensible struc-
ture. The length of the optimal semi-extensible structure is denoted as LF (i :
l, j) = k − i+ 1.

98 Hengwu Li and Daming Zhu

Fig.2 gives a simple pseudoknot. Dots denote bases. () and [] denote base
pairs. We can see W (1, 30) = EF (1, 6 : 19) + EF (7 : 20, 30) + W (13, 14) =
ES1(1, 19) + ES1(7, 30) +W (13, 14) +W (6, 6) +W (20, 24). So one pseudoknot
can be decomposed into the crossing of two semi-extensible structures and one
subsequence. One semi-extensible structure can be described by k-stems. Pseu-
doknots can be described recursively.

1 5 7 12 15 19 25 30
5’-CGAGGGGCGGUUGGCCUCGUAAAAAGCCGC-3’

(((((. [[[[[[. .)))))]]]]]]

1 7
12

15
19 30 =

1 5
7 12

15 19
25 30

Fig. 2. Construction of a simple pseudoknot

3.2 Model and Algorithm

Applying the above principle, we extend the result of [11] to predict planar
pseudoknots. Pseudoknot structures composed of two semi-extensible structures
and one subsequence or one semi-extensible structure and one subsequence are
added to the Zuker model to constitute our computational model. Fig.3 and
Fig.4 give the illustration of our model.

W
=

1 2 3 4 5 6

i j i j-1 i+1 j i k j i j i k j i+1 j

7 8 9 10 11

i j-1 i+1 j-1 i k

l

j i l j i k j

V
=

12 13 14

i j i j i k l j i k j

Fig. 3. The representation of W and V in the new algorithm

Fig.3 gives the computational illustration of si,j , which is achieved by adding
Fig.3.5-3.11 to the Zuker algorithm. Fig.3.5-3.8 are used to compute the energy of
coaxial stack and dangle diagrams. Fig.3.9-3.11 are used to compute the minimal
free energy of pseudoknots structures.

Fig.3.9 consists of two semi-extensible structures F [i, k : l] and F [k + 1 :
l + 1, j], and one subsequence sk+1+LF (k+1:l+1,j),l−LF (i,k:l) . Fig.3.10 consists of

A New Pseudoknots Folding Algorithm for RNA Structure Prediction 99

one semi-extensible structure F [i : l, j], and one subsequence si+LF (i:l,j),l−1.
Fig.3.11 consists of one semi-extensible structure F [i, k : j] and one subsequence
sk+1,j−LF (i,k:j). The recursions of Fig.3.9-3.11 are given as (3) in our computa-
tional model. Gw denotes the score for introducing a pseudoknot.

mini≤k≤l≤j−1{EF (i, k : l) + EF (k + 1 : l + 1, j)
+WM (k + 1 + LF (k + 1 : l + 1, j), l− LF (i, k : l)) +GW)}
mini+1≤l≤j{EF (i : l, j) +WM (i+ LF (i : l, j), l − 1)}
mini≤k≤j−1{EF (i, k : j) +WM (k + 1, j − LF (i, k : j))}

(3)

Fig.3.5 indicates that if (i, k) and (k+1, j) ∈ S, this configuration is specially
favored by an amount C(i, k : k + 1, j), because substructures corresponding to
V (i, k) and V (k + 1, j) are coaxial stack. Fig.3.6-3.8 indicate that one unpaired
base contiguous to a base pair has a different thermodynamic contribution than
other unpaired bases. The dangle scoring function L(i : i + 1, j) depends both
on the dangling base si and base pair (i+ 1, j). Similarly R(j : i, j − 1) depends
on sj and base pair (i, j − 1). The recursions of Fig.3.5-3.8 are given as (4) in
our computational model.

mini<k<j−1{V (i, k) + V (k + 1, j) + C(i, k : k + 1, j)}
L(i : i+ 1, j) + V (i + 1, j), R(j : i, j − 1) + V (i, j − 1)
L(i : i+ 1, j − 1) +R(j : i + 1, j − 1) + V (i+ 1, j − 1)

(4)

=
1 2 3 4

i F l j i l j i l q j i l q j i l

q

j

5 6 7 8

i l

q

j i+LS j-RS i+LF q j i+1 l j

Fig. 4. The representation of F in the new algorithm

Fig.4 gives the computational illustration of semi-extensible structures F [i :
l, j]. The computational illustration of F [i, k : j] can be given correspondingly.

One semi-extensible structure is computed from five cases. One semi-exten-
sible structure is one k-stems. For example, F [i : l, j] = S1[i, j] or F [i : l, j] =
S2[i, j], if (i, j) and (i+LS(i, j), l) ∈ S in Fig.4.1. One semi-extensible structure
consists of another semi-extensible structure and one subsequence. For example,
F [i : l, j] consists of F [i : q, j] and sl, q−1 in Fig.4.2, F [i : l, j] consists of F [i :
l, q] and sq+1,j in Fig.4.3. One semi-extensible structure consists of two other
semi-extensible structures. For example, F [i : l, j] consists of F [l, q : j] and
F [i : q + 1, j − LF (l, q : j)] in Fig.4.4, F [i : l, j] consists of F [l : q, j] and
F [i : l + LF (l : q, j), q − 1] in Fig.4.5. One semi-extensible structure consists
of another semi-extensible structure and one k-stems (k ≤ 2). For example,
F [i : l, j] consists of Sk[i, j] and F [i+LS(i, j) : l, j−RS(i, j)] in Fig.4.6, F [i : l, j]
consists of F [i : q, j] and Sk[i+LF (i : q, j), q−1] in Fig.4.7. One semi-extensible

100 Hengwu Li and Daming Zhu

structure consists of another semi-extensible structure and one unpaired base.
For example, F [i : l, j] consists of F [i+ 1 : l, j] and base si in Fig.4.8.

So the recursions of Fig.4 are given as (5) in our computational model. M ′

denotes the score for generating an incompatible multi-loop. Gwh denotes the
score for overlapping pseudoknots.

F (i : l, j) = min
l<q<j

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ES(i, j), EF (i : q, j) +WM (l, q − 1)
EF (i : l, q) +WM (q + 1, j)
EF (l, q : j) + EF (i : q + 1, j − LF (l, q : j)) +Gwh

EF (l, q : j) + EF (i : l + LF (l, q : j), q − 1) +Gwh

ES(i, j) + EF (i+ LS(i, j) : l, j −RS(i, j)) +M ′

ES(i+ LF (i : q, j), q − 1) + EF (i : q, j) +M ′

EF (i+ 1 : l, j) +Q′

(5)

Note that in Fig.4.6, if (i+L(i, j)−1, j−RS(i, j)+1) ∈ S in F [i+L(i, j)−1 :
l, j−RS(i, j)+1], then the outmost layer of F [i+L(i, j)−1 : l, j−RS(i, j)+1]
is one k-stems Sk[i+L(i, j)−1, j−RS(i, j)+1]. Sk[i+L(i, j)−1, j−RS(i, j)+1]
and Sk[i : j] constitute one k-stems (k ≥ 2). Similarly in Fig.4.7, if (i + LF (l :
q, j)− 1, q) ∈ S in F [i : q, j],then innermost layer of F [i : q, j] and Sk[i+ LF (i :
q, j)−1, q] constitute one k-stems (k ≥ 2). In this case semi-extensible structure
is added one k-stems (k ≤ 2) in each computation of Fig.4.6-4.7, so k-stems
(k ≥ 3) may be constituted. Then the recursions of Fig.4.6-4.7 is described as
(6).

ES(i, j) + EF (i+ LS(i, j)− 1 : l, j −RS(i, j) + 1) +M ′

minl≤q≤j{ES(i+ LF (i : q, j)− 1, q) + EF (i : q, j) +M ′} (6)

Our algorithm computes the minimum free energy of a pseudoknot based
on nearest-neighbor thermodynamic model. We pre-compute the minimum free
energy of 1-stem and 2-stem in procedure1, and store them in matrices ES1 and
ES2. Then we compute the minimum free energy of the compatible structures
and pseudoknot structures for each subsequence si,j according to the recursions
of Fig.3 and Fig.4, and store them in matrices W , V and EF . The dynamic
programming algorithm works by adding one base at a time to si,j , and observ-
ing what the best structure is at each step. The last number to be computed,
W (1, n), represents the minimum free energy for the whole sequence s. Corre-
spondingly the admissible secondary structure S is achieved by a trace back
through the matrices W and V , and matrices EF,LF,ES,LS and RS.

3.3 Analysis

From procedure1, the computation of the matrices of 2-stems takes O(n3) time.
From Fig.3, the computation of V takes O(n3) time, and the computation of W
takes O(n4) time. From Fig.4, the computation of EF takes O(n4) time. So the
algorithm requires O(n4) time.

From procedure1, pre-computed matrices take O(n2) space. The energy ma-
trices V and W take O(n2) space. The matrices EF and LF for semi-extensible
structure take O(n3) space. So the algorithm requires O(n3) space.

A New Pseudoknots Folding Algorithm for RNA Structure Prediction 101

1

(:((:((((((((::(((((((:::[[:[[[[))))))))))))))))))--]]]]:]]

2573
575-576
578-585
588-594

606-623

602-605 885-888
599-600 890-891

2

ABACAEDFG I GHDAKLKC= ABACAEDFG I GHDAKLKC=

ABACAEDFG I GHDAKLKC= ABACAEDFG I GHDAKLKC

(((((((::((((((:[[[[[[)))))):::(((((:((((((:::))))))::::))))))))))))(((::::))):]]]]]]
3

ABCBDEDAAFGF CHKHA = ABCBDEDAAFGF CHKHA

Fig. 5. The solvable pseukoknots composed of k -stems and multi-loops

The model can compute pseudoknots composed of k-stems and multi-loops
such as Fig.5.1 (PKB148, Escherichia coli in [12]), Fig.5.2(PKB135, broad bean
mottle virus in [12]), and Fig.5.3. For example, in Fig.5.2, S1[3, 5] and s6,13

constitute one semi-extensible structure F [3 : 5, 13] according to Fig.4.3. F [2 :
5, 13] and S1[1, 14] constitute one multi-loops according to Fig.4.6. Then F [1 :
5, 14] and F [4 : 18, 18] constitute one pseudoknot.

DMENFOE P F THRD S H=DMENFOE P F THRD S H=DMENFOE P F THRD S H

Fig. 6. The solvable nested pseudoknots in the new algorithm

The model can also compute arbitrary nested or parallel pseudoknots. For
example, in Fig.6 one pseudoknot is constituted in s1,10 according to Fig.3.9, then
s1,10 and s13,13 constitute one semi-extensible structure F [1, 10 : 13] according to
Fig.4.2. F [1, 10 : 13] and F [11 : 14, 15] constitute another pseudoknot according
to Fig.3.9, then s1,10 contains a nested pseudoknot.

Moreover the algorithm can solve crossed pseudoknots as Fig.7.1 (PKB163,
Homo sapiens in [12]) and Fig.7.2. For example, in Fig.7.2, F [1 : 5, 6] and
F [2, 4 : 9] constitute another semi-extensible structure F [1, 6 : 9] containing
one pseudoknot according to Fig.4.5, F [7 : 12, 14] and F [10, 11 : 15] constitute
another semi-extensible structure F [7 : 10, 15] containing one pseudoknot. Then
F [1, 6 : 9] and F [7 : 10, 15] constitute crossed pseudoknots.

102 Hengwu Li and Daming Zhu

(((:((((((:[[[[:)))))):::::((((:]]]]:::)))))))

1

= =

2

AEB FAGCHB I D J CKD=AEB FAGCHB I D J CKD=AEB FAGCHB I D J CKD

Fig. 7. The solvable crossed pseudoknots in the new algorithm

4 Discussion

We present a new dynamic programming algorithm with O(n4) time and O(n3)
space to predict the optimal RNA secondary structure including pseudoknots.
Semi-extensible structure and k-stems are introduced to predict the class of
nested and crossed multi-pseudoknots.

Our algorithm can solve arbitrary nested or parallel pseudoknots composed
of k-stems and multi-loops, and a subclass of crossed pseudoknots whose rep-
resentation in Feyman diagram doesn’t require crossing lines. So our algorithm
can solve arbitrary planar pseudoknots.

Our algorithm can’t find non-planar pseudoknots. Fig.8.1 (PKB71, Esche-
richia coliα mRNA in [12]) and Fig.8.2 (parallel β-sheet protein in [14]) present
this structure. The Rivas algorithm can find Fig.8.1, but can’t find Fig.8.2 too.
It is the unique difference of our algorithm with the Rivas algorithm. So our
algorithm has the same power as the Rivas algorithm for the planar pseudoknots
prediction. While our algorithm is practical for sequences shorter than 1000
bases, which is better than 140 bases of the Rivas algorithm.

1
ABCBDC

(((((((:(((((:::::::[[[:::[[[[:::: :)))))))))))):::::]]]]::::]]]]:::::

ABCADBECDE
2

Fig. 8. The non-solvable structures in the new algorithm

This algorithm can compute 252 of 253 pseudoknots from 244 RNA sequences
in the PseudoBase[12]. One non-planar pseudoknots (figure 8.1) can’t be com-
puted. The Jens algorithm can compute pseudoknots composed of two 1-stems,
such as Fig.6, but can’t compute pseudoknots composed of k-stems for k > 1 and
multi-loops , such as Fig.5. The Jens algorithm can’t yet compute crossed pseu-
doknots, such as Fig.7 and Fig.8. So our algorithm can compute more complex
nested and crossed pseudoknots than the Jens algorithm.

A New Pseudoknots Folding Algorithm for RNA Structure Prediction 103

The Lyngsφ algorithm takes O(n5) time and O(n3) space to compute pseudo-
knots, where one pseudoknot consists of two compatible structures. The Lyngsφ
algorithm can compute the class of one planar pseudoknot, such as Fig.5 and
Fig.7.1. The Lyngsφ algorithm can’t compute multi-pseudoknots, such as Fig.6,
Fig.7.2 and Fig.8. So our algorithm can compute more complex multi-pseudo-
knots, and takes lower time than the Lyngsφ algorithm.

References

1. Zuker, M. Computer prediction of RNA structure.: Methods Enzymol 180 (1989a)
262–288

2. Schuster, P., Fontana, W., Stadler, P. F. and Hofacker, I. L.: From sequences to
shapes and back: a case study in RNA secondary structure. Proc. Roy. Soc. ser.
B. 255 (1994) : 279–284

3. Rivas, E. and Eddy, SR.: A dynamic programming algorithm for RNA structure
prediction including pseudoknots, J. Mol. Biol. 285 (1999) 2053–2068

4. Lyngsφ, RB. and Pedersen, CN.: RNA pseudoknot prediction in energy based
models. J. Mol. Biol. 7 (2001) 409–428

5. Abrahams, J. P., van der Berg, M. et al.: Prediction of RNA secondary struc-
ture, including pseudoknotting, by computer simulation. Nucleic Acids Research
18 (1990) 3035–3044

6. Gultyaev, A. P., van Batenburg, F. H. and Pleij, C. W. A.: The computer simula-
tion of RNA folding pathways using a genetic algorithm. J. Mol. Biol. 250 (1995)
37–51

7. Akutsu, T.: Dynamic programming algorithms for RNA secondary structure pre-
diction with pseudoknots. Discrete Applied Mathematics 104 (2000) 45–62

8. Ruan, J., Stormo, GD. and Zhang, W.: An iterated loop matching approach to
the prediction of RNA secondary structures with pseudoknots. Bioinformatics 20
(2004) 58–66

9. Hengwu, Li., Daming, Zhu. and Shaohan, Ma.: An impoved algorithm for RNA
secondary structure prediction including pseudoknots. TCS, Qingdao. Computer
Science Press (2003) 109–111

10. Hengwu, Li., Daming, Zhu. and Mingxiao Sun.: A new algorithm for RNA sec-
ondary structure prediction. TCS, Wuhan. Computer Science Press (2004) 142–144

11. Jens, R. and Robert, G.: Design, implementation and evaluation of a practical
pseudoknot folding algorithm based on thermodynamics. BMC Bioinformatics 5
(2004) 104

12. PseudoBase homepage: http://wwwbio. LeidenUniv.nl/∼ Batenburg/PKB.htm
13. Sankoff, D.: Simultaneous solution of the RNA folding, alignment and protose-

quence problems. SIAM J. Appl. Math. 45 (1985) 810–825
14. Gluick, T. C. and Draper, D. E.: Thermodynamics of folding a pseudoknotted

mRNA fragment. J. Mol. Biol. 241 (1999) 246–262

Rapid Homology Search
with Two-Stage Extension and Daughter Seeds�

Miklós Csűrös1 and Bin Ma2

1 Department of Computer Science and Operations Research, Université de Montréal
C.P. 6128, succ. Centre-Ville, Montréal, Qué., Canada, H3C 3J7

csuros@iro.umontreal.ca
2 Department of Computer Science, University of Western Ontario

London, Ont., Canada, N6A 5B7
bma@csd.uwo.ca

Abstract. Using a seed to rapidly “hit” possible homologies for further
examination is a common practice to speed up homology search in molec-
ular sequences. It has been shown that a collection of higher weight seeds
have better sensitivity than a single lower weight seed at the same speed.
However, huge memory requirements diminish the advantages of high
weight seeds. This paper describes a two-stage extension method, which
simulates high weight seeds with modest memory requirements. The pa-
per also proposes the use of so-called daughter seeds, which is an exten-
sion of the previously studied vector seed idea. Daughter seeds, especially
when combined with the two-stage extension, provide the flexibility to
maximize the independence between the seeds, which is a well-known
criterion for maximizing sensitivity. Some other practical techniques to
reduce memory usage are also discussed in the paper.

1 Introduction

An important task in the analysis of molecular sequences is the search for local
alignments, formed by pairs of substrings from two sequences, which score high
according to some string similarity metric. Local alignments are the “unit oper-
ations” in comparative genomics [1], where sequence conservation and lack of it
are used to reason about evolutionary relationships and biological function. For
instance, even alignments between different species’ genomes [2] rely on anchors,
which are local alignments between the genomes that restrict the search space
for whole-genome alignments.

The importance of the local alignment problem led to a large body of re-
search, starting in the early 1980s with the algorithm of Smith and Waterman [3],
later improved by Gotoh [4]. The Smith-Waterman-Gotoh algorithm uses dy-
namic programming to find all local alignments scoring above a fixed threshold
in O(|S| · |T |) time for two sequences S and T over a finite alphabet Σ. For
� This work was supported by grants from the Natural Sciences and Engineering Re-

search Council of Canada, the Fonds québécois de la recherche sur la nature et les
technologies, and a Canada Research Chairs program.

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 104–114, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Rapid Homology Search with Two-Stage Extension and Daughter Seeds 105

genomic sequences, Σ is the DNA alphabet of size 4. While the speed of a full
sensitivity search can be improved by a logarithmic factor [5], a full-scale search
that involves sequences with several million letters cannot be carried out in a
reasonable time frame. For large alignment problems, other solutions are needed
that may sacrifice some sensitivity for speed, i.e., that may miss some local align-
ments but run reasonably fast. Heuristic search programs such as FASTA [6] and
BLAST [7] were introduced at the end of the 1980s. They rely on the so-called
hit-and-extend heuristic, which can be implemented using hashing and lookup
tables. The majority of modern local alignment programs [8–12] exploit some
variant of this idea. Some recent alternatives are based on suffix trees [13].

Algorithm Hit-and-extend
Input sequences S, T ; hash
function h

H1 for i = 1, . . . , |S| − 	 + 1 do
H2 set g ← h(S[i..i + 	 − 1])
H3 add i to the list Occ(g)
H4 for j = 1, . . . , |T | − 	 − 1 do
H5 set g ← h(T [j..j + 	 − 1])
H6 process hits (i, j) : i ∈ Occ(g)

Algorithm X-drop
Input S, T ; start (i, j); allowed drop X

X1 set s ← 0;max ← 0
X2 while s > max − X, i ≤ |S|, j ≤ |T | do
X3 if S[i] = T [j] then s ← s + 1 else

s ← s − 1
X4 if s > max then set max ← s
X5 set i ← i + 1; j ← j + 1
X6 report max

Fig. 1. Basic hit-and-extend procedure. Algorithm Hit-and-extend outlines the
method. Hits are extended in Line H6 by exploring the dynamic programming table
around the hits. X-drop is a popular extension algorithm, used in BLAST [7, 8] and
many other alignment programs. The extension is shown only in the forward direction.
An analogous extension process is carried out in the reverse direction.

This paper concentrates on hit-and-extend methods. Hit-and-extend methods
rely on a hash function h : Σ� → {0, . . . , H − 1}. Local alignments are found
by first identifying hits, which are pairs of positions (i, j) where h(S[i..i + � −
1]) = h(T [j..j + � − 1]). The most obvious choice for hashing is to use the
identity function, when hits are defined by identical substrings of length �, called
�-mers. In fact, this strategy is used by BLAST. All the hits can be found
efficiently by using a lookup table that stores the occurrence lists Occ(g) =
{i : h(S[i..i + � − 1]) = g} for every key g. Subsequently, hits are detected and
extended by consulting the occurrence list for h(T [j..j+�−1]) in each position j.
Figure 1 outlines this concept. This strategy is often called “seeding” and the
hash function or its representation is called as a seed. The sensitivity of a seed
measures its ability to hit a homology, and the specificity of a seed characterizes
its ability to filter out a random region.

It was recently discovered [11] that spaced seeds provide very good sensitivity
and specificity. A spaced seed is defined by a set S = {s1, . . . , sk} ⊆ {1, . . . , �}.
In practice, a spaced seed is often denoted by the characteristic vector for the
set, defined as the length-� binary string in which the bits at the positions
specified by the seed have value 1. The corresponding hash function concate-
nates the characters in positions specified by the seed, and encodes the resulting
string u[s1] · u[s2] · · ·u[sk] by an integer in the range {0, . . . , |Σ|k − 1}. Such a

106 Miklós Csűrös and Bin Ma

seed is called an (�, k)-seed, and has weight k. The initial discovery led to a num-
ber of results on selecting spaced seeds [14, 15] in various statistical or empirical
alignment models. Additional references with a thorough discussion are offered
in [16].

There exist several generalizations of spaced seeds, which include multiple
seeds [12, 17], and vector seeds [9, 18]. Multiple seeds are a set of carefully se-
lected spaced seeds S1, . . . , SM . The set of hits for such a set is the union of
the hits found by every single seed. A vector seed is defined by a vector of
non-negative weights (w1, . . . , w�) and a threshold t: there is a hit at (i, j) if
t ≤

∑�
δ=1 wδI{S[i+ δ − 1] = T [j + δ − 1]}, where I{C} is 1 if and only if con-

dition C is true, otherwise it is 0. (The slightly more general definition of [18]
allows for a scoring matrix.) A vector seed can be viewed as a well-structured
set of multiple seeds.

The time complexity increase of using multiple seeds can be offset by using
higher-weighted seeds. It was shown that higher-weighted multiple seeds and
vector seeds may offer superior sensitivity [12, 18] to that of a single seed at
the same specificity. However, they can hardly reach their theoretical potential
due to their memory requirements. In case of multiple seeds [12], a lookup table
is constructed for every seed. Vector seeds rely on a hash table for the spaced
seed defined by the positions with non-zero weights. As a consequence, memory
usage is exponential in the number of positive weights. Vector seeds with widely
varying weighting schemes proved prohibitive due to their demands on memory.

We first propose in Section 2 a novel two-stage extension procedure that
improves the efficiency of hit-and-extend methods. Rather than being a trivial
heuristic, extensive optimization is needed to maximize the sensitivity of the
two-stage extension. The concept of daughter seeds is introduced in Section 3.
Daughter seeds allow us to attain or surpass the sensitivity and speed of multiple
and vector seeds, and pose only modest demands on memory. We discuss the
advantages of combining two-stage extension and the daughter seeds. Section 4
explores some practical techniques of space reduction, which include an imple-
mentation of 11-mer based hashing with 1.5 bytes per base pair for the purposes
of comparing mammalian-sized genomes. Section 5 concludes the paper.

2 Two-Stage Extension

2.1 Average Complexity of the Classic Hit-and-Extend Method

In this study, we restrict our attention to gapless local alignments. The presented
techniques are, however, relevant also for gapped alignments, as most programs
perform gapped extension only if a high-scoring gapless alignment is found. For
simplicity, we consider the alignment scoring policy that rewards an identity
with +1 and penalizes a mismatch with −1. Thus, without loss of generality, each
local alignment between S[i..i+n−1] and T [j..j+n−1] can be represented by a 0-
1 stringR of length n, where R[k] = 1 if and only if S[i+k−1] matches T [i+k−1].
Let n′ be the number of ones in R. Then the score of the alignment is (2n′−n).
The similarity of the local alignment is then ratio n′/n.

Rapid Homology Search with Two-Stage Extension and Daughter Seeds 107

If S[i..i + n − 1] and T [j..j + n − 1] are random unrelated sequences, then
the similarity is expected to be β =

∑
a∈Σ p(a)q(a), where p(a) and q(a) are the

background frequencies for the letter a in the two sequences. For DNA sequences
with alphabet size 4, β = 1

4 if the letter occurrences are uniform random in
at least one of S and T . For simplicity, we mostly focus on such a model of
random sequences. Nonetheless, the analyses can be easily extended to arbitrary
background frequencies.

A heuristic local alignment method can be assessed by evaluating its speci-
ficity and sensitivity. Specificity is measured by the average running time on
random unrelated sequences. Sensitivity is measured by the probability of de-
tecting a homology under a probabilistic model of homologies.

Since the introduction of spaced seeds, there has been much work on find-
ing variants of hit conditions and hash functions to gain better sensitivity and
specificity. In this section we scrutinize the extension instead. The usual method
is to extend a hit in each of the two directions along the diagonal until the score
drops by a specified amount. In each direction, the position where the maximum
score is reached is recorded and gives the extent of the local alignment. Figure 1
shows the X-drop extension procedure in one direction.

If we ignore the boundary effects of S and T , the average running time of a
hit-and-extend method for random sequences is f × t× |S| × |T |, where f is the
probability of a hit at a fixed position pair (i, j), and t is the average time spent
on a hit extension. The probability f is called the false positive rate in [18]. In
what follows, we analyze t more closely for the X-drop algorithm of Fig. 1. In
Line X3, the score decreases with an expected value of (1 − 2β) in each step.
Therefore the extension will stop after around X/(1 − 2β) steps. The following
lemma formalizes this argument.

Lemma 1. Suppose that β < 1/2 holds for the match probability, and X-drop
is invoked with a positive integer X. Let n = min{|S|, |T |}. If τ denotes the
number of times the loop body X3–X5 is executed, then

lim
n→∞

Eτ =
X − β

(
1−

(
β

1−β

)X
)

1− 2β
=
X −

∑X
t=1

(
β

1−β

)t

1− 2β
. (1)

Proof. Omitted due to space constraints. The proof relies on an analysis of ladder
points which are the places where max is updated in Line X4.

Corollary 1. For uniform random DNA sequences, β = 1
4 , and the expected

number of comparisons at a hit is 4X − 2 + o(1).

With a typical choice X = 16, a hit extension entails approximately 62
character comparisons on average.

2.2 Two-Stage Hit Extension

We propose the following two-stage extension process. Let S = {s1, . . . , sk} be an
(�, k)-seed, and let S′ = {s′1, . . . , s′m} be a set of positive integers with S∩S′ = ∅.

108 Miklós Csűrös and Bin Ma

Furthermore, let 0 < t ≤ m be a threshold. The triple (S, S′, t) defines a relaxed
seed employed in the following manner. Hits are found as if the spaced seed S

were used. When a hit is found, the positions of S′ are tested, and the full
extension is performed if at least t matches are found. In particular, let (i, j) be
a hit position. Full extension is performed only if S[i + s′ − 1] = T [j + s′ − 1]
for at least t of s′ ∈ S′. A relaxed seed may significantly increase the specificity,
which can be seen in Theorem 1. As we will see in Table 1, the sensitivity of a
relaxed seed varies very much for different choices of S′ even with the same size
and threshold. Therefore, the optimization of the positions in S′ should be done
together with S.

Theorem 1. Suppose that the two-stage extension method is employed with
|S′| = m. Let b(m, t) =

∑m
i=t

(
m
i

)
(1
4)i(3

4)m−i. The average number of charac-
ter comparisons performed during a bi-directional hit extension is C =

(
m +

b(m, t)(4X − 2)
)

+ o(1).

Proof. (Omitted; follows from Lemma 1)

Sensitivity is assessed in the following manner. Let R be a binary represen-
tation of a homology region with a given similarity. In order to have a hit with
the spaced seed S, R has to contain a substring u such that ∀s ∈ S : u[s] = 1. In
order to have a hit with the relaxed seed (S, S′, t), R has to contain a substring u
such that ∀s ∈ S : u[s] = 1 and

∑m
j=1 u[s′j] ≥ t. The sensitivity is defined to be

the hit probability under a specific probabilistic model for homologies. The first
such model was introduced in [11]: it imposes that local alignments are created
by independent equiprobable substitutions. Here we consider similarity patterns
drawn uniformly from the set of length-n binary strings in which there is a 1 in
exactly k positions. Computing the sensitivity of spaced seeds in a similar model
was considered by Kucherov et al. [19]. Theirs and earlier algorithms for com-
puting the sensitivity of spaced seeds [14, 15] can be readily adapted to relaxed
seeds. As an alternative, one can convert a relaxed seed to an equivalent set of
multiple seeds and compute the sensitivity by employing the algorithm in [12]
that calculates the sensitivity of an arbitrary set of seeds.

Table 1 compares relaxed and spaced seeds. It turns out that the sensitiv-
ity of a (k − 1)-weight seed can be approached while the running time stays
close to that of a weight-k spaced seed. It is noteworthy that the last two seeds,
x1110x10x10x1010111 and 111001001001010111xxxx have the same S, same
size |S′| and same threshold t. At the same time, they have very different sensi-
tivities. The example demonstrates that the two-stage extension is not a trivial
extension heuristic. Indeed, it can be fully profited of only after a meticulous
optimization step, in which the threshold and the relaxed positions are selected.
This observation is epitomized by the extreme case of a relaxed seed (S, S′, t)
where t = |S′|. This relaxed seed is equivalent to the spaced seed S∪ S′, and the
necessity to optimize the spaced seed is well-known [11].

The data structure for the basic algorithm of Fig. 1 has to support the
operation Add(g, i) that records the position i as one belonging to Occ(g), and
the operation reportAll(g) that returns the list Occ(g) as a set. For a spaced

Rapid Homology Search with Two-Stage Extension and Daughter Seeds 109

Table 1. Comparison of some relaxed and spaced seeds. Relaxed seeds are encoded by
0–1–x strings: position i has 1 if it is in S, and it has x if it is in S′. Sensitivity (Sens.)
is calculated at a 70% similarity level for homology regions of lengths 64. Column C
shows the expected number of comparisons in hit extension, when X = 16, and column
T lists the expected time spent on finding and extending hits, defined as C times the
false positive rate. T is normalized for weight-11 seeds. The two spaced seeds on the
left are the most sensitive weight-10 and weight-11 seeds. The table on the right-hand
side lists some relaxed seeds. It illustrates that the placement of relaxed positions has
a non-negligible effect on sensitivity.

Seed Sens. C T

111001001001010111 0.618 62 4
111010010100110111 0.451 62 1
1111111111 0.391 62 4

Seed & threshold Sens. C T

111xx1xx1x01010111x 3 0.555 14.50 0.94
x1110x10x10x1010111 2 0.550 20.22 1.30
111001001001010111xxxx 2 0.528 20.22 1.30

seed with weight k, a rather straightforward implementation was introduced
in [11]. An integer array, head, of length 4k was used to record the first occurrence
of each hash value. Then another integer array, next, of length |S| is used to
retrieve all the other occurrences. next[i] records the next occurrence of the same
hash value as position i. The two arrays head and next form a hash table that
requires memory for (4k+|S|) integers. In a direct manner, a relaxed seed (S, S′, t)
can be implemented by relying on the hash table for the spaced seed S.

3 Daughter Seeds

The vector seed idea [18] is very effective for improving sensitivity. Every vector
seed corresponds to a particular set of ordinary spaced seeds defined as follows.
Let (w1, . . . , w�) be the weights and t be the threshold of the vector seed. Let P =
{δ : wδ > 0} be the set of positively weighted positions, and K = |P|. The vector
seed is equivalent to the set of seeds {S1, . . . , SM} where Si are the subsets of P

in which t ≤
∑

δ∈Si
wδ. For convenience, we call P the parent seed, and the

multiple seeds produced from the parent seed are called daughter seeds. When
all vector weights are 0 or 1, daughter seeds are generated from the parent by
removing up to (K − t) elements from the parent’s set of sampled positions. In
fact, an equivalent set can be created by removing exactly that many positions.

Our relaxed seeds also define sets of daughter seeds: a relaxed seed (S, S′, t)
is equivalent to the family of (k + t)-element subsets of the parent seed S ∪ S′,
in which only t elements of S′ are present. The vector seed is different from the
multiple seeds introduced in [12], which selects seeds from the complete seed
space by a greedy algorithm. The advantage of multiple seeds over the vector
seed is that the selected seeds are not dependent on each other. As a result,
more local alignments may be hit by a constant number of seeds. On the other
hand, multiple seeds require one hash table for each seed, which increases the
memory requirements, and therefore only a few number of seeds can be used in
practice. The vector seed only requires one hash table for the parent seed. As
pointed out in [18], memory will still be a problem when there are more than 14
positive weights.

110 Miklós Csűrös and Bin Ma

In what follows, we examine daughter seed sets without constraints on which
positions may vary, otherwise imposed by vector seeds and relaxed seeds. We
show that daughter seeds can have superior sensitivity to those of spaced seeds
and vector seeds with comparable specificity, while using a reasonable amount
of memory (one hash table for the parent seed).

The problem of selecting an optimal set of daughter seeds is likely to be
intractable, based on NP-hardness results of selecting multiple seeds [12] or even
one optimal seed (M. Li and B. Ma, manuscript in preparation). Computing the
false positive rate involves some further complications. Let S1, . . . , SM ⊆ P be
a set of daughter seeds. In order to obtain the false positive rate, one needs to
count subsets of {1, . . . , �} that are supersets of at least one of the seeds, where �
is the common seed length (i.e., � = max∪M

i=1Si). Since neither the sensitivity
nor the specificity changes when we add a new daughter seed D ⊃ Si, we can
safely assume that the daughter set is complete in the sense that if D ⊆ P is
included, then so are all its supersets D′ with D ⊆ D′ ⊆ P.

In order to select complete daughter sets, we used the same greedy algorithm
as in Li et al. [12], adding daughters one by one. Let f be the false positive rate of
the parent seed and K = |P|. Suppose now that one daughter seed S1 is selected
by removing one element of P. Obviously, the false positive rate of that single
daughter seed increases the false positive rate by 3f . By adding another daughter
seed S2 of the same weight, the total false positive rate becomes 7f . Now, consider
the choice between adding additional three (K − 1)-size daughter seeds, or the
(K−2)-daughter seed S1∩S2. Both choices increase the false positive rate by 9f ,
and thus the question is which one increases the sensitivity more. Intuitively,
adding three (K − 1)-sized daughter seeds is a better choice, and we observed
that behavior in experiments. We thus considered selecting complete daughter
sets by first including the parent, then daughter seeds of weight (K − 1) until
all of them are included, then daughter seeds of weight (K − 2) until all of them
are included, and so on, down to weight-K ′ daughters among which not all are
selected necessarily. In practice, good daughter seed sets are found with K = 13
or K = 14, and K ′ ≥ K − 2, and thus selecting a quasi-optimal set is feasible. If
the number of weight K ′ daughters is M ′, then the false positive rate of such a
set is

(
3K−K′

M ′ +
∑K−K′+1

i=0

(
K
i

)
3i
)
f . Table 2 shows some daughter seeds. The

table illustrates that daughter seeds have better sensitivity than spaced seeds,
or practically implementable vector seeds with comparable false positive rates.

The idea of daughter seeds and the two-stage extension can be combined
together to further improve the sensitivity and specificity. Because the two-
stage extension of different daughter seeds can be done separately, we can choose
different checkpoints, S′, for different daughter seeds. This resembles the multiple
seeds idea and gives the flexibility to minimize the dependency between different
daughter seeds. Therefore, the sensitivity can be maximized. For instance, a 17-
element set of weight-11 daughters of a weight-13 parent used in conjunction
with two-hit extension has a sensitivity of 0.917 at the same speed as MD-25-14,
which is faster than a weight-10 spaced seed. More results about the combination
will be included in the full version of this extended abstract.

Rapid Homology Search with Two-Stage Extension and Daughter Seeds 111

Table 2. Daughter seeds. Sensitivity values are given for length-64 regions at 70% sim-
ilarity level. In case of MD seeds (sensitivity marked with ∗), the values are calculated
from simulations involving one million random similarity regions: the accuracy is thus
within ±0.002 with probability 99.9%. The “Daughters” column describes a minimal
daughter set (the largest antichain) selected from the complete daughter set: MD-11-13
for instance is a set of 8 weight-12 daughters and 3 weight-11 daughters. The weight-13
and weight-14 parents are spaced seeds with maximum sensitivity among spaced seeds
with equal weight. False positive rate is normalized by that of a weight-11 spaced seed.
The VS seeds are vector seeds from [18].

Name Parent weight Daughters Sensitivity False positive rate

MD-3-13 13 3 × wt12 0.473 ∗ 0.625
MD-5-13 13 5 × wt12 0.593 ∗ 1.0
MD-11-14 14 2 × wt12 + 9 × wt13 0.729 ∗ 0.95

VS-12-13 13 13 × wt12 0.835 2.5
MD-16-14 14 13 × wt12 + 3 × wt13 0.841 ∗ 2.5

MD-11-13 13 3 × wt11 + 8 × wt12 0.884 ∗ 4.19
MD-25-14 14 23 × wt12 + 2 × wt13 0.902 ∗ 3.91

VS-11-12 12 12 × wt11 0.927 9.25
MD-14-13 13 12 × wt11 + 2 × wt12 0.941 ∗ 9.25

4 Two Ideas for Reducing Memory Usage

Daughter seeds rely on a single hash table for the parent seed, and avoid this
way the impractical memory requirements of general seed sets. Further memory
reductions can be achieved by storing the hash table in a more compact fashion.
We need a data structure that supports the operation reportAll. If k-mers are
used, then a suffix array can provide the functionality, which can be implemented
using O(|S|) bits [20] in addition to storing the sequence S. Various self-indexing
methods [21, 22] promise even better compression by storing S and the indexing
structure together. These latter, however, are still impractical for genomic DNA
sequence comparisons, since the amount of time they spend on retrieving each
hit is measured in milliseconds [22]. Given that the number of hits between two
sequences of length 108 is about 2.4·109 (when using a 11-weight key), the implied
running time (in the order of several weeks) is unacceptable. When changing
the data structure, even a four-fold increase in the execution of reportAll is
undesirable, since in a conventional implementation shorter hash keys imply the
same increase in running time, with the added benefits of reduced memory usage
and improved sensitivity.

The data structure for the hashing is typically implemented using 32-bit
integers [11]. Consequently, a table for a k-weight key occupies 4(4k + |S|) bytes.
We describe a way of saving space without much sacrifice in either speed or ease
of implementation. In particular, we show how to replace 32-bit integers with
(2k)-bit integers. For seeds of weights 10–13, this means a memory reduction of
37.5–18.75%. The idea is fairly simple: choose a large integer Q and store the
modulo Q remainders in both head and next. The integer value Q is reserved for
marking ends of lists, so �log2(Q + 1)�-bit integers suffice. Figure 2 shows the

112 Miklós Csűrös and Bin Ma

Fig. 2. Data structure for occurrence lists that uses integers in the range {0, . . . , Q}.
The value Q represents a null pointer.

data structure. Since Add(g, i) is called in increasing order of i (cf. Fig. 1), key
occurrences are restored correctly.

Theorem 2. (a) reportAll of Fig. 2 correctly enumerates the occurrences of
a key g, provided that the calls Add(g, i) were made in increasing order of i.

(b) Suppose that S is a uniform random string, and the hash function is such
that all keys occur with equal probability. If Q � 1 and |S| → ∞, then the
hash function is evaluated in the loop of Line R5 (1 − e−Q/H)−1 times on
average. If h is defined by a weight-k spaced seed, then, for each occurrence
of a key g, ReportAll(g) performs an expected number of k + 4/3

eQ/H−1
character comparisons.

Proof. (Omitted due to space constraints. The proof relies on a Poisson process
approximation of key occurrences.)

By Theorem 2, using Q = 4k − 1 with a weight-k seed entails an expected
number of (k + 0.77) character comparisons. As an alternative to the (modQ)
representation, one can avoid the character comparisons by using run-length
encoding [23] of the distances between consecutive occurrences, which reduces
the space equivalently at the price of having to handle bit vectors of varying
length.

Suffix trees or arrays can be employed to enumerate occurrences of k-mers.
To our knowledge, there is no efficient way of retrieving occurrences of spaced
seeds from a suffix array, and thus their use is limited to k-mers. At the same
time, suffix tree-based local alignment methods use at least 12.5–15.6 bytes [13]
per base pair. Here we describe a simple method of reducing storage for hashing
with k-mers in genome-size local alignments. The idea is to use a hash table for
longer (k + d)-mers sampled in every (d + 1)-th position of S. The occurrences
of a key g can be retrieved by listing the occurrences of the keys a1a2 · · ·ad · g,
a1 · · · ad−1gad, . . . , ga1a2 · · ·ad for all choices of a1, . . . , ad ∈ Σ. With a judicious
choice of d, the running time remains essentially the same, while the memory
usage is reduced. Table 3 shows some numerical values, for a typical mammalian
chromosome or genome. For instance, about 1.5 bytes/nucleotide suffice for 11-
mer based alignment of a whole mammalian genome, if the sequence is stored

Rapid Homology Search with Two-Stage Extension and Daughter Seeds 113

Table 3. Number of bits used per character when storing a k-mer table. The traditional
implementation uses 32-bit integers; the implementation of Fig. 2 uses 2k-bit integers.
Sequence lengths are |S| = 227 for a chromosome, and |S| = 231 for a genome, based
on the human genome.

table chromosome genome
int32 modQ int32 modQ

11mers 33 22.69 32.07 22.04

every 2nd 12mer 20 14.375 16.25 11.68

every 4th 14mer 136 110.5 12 9.75

table chromosome genome
int32 modQ int32 modQ

12mers 36 27 32.5 24.38

every 2nd 13mer 32 25 17 13.28

in 2 bits/nucleotide and the table is stored in less than 10 bits/nucleotide. This
memory usage is better than that of the currently most space-efficient suffix
array representation [24], which uses 12 bits per nucleotide in addition to the
sequence storage. At the same time, the hash table takes considerably less effort
to implement.

5 Conclusion

We introduced novel ideas on selecting a structured set of spaced seeds to gain
superior sensitivity and speed in hit-and-extend methods of local alignment.
Our guideline in designing the techniques was to minimize memory usage, in
order to avoid the main obstacle encountered by other methods such as multiple
seeds and vector seeds. We described some additional, easily implementable ways
to lower memory demands. Memory usage is a key factor in the efficiency of
homology search algorithms, and is likely to become even more important in the
future. Both the number and total length of DNA sequences in Genbank has
doubled about every 17 months since 1983. This rate of increase is comparable
to the popular version of Moore’s law about computing power doubling every
18 months, and thus powerful heuristics are likely to remain highly valued in
the comparison of molecular sequences. Our methods are memory efficient and
offer practical solutions for the alignment of large genomic sequences in terms
of speed and sensitivity.

References

1. Miller, W., Makova, K.D., Nekrutenko, A., Hardison, R.C.: Comparative genomics.
Annu. Rev. Genomics Hum. Genet. 5 (2004) 15–56

2. Frazer, K.A., Elnitski, L., Church, D.M., Dubchak, I., Hardison, R.C.: Cross-
species sequence comparisons. Genome Res. 13 (2003) 1–12

3. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences.
J. Mol. Biol. 147 (1981) 195–197

114 Miklós Csűrös and Bin Ma

4. Gotoh, O.: An improved algorithm for matching biological sequences. J. Mol. Biol.
162 (1982) 708–708

5. Crochemore, M., Landau, G.M., Ziv-Ukelson, M.: A sub-quadratic sequence align-
ment algorithm for unrestricted cost matrices. In: Proc. SODA (2002) 679–688

6. Pearson, W.R., Lipman, D.J.: Improved tools for biological sequence comparison.
Proc. Natl. Acad. Sci. USA 85 (1988) 2444–2448

7. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local align-
ment search tool. J. Mol. Biol. 215 (1990) 403–410

8. Altschul, S.F., et al: Gapped BLAST and PSI-BLAST: a new generation of protein
database search programs. Nucleic Acids Res. 25 (1997) 3389–3402

9. Schwartz, S., et al: Human-mouse alignments with BLASTZ. Genome Res. 13
(2003) 103–107

10. Ning, Z., Cox, A.J., Mullikin, J.C.: SSAHA: A fast search method for large DNA
databases. Genome Res. 11 (2001) 1725–1729

11. Ma, B., Tromp, J., Li, M.: PatternHunter: faster and more sensitive homology
search. Bioinformatics 18 (2002) 440–445

12. Li, M., Ma, B., Kisman, D., Tromp, J.: PatternHunter II: highly sensitive and fast
homology search. J. Bioinform. Comput. Biol. 2 (2004) 411–439

13. Kurtz, S., et al: Versatile and open software for comparing large genomes. Genome
Biol. 5 (2004) R12

14. Buhler, J., Keich, U., Sun, Y.: Designing seeds for similarity search in genomic
DNA. J. Comp. Syst. Sci. 70 (2005) 342–363

15. Keich, U., Li, M., Ma, B., Tromp, J.: On spaced seeds for similarity search. Discrete
Appl. Math. 138 (2004) 253–263

16. Brown, D.G., Li, M., Ma, B.: A tutorial of recent developments in the seeding of
local alignment. J. Bioinform. Comput. Biol. 2 (2004) 819–842

17. Sun, Y., Buhler, J.: Designing multiple simultaneous seeds for DNA similarity
search. In: Proc. RECOMB (2004) 76–84

18. Brejová, B., Brown, D., Vinař, T.: Vector seeds: An extension to spaced seeds. J.
Comp. Syst. Sci. 70 (2005) 364–380

19. Kucherov, G., Noé, L., Ponty, Y.: Estimating seed sensitivity on homogeneous
alignments. In: Proc. BIBE (2004) 387–394

20. Grossi, R., Vitter, J.S.: Compressed suffix arrays and suffix trees with applications
to text indexing and string matching. In: Proc. STOC (2000) 397–406

21. Ferragina, P., Manzini, G.: Opportunistic data structures with applications. In:
Proc. FOCS (2000) 390–398

22. Mäkinen, V., Navarro, G.: Compressed compact suffix arrays. In: Proc. CPM
(2004), LNCS 3109, 421–433

23. Golomb, S.W.: Run-length encodings. IEEE Trans. Inform. Theory 12 (1966) 399–
401

24. Hon, W.K., Sadakane, K.: Space-economical algorithms for finding maximal unique
matches. In: Proc. CPM (2002), LNCS 2373, 144–152

On the Approximation
of Computing Evolutionary Trees

Vincent Berry�, Sylvain Guillemot, François Nicolas, and Christophe Paul

Département Informatique, L.I.R.M.M. - C.N.R.S.
161 rue Ada, 34392 Montpellier Cedex 5

{vberry,sguillem,nicolas,paul}@lirmm.fr

Abstract. Given a set of leaf-labelled trees with identical leaf sets, the
well-known MAST problem consists of finding a subtree homeomorphi-
cally included in all input trees and with the largest number of leaves.
MAST and its variant called MCT are of particular interest in computa-
tional biology. This paper presents positive and negative results on the
approximation of MAST, MCT and their complement versions, denoted
CMAST and CMCT.
For CMAST and CMCT on rooted trees we give 3-approximation algo-
rithms achieving significantly lower running times than those previously
known. In particular, the algorithm for CMAST runs in linear time.
The approximation threshold for CMAST, resp. CMCT, is shown to be
the same whenever collections of rooted trees or of unrooted trees are
considered. Moreover, hardness of approximation results are stated for
CMAST, CMCT and MCT on small number of trees, and for MCT on
unbounded number of trees.

1 Introduction

Given a set of leaf-labelled trees with identical leaf sets, the well-known Max-
imum Agreement SubTree problem (MAST) consists of finding a subtree
homeomorphically included in all input trees and with the largest number of
leaves [2, 7, 10, 13, 21, 22]. In other words, this involves selecting a largest set of
input leaves such that the input trees are isomorphic, i.e. agree with each other,
when restricted to these leaves.

This problem arises in various areas including phylogenetics which is con-
cerned with evolutionary trees, i.e. trees representing the evolutionary history
of a set of species: the leaves of the tree are in one-to-one correspondence with
species under study and the branching pattern of the tree describes the way
in which speciation events lead from ancestral species to more recent ones. In
phylogenetics, the MAST problem is used to reach different practical goals: to
obtain a consensus of several trees inferred by different methods, or that are
optimal for a given criteria; to measure the similarity between different evolu-
tionary scenarii; to identify horizontal transfers of genes. Recently, MAST has
� Supported by the Act. Incit. Inf.-Math.-Phys. en Biol. Mol. [ACI IMP-Bio] and the

Act. Inter. Incit. Région. [BIOSTIC-LR].

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 115–125, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

116 Vincent Berry et al.

been extended to the context of supertrees where input trees can have different
sets of leaves [3].

The Maximum Compatible Tree problem (MCT) is a variant of MAST
that is of particular interest in phylogenetics when the input trees are not bi-
nary [11, 12, 15, 17]. MCT requires that selected subtrees of the input trees are
compatible, i.e. that groups of leaves they define can all be combined in a same
tree. This is less strict than requiring the isomorphism of the subtrees, hence
usually leads to selecting a larger set of leaves than allowed by MAST.

We give below a brief overview of the litterature, precising how the results
presented in this paper relate to previously known results. The MAST problem is
NP-hard on three rooted trees of unbounded degree [2], and MCT on two rooted
trees if one of them is of unbounded degree [17]. Subquadratic algorithms have
been proposed for MAST on two rooted n-leaf trees [7, 20, 21]. When dealing
with k rooted trees, MAST can be solved in O(nd + kn3) time provided that
the degree of one of the input trees is bounded by d [2, 6, 10], and MCT can
be solved in O(22kdnk) time provided that all input trees have degree bounded
by d [12]. Both problems can be solved in O(min{3pkn, 2.27p + kn3}) time, i.e.
are FPT in p, where p is the smallest number of leaves to be removed from the
input set of leaves so that the input trees agree [3].

More generally, when the previously mentioned parameters are unbounded,
several works (starting from [2]) propose 3-approximation algorithms for CMAST
and CMCT, where CMAST, resp. CMCT, is the complement version of MAST,
resp. MCT, i.e. aims at selecting the smallest number of leaves to be removed
from the input trees in order to obtain their agreement. In practice, input trees
usually agree on the position of most leaves, thus approximating CMAST and
CMCT is more relevant than approximating MAST and MCT. For CMCT,
[11] propose an O(k2n2) time 3-approximation algorithm. We propose here an
O(n2 + kn) time algorithm. For MAST, [3] propose an O(kn3) time algorithm.
Here we improve on this result by providing a linear time, i.e. O(kn), algorithm.
We also state that rooted and unrooted versions of CMAST (and CMCT) have
the same approximation threshold.

Let k-MAST, resp. k-MCT, resp. k-CMAST, resp. k-CMCT, denote the par-
ticular case of MAST, resp. MCT, resp. CMAST, resp. CMCT, dealing with k
rooted trees. Negative results for these problems are as follows:
• For all ε > 0, the general MAST problem is not approximable within n1−ε

unless NP = ZPP [5]. A similar result is obtained here for MCT.
• It also stated here that 3-CMAST and 2-CMCT are APX-hard, i.e. that they
do not admit a PTAS unless P = NP.
• For all δ < 1, 3-MAST is not approximable within 2logδ n unless NP ⊆
DTIME

(
2polylog n

)
[17]. The same result is obtained here for 2-MCT.

2 Definitions and Preliminaries

A rooted evolutionary tree is a tree whose leaf set L(T) is in bijection with a
label set, and whose internal nodes have at least two children. Hereafter, we only

On the Approximation of Computing Evolutionary Trees 117

consider such trees and identify leaves with their respective labels. The size of
a tree T (denoted #T) is the number of its leaves: #T = #L(T).

Let u be a node of a tree T , S(u) stands for the subtree rooted at u, L(u) for
the leaves of this subtree, and d+(u) for the number of children of u. For a set
of leaves L ⊆ L(T), lcaT (L) denotes the lowest common ancestor of leaves L in
T . Given a set L of labels and a tree T , the restriction of T to L, denoted T |L,
is the tree homeomorphic to the smallest subtree of T connecting leaves of L.

Lemma 1. Let T1 and T2 be two isomorphic trees with leaf set L, and let L′ ⊆ L,
then T1|L′ is isomorphic to T2|L′.

Given a collection T = {T1, T2, . . . , Tk} of trees on a same leaf set L of
cardinality n, an agreement subtree of T is any tree T with leaves in L s.t.
∀Ti ∈ T , T = Ti|L(T). The MAST problem consists in finding an agreement
subtree of T with the largest number of leaves. We denote MAST (T) such a
tree.

A tree T refines a tree T ′, if T ′ can be obtained by collapsing certain edges of
T , (i.e. merging their extremities). More generally, a tree T refines a collection T ,
whenever T refines all Ti’s in T . Given a collection T of k trees with identical leaf
set L of cardinality n, a tree T with leaves in L is compatible with T iff ∀Ti ∈ T ,
T refines Ti|L(T). If there is a tree T compatible with T s.t. L(T) = L, i.e. that
is a common refinement of all trees in T , then the collection T is compatible.
In this case, a minimum refinement T of T (i.e. collapsing a minimum number
of edges) is a tree s.t. any tree T ′ refining T also refines T . Collections of trees
considered in practice are usually not compatible, motivating the MCT problem
which aims at finding a tree, denoted MCT (T), compatible with T and having
the largest number of leaves. Remark that MCT is equivalent to MAST when
input trees are binary.

For any three leaves a, b, c in a tree T , there are only three possible binary
shapes for T |{a, b, c}, denoted a|bc, resp. b|ac, resp. c|ab, depending on their
innermost grouping of leaves (bc, resp. ac, resp. ab). These binary trees on 3
leaves are called rooted triples. Alternatively T |{a, b, c} can be a fan, i.e. a unique
internal node connected to the three leaves. A fan is denoted {a, b, c}.

We define rt(T), resp. f(T), as the set of rooted triples, resp. fans, induced
by the leaves of a tree T . Given a collection T = {T1, T2, . . . , Tk} of trees with
leaf set L, a set {a, b, c} ⊆ L is a hard conflict between (trees of) T whenever
∃Ti, Tj ∈ T s.t. a|bc ∈ rt(Ti) and b|ac ∈ rt(Tj). The set {a, b, c} is a soft conflict
between (trees of) T whenever a|bc ∈ rt(Ti) and {a, b, c} ∈ f(Tj).

Lemma 2 ([2, 3, 12]). Two trees with the same leaf set are isomorphic iff there
is no hard nor any soft conflict between them. A collection T of trees with the
same leaf set is compatible iff there is no hard conflict between T .

Definition 1. Given a set of conflicts C, let L(C) denote the leaves appearing in
C. Given a collection T with conflicts, an hs-peacemaker, resp. h-peacemaker,
of T is any set C of disjoint hard and soft, resp. only hard, conflicts between T
s.t. {Ti|(L−L(C)) : Ti ∈ T } is a collection of isomorphic trees, resp. compatible

118 Vincent Berry et al.

trees. In other words, removing L(C) from the input trees removes all conflicts,
resp. all hard conflicts, between them.

3 Approximation Algorithms

3.1 An O(n2 + kn) Time 3-Approximation Algorithm for CMCT

Let T be a collection of trees on an n-leaf set L. It is well-known that T is
compatible iff every pair of trees in T is compatible [8]. Moreover,

Lemma 3 ([4]). T is a compatible collection of trees iff there exists a minimum
refinement T of T and rt(T) =

⋃
Ti∈T rt(Ti).

If T is compatible, a minimum refinement T of T is a solution for MCT, as
L(T) = L. From Lemma 2, one can obtain T by first computing a minimum
refinement T1,2 of two trees T1, T2 ∈ T , and then iterating on T −{T1, T2}∪{T1,2}
until only one tree remains that is the sought tree T .
If T is not compatible, then we apply the following:

Lemma 4 ([2, 3, 11]). Let T = {T1, T2, . . . , Tk} be a collection of trees on a
leaf set L and let C be an hs-peacemaker, resp. an h-peacemaker, of T . Then any
tree in T |(L − L(C)) is a 3-approximation for CMAST, resp. any refinement of
T |(L − L(C)) is a 3-approximation for CMCT, on T .

Given a pair of trees, [4] give an O(n) time algorithm that either returns a
minimum refinement when the trees are compatible, or otherwise identifies a
hard conflict C between them. Thus, from Lemma 4, the procedure sketched
above for a compatible collection, can be adapted to obtain a 3-approximation
of CMCT for a non-compatible collection T . Apply the algorithm of [4] to a pair
of trees {T1, T2} ⊆ T to obtain either their minimum refinement T1,2 or a hard
conflict C. In the latter case, remove C from all input trees and iterate. In the
former case, iterate on T −{T1, T2}∪{T1,2}. When T is reduced to a single tree,
O(k+n) calls to the algorithm of [4] have been issued and the resulting set C of
removed conflicts is an h-peacemaker. Hence:

Theorem 1. The CMCT problem on a collection of k rooted trees on a same
n-leaf set can be 3-approximated in O(n2 + kn) time.

3.2 A Linear Time 3-Approximation Algorithm for CMAST

W.l.o.g., this section considers input trees on a same n-leaf set labelled by posi-
tive integers 1, 2, . . . , n. First consider collections T of two trees. The following
characterization of isomorphic trees is the basis of our algorithm.

Lemma 5 ([4]). Two trees Ti and Tj are isomorphic iff rt(Ti) = rt(Tj) and
f(Ti) = f(Tj).

On the Approximation of Computing Evolutionary Trees 119

The definition of MAST (T) is independent of the order of the children of
nodes in trees. However, to efficiently compute an approximation of MAST (T),
we considered that T1 and T2 are ordered. Ordering a tree T consists in totally
ordering the children of every node in T . Thereby, this uniquely defines a left-
right order πT on the leaves L of T .

Given an arbitrary ordering of T1, the approximation algorithm first tries to
order T2 accordingly. In the following, π1, resp. π2, stands for πT1 , resp. πT2 ; and
π2(i) stands for the i-th leaf in π2. W.l.o.g., we also assume π1 = 1 . . . n.

Definition 2. Let π be an order on a set L. A subset S of L is an interval of
π whenever the elements of S occur consecutively in π (but not necessarily in
the same order). A tree T with leaf set L is embeddable in an order π on L
whenever T can be ordered s.t. πT = π.

Lemma 6. Let T be a tree with leaf set L and π be an arbitrary order of L.
Then, T is embeddable in π iff for any node u of T , L(u) is an interval of π.

Proposition 1. Let T be a tree and π be an order on its leaves. Testing whether
T is embeddable in π costs O(n) time. In the positive, ordering T such that
πT = π can be done in O(n) time.

The running time stated in this proposition is achieved by performing bottom-
up walks on disjoint paths in T , as described by Algorithm 1. For a node u in a
tree, let m(u) and M(u) resp. denote the smallest and largest leaf of L(u) in π.
Assume the children of any non-leaf node v ∈ T are originally stored in a doubly-
linked list lc(v) which has to be ordered into a list l′c(v) so that πT |L(v) = π|L(v).

Algorithm 1: TreeOrder(T, π)
for any node u in T do l′c(u) ← ∅ ;
for i = 1 to n do

let u be the leaf s.t. u = π−1(i);
repeat

Let v be the parent node of u in T ;
Remove u from lc(v) and put it at the end of l′c(v);
u ← v;

until i �= m(u) or u is the root;

Due to the existence of conflicting triples, two arbitrary trees T1 and T2 with
same leaf set L may not be embeddable in a common order of L. If so, we can
however show the following:

Proposition 2. Let T1, T2 be trees with leaf set L = {1, . . . , n}. In time O(n) it
is possible to identify a set C of disjoint conflicts between T1 and T2 s.t. T2|

(
L−

L(C)
)

is embeddable in π1|
(
L− L(C)

)
.

120 Vincent Berry et al.

Below is given a sketch of the proof for this proposition. Let u be a node in a tree
T with leaf set L and π be an arbitrary order on L. If an element x ∈ L− L(u)
is s.t. m(u) <π x <π M(u), then prevπ(x, u), resp. nextπ(x, u), stands for the
maximum, resp. minimum, element of L(u) w.r.t. π that is smaller, resp. larger,
than x.

Lemma 7. Let T1, T2 be trees on a leaf set L ⊆ {1, . . . , n} and let {a, b, c} ⊆ L.
If both a <π1 b <π1 c and ac | b ∈ rt(T2), then {a, b, c} is a conflict between
T1 and T2. In particular, for a node u of T2 and a leaf x /∈ L(u) s.t. m(u) <π1

x <π1 M(u) then {prevπ1(x, u), x, nextπ1(x, u)} is a conflict between T1 and T2.

This lemma guides the search of T2 to remove leaves (in T2 and T1) forming a
set of disjoint conflicts C s.t. for any node u of T2|(L−L(C)), L(u) is an interval
of leaves in π1|(L−L(C)). Such a node u is then said to be full. When all nodes of
the resulting T2 are full, Lemma 6 ensures that T2 is embeddable in the left-right
order of the tree T1|(L− L(C)).

Nodes of T2 are processed in post-order, such that the children of a node u are
known to be full when u is processed. For efficiency reasons, a list LI of disjoint
intervals of π1 is also maintained sorted w.r.t. to π1. LI is initially composed
of unit intervals ({1}, . . . , {n}) corresponding to leaves of T2. Then intervals of
LI are merged or removed while processing nodes of T2 so as to maintain the
following invariant:

Invariant 1. Any interval of the list LI contains the leaf set L(u) of some node
u of T2 that is full w.r.t. π1|

(
L− L(C)

)
.

When a non-full node u is processed in the traversal of T2, this invariant
together with pointers from each children of u to the corresponding elements
ordered in LI enables us (according to Lemma 7) to efficiently identify conflicts
whose removal turns u into a full node. Note that Invariant 1 is robust under
the removal of a leaf in L(v) for any processed node v.

Lemma 8. Let T1, T2 be two trees with leaf set in L and u be the current node
of T2 to be processed by the bottom-up algorithm (i.e. the children of u are full
w.r.t. π1). Then a set hs(u) of disjoint conflicts between {T1, T2} s.t. u is full
w.r.t. π1|

(
L− L(hs(u))

)
is found in time O(d+(u) + |hs(u)|).

Proposition 2 follows from Lemma 7, Invariant 1 and Lemma 8. Given two
arbitrary trees T1, T2, propositions 1 and 2 show that, in linear time, disjoint
conflicts can be removed and children of nodes in T2 ordered s.t. the two resulting
trees have the same left-right order on their leaves. Thus, from now on, assume
that π1 = π2. For convenience, even if some leaves have been removed, we note
π1 = 1 . . . n. Even if T1 and T2 have the same left-right order on their leaves,
they may still host conflicting triples. However, let us show that a post-order
search of T1 (or equiv. T2) is sufficient to remove such conflicts.

Definition 3. Let u be a node in a tree T , then rt(u) is the subset of triples
x|yz ⊆ rt(T) s.t. #

(
{x, y, z}∩L(u)

)
≥ 2, and f(u) is the set of fans {x, y, z} ⊆

f(T) s.t. {x, y, z} ⊆ L(u). Define a node u in tree T1 to be valid w.r.t. tree T2

if both rt(u) ⊆ rt(T2) and f(u) ⊆ f(T2) hold.

On the Approximation of Computing Evolutionary Trees 121

Note that if r1 is the root node of tree T1, then rt(r1) = rt(T1) and f(r1) = f(T1).
Moreover, given a tree T2 s.t. L(T2) = L(T1), the validity of r1 w.r.t. T2 implies
that T1 and T2 are isomorphic, as any 3-leaf set is either a rooted triple or a
fan of both trees. Next lemma is the basis of a recursive process to obtain the
validity of r1 w.r.t. T2.

Lemma 9. Let u be a node of T1 whose children, denoted c1, . . . , cd+(u), are all
valid. Let p(m(u)), resp. s(M(u)), be the leaf preceding m(u), resp. succeeding
M(u), in π2 if it exists.

1. if {p(m(u))|m(u)M(u), s(M(u))|m(u)M(u)} ⊆ rt(T2) then rt(u) ⊆ rt(T2)
2. if u has only two children then f(u) ⊆ f(T2)
3. if u has at least three children and for any i ∈ {1, 2, . . . , d+(u) − 2},
{m(ci),m(ci+1),m(ci+2)} ∈ f(T2), then f(u) ⊆ f(T2).

Lemma 9 implies that if every node u ∈ T1 is processed after its children,
examining only O(d+(u)) 3-leaf sets is enough to know whether a node u ∈ T1 is
already valid. When a conflict is encountered during this examination, its leaves
are removed from the trees.

Indeed, thanks to Lemma 1, removing a leaf in S(u) does not change the
pre-established validity of inner nodes of S(u). Thus, if c(u) denotes the num-
ber of such encountered conflicts, ensuring the validity of u involves looking at
O(d+(u) + c(u)) 3-leaf sets. See Algorithm 2 for a complete description of the
procedure. Note that persistent dummy leaves can be artificially added at the
beginning and end of π1 and π2 s.t. p(m(u)) and s(M(u)) always exist for any
processed node u. Processing the whole tree T1 globally involves O(n) 3-leaf sets
as

∑
u∈T1

c(u) = O(n) and
∑

u∈T1
d+(u) = O(n) .

Provided π1 is stored in a doubly-linked list; symmetric pointers are main-
tained between a node u ∈ T1 to be processed, and the two elements of π1

that are the leftmost and rightmost leaves of S(u); and T2 is preprocessed so
as to identify in O(1) the least common ancestor of any two of its nodes; then
Algorithm 2 runs in linear time. Hence,

Theorem 2. The CMAST problem on a collection of k rooted trees with same
n-leaf set can be 3-approximated in O(kn) time.

The reader should notice that the above algorithms can be realized simulta-
neously by a single search of the tree. According to Proposition 1, Proposition 2
and Algorithm 2, the case k = 2 is solved in O(n) time. Handling a collection
T = {T1, T2, . . . , Tk} of k > 2 trees is done as for the MCT problem (see Sec-
tion 3.1), i.e. by successively considering pairs of trees in T . This procedure runs
in O(nk) and, from Lemma 4, provides a 3-approximation of CMAST for T .

4 Inapproximability Results for MAST and MCT

In this section, we first state that the rooted and unrooted versions of CMAST
(equiv. CMCT) have the same approximation threshold. Then we detail new
negative results concerning the approximation of MCT, CMAST and CMCT.

122 Vincent Berry et al.

Algorithm 2: AgreementSubtree (T1, T2)
Input: Two rooted trees s.t. π1 = π2

for each node u in a post order traversal of T1 do
/* Ensures that rt(u) ⊆ rt(T2) */
repeat

m(u) ← leftmost leaf of S(u) ; M(u) ← rightmost leaf of S(u)
p(m(u)) ← leaf preceding m(u) in π1 ; f(M(u)) ← leaf following M(u)
in π1

if p(m(u))|m(u)M(u) /∈ rt(T2) then remove p(m(u)), m(u), M(u)
from T1 and T2

else if f(M(u))|m(u)M(u) /∈ rt(T2) then remove f(M(u)), m(u),
M(u) from T1 and T2

until {p(m(u))|m(u)M(u), f(M(u))|m(u)M(u)} ⊆ rt(T2) or d+(u) < 2
/* Ensures that f(u) ⊆ f(T2) */
i ← 1
while d+(u) > 2 and i ≤ d+(u) − 2 do

let c1, c2, . . . , cd+(u) be the children of u
if {m(ci), m(ci+1), m(ci+2)} ∈ f(T2) then i ← i + 1
else remove m(ci), m(ci+1), m(ci+2) from T1 and T2

return T1

4.1 Rooted and Unrooted Versions of CMAST (equiv. CMCT)
Share the Same Approximation Threshold

Let ϕ(n, k) be a function in Ω(n× k).

Proposition 3. Let ρ ≥ 1 be a real constant. Assume there exists a ρ-approxi-
mation algorithm for CMAST, resp. CMCT, on rooted trees with O(ϕ(n, k))
running time. Then, there exists a ρ-approximation algorithm for CMAST,
resp. CMCT, on unrooted trees with O(n × ϕ(n− 1, k)) running time.

Proposition 3 is implicitely used in [11] and is proved in the following way. Let
U be a collection of unrooted trees. To ρ-approximate CMAST, resp. CMCT, on
instance U , apply the hypothetical ρ-approximation algorithm to each collection
obtained by rooting all trees in U at a same leaf. Then, return the best of the n
computed solutions. Combining Theorem 2 and Proposition 3, resp. Theorem 1
and Proposition 3, we obtain that the unrooted version of CMAST, resp. CMCT,
is 3-approximable in O(kn2), resp. O(n3 + kn2), time. Using a simple padding
argument yields the converse of Proposition 3:

Proposition 4. Let ρ ≥ 1 be a rational constant. Assume there exists a
ρ-approximation algorithm for CMAST, resp. CMCT, on unrooted trees with
O(ϕ(n, k)) running time. Then, there exists a ρ-approximation algorithm for
CMAST, resp. CMCT, on rooted trees with O(ϕ(n + �ρn� , k)) running time.

4.2 Hardness of Approximating CMAST on Three Trees

Theorem 3. The 3-CMAST problem is APX-hard.

On the Approximation of Computing Evolutionary Trees 123

Since 2-MAST (and thus, 2-CMAST) can be exactly solved in polynomial time
[21], Theorem 3 is somehow tight. Its proof relies on a careful reading of [17]
which states that the general 3-MAST problem is APX-hard. In fact [17] proves
that a restriction of 3-MAST to a certain set of instances is APX-hard. CMAST
is not considered in [17], but it is easy to see that for this particular set of
instances, 3-MAST L-reduces to 3-CMAST

4.3 Hardness of Approximating MCT and CMCT on Two Trees

In order to prove Theorems 5 (APX-hardness of 2-CMCT) and 6 (inapprox-
imability of 2-CMCT), we define an intermediate problem, called Maximum
Star-Forest (MSF). Let G = (V,E) be a graph. A star-forest of G is a subset
of E which does not contain any path of length 3. The MSF problem is: “given a
graph G, find a star-forest of G that is of maximum cardinality” For each integer
Δ ≥ 1, we denote by Δ-MSFB the restriction of MSF to bipartite input graphs
having maximum degree at most Δ. The restriction of the Maximum Indepen-
dent Set (shortly MIS) to input graphs having maximum degree at most 3 is
denoted 3-MIS. Note that 3-MIS is APX-complete [1].

Theorem 4. The 4-MSFB problem is APX-hard.

Proof (sketch). We use an L-reduction from 3-MIS to 4-MSFB relying on the
following transformation. Let G = (V,E) be an instance of 3-MIS (i.e. a graph
with maximum degree at most 3), we construct an instance G′ = (V ′, E′) of
4-MSFB as follows.

V ′ := V ∪ {γe : e ∈ E} ∪ {σv, τv : v ∈ V } ,
E′ :=

{
{u, γe}, {γe, v} : e = {u, v} ∈ E

}
∪
{
{v, σv}, {σv, τv}, : v ∈ V

}
.

Clearly, G′ can be obtained from G in polynomial time, and #V ′ = m+ 3n and
#E′ = 2m+ 2n, where n and m denote the cardinality of V and E resp.

��

Theorem 4 leads to the following result:

Proposition 5. 2-MCT is APX-hard even if it is restricted to collections T of
two rooted trees satisfying #MCT (T) ≥ 1

4 ×n, where n denotes the size of each
tree in T .

Proof (sketch). We use an L-reduction from 4-MSFB to 2-MCT relying on the
following transformation. Let G = (V,E) be an instance of 4-MSFB. Since G
is bipartite there exists two independent sets I1 and I2 of G partitioning V .
W.l.o.g., we can assume that G has no isolated vertex. We construct a collection
T = {T1, T2} of two rooted trees with leaf set E. The root of Ti is denoted ri.
For each v ∈ Ii, let Xv be the non-empty star-tree whose leaf set is the set of all
edges of E admitting v as an extremity (a star-tree, is a fan with an arbitrary
number of leaves). The child subtrees of ri, are trees Xv with v ∈ Ii.

124 Vincent Berry et al.

The transformation requires polynomial time and the size of the instance of
2-MCT in linear in the size of the instance of 4-MSFB. The correctness of the
reduction follows by proving that for each subset F ⊆ E, F is a star-forest of G
iff T1|F and T2|F are compatible. ��

Proposition 5 yields the two main results of this section. On the first hand, we
obtain:

Theorem 5. The 2-CMCT problem is APX-hard.

On the other hand, using the “self-improvement” technique of [17, 19] we deduce
from Proposition 5 that 2-MCT is hard to approximate within constant ratio:

Theorem 6. For any real constant δ < 1, the 2-MCT problem cannot be ap-
proximated within ratio 2logδ n, unless NP ⊆ DTIME

(
2polylog n

)
.

The analoguous to Theorem 6 for 3-MAST is [17, Theorem 3].

4.4 Hardness of Approximating MCT
on Unbounded Number of Trees

For the general MCT problem we can find non-approximability results stronger
than Theorem 6. Approximating MCT on collections of n-leaf trees is at least
as hard as approximating MIS on n-vertex graphs. The proof consists in an
approximation preserving reduction from MIS to MCT, similar to the reduction
from MIS to MAST described in [5]. Since MIS is very hard to approximate [16]
(see also [9]), we obtain:

Theorem 7. For all real ε > 0, MCT is not approximable within ratio (1 +
ε)n1−ε unless NP = ZPP, resp. within ratio (1 + ε)n0.5−ε unless P = NP.

Note that Theorem 7 still holds if MCT is restricted to collections of trees
containing at least a binary tree. Remark that using the approximating via par-
titioning paradigm [14], one can approximate MAST within n/ logn [18]. This
also holds for MCT.

References

1. P. Alimonti and V. Kann. Some APX-completeness results for cubic graphs. Theor.
Comput. Sci., 237(1–2):123–134, 2000.

2. A. Amir and D. Keselman. Maximum agreement subtree in a set of evolutionary
trees: metrics and efficient algorithm. SIAM J. on Comput., 26(6):1656–1669, 1997.

3. V. Berry and F. Nicolas. Maximum agreement and compatible supertrees. In 15th
Annual Symposium on Combinatorial Pattern Matching (CPM’04), volume 3109
of LNCS, pages 205–219, 2004.

4. V. Berry and F. Nicolas. Improved parametrized complexity of maximum agree-
ment subtree and maximum compatible tree problems. IEEE Trans. on Comput.
Biology and Bioinf., (to appear).

On the Approximation of Computing Evolutionary Trees 125

5. P. Bonizzoni, G. Della Vedova, and G. Mauri. Approximating the maximum isomor-
phic agreement subtree is hard. Int. J. of Found. of Comput. Sci., 11(4):579–590,
2000.

6. D. Bryant. Building trees, hunting for trees and comparing trees: theory and method
in phylogenetic analysis. PhD thesis, University of Canterbury, Department of
Mathemathics, 1997.

7. R. Cole, M. Farach-Colton, R. Hariharan, T. M. Przytycka, and M. Thorup. An
O(n log n) algorithm for the Maximum Agreement SubTree problem for binary
trees. SIAM J. on Comput., 30(5):1385–1404, 2001.

8. G. F. Eastabrook and F. R. McMorris. When is one estimate of evolutionary rela-
tionships a refinement of another? J. of Math. Biol., 10:367–373, 1980.

9. L. Engebretsen and J. Holmerin. Towards optimal lower bounds for clique and
chromatic number. Theor. Comput. Sci., 299(1–3):537–584, 2003.

10. M. Farach, T. M. Przytycka, and M. Thorup. On the agreement of many trees.
Inf. Proces. Letters, 55(6):297–301, 1995.

11. G. Ganapathy and T. J. Warnow. Approximating the complement of the maximum
compatible subset of leaves of k trees. In 5th Int. Workshop on Approximation
Algorithms for Combinatorial Optimization (APPROX’02), volume 2462 of LNCS,
pages 122–134, 2002.

12. G. Ganapathysaravanabavan and T. J. Warnow. Finding a maximum compatible
tree for a bounded number of trees with bounded degree is solvable in polynomial
time. In 1st Int. Workshop on Algorithms in Bioinformatics (WABI’01), volume
2149 of LNCS, pages 156–163, 2001.

13. A. Gupta and N. Nishimura. Finding largest subtrees and smallest supertrees.
Algorithmica, 21(2):183–210, 1998.

14. M. M. Halldòrsson. Approximations of weighted independent set and hereditary
subset problems. J. of Graph Algor. and Appl., 4(1), 2000.

15. A. M. Hamel and M. A. Steel. Finding a maximum compatible tree is NP-hard for
sequences and trees. Appl. Math. Letters, 9(2):55–59, 1996.

16. J. H̊astad. Clique is hard to approximate within n1−ε. Acta Math., 182:105–142,
1999.

17. J. Hein, T. Jiang, L. Wang, and K. Zhang. On the complexity of comparing evo-
lutionary trees. Disc. Appl. Math., 71(1–3):153–169, 1996.

18. J. Jansson, J. H.-K. Ng, K. Sadakane, and W.-K. Sung. Rooted maximum agree-
ment supertrees. In 6th Latin American Symposium on Theoretical Informatics
(LATIN’04), volume 2976 of LNCS, pages 499–508, 2004.

19. T. Jiang and M. Li. On the approximation of shortest common supersequences and
longest common subsequences. SIAM J. on Comput., 24(5):1122–1139, 1995.

20. M.-Y. Kao, T. W. Lam, W.-K. Sung, and H.-F. Ting. A decomposition theorem for
maximum weight bipartite matchings with applications to evolutionary trees. In
7th Annual European Symposium on Algorithms (ESA’99), volume 1643 of LNCS,
pages 438–449, 1999.

21. M.-Y. Kao, T. W. Lam, W.-K. Sung, and H.-F. Ting. An even faster and more
unifying algorithm for comparing trees via unbalanced bipartite matchings. J. of
Algor., 40(2):212–233, 2001.

22. M. A. Steel and T. J. Warnow. Kaikoura tree theorems: Computing the maximum
agreement subtree. Inf. Proces. Letters, 48(2):77–82, 1993.

Theoretically Good Distributed CDMA/OVSF
Code Assignment for Wireless Ad Hoc Networks

Xiang-Yang Li1,� and Peng-Jun Wan1,2,�

1 Illinois Institute of Technology, Chicago, IL, USA
{xli,wan}@cs.iit.edu

2 Hong Kong City University, Hong Kong, China

Abstract. We present several distributed CDMA/OVSF code assign-
ment algorithms for wireless ad hoc networks modelled by unit disk
graph (UDG). We first give a distributed code assignment whose to-
tal throughput is within a constant factor of the optimum. Then we give
a distributed method such that the minimum rate achieved is within a
constant factor of the optimum. A distributed method that can approxi-
mate both the minimum rate and total throughput is also presented. All
our methods use only O(n) total messages (each with O(log n) bits) for
an ad hoc wireless network of n nodes modelled by UDG.

Keywords: CDMA code assignment, coloring, throughput, bottleneck,
interference, wireless networks.

1 Introduction

We consider a static wireless ad hoc network consisting of a set V of n nodes
distributed in a two-dimensional plane. Assume all nodes have the same trans-
mission radius r, thus, wireless ad hoc networks are modelled by unit disk graphs
(UDG), in which two nodes are connected iff their Euclidean distance is no more
than r. We assume that the omnidirectional antenna is used by all wireless nodes:
the signal sent by a node will be received by all nodes inside its transmission
region. The transmission region of a node u is thus modelled as a disk D(u, r)
centered at u with radius r. To increase the capacity of the network, frequency
spectrum has to be reused as it is one of the scarcest resources available. Same
channel is not assigned to two nodes if it causes either primary interference or
secondary interference. Primary interference occurs if two nodes use the same
channel and one is inside the transmission region of the other. The secondary
interference occurs if a third node is within the common transmission regions of
two nodes using the same frequency channel. The interference graph G = (V,E)
has an edge uv if two nodes u and v will generate interference when they are
assigned the same channel. Assigning frequency channel efficiently in UDG has
been well-studied [6, 10] but little is known about assigning CDMA/OVSF code
for wireless ad hoc networks while achieving some global quality such as maxi-
mizing the total throughput or the bottleneck of the networks.
� The research was supported in part by NSF under Grant CCR-0311174.

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 126–135, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Theoretically Good Distributed CDMA/OVSF Code Assignment 127

In a CDMA system, the channels are defined by the pseudo-random code-
words. For simplification, we represent each CDMA/OVSF codeword by a binary
string (called colors hereafter). Two colors are said to be prefix-free if neither is
a prefix of the other, which is equivalent to that the corresponding codewords
are orthogonal. The rate of an �-bit color is equal to 2−�+1, which is equal to
the rate of the corresponding codeword. We also say that an �-bit color is in the
�-th layer of the CDMA/OVSF code tree structure. The root has layer 1.

A (proper) vertex coloring is to assign each vertex a color such that two adja-
cent vertices receive different colors. The CDMA code assignment is to assign col-
ors to nodes such that adjacent nodes in the interference graph receive prefix-free
colors, which is called prefix-free vertex coloring. The minimum vertex coloring
of the interference graph has been studied in the context of channel assignment
in wireless ad hoc networks channelized by FDMA, TDMA or CDMA/OVSF
[2–5, 7, 11, 12, 14, 15]. The majority of these CDMA code assignment methods
simply presented networking protocols to obtain a proper vertex coloring with-
out addressing the computational complexity and/or the optimization. Sen and
Huson [13] gave a proof of the NP-hardness of the vertex coloring in interference
graph even when all nodes are located in a plane and have the same transmission
radii. A problem related to the (prefix-free) vertex coloring of the interference
graphs is the distance-2 vertex coloring [8]. A distance-2 vertex coloring of a
graph H is a proper vertex coloring of H2, the square graph of H , which is the
graph obtained by creating an edge between each pair of vertices of H separated
by at most two hops in H . Notice that the colors assigned to two adjacent nodes
in H2 should only be different for a vertex coloring problem, while these two
colors should further be prefix-free for CDMA/OVSF code assignment.

Given a prefix-free CDMA code assignment {cv | v ∈ V }, its throughput and
bottleneck are defined as

∑
v∈V 2−|cv|+1 and minv∈V 2−|cv|+1 respectively, where

|cv| denotes the number of bits of the color cv. The throughput of an interfer-
ence graph G, denoted by τ (G), is then the maximum of the throughput over
all prefix-free code assignments of G. Similarly, the bottleneck of an interfer-
ence graph G, denoted by β (G), is then the maximum of the bottleneck over
all prefix-free code assignments of G. We will study various optimization prob-
lems on prefix-free vertex coloring of the interference graphs: maximize the total
throughput, the minimum rate, and both at the same time.

The main contributions of this paper are as follows. We propose several
efficient distributed CDMA/OVSF code assignment algorithms for wireless ad
hoc networks modelled by UDG. We first study how to assign CDMA/OVSF
code such that the total throughput achieved is within a constant factor of
the optimum. Then we give a method such that the minimum rate achieved is
within a constant factor of the optimum. A method that can approximate both
the minimum rate and total throughput simultaneously is also presented. All
our methods use only O(n) total messages (each with O(log n) bits) for an ad
hoc wireless network of n nodes modelled by UDG.

128 Xiang-Yang Li and Peng-Jun Wan

2 Distributed Code Assignment

Let Nk(u) be the set of all wireless nodes that are at most k hops away from node
u in UDG, dk(u) be the cardinality of Nk(u). Obviously, nodes that can have
primary interference with u are N1(u) only; nodes that can have either primary
interference or secondary interference with u are N2(u) only. If every node knows
its exact geometry location, a communication efficient protocol [1] is known to
find all two-hop neighbors of all nodes using at most O(n) communications.

2.1 Maximize Throughput τ (G)

First-fit coloring is a class of greedy algorithms for vertex coloring. Assume
that there is a (partial) ordering of all nodes. We then assign code to nodes
sequentially according to the associated ordering by assigning each node the
shortest possible code. Thus, in any first-fit coloring, all nodes receiving the
same code form a maximal independent set (MIS). Intuitively, such MIS should
be a small constant approximation of a maximum independent set to maximize
the throughput. Clearly, the performance of a first-fit code assignment depends
on the ordering used. Indeed, there always exists an ordering in which the first-
fit coloring generates an optimal code assignment. However, such ordering is
unlikely to be found in polynomial time due to the expected NP-hardness of the
max-throughput code assignment. So we seek some node ordering that produces
a code assignment approximating τ(G); such node ordering should be generated
efficiently. We propose several different node orderings and show that all of
them produce a code assignment with total throughput O(τ(G)) and use total
communications O(n). Hereafter, we assume that each message has O(log n) bits.
All node orderings used here are just partial ordering computed locally.

We will first construct the interference graph and then construct an MIS
based on a rank (e.g., ID, or degree, or the node’s geometry position). Nodes in
the MIS are assigned the shortest code 10. For the remaining nodes, we assign
code using the first fit heuristics based on a partial ordering (e.g., ID, or degree,
or the node’s geometry position). Here we assume that every node has a distinc-
tive ID and knows its geometry position if a communication efficient protocol
is needed. Algorithm 1 presents our method (run by every node u) of assigning
CDMA/OVSF code based on ordering by ID to maximize the throughput.

We find an MIS in a distributed manner as follows: initially all nodes’ status
are White; a node becomes InIS if it has a rank smaller than all its neighbors
with status White; a node becomes NotInIS if it has an InIS neighbor. A node
could be either White, or InIS, or NotInIS. The nodes with status InIS form
an MIS. We will show that its size is within a constant factor of the maximum
independent set for an interference graph G. See [9, 17] for more details.

Obviously Algorithm 1 generates a prefix-free code assignment since, for each
pair of neighboring nodes u and v in the interference graph, the node with larger
ID can only assign code after it gets the code of the other node. The total
communication cost is O(n) since we use communication efficient protocol to

Theoretically Good Distributed CDMA/OVSF Code Assignment 129

Algorithm 1 Max-Throughput Using ID-ordering by u

1: Node u sends a message to tell its ID to all nodes N1(u). If secondary interference
is not permitted, node u finds N2(u) using a communication efficient method [1].

2: All nodes collectively find an MIS based on a rank ID.
3: Node u assigns a CDMA code represented by binary 10 if u is in the MIS. It then

informs its neighbors in G about its code.
4: If node u receives a CDMA code from its neighbor in G, u marks the corresponding

code used in the CDMA/OVSF tree structure stored locally.
5: Then assign code to the remaining nodes. If node u has an ID smaller than all its

neighbors in G without a code, then node u finds the smallest layer h > 0 in the
local CDMA/OVSF code tree such that layer h has at least 2 free codes not marked
used. Node u picks the first unused code in layer h and informs its neighbors in G
about its code. The picked code is called the first fit code for node u.

collect N2(u) for all nodes and to inform the assigned code to its neighbors in
G. We can also use the node degree (or position) to find an MIS in Algorithm 1.

We then show that the above methods indeed approximate the optimum
throughput τ(G). To do so, we first study the structure of some optimum CDMA
code assignment, called canonical coloring. In [16], we defined the canonical
coloring as follows. Given a graph G = (V,E), partition the vertex set V into
independent sets V1, V2, · · · , Vk with |V1| ≥ |V2| ≥ · · · ≥ |Vk|. Let G0 = G
and Gi be the graph of removing the vertices Vi and the incident edges from
graph Gi−1, for 1 ≤ i ≤ k. Vertex set Vi is a maximum independent set of graph
Gi−1. For 1 ≤ i ≤ k − 1, all nodes in Vi receive the code 1i0, and all nodes in
Vk receive the code 1k. Obviously, the throughput of such canonical coloring is∑k−1

i=1
|Vi|
2i + |Vk|

2k−1 . Notice that, If there are multiple maximum independent sets
V1, we have to choose the one that produces the largest maximum independent
set V2. Similarly, the selection of the first i maximum independent sets V1, V2,
· · · , Vi produces the largest maximum independent set Vi+1, for 1 ≤ i < k. Call
such sequence of maximum independent set as canonical maximum independent
set decomposition and the corresponding coloring canonical coloring.

Theorem 1. [16] The canonical coloring maximizes the throughput.

This theorem implies that the maximum throughput of any code assignment
is at most the independence number α(G) of the interference graph G. Based
on this observation, we can assign the code as follows. First, compute an MIS
that approximates the maximum independent set (with approximation ratio �).
Then assign the nodes in the MIS a code 10 (its rate is 1/2). For the remaining
nodes, we can recursively find the MIS and assign code 1i0 for the MIS retrieved
in the ith iteration but the messages of this approach could be very large. To
optimize the message complexity, Algorithms 1 used a different approach for
the remaining nodes (actually any prefix-free code assignment for the remaining
nodes works here). Obviously, the throughput generated by assigning nodes in
MIS a code 10 is at least � · α(G)/2. This implies the following theorem (see
appendix for the proof).

130 Xiang-Yang Li and Peng-Jun Wan

Theorem 2. Algorithm 1 generates a code assignment whose throughput is at
least �/2, where � = 1/5 if only primary interference is concerned and � = 1/13
if secondary interference is also concerned.

When every node knows its position, we can further improve the theoretical
lower bounds on the throughput of the assigned codes as follows. We still con-
struct an MIS first, but instead of using the node ID or the degree as selection
criterion, we select a node u to the MIS if all unassigned neighboring nodes are
inside one half of the disk centered at u. Notice that such node u always exists
since the most left undecided node trivially satisfies this condition.

Algorithm 2 Max-Throughput Using Position-ordering by u

1: Every node finds its neighbors in G using a communication efficient protocol in [1].
2: All nodes together compute an MIS based on rank (x(u), y(u), ID(u)), where x(u),

and y(u) are the x-coordinate and y-coordinate of u.
3: Node u gets code 10 if it is in the computed MIS.
4: All nodes not in MIS get the first fit code in an increasing ordering of

(x(u), y(u), ID(u)) using method similar to the last step of Algorithm 1.

Theorem 3. Algorithm 2 generates a code assignment whose throughput is at
least �/2, where � = 1/3 (� = 1/7 resp.) if primary interference (secondary
interference resp.) is concerned. It uses O(n) messages, each with O(log n) bits.

The proof is similar to Theorem 2 and is omitted. The approximation ratio
could be further improved to be better than �/2, which is analyzed as follows.
The new approach will compute an MIS V ′

1 , and then compute an MIS V ′
2 for

the remaining nodes. Clearly, the number of messages is still O(n). The nodes in
V ′

1 will receive a code 10 and the nodes in V ′
2 will receive a code 110. We assign

codes to other nodes using a method similar to the last step of Algorithm 1.

Theorem 4. An �-approximation algorithm for the maximum independent set
gives a 5

8�-approximation algorithm for the maximum throughput code assign-
ment.

Proof. Consider a canonical maximum independent decomposition V1, V2, · · · ,
Vk of all nodes V . Here |V ′

1 | ≥ � · |V1|. Let ti,j = |V ′
i ∩Vj |
|Vj | , i.e., the portion of Vj

is used in V ′
i . After V ′

1 is generated, we know that the maximum independent
set in the remaining graph has size at least max((1− t1,1) · |V1|, (1− t1,2) · |V2|),
since V1 − V ′

1 ∩ V1 and V2 − V ′
1 ∩ V2 are still independent sets. Notice that

t1,1 · |V1|+ t1,2 · |V2| ≤ V1. Then (1− t1,1) · |V1|+ (1− t1,2) · |V2| ≥ |V2|. It implies
that V ′

2 has size at least � · |V2|/2. Consequently, the throughput τ ′ generated by
partition V ′

1 , V ′
2 , · · · , V ′

k,· · · , V ′
k2

is at least � · (|V1|
2 + |V2|

2·22). Remember that the
canonical coloring has throughput τ at most |V1|

2 + 2 · |V2|
22 using fact |Vi| ≤ |V2|.

From |V2| ≤ |V1|, it is easy to show that τ ′ ≥ 5
8� · τ . This finishes the proof.

Theoretically Good Distributed CDMA/OVSF Code Assignment 131

Theorem 5. If node position is known, we can produce a code assignment, using
O(n) total messages, whose total throughput is at least 5/24 (resp. 5/56) of the
optimum when primary interference (reps. secondary interference) is concerned.

2.2 Maximize Bottleneck β(G)

We continue to study how to assign codes to maximize the minimum rate. In-
tuitively, to maximize the throughput, from the canonical code assignment dis-
cussion, the assigned codes should be imbalanced. However, to maximize the
minimum rate, the assigned codes should be as balanced as possible. Clearly,
the previous greedy methods do not generate a balanced code assignment. In
this section, we present a novel distributed method to assign a balanced code.

Our method is based on the following observation. Consider a node u and
all its neighbors in the interference graph G. If all such neighbors and u form a
clique, then the minimum rate of these nodes is approximately 1/d, where d is
the size of the clique. This is achieved when all nodes use the code in level log d.
In other words, to maximize the minimum rate assigned, node u cannot choose
the first fit code; it has to use a code in level close to log d. Putting in other way,
node u cannot be too greedy and it has to leave good codes for its neighbors.
The following Algorithm 3 details our method.

Algorithm 3 Max-Bottleneck by Degree-ordering by a node u
1: All nodes together compute the interference graph G. Assume that each node u

knows its degree d(u) in G. Each node u informs its neighbors in G its degree d(u).
2: Node u constructs a local binary code tree T .
3: If node u has the largest degree d(u) among all neighbors in G without a code,

where ties are broken by smaller ID, node u picks the first unmarked code in the
code tree T stored locally from layer 	, where 2�−2 < d(u) + 1 ≤ 2�−1. Here a code
is marked if it is either marked as used or conflicted.
Node u informs its neighbors in G the selected code of u efficiently.

4: If a node u receives a code message from its neighbor in G, u marks the corre-
sponding code used in T , and marks all prefix-codes of this code conflicted in T .

Theorem 6. Algorithm 3 generates a prefix-free code assignment whose mini-
mum rate is within a constant factor of optimum.

Proof. It is easy to show that it generates a prefix-free code assignment (thus
the proof is omitted due to space limit). Consider a node u with the largest
degree d(u) in G. If primary interference is concerned, we partition the disk
D(u, 1) into 6 equal-sized sectors. If secondary interference is also concerned, we
partition the disk D(u, 2) into 13 equal-sized sectors. We already showed that
all neighbors of u inside one sector form a complete subgraph in G. Using the
pigeonhole principle, it is easy to show that among the neighbors of u in G and
u, the minimum clique size is at least c · d(u) + 1, where c = 1/6 for primary
interference graph, and c = 1/13 for secondary interference graph. For a clique

132 Xiang-Yang Li and Peng-Jun Wan

of size q, the minimum rate of nodes in the clique is obviously at most 2−
log2 q�.
Thus, for any assignment, the minimum rate among neighbors of u and node u is
at most 2−
log2(c·d(u)+1)�. Obviously, the rate by our approach is 2−
log2(d(u)+1)�.
Then 2−
log2(d(u)+1)� ≥ 2−
log2 c� · 2−
log2(c·d(u)+1)� implies that the minimum
rate achieved by Algorithm 3 is at least 1/8 (1/16 resp.) of the optimum if the
primary interference (the secondary interference resp.) is concerned.

2.3 Maximize τ(G) and β(G)

As we discussed before, to maximize the throughput, the assigned codes should
be as imbalanced as possible, while to maximize the bottleneck rate, the assigned
codes should be as balanced as possible. It seems impossible to have a code
assignment that approximates both the total throughput and the bottleneck rate.
In this subsection, we show that by retreating little bit on both requirements,
we can achieve this. Our method is almost a straightforward combination of
previous methods. We first assign the shortest code to the nodes in an MIS. For
the remaining nodes, we assign a balanced code.

Algorithm 4 Max-Throughput and Bottleneck by a node u
1: All nodes together compute the interference graph G. Each node u computes its

degree d(u) in G and informs its neighbors in G about its degree d(u).
2: All nodes together compute an MIS based on the rank by degree. Node ID

or (x(u), y(u), ID(u)) can also be used as the rank criterion. Node u gets
CDMA/OVSF code 10 if it is in the computed MIS. The remaining steps will
assign code for other nodes.

3: Each node u constructs a binary code tree T .
4: If node u is not assigned and has the largest degree d(u) among all its neighbors in

G without a CDMA code, node u picks the first unmarked code from layer 	 in T ,
where 2�−3 < d(u) ≤ 2�−2. Node u informs all its neighbors in G the selected code.

5: If node u receives a message from its neighbor v informing the code of v, u marks
this code used, and marks all prefix-codes of this code conflicted in tree T .

Theorem 7. Algorithm 4 generates a prefix-free code assignment whose total
throughput is within �/2 of the optimum, and whose minimum rate is within
2−
log2 c�−1 factor of the optimum, where � is the approximation ratio of the
maximum independent set algorithm, c = 1/6 for primary interference and c =
1/13 for secondary interference.

3 Conclusion

We presented several efficient distributed CDMA/OVSF code assignment algo-
rithms. Notice that our theoretical analysis is pessimistic. In [18], we presented
methods to further improve the performance. We conducted extensive simula-
tions and we found that the practical performances of our methods are much

Theoretically Good Distributed CDMA/OVSF Code Assignment 133

better than these pessimistic analysis. Our methods can also be used to generate
prefix-free code assignment for wireless ad hoc networks that are not modelled
by UDGs. The UDG network model only enables us to prove that our methods
have constant approximation ratios. However, it is unclear how to bound the
communications in no-UDG model or without position information.

This paper is not intended to solve all critical issues in CDMA based wireless
ad hoc networks. There are several other important issues that should be ad-
dressed, e.g., the mobility of wireless nodes; and the time synchronization among
the mobile wireless nodes. See [18] for more discussions.

References

1. Cǎlinescu, G. Computing 2-hop neighborhoods in ad hoc wireless networks, 2003.
AdHocNow.

2. Chlamtac, I., and Farago, A. Making transmission schedules immune to topol-
ogy changes in multi-hop packet radio networks. IEEE/ACM Transactions on Net-
working 2, 1 (1994), 23–29.

3. Chlamtac, I., and Kutten, S. A spatial reuse TDMA/FDMA for mobile mul-
tihop radio nertworks. In IEEE INFOCOM (1985), pp. 389–394.

4. Garcia-Luna-Aceves, J. and Raju, J. Distributed assignment of codes for mul-
tihop packet-radio networks. IEEE MILCOM, volume 1, pages 450-454, 1997.

5. Goldberg, A., and Rao, S. Flows in undirected unit capacity networks. Tech.
Rep. 97-103, NEC Research Institute, Inc, 1997.

6. Graf, A., Stumpf, M., and Weisenfels, G. On coloring unit disk graphs. Al-
gorithmica 20, 3 (1998), 277–293.

7. Hu, L. Distributed code assignments for CDMA packet radio networks.
IEEE/ACM Transactions on Networking,1:668, Dec. 1993.

8. Krumke, S., Marathe, M., and Ravi, S. Models and approximation algorithms
for channel assignment in radio networks. Wireless Networks 7 (2001), 567–574.

9. Li, X.-Y., and Wang, Y. Simple heuristics and PTASs for intersection graphs in
wireless ad hoc networks. In ACM DialM (workshop of ACM MobiCom) (2002).

10. McDiarmid, C., and Reed, B. Colouring proximity graphs in the plane. Discrete
Mathematics 199 (1999), 123–137.

11. Nelson, R., and Kleinrock, L. Spatial-TDMA: A collision-free multihop chan-
nel access protocol. IEEE Transactions on Communications 33, 9 (1985), 934–944.

12. Ramanathan, S., and Lloyd, E. Scheduling algorithms for multi-hop radio net-
works. IEEE/ACM Transactions on Networking 1 (April 1993), 166–172.

13. Sen, A., and Huson, M. L. A new model for scheduling packet radio networks.
ACM/Baltzer Journal Wireless Networks 3 (1997), 71–82.

14. Sen, A., and Malesinska, E. Approximation algorithms for radio network
scheduling. In Allerton Conf. on Comm., Contr. and Comp. (1997), pp. 573–582.

15. Stevens, D., and Ammar, M. Evaluation of slot allocation strategies for TDMA
protocols in packet radio networks. In IEEE MILCOM (1990), pp. 835–839.

16. Wan, P.-J., Li, X.-Y. and Frider, O. OVSF-CDMA code assignment for wireless
ad hoc networks. ACM DialM (workshop of ACM MobiCom), 2004.

17. Wang, Y., and Li, X.-Y. Geometric spanners for wireless ad hoc networks. In
Proc. of 22nd IEEE ICDCS (2002).

18. Li, X.-Y., Wan, P.-J. and Song, W.-Z. Theoretically Good Distributed
CDMA/OVSF Code Assignment for Wireless Ad Hoc Networks. Tech Report,
IIT, 2004, http://www.cs.iit.edu/∼xli/publications-select.htm

134 Xiang-Yang Li and Peng-Jun Wan

Appendix (Proof of Theorem 2)

Proof. Let’s consider all nodes, denoted by V1, that receive code 10. Clearly,
V1 is independent. We will show that |V1| is within � factor of α(G).

If only primary interference is concerned,G is the original UDG and it is well-
known that the greedy method generates an MIS whose size is at least 1/5 of
the maximum independent set. Obviously, the total throughput generated by our
approach is at least |V1|/2 and the optimum throughput is at most α(G) ≤ 5|V1|.

If the secondary interference is concerned, we will prove that |V1| has size at
least 1/13 of α(G) by showing that, ∀u ∈ V1, there are at most 13 independent
nodes in G. Let D(x, r) be the disk centered at a point x with radius r hereafter.
Consider a disk D(u, 2) centered at node u with radius 2. Then all its neighbors
N2(u) are inside the disk D(u, 2). Partition this disk into 13 equal-sized sectors,
each with angle 2π/13. It is easy to show that the chord ab defined by the sector
�aub has length 4 sin(π/13) < 1. We will show that all neighboring nodes in one
sector are connected. Consider any two nodes x and y from N2(u). We actually
will prove a stronger result: any two neighbors of u in the sector �aub with
‖ab‖ = 1 are connected in the interference graph.

If x and y are inside D(u, 1), then obviously ‖xy‖ < 1. Thus, x and y are
connected in G. If y is inside D(u, 1) but x is not, then there exists a node w
connected to both x and u. Clearly, y and w are all inside D(u, 1) now, thus, edge
yw exists in the original unit disk graph. Thus, node w is inside the common
transmission range of nodes y and x. It implies that x, y are connected in G
(concerning the secondary interference).

Finally, we consider the case when both x and y �∈ D(u, 1). Assume that
node w is connected to both x and u, and node v is connected to both y and
u. See Figure 1 (a) and (d) for an illustration. We will then show that either
‖yx‖ ≤ 1, or ‖yw‖ ≤ 1, or ‖vx‖ ≤ 1. Notice that, if any one is true, then x, y are
connected in G. For the sake of contradiction, assume that ‖yx‖ > 1, ‖yw‖ > 1,
and ‖vx‖ > 1. We partition the region �aub−�cud into 6 regions. Figure 1 (b)
illustrates such six partitions. Here segments ca, db, ab, eb, am have length 1.

We then prove that any two nodes in region efa∪mfb have distance at most
1 and any two nodes in region efbha have distance at most 1. Consider any two
nodes x and y in the region efa ∪mfb. If both are in the same triangle, then
clearly ‖xy‖ < 1 since the triangles have side-length less than 1. Otherwise, let
x′ and y′ be the intersection point of line xy with segment ea and segment mb
respectively. Figure 1 (b) and (e) illustrate the proof that follows. Obviously,
‖xy‖ ≤ ‖x′y′‖ ≤ min(‖ey′‖, ‖ay′‖). Note that ‖ey′‖ ≤ min(‖em‖, ‖eb‖) < 1 and
similarly ‖ay′‖ ≤ min(‖am‖, ‖ab‖) = 1. Thus, ‖xy‖ ≤ 1. Similar proof reveals
that any two nodes in region efbha have distance at most 1.

If node x is in region 2, then node y cannot be in region 3, 5, and 6 since we
can show that otherwise ‖xy‖ ≤ 1. In other words, node y must be in region 1
or 4 in this case. Similarly, if node x is in region 3, 5, or 6, node y must be in
region 1 or 4 in this case. Thus, we assume that either node x or y (say x w.l.o.g)
is in region 1 by symmetry. Obviously, node y cannot be inside the disk D(x, 1)
since we assume that xy �∈ G. Thus, we have to place node v inside the sector

Theoretically Good Distributed CDMA/OVSF Code Assignment 135

�cud but not inside the disk D(x, 1) and place y inside region efmbha but not
inside the disk D(x, 1) while still maintain ‖yv‖ ≤ 1. We then show that this is
impossible. Figure 1 (c) and (f) illustrate the proof that follows.

d

y

a

b

c

u
x

w
v

5
h

a

d

1
f4

2 3
6

u
c

g

e

m b

xu
c

g

e

m b

h

a

d
f

(a) (b) (c)

d

x

a

b

c
u

y
w
v

xu
c

g

e

m b

h

a

d
f

x’

y’
y

t

u
g

e

b

h

a

f

q

p

x

d

c

s

(d) (e) (f)

Fig. 1. All neighbors in the sector conflict with each other. Here ‖uc‖ = ‖ud‖ = ‖ab‖ =
1 and ‖ua‖ = ‖ub‖ = 2. (a): wx and vy intersect; (b) 6 regions to place node x or y;
(d): wx and vy don’t intersect; (e): no two independent nodes in regions 2 and 5

If the disk D(x, 1) contains the region cgdbha = �aub− �cud, then clearly
node y is inside the disk D(x, 1). It implies that xy is an edge in G. Let p and
q be the points on line ub such that ‖xp‖ = ‖xq‖ = 1. Let s be the point
on ub such that xs is perpendicular to segment pq and t be the point on ub
such that et is perpendicular to segment pq. Clearly, ‖xs‖ ≤ ‖et‖ since x is
inside the triangle �eub. It is not difficult to show that ‖ce‖ = ‖ea‖ = 1/2.
Then, ‖et‖ = ‖ue‖ · sin(∠aub) < 3

2 sin(π
6) = 3/4 <

√
3/2. It implies that

∠xqp = arcsin(‖xt‖/‖xq‖) < π
3 . Thus, edge pq is the longest in triangle �xpq.

Consequently, ‖pq‖ > 1. It is easy to show that, for any two-hop neighbor y of u
connected through node v, ‖yv‖ ≥ ‖pq‖ if both v and y are not inside the disk
D(x, 1). This is a contradiction to ‖yv‖ ≤ 1. This finishes the proof.

Improved Approximation Algorithms
for the Capacitated Multicast Routing Problem

Zhipeng Cai1,�, Guohui Lin1,��, and Guoliang Xue2,���

1 Department of Computing Science, University of Alberta
Edmonton, Alberta T6G 2E8, Canada
{zhipeng,ghlin}@cs.ualberta.ca

2 Department of Computer Science and Engineering, Arizona State University
Tempe, Arizona 85287-5406, USA

xue@asu.edu

Abstract. Two models for the Capacitated Multicast Routing Problem
are considered, which are the Multicast k-Path Routing and the Multi-
cast k-Tree Routing. Under these models, two improved approximation
algorithms are presented, which have worst case performance ratios of 3
and (2+ρ), respectively. Here ρ denotes the best approximation ratio for
the Steiner Minimum Tree problem, and it is about 1.55 at the writing of
the paper. The two approximation algorithms improve upon the previous
best ones having performance ratios of 4 and (2.4+ ρ), respectively. The
designing techniques developed in the paper could be applicable to other
similar networking problems.

Keywords: Capacitated Multicast Routing, Approximation Algorithm,
Steiner Minimum Tree, Tree Partitioning.

1 Introduction

Multicast consists of concurrently sending the same information from a single
source node to multiple destination nodes. Multicast service plays an important
role in computer and communication networks supporting multimedia applica-
tions [8, 10, 14]. It is well known that multicast can be easily implemented on
local area networks (LANs) since nodes connected to a LAN usually communi-
cate over a broadcast network. It is also known that implementing multicast in
wide area networks (WANs) is quite challenging as nodes connected to a WAN
communicate via a switched/routed network [5, 15].

In order to perform multicast communication in WANs, the source node
and all the destination nodes must be interconnected. The problem of multicast
routing in WANs is thus treated as finding a multicast tree in a network that

� Supported by NSERC.
�� To whom correspondence should be addressed. Tel: (780) 492 3737; Fax: (780) 492

1071. Supported by CFI, NSERC, and NNSF Grant 60373012.
��� Supported in part by NSF ITR grant ANI-0312635 and ARO grant W911NF-04-

1-0385.

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 136–145, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Improved Approximation Algorithms 137

spans the source and all the destination nodes. Its goal is to minimize the cost
of the multicast tree, which is defined to be the sum of the weights of all the
edges in the tree.

In this paper, we study the Capacitated Multicast Routing Problem in which
only a limited number of destination nodes can be assigned to receive the packets
sent from the source node during each transmission. Depending on whether or
not the switches or routers in the underlying network have the broadcasting
ability, two routing models have been considered. In one model, switches are
assumed to have the broadcasting ability and the model is called the multi-
tree model [7]. Multi-tree model has its origin in WDM optical networks with
limited light-splitting capabilities. Under this model, we are interested in finding
a set of trees such that each tree spans the source node and a limited number
of destination nodes that are assigned to receive data and every destination
node must be designated to receive data in one of the trees. Compared with the
traditional multicast routing model without the capacity constraint – the Steiner
Minimum Tree problem, which allows any number of receivers in the routing tree,
this simpler model makes multicast easier and more efficient to be implemented,
at the expense of increasing the cost of the routing tree. Specifically, when the
number of destination nodes in a tree is limited to k, we call it the Multicast
k-Tree Routing (kMTR) problem, which is formally defined in the following.

We model the underlying communication network using a simple, undirected,
and edge-weighted graph G(s, V,D,E), where s is the source node, D is the set
of n destination nodes, V is the set of all nodes in the network (s∪D ⊆ V), and
E is the set of edges (representing communication links) and w(e) ≥ 0 is the
weight (representing the routing cost) of edge e ∈ E. The additive edge weight
function w(·) generalizes to subgraphs of G in a natural way. That is, suppose
T is a subgraph of G. Then the weight (or cost) of T , denoted by w(T), is the
sum of the weights of all the edges in T . Let k be a given positive integer. The
multicast k-tree routing (kMTR) problem asks for a partition of D into disjoint
sets D1, D2, . . . , D�, such that each Di contains no more than k destination
nodes, and a Steiner tree Ti spanning the source node s and the destination
nodes in Di for i = 1, 2, . . . , �, such that

∑�
i=1 w(Ti) is minimized.

In the other model, switches have no broadcasting ability and the model is
called the multi-path routing model [6, 7]. The multi-path model could be viewed
as a generalization of one-to-one connection, but a restricted version of the multi-
tree routing model. It was proposed for wavelength routed optical networks, and
the basic idea is also applicable to general packet switching networks [13]. Under
the multi-path model, data is sent from the source node to a destination node
in a light path. During the data transmission along the path, if an intermedi-
ate node itself is a destination node, then the data is stored (dropped) and a
copy of the data is forwarded to its adjacent neighbor down in the path. In each
path, some destination nodes are designated where the data is stored (dropped).
Accordingly, multi-path routing is to find a set of such paths so that every desti-
nation node is designated to receive data in one of the paths. Compared with the
multi-tree routing model, this simpler model makes multicast easier and more

138 Zhipeng Cai, Guohui Lin, and Guoliang Xue

efficient to be implemented, but again at the expense of increasing the routing
tree cost. The parametric variant [6] is the Multicast k-Path Routing (kMPR)
problem, where every path can be designated with at most k destination nodes.

1.1 State-of-the-Art

For the kMTR problem, the cases where k = 1, 2 reduce to the kMPR problem
[6]. They both can be solved efficiently. The kMPR problem is NP-hard when
k ≥ 3 [6]. The general case of kMTR, where k is not fixed, is also NP-hard [5].
In [11], kMTR is proven to be NP-hard when k is a fixed integer greater than
2. The best known approximation algorithm for kMPR (k ≥ 3) has a worst case
performance ratio of 4 [6]; The best known approximation algorithm for kMTR
(k ≥ 3) has a worst case performance ratio of (2.4 + ρ) [11], where ρ is the
approximation ratio for the Steiner Minimum Tree problem.

1.2 Our Contributions and Organization

We propose a weight averaging technique to facilitate the design and analysis of
the better approximation algorithms for both the kMPR and the kMTR prob-
lems, for k ≥ 3. The averaging technique is presented in the next section. Based
on it, we give a 3-approximation algorithm for kMPR. We present another tech-
nique for partitioning routing trees in Section 3. Combining the tree partitioning
technique and the weight averaging technique, we present a (2+ρ)-approximation
algorithm for kMTR. Here ρ denotes the best approximation ratio for the Steiner
Minimum Tree problem, and it is about 1.55 [4, 12] at the writing of this paper.
In more detail, we first apply the current best approximation algorithm for the
Steiner Minimum Tree problem. Then we partition the obtained approximate
Steiner tree to get a number of subtrees each spanning at most k destination
nodes, without increasing the total cost. After proving that the sum of the short-
est paths from source s to all the subtrees is no more than twice the cost of an
optimal k-routing tree, we obtain a (2 + ρ)-approximation algorithm for kMTR.
This improves upon the previous best approximation ratio of (2.4 + ρ) [11]. We
conclude the paper in Section 4.

2 A 3-Approximation Algorithm for kMPR

In the kMPR problem, the underlying communication network can be simplified
by removing non-destination nodes since there wouldn’t be any Steiner point of
degree greater than 2 in a feasible routing tree. It follows that the underlying
communication network can be assumed to be an edge-weighted complete graph
G(s,D), where s is the source node and D = {d1, d2, . . . , dn} is the destination
node set. The weight of an edge is taken to be the cost of the shortest/cheapest
path connecting the two ending nodes and thus the edge weight function natu-
rally satisfies triangle inequality. The goal of kMPR is to find a least cost k-path

Improved Approximation Algorithms 139

routing, which is a set of paths rooted at s and spanning all the destination
nodes, and every path contains at most k destination nodes.

Let {P ∗
1 , P

∗
2 , . . . , P

∗
m} be the set of paths in an optimal k-path routing. Let

w(P ∗
i) denote the cost of path P ∗

i , which is the sum of the weights of the edges
on P ∗

i . Let R∗ =
∑m

i=1 w(P ∗
i) be the cost of the routing tree.

The 4-approximation algorithm proposed in [6] essentially consists of the fol-
lowing 4 steps: 1) constructing a minimum spanning tree T on s∪D, 2) duplicat-
ing the edges in T to produce a Hamiltonian cycle C via suitable short-cutting,
3) partitioning cycle C into segments each containing exactly k distinct desti-
nation nodes (the last segment might contain less than k distinct destination
nodes), and 4) connecting every segment to source s via a shortest path from
s. Since the cost of a minimum spanning tree T is a lower bound for R∗ (note
that the optimal k-path routing is a spanning tree), the cost of cycle C is no
more than 2R∗. It is shown that the total cost of the shortest-paths, which are
added in order to connect the segments to source s, is at most R∗. Since for
every segment the shortest path connecting from source s to it could destinate
at an internal node on the segment, in order to produce a feasible routing the
algorithm uses two copies of the shortest path to generate two paths. Therefore,
the cost of the resultant k-path routing could be as large as 4R∗.

In fact, the following example shows that the ratio 4 is asymptotically tight.
In this example, the optimal k-path routing is {P ∗

1 , P
∗
2 , . . . , P

∗
m}, where P ∗

1 = s-
dmk−1-dmk-d1-. . .-dk−2, P ∗

2 = s-dk−1-dk-dk+1-. . .-d2k−2, . . ., P ∗
m = s-d(m−1)k−1-

d(m−1)k-d(m−1)k+1-. . .-dmk−2. The weights of the edges on the optimal routing
are w(s, dik−1) = M for i = 1, 2, . . . ,m, and w(dj , dj+1) = 1 when j �= ik− 2 for
some i. The underlying communication network is the completion of the routing
tree. Note that the cost of the optimal k-path routing is R∗ = m(M+k−1). The
minimum spanning tree has a cost that is the same as the cost of the optimal
routing, and the cost of the Hamiltonian cycle is exactly twice R∗. According
to the partitioning scheme in the algorithm, d1, d2, . . . , dk are on a segment and
among them dk−1 is the closest to source s. Therefore, the output k-path routing
by the algorithm has cost m(4M + 2k− 3), which is asymptotically 4 times R∗.

In the following we propose another way to partition the Hamiltonian cycle
into segments each containing exactly k distinct destination nodes (again, the
last segment might contain less than k distinct destination nodes). For each such
segment, we then connect one of its ending destination nodes to source s. To
show that this is a 3-approximation algorithm, we will show in the following that
the total cost of the added paths is no more than R∗.

For an optimal k-path routing {P ∗
1 , P

∗
2 , . . . , P

∗
m}, in each path P ∗

j , the dis-
tance from every destination node di to source s on the path is an upper bound
on the weight of edge (s, di) in the underlying network G (recall that we assume
the shortest-path distance weight function). Suppose the destination nodes on
P ∗

j are dj1 , dj2 , . . . , dj�
(� ≤ k). Then

∑�
i=1 w(s, dji) ≤ �× w(P ∗

j) ≤ k × w(P ∗
j).

It follows that
n∑

i=1

w(s, di) ≤ k ×R∗. (1)

140 Zhipeng Cai, Guohui Lin, and Guoliang Xue

Suppose without loss of generality that the destination nodes on the Hamiltonian
cycle are indexed consecutively from 1 to n, with source s lying in between d1

and dn. Assuming �k < n ≤ (� + 1)k, make ((� + 1)k − n) copies of s, denote
them as dn+1, . . . , d(�+1)k, and chain them into a path to replace source s in
the Hamiltonian cycle. Note that w(s, di) = 0, for every i = n + 1, . . . , (� +
1)k; w(dn, dn+1) = w(dn, s), w(di, di+1) = 0, for i = n + 1, . . . , (� + 1)k −
1, and w(d(�+1)k, d1) = w(s, d1). In other words, the new Hamiltonian cycle
contains exactly (�+ 1)k nodes and its weight is unchanged. Partition the term∑(�+1)k

i=1 w(s, di) into k sub-terms:
∑�

i=0 w(s, dik+j), j = 1, 2, . . . , k. It follows
from Equation (1) that there is at least one index j∗ such that

�∑
i=0

w(s, dik+j∗) ≤ R∗.

Now partition the Hamiltonian cycle into segments of which the first one con-
tains destination nodes dj∗ , dj∗+1, dj∗+2, . . ., dj∗+k−1, the second one contains
destination nodes dj∗+k, dj∗+k+1, dj∗+k+2, . . ., dj∗+2k−1, and so on. The path
that is used to connect the i-th segment to source s is edge (s, d(i−1)k+j∗). It is
clear that the i-th segment appended with edge (s, d(i−1)k+j∗) is a path rooted
at source s and thus these (� + 1) paths together form a feasible routing tree.
Note that the cost of all the segments is no more than 2R∗ and the cost of the
added edges/paths is no more than R∗. Therefore, the cost of this routing tree
has cost no more than 3R∗.

Theorem 1. The kMPR (k ≥ 3) problem admits a 3-approximation algorithm
that runs in O(|D|3) time.

Proof. The algorithm presented in the above has a worst case performance ratio
of 3. Note that the completion of the graph might take O(|D|3) time. After that,
computing a minimum spanning tree can be done in O(|D|2 log |D|) time and
forming the Hamiltonian cycle in O(|D|2) time. It takes O(|D|) time to compute
the best partition (or equivalently, the optimal index j∗). Therefore, the overall
running time is in O(|D|3).

3 A (2 + ρ)-Approximation Algorithm for kMTR

In the kMTR problem, the underlying communication network is a simple, undi-
rected, and edge-weighted complete graphG(s, V,D), where s is the source node,
D = {d1, d2, . . . , dn} is the destination node set, V is a superset of D containing
also Steiner nodes that can be used as intermediate nodes to save the routing
cost, and the edge weight function (the shortest path metric) satisfies triangle
inequality. The goal is to find a least cost k-tree routing, which is a set of Steiner
trees rooted at s and spanning all destination nodes, and every tree contains at
most k destination nodes. Note that in a feasible k-tree routing, one destination
node assigned in some tree can be used as a Steiner node in others (but not
allowed to receive data).

Improved Approximation Algorithms 141

Let {T ∗
1 , T

∗
2 , . . . , T

∗
m} be the set of trees in an optimal k-tree routing. Let

w(T ∗
i) denote the cost of tree T ∗

i , which is defined to be the sum of the weights
of the edges in T ∗

i . Let R∗ =
∑m

i=1 w(T ∗
i) be the cost of the routing tree. Since

every destination node di in tree T ∗
j satisfies w(s, di) ≤ w(T ∗

j), we have

n∑
i=1

w(s, di) ≤ k ×R∗. (2)

In the following (2 + ρ)-approximation algorithm, we firstly apply the cur-
rently best approximation algorithm for the Steiner Minimum Tree problem
(which has a worst-case performance ratio of ρ) to obtain a Steiner tree T on
s ∪D in the underlying network G. Since the cost of an optimal Steiner tree is
a lower bound on R∗, we conclude that the cost of tree T is upper bounded by
ρR∗, that is, w(T) ≤ ρR∗. Note that tree T is not necessarily a feasible routing
tree yet since some branches rooted at source s might contain more than k des-
tination nodes. We process T in the following way: if there is any branch of T
(rooted at S) that contains no more than k destination nodes, we can just leave
the branch alone in the next step. For those branches each containing more than
k destination nodes, we do the following partitioning.

Lemma 1. [11] Given a Steiner tree T containing n ≥ 3 destination nodes, it
is always possible to partition it into two subtrees that overlap at at most one
node, either Steiner or destination, and the number of destination nodes in each
subtree falls in the closed interval [13n,

2
3n].

Lemma 2. Given a Steiner tree T containing n destination nodes and an integer
k, where k ≥ 3 and k < n ≤ 3

2k, randomly select n− 1
2k + 1 destination nodes

from the tree to form a set D0. Then, it is always possible to partition the tree
into two subtrees T1 with destination node set D1 and T2 with destination node
set D2, such that T1 and T2 overlap at at most one node (either Steiner or
destination), 0 < |D1|, |D2| ≤ k, D1 ∩D0 �= ∅, and D2 ∩D0 �= ∅.

Proof. Root tree T at any node, which could be either Steiner or destination.
In this rooted tree, for every node v, let c(v) denote the number of destination
nodes in the subtree rooted at v (inclusive). Let r denote the farthest node from
the root that has c(r) ≥ n− 1

2k. Note that r could be the root. Since k < n ≤ 3
2k,

r is well-defined and is unique. Re-root tree T at node r. It follows that in the
rooted tree, root r is the only node whose c-value is greater than or equal to
n− 1

2k, and consequently its degree is at least 2.
By duplicating root node r, we can partition T into two subtrees (both rooted

at r) T1 with some destination node set D1 and T2 with some other destination
node set D2. Note that T1 and T2 overlap at root r only. Our partition goal is
to satisfy 0 < |D1|, |D2| ≤ k, D1 ∩D0 �= ∅, and D2 ∩D0 �= ∅. Assuming without
loss of generality that |D2| ≥ |D1|. Starting from an arbitrary partition, if our
goal is met, then we have obtained two desired subtrees. In the other case, there
must be |D1| ≤ 1

2k and |D2| > n − 1
2k. To prove this, suppose to the contrary

that |D2| ≤ n− 1
2k, or suppose to the contrary that |D1| > 1

2k and consequently

142 Zhipeng Cai, Guohui Lin, and Guoliang Xue

|D2| ≤ n− 1
2k. We have |D1| ≤ |D2| ≤ k. Since |D0| = n− 1

2k + 1, we conclude
that there must be at least one node from D0 residing in T1, and at least one
distinct node from D0 residing in T2. This is a contradiction.

From |D1| ≤ 1
2k and |D2| > n − 1

2k, we proceed to examine subtree T2,
which must have multiple branches rooted at r since root r is the only node
whose c-value is greater than or equal to n − 1

2k. For the same reason, each of
these branches contains at most n − 1

2k destination nodes including root r if r
is a destination node. Number these branches as T21, T22, . . ., T2�, and use D21,
D22, . . ., D2� to denote their destination node sets, respectively. We distinguish
two cases.

In the first case, there is a branch say T2i such that |D2i| > 1
2k. It follows

from |D2i| ≤ n− 1
2k ≤ k that re-partitioning T to have only T2i in subtree T2,

while all the other branches rooted at r are included into subtree T1, gives the
desired partition. That is, 0 < |D1|, |D2| ≤ k, D1 ∩D0 �= ∅, and D2 ∩D0 �= ∅.
In the second case, every branch contains at most 1

2k destination nodes, that
is, |D2i| ≤ 1

2k for i = 1, 2, . . . , �. Denote D20 ≡ D1 and T20 ≡ T1. Since |D0| =
n − 1

2k + 1 > 1
2k + 1, there are at least two branches among T20, T21, . . . , T2�,

say T2i and T2j , containing distinct destination nodes from D0. Again, we re-do
the partitioning by grouping T2i and some other subtrees as T1 and grouping
T2j and the rest of the subtrees as T2, to ensure that both T1 and T2 contain
at most k destination nodes. This can be done since every subtree T2i contains
at most 1

2k destination nodes. The result is a new pair of subtrees T1 and T2

that satisfy 0 < |D1|, |D2| ≤ k, D1 ∩D0 �= ∅, and D2 ∩D0 �= ∅. This proves the
Lemma.

We continue on the partition process. Recall that a branch of T (rooted at
source s) containing more than k destination nodes needs to be partitioned.
First of all, we delete the edge incident at s from the branch to get a subtree
denoted as T1. Secondly, if T1 contains more than 3

2k destination nodes, we apply
Lemma 1 to partition T1 into two subtrees. We repeatedly apply Lemma 1 to
partition every resultant subtree if it contains more than 3

2k destination nodes.
At the end of this process, there is a set of subtrees of which each contains no
more than 3

2k destination nodes (and at least 1
2k destination nodes since we

started with T1 that contains more than 3
2k destination nodes). At this point,

for those subtrees that contain no more than k destination nodes, we may leave
them alone. For ease of presentation, we call the subtrees containing at most k
destination nodes final trees. The subtrees that become final at this point are
type-1 final trees. The non-final subtrees will produce type-2 final trees after the
next step of partitioning.

For each non-final-yet subtree, again denoted as T1, our third step is to apply
Lemma 2 to partition it into two final subtrees. To this purpose, we let D0 denote
the set of the closest n0 − 1

2k + 1 destination nodes (to source s) in T1, where
n0 is the number of the destination nodes in T1. Let T11 and T12 denote the two
resultant subtrees having their destination node sets D1 and D2, respectively.
According to Lemma 2, 0 < |D1| ≤ k, D1 ∩ D0 �= ∅, 0 < |D2| ≤ k, and
D2 ∩D0 �= ∅. It is clear that type-2 final trees always come in a pair, since they

Improved Approximation Algorithms 143

�s������

���������

T1

�
�

�
��

�
�
�
��

�

T2

�
�

�
�

�
�

�
��

�
�
�
�
�
�
�
��

�
��

�
��

T21

�
�

�
��

�
�
�
��

T22

	
	
	
		

�
�
�
��

�

T3

�
�

�
�

�
�

�
��

�
�
�
�
�
�
�
��

�
��

�
��

T31

�
�
�

��

�
�
�
��

T32

	
	
	
		

�
�
�
��

���

�����������

Fig. 1. An illustration of the tree partitioning process: Subtree T1 contains at most k
destination nodes and thus is a final tree; Subtree T2 contains more than 3

2
k destination

nodes and thus it is partitioned according to Lemma 1; Subtree T3 contains more than
k but at most 3

2
k destination nodes and thus it is partitioned according to Lemma 2.

In the figure, the closest n0 − 1
2
k + 1 = 6 destination nodes from the source s form

set D0 (shown as filled circles). The resultant subtrees T31 and T32 both contain some
nodes from D0 (1 node in T31 and 5 nodes in T32, respectively).

result from one single partition by Lemma 2. Figure 1 illustrates the schematic
partition process.

For each final tree, we identify the closest destination node in the tree and
connect it to source s. This gives a feasible k-tree routing. In what follows, we
will estimate the total cost of these edges added to connect the final trees to
source s. We will show that this total cost is at most twice R∗.

First of all, for every type-1 final tree, we pick the 1
2k closest destination

nodes in the tree to be the representatives for the tree. Suppose there are �1
type-1 final trees T1, T2, . . ., T�1 . Let the representatives for Ti be di,1, di,2, . . .,
di, k

2
, in the order of non-decreasing distance from source s. Secondly, for every

pair of type-2 final trees T1 and T2, for each of T1 and T2, if it contains no
less than 1

2k destination nodes, then the 1
2k closest ones are picked to be the

representatives for the tree; otherwise (i.e., it contains less than 1
2k destination

nodes), all its destination nodes, say there are m destination nodes, are picked
to be the representatives, and additionally the 1

2k − m farthest (to source s)
destination nodes in its sibling tree are picked to be the representatives. (Note
that for its sibling tree, still the 1

2k closest destination nodes are picked to be
its own representatives.) In this way, every type-2 final tree also has exactly
1
2k representatives, which are distinct from any other representatives although
some of them might not come from its own but its sibling tree. Note that the
reason we can guarantee this property is that the total number of destination
nodes in one pair of type-2 final trees is greater than k. Similarly, assume that
there are �2 pairs of type-2 final trees T11, T12, T21, T22, . . ., T�21, T�22. Let the
representatives for Tih be dih,1, dih,2, . . ., dih, k

2
, where h = 1, 2, in the order of

non-decreasing distance from source s. Also for every pair of type-2 final trees
Ti1 and Ti2, let d0

i,1, d
0
i,2, . . ., d

0
i, k

2
be the 1

2k closest destination nodes among all

the destination nodes in both of them, and let d0
i, k

2 +1
, d0

i, k
2 +2

, . . ., d0
i,k be the 1

2k

144 Zhipeng Cai, Guohui Lin, and Guoliang Xue

farthest destination nodes among all the destination nodes in both of them. It
follows from Equation (2) that

�1∑
i=1

k
2∑

j=1

w(s, di,j) +
�2∑

i=1

k∑
j=1

w(s, d0
i,j) ≤

n∑
i=1

w(s, di) ≤ k ×R∗.

Using the non-decreasing distance orderings of these destination nodes, we have

�1∑
i=1

w(s, di,1) +
�2∑

i=1

(
w(s, d0

i,1) + w(s, d0
i, k

2 +1
)
)
≤ 2R∗.

Clearly, for every type-1 final tree Ti, destination node di,1 is connected to source
s; also is true that d0

i,1 must serve as a representative for either type-2 final tree
Ti1 or Ti2 and thus it is connected to source s. Suppose without loss of generality
that d0

i,1 is a representative for Ti1, then the closest destination node di2,1 in Ti2,
which is picked to be a representative, has a distance no larger than the distance
from source to destination node d0

i, k
2 +1

. That is, w(s, di2,1) ≤ w(s, d0
i, k

2 +1
). It

follows that the total cost of the edges added to connect the source to the final
trees to produce a feasible k-tree routing is at most 2R∗. Therefore, the routing
tree produced in this way has cost no more than (2 + ρ)R∗.

Input: an edge-weighted graph G(s, V, D);
Output: a k-tree routing.
1. Compute a Steiner tree T0 on s ∪ D, using the currently best approximation;
2. Delete the edges incident at s to obtain subtrees of T0;
3. For each subtree T1 containing k′ > k destination nodes:
3.1 if k′ > 3

2
k, apply Lemma 1 to partition T1;

3.2 if k′ ≤ 3
2
k, apply Lemma 2 to partition T1;

4. For every final tree:
4.1 connect the closest destination node in the tree to source s;
5. Output the k-tree routing.

Fig. 2. A high-level description of the (2 + ρ)-approximation algorithm for kMTR,
where k ≥ 3.

Theorem 2. kMTR (k ≥ 3) admits a (2 + ρ)-approximation algorithm, where
ρ is the best performance ratio for approximating the Steiner Minimum Tree
problem.

Proof. The algorithm presented in the above, with its high-level description in
Figure 2, has been proven to be a (2+ρ)-approximation for the kMTR problem.
It is worth mentioning that the running time of the algorithm is dominated by
the best approximation for the Steiner Minimum Tree problem.

Improved Approximation Algorithms 145

Acknowledgment

The authors would like to thank a referee for pointing out reference [9] in
which independently another (2 + ρ)-approximation algorithm is designed for
the kMTR problem. Furthermore, they realized that an algorithm in [1] is a
(2ρ+ 1)-approximation algorithm. They also want to remark that the (2.4 + ρ)-
approximation algorithm in [11] was designed in year 2003 and the (2 + ρ)-
approximation algorithm presented in the above was designed before [9] was
made public (see a master thesis [2] and technical report [3]).

References

1. K. Altinkemer and B. Gavish. Heuristics with constant error guarantees for the
design of tree networks. Management Science, 34:331–341, 1988.

2. Z. Cai. Improved algorithm for multicast routing and binary fingerprint vector clus-
tering. Master’s thesis, Department of Computing Science, University of Alberta,
June 16, 2004.

3. Z. Cai, G.-H. Lin, and G. L. Xue. Improved approximation algorithms for the
capacitated multicast routing problem. Technical Report TR04-12, Department of
Computing Science, University of Alberta, July 2004.

4. C. Gröpl, S. Hougardy, T. Nierhoff, and H. J. Prömel. Approximation algorithms
for the Steiner tree problem in graphs. In D.-Z. Du and X. Cheng, editors, Steiner
Trees in Industries, pages 235–279. Kluwer Academic Publishers, 2001.

5. J. Gu, X. D. Hu, X. Jia, and M.-H. Zhang. Routing algorithm for multicast under
multi-tree model in optical networks. Theoretical Computer Science, 314:293–301,
2004.

6. J. Gu, X. D. Hu, and M.-H. Zhang. Algorithms for multicast connection under
multi-path routing model. Information Processing Letters, 84:31–39, 2002.

7. R. L. Hadas. Efficient collective communication in WDM networks. In Proceedings
of IEEE ICCCN 2000, pages 612–616, 2000.

8. C. Huitema. Routing in the Internet. Prentice Hall PTR, 2000.
9. R. Jothi and B. Raghavachari. Approximation algorithms for the capacitated min-

imum spanning tree problem and its variants in network design. In Proceedings of
ICALP 2004, LNCS 3142, pages 805–818, 2004.

10. F. Kuo, W. Effelsberg, and J. J. Garcia-Luna-Aceves. Multimedia Communications:
Protocols and Applications. Prentice Hall, Inc., 1998.

11. G.-H. Lin. An improved approximation algorithm for multicast k-tree routing.
Journal of Combinatorial Optimization, 2005. In press (final version available upon
request).

12. G. Robins and A. Z. Zelikovsky. Improved Steiner tree approximation in graphs.
In Proceedings of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2000), pages 770–779, 2000.

13. A. S. Tanenbaum. Computer Networks. Prentice Hall PTR, Upper Saddle River,
NJ, 1996.

14. Z. Wang and J. Crowcroft. Quality-of-service routing for supporting multimedia
applications. IEEE Journal on Selected Areas in Communications, 14:1228–1234,
1996.

15. X. Zhang, J. Wei, and C. Qiao. Constrained multicast routing in WDM networks
with sparse light splitting. In Proceedings of IEEE INFOCOM 2000, pages 1781–
1790, March 26–30, 2000.

Construction of Scale-Free Networks
with Partial Information

Jianyang Zeng, Wen-Jing Hsu�, and Suiping Zhou

Center for Advanced Information Systems, Nanyang Technological University
Singapore 639798

zengjy@gmail.com, {hsu,asspzhou}@ntu.edu.sg

Abstract. It has recently been observed that the node degrees of many
real-world large-scale networks, such as the Internet and the Web, fol-
low a power law distributions. Since the classical random graph models
are inadequate for explaining this phenomenon, alternative models have
been proposed. However, most of the existing models unrealistically as-
sume that each new joining node knows about all the existing nodes in
the network. We relax this assumption and propose a model in which
each new joining node uniformly and randomly chooses a sample set of
existing nodes, and then connects to some nodes in the sample set ac-
cording to the Preferential Attachment rule. We show that the power
law of degree distribution still holds true even if each new joining node
knows only a logarithmic number of existing nodes. Compared with the
existing models, our construction of scale-free networks based on partial
information seems to better approximate the evolution of certain com-
plex networks arising in the real world. Our results may also be applied
to the constructions of large-scale distributed systems such as peer-to-
peer networks, where the global information is generally unavailable for
any individual node in the network.

1 Introduction

It has been reported empirically by several researchers, e.g. in [2, 11, 17], that
both the Internet and the Web have a scale-free (i.e. size-independent) prop-
erty: The proportion Pk of nodes with degree k follows a power law distribution:
Pk ∼ k−r, where r ≤ 3. The well known models of random graphs introduced by
Erdős and Rényi [21] do not yield the power law distribution, and thus require
modifications for modelling and analyzing these large-scale networks. Barabási
and Albert [4] proposed the first scale-free network model referred to as the
BA model based on the preferential attachment (PA) rule. The BA model is a
dynamic stochastic process, i.e., a new node is added into the network at each
time step, and the probability that an existing old node gets a link from the new
node is proportional to its degree. Kumar et al. [19] independently presented a
so-called copying model, motivated by the fact that a new web node is often gen-
erated by copying an old one and changing some of its old links. Aiello, Chung,
� Corresponding author.

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 146–155, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Construction of Scale-Free Networks with Partial Information 147

and Lu [1] introduced a scale-free model with a prescribed degree sequence, where
the probability of two nodes being connected is proportional to the product of
their expected degrees. Fabrikant, Koutsoupias, and Papadimitriou (FKP) [16]
considered the underlying geometric metric and proposed a “Highly Optimized
Tolerance” (HOT) framework to model the Internet network, i.e., the connec-
tion of the new node is constructed according to an adjustable neighborhood
consideration. The more details of degree distribution of the FKP model and its
extended model are studied in [5] and [6] respectively. A mathematical survey
on some scale-free models can be found in [7].

Many variations of the preferential attachment rule originated from the BA
model have been developed [9, 10, 12–15]. Bollobás and Riordan refined the
BA model and make it more precise and theoretically analyzable [9, 10]. They
found that although the BA model is a dynamic stochastic process, it can be
regarded as a “LCD (Linearized Chord Diagrams)” [9], which is a static problem
and is easier to solve. A variation on the BA model, in which each node has an
“initial attractiveness” was introduced independently by two different groups,
Dorogovtsev et al. [14] and Drinea et al. [15]. A precise and rigorous analysis
of this model was given by Buckley and Osthus [12]. Cooper and Frieze [13]
presented a general model which considers more parameters, such as a variable
number of edges or nodes generated at each time step, a mixture of uniform and
PA selection, etc.

Although these scale-free models are consistent with the power law observa-
tion of real-world large-scale networks, unfortunately, most of existing models
assume that a newly added node knows all existing nodes, such as their node
degrees [4], or the Euclidean distance [16], or the hop distance to the network
center [6], etc. This is an unrealistic assumption with real-world large-scale net-
works such as the Internet or Web, as it requires a node to access and process
the extremely large amount of the global information. We will, instead, assume
that each node has access to only a small subset of logarithmic size of all the
existing nodes.

As in [4, 9], we also allow only one node to be added into the network at each
time step. The node uniformly and randomly chooses a sample set of existing
nodes, and then connects to some nodes in the sample set according to the PA
rule. Our results show that the power law of degree distribution still holds true
even if each new joining node knows only a logarithmic number of existing nodes.
Compared to the existing models, our construction of scale-free networks based
on partial information seems to better approximate the evolution of real-world
complex networks.

Our results may also be applied to the constructions of large-scale distributed
systems such as peer-to-peer networks, where the global information is generally
unavailable for any individual node in the network.

1.1 The Model and Notations

Let m denote an integer constant. Our construction is described as follows.

148 Jianyang Zeng, Wen-Jing Hsu, and Suiping Zhou

Step 1:
Start with Gm

1 , the graph with only one single node denoted by v1 with m self-
loops.
Step t:
A new node denoted by vt is added to the graph Gm

t−1 to form Gm
t . This new node

sends m edges to the existing nodes in Gm
t−1 according to the following rule: First

randomly and independently choose St−1 nodes from Gm
t−1 to form the sample set

Tt−1. Then node vt sends m edges to the nodes in the sample set Tt−1 according
to the preferential attachment rule, i.e., the probability that vt is connected to a
node u ∈ Tt−1 is

Pr[vt → u] =
degt−1(u)∑

i∈Tt−1
degt−1(i)

,

where degt−1(x) denotes the degree of node x in the graph Gm
t−1.

We will show that to ensure the power law, it suffices to choose St = β lg t 1,
where β denotes a constant to be specified later. During the initial steps, it is
possible that St ≤ t. In this case, we choose all the existing nodes as the sample
set. Such initial choices will not affect our asymptotic results. We assume that
all edges in the graph are undirected. The directed variant of our model can be
easily obtained by applying a similar method as in [13].

Below are the notations that will be used in our analysis.

degt(x): The degree of node x in the graph Gm
t ;

Tt: The sample set chosen at the time step t;
St: The size of the sample set Tt, i.e., St = |Tt|;
Dt: The sum of the node degrees of all nodes in the sample set Tt, i.e.,

Dt =
∑

x∈Tt
degt(x);

dt(i): The number of nodes with degree i in the graph Gm
t ;

dt,s(i): The number of nodes with degree i in the sample set Tt;
d̄t(i): The expectation of dt(i);
d̄t,s(i): The expectation of dt,s(i);
Mt: The maximum degree of the graph Gm

t ;
Diam(Gm

t): The diameter of the graph Gm
t ;

n: The size of the final graph Gm
n .

Throughout the paper, we will identify the node vx with the integer number
x to simplify the notation.

1.2 Our Main Results

Our main results are stated as follows:

1 The logarithmic symbol log is with the base 2, if not otherwise specified. Also, we
remove the ceiling or floor for simplicity throughout the paper.

Construction of Scale-Free Networks with Partial Information 149

Result 1 (Node Degree Distribution): Let m and β denote sufficiently
large constants, and let St = β lg t denote the size of the sample set in Step t.
Let dn(i) denote the number of nodes with degree i in Gm

n . Then whp

dn(i) =
cn

i(i+ 1)(i+ 2)
+O(nθ),

where θ and c denote constants, and 0 < θ < 1.

Since each node has a degree of at least m, it is trivial to calculate dt(i) for
i ≤ m. In the subsequent analysis, when we talk about dt(i), we assume that
i > m.
Result 2 (Maximum Degree): Let Mn denote the maximum degree of the
graph Gm

n . Then for any constant ε ∈ (0, 1
2), whp

C2n
1
2−ε ≤Mn ≤ C1n

1
2+ε,

where C1 and C2 denote constants.

Result 3 (Network Diameter): Let Diam(Gm
n) denote the diameter of the

graph Gm
n . If m ≥ C3 lgn for a sufficiently large constant C3, then whp

Diam(Gm
n) ≤ 2 lgn.

Although we only show that Diam(Gm
n) = O(lg n) for the case m = Ω(lg n),

we conjecture that Diam(Gm
n) = O(lg n) also holds for m = Θ(1).

The proof of Result 1 is relatively more challenging and its proof is given in
Section 2. Due to page limitation, the proofs of Result 2 and Result 3 are not
shown in this conference paper. The reader is referred to [22] for more details.

2 The Degree Distribution

The following is a roadmap for the proof of Result 1. Firstly, Section 2.1 gives
the expectation of Dt and shows that Dt concentrates around its expectation
by applying an extension of the martingale method [20]. Secondly, based on the
concentration result of Dt, a recurrence relation of d̄t(i) is given in Section 2.2.
We then inductively show that its solution follows a power law. In Section 2.3,
we argue that dt(i) concentrates around its expectation by applying a similar
analysis of the concentration of Dt.

2.1 Concentration of Dt

We first analyze the expectation of Dt.
Since the sample nodes in Tt are selected randomly and independently from

the current nodes in Gm
t , we can easily obtain the following lemma.

150 Jianyang Zeng, Wen-Jing Hsu, and Suiping Zhou

Lemma 1. E[dt,s(i)] = St

t E[dt(i)].

Based on the above lemma, the expectation of Dt can be easily obtained.

Lemma 2. E[Dt] = 2mSt.

Proof:

E[Dt] = E[
∑
i>0

dt,s(i)] =
∑
i>0

E[dt,s(i)] =
∑
i>0

St

t
E[dt(i)] (by Lemma 1)

=
St

t

∑
i>0

E[dt(i)] =
St

t
E[
∑
i>0

dt(i)] =
St

t
2mt = 2mSt.

Our analysis of the concentration result is mainly based on the following
probabilistic tool, which is an extension of the martingale method [3].

Lemma 3 (Martingale extension [20]). Let X = (X1, · · ·, Xn) be a family
of random variables with Xk taking value in a set Ak, and let f be a bounded
real-valued function defined on ΠAk = A1 × A2 × · · · × An. Let xi ∈ Ai for
each i = 1, · · ·, k − 1. For x ∈ Ak, let gk(x) = E[f(X)|Xk = x] − E[f(X)].
Let rk = sup{|gk(x) − gk(y)| : x, y ∈ Ak}, and R2(X) =

∑n
k=1 r

2
k. Let r̂2 =

sup{R2(X)for all X ∈ ΠAk}. Then

Pr[|f(X)− E[f(X)]| ≥ c] ≤ 2 exp(−2c2/r̂2),

where c > 0

The following lemma gives a lower bound of Dt which is useful for our sub-
sequent analysis. Due to space limitation, its proof is referred to our full ver-
sion [22].

Lemma 4. Let m and β denote sufficiently large constants, and let St = β lg t as
defined earlier and let n0 = n5/6. Then there exists a constant δ where 0 < δ < 1,
such that

Pr
[
Dt ≥ (1 + δ)mSt

]
> 1− 1

n2
,

for all t > n0.

Let Ni denote the set of neighbors of node i when it first enters the network
at step i. Then Ni is a tuple of nodes x = (x1, · · ·, xm) ∈ {1, · · ·, i − 1}m. Let
gτ,t(x) = E[Dt|N1, · · ·, Nτ−1, Nτ = x], where the sequence of N1, · · ·, Nτ−1 is
fixed and x ∈ {1, ···, τ−1}m, 1 ≤ τ ≤ t. Let rτ,t = sup

{
|gτ,t(x)−gτ,t(y)| : x,y ∈

{1, · · ·, τ − 1}m
}
. In order to bound rτ,t and apply the martingale extension in

Lemma 3 to analyze the concentration of Dt, we introduce the following node-
edge marking rule:

As in [9, 10], we regard one edge as two “half-ward” directed edges. At a time
step τ , we initially mark the nodes in the set Nτ as “τ -influenced nodes”, and
mark all the half edges connected to Nτ as “τ -influenced half edges”. During
the next time step τ + 1, if an outgoing half edge sent by the new node τ + 1

Construction of Scale-Free Networks with Partial Information 151

is connected to a τ -influenced node, it is also marked as a τ -influenced edge.
Applying the same rule for the constructions of the sequence of graphs Gm

τ+2, · ·
·, Gm

t , then the value of E[Dt|N1, ···, Nτ−1, Nτ = x]−E[Dt|N1, ···, Nτ−1, Nτ = y]
is upper bounded by the number of all τ -influenced edges that are attached to
the sample set Tt. Let Δσ denote the expected number of τ -influenced edges in
the graph Gm

σ , then we have rτ,t ≤ St

t Δt.
Based on the above observations, we have the following lemma.

Lemma 5. Define rτ,t and Δτ as above. Let m and β denote sufficiently large
constants, and let St = β lg t. Let δ denote a constant such that 0 < δ < 1. Then,

rτ,t ≤
{

St

t Δτ
n0
τ

(
t

n0

) 1
1+δ , when 1 ≤ τ ≤ n0;

St

t Δτ

(
t
τ

) 1
1+δ , when n0 < τ ≤ t.

where n0 = n5/6.

Proof: Recall that Δσ is the expected number of τ -influenced edges in the
graph Gm

σ . Let Yσ denote the expected number of new τ -influenced edges gen-
erated from Gm

σ during step σ + 1. Then by linearity of expectation, we have
Δσ+1 = Δσ + Yσ.

Let eσ
i denote the number of nodes with i τ -influenced edges among Gm

σ ,
then Δσ =

∑
i>0 i · eσ

i . So

Yσ ≤
∑
i>0

m · eσ
i · Sσ

σ · i
Dσ

=
mSσ

σDσ

∑
i>0

eσ
i · i =

mSσΔσ

σDσ
.

We bound Yσ according to two different cases.
Case 1 n0 < σ < t: Let Eσ denote the event that Dσ ≥ (1 + δ)mSσ. From
Lemma 4, we have Pr[Eσ] ≥ 1 − 1

n2 . Let E =
⋂t

σ=τ Eσ, then the event E occurs
with probability at least 1− 1

n . Thus we can assume that Dσ ≥ (1 + δ)mSσ for
all n0 < σ ≤ t in the following. Thus,

Yσ ≤
mSσΔσ

σDσ
≤ Δσ

(1 + δ)σ

Case 2 τ < σ ≤ n0: It is obvious that Dσ ≥ mSσ. So we have

Yσ ≤
mSσΔσ

σDσ
≤ Δσ

σ

Combining the above two cases, when 1 ≤ τ ≤ n0, we have

Δt ≤ Δτ

n0∏
σ=τ+1

σ + 1
σ

t∏
σ=n0+1

(
1 +

1
(1 + δ)σ

)
≤ Δτ

n0

τ

(t

n0

) 1
1+δ

By using the fact that 1 + ax ≤ (1 + xa) for x > −1 and a ≥ 1, we have
1 + 1

(1+δ)σ ≤ (1 + 1
σ)1/(1+δ). Thus, we have

Δt ≤ Δτ

n0∏
σ=τ+1

σ + 1
σ

t∏
σ=n0+1

(
1 +

1
σ

) 1
1+δ ≤ Δτ

n0

τ

(t

n0

) 1
1+δ

152 Jianyang Zeng, Wen-Jing Hsu, and Suiping Zhou

When n0 < τ < t, only case 1 applies, so we have

Δt ≤ Δτ

t∏
σ=τ+1

(
1 +

1
(1 + δ)σ

)
≤ Δτ

t∏
σ=τ+1

(
1 +

1
σ

) 1
1+δ ≤ Δτ

(t
τ

) 1
1+δ

Since rτ,t ≤ St

t Δt, we have

rτ,t ≤
{

St

t Δτ
n0
τ

(
t

n0

) 1
1+δ , when 1 ≤ τ ≤ n0;

St

t Δτ

(
t
τ

) 1
1+δ , when n0 < τ ≤ t.

Theorem 1. Let m and β denote sufficiently large constants, and let St = β lg t
as before. Let n1 = n

11
12 . Then there exists a constant 0 < ϕ < 1 such that

Pr[|Dt − 2mSt| ≥ mStt
ϕ−1] ≤ 1

n2
,

for all t > n1.

Proof: Let R2
t =

∑t
τ=1(rτ,t)2. From Lemma 5, we have

R2
t =

t∑
τ=1

(rτ,t)2 ≤
n0∑

τ=1

(St

t
Δτ

n0

τ
(
t

n0
)

1
1+δ

)2 +
t∑

τ=n0+1

(St

t
Δτ (

t

τ
)

1
1+δ

)2
=
(St

t
Δτ t

1
1+δ

)2(
n

2− 2
1+δ

0

n0∑
τ=1

1
τ2

+
t∑

τ=n0+1

1
τ2

)
= O

(
(
St

t
Δτ t

1
1+δ n

1− 1
1+δ

0)2
)

Since node τ affects at most 2m degrees at the time step τ , Δτ ≤ 2m. Hence,

R2
t = O

(
(St

t Δτ t
1

1+δn
1− 1

1+δ

0)2
)

= O
(
(St

t mt
1

1+δn
1− 1

1+δ

0)2
)
.

So r̂2 = sup{R2
t} = O

(
(St

t mt
1

1+δ n
1− 1

1+δ

0)2
)
. By Lemma 3, we have

Pr
[
|Dt − 2mSt| ≥

mSt

t
t

1
1+δn

1− 1
1+δ

0 lg n
]

= exp
(
−Ω(lg2 n)

)
Since n1 = n

11
12 > n0 = n

5
6 , there exists a constant 0 < ϕ < 1 such that

Pr
[
|Dt − 2mSt| ≥ mStt

ϕ−1
]
≤ 1
n2
,

for all t > n1

2.2 Power Law Distribution of d̄t(i)

Theorem 2. Let m and β denote sufficiently large constants, and let St = β lg t.
Then there exists a constant 0 < θ < 1 such that whp

d̄n(i) =
cn

i(i+ 1)(i+ 2)
+O(nθ),

for a constant c.

Construction of Scale-Free Networks with Partial Information 153

Proof: By construction of our model (cf. Section 1.1), we have the following
relation:

E[dt+1(i)|Gm
t] = dt(i) +mdt,s(i− 1)

i− 1
Dt

−mdt,s(i)
i

Dt
.

Taking the expectation on both sides, we have

E[dt+1(i)] = E[dt(i)] +m(i− 1)E
[dt,s(i− 1)

Dt

]
−miE

[dt,s(i)
Dt

]
. (1)

Let F denote the event that |Dt − 2mSt| < mStt
ϕ−1, then Pr[¬F] ≤ n−2

for all t > n1 = n
11
12 according to Theorem 1. It is obvious that Dt ≥ i · dt,s(i),

hence

E
[dt,s(i)

Dt

]
= E

[dt,s(i)
Dt

|F
]
Pr[F] +E

[dt,s(i)
Dt

|¬F
]
Pr[¬F]

≤ E
[dt,s(i)

Dt
|F
]
Pr[F] +

Pr[¬F]
i

.

Let a = 2mSt and b = mStt
ϕ−1. In the event F , we have a− b ≤ Dt ≤ a+ b.

Thus, 1
Dt
≤ 1

a−b in this case. So

1
Dt

(a− b

a

)
≤
(1
a− b

)(a− b

a

)
=

1
a

⇒ 1
Dt

≤ 1
a

+
b

a

1
Dt

=
1

2mSt
+
tϕ−1

2
1
Dt

Thus we have

E
[dt,s(i)

Dt

]
≤ E

[dt,s(i)
2mSt

+
dt,s(i)
Dt

tϕ−1

2
]
Pr[F] +

Pr[¬F]
i

≤ E[dt,s(i)]
2mSt

+
tϕ−1

2i
+

Pr[¬F]
i

.

Since Pr[¬F] ≤ n−2 for all t > n1 = n
11
12 , we have

E
[dt,s(i)

Dt

]
≤ E[dt,s(i)]

2mSt
+
tϕ−1

i
.

According to Lemma 1, E[dt,s(i)] = St

t E[dt(i)]. So if t > n1 = n
11
12 , we have

whp
E
[dt,s(i)

Dt

]
=
d̄t(i)
2mt

+O
(tϕ−1

i

)
.

Similarly, we obtain

E
[dt,s(i− 1)

Dt

]
=
d̄t(i− 1)

2mt
+O

(tϕ−1

i− 1
)
.

Thus, Eq. (1) can be converted into

d̄t+1(i) = d̄t(i) +
d̄t(i− 1)

2t
(i− 1)− d̄t(i)

2t
i+O

(
tϕ−1

)
,

154 Jianyang Zeng, Wen-Jing Hsu, and Suiping Zhou

for all t > n1 = n
11
12 .

This formula is similar to the recurrence equation in [18]. Thus, by a similar
inductive analysis, we can get the following solution for all 1 ≤ t ≤ n:

d̄t(i) =
ct

i(i+ 1)(i+ 2)
+O(nθ),

where c denotes a constant, and max{ϕ, 11
12} < θ < 1.

2.3 Concentration of dt(i)

Theorem 3. Let m and β denote sufficiently large constants, and let St = β lg t
for our model. Then there exists a constant 0 < ξ < 1 such that

Pr
[
|dn(i)− d̄n(i)| ≥ nξ

]
≤ n−2.

Proof: The proof can be obtained by applying a similar analysis of the con-
centration of Dt.

3 Concluding Remarks

We have proposed a new scale-free model for large-scale networks where a new
joining node connects to some nodes in a small sample set; the connections
follow the preferential attachment rule. We show that the power law of degree
distribution still holds true. Compared with the existing models, our construction
based on partial information can better approximate the evolution of large-scale
distributed systems arising in the real world. Our results may also be applied
to the constructions of peer-to-peer networks, where the global information is
generally unavailable for any individual node in the network.

We have also experimentally evaluated the distribution of node degree in our
model. Due to space limitation, the reader is referred to [22] for more details.
Our simulations show that, when |St| ≥ 5, the proportion Pk of nodes with
degree k follows a power law distribution: Pk � k−r, where r ≈ 3 denotes as the
slope of the log-log curve. Our experimental results indicate that our theoretical
result (Result 1) is a little conservative. We conjecture that when |St| = Ω(1),
the distribution will obey a power law distribution. The rigorous proof of this
conjecture remains open.

Acknowledgement

We wish to thank Abraham D. Flaxman for useful discussions over emails during
the preparation of this work. We would also like to thank anonymous referees
for their numerous remarks.

References

1. W. Aiello, F.R.K. Chung, and L. Lu. A Random Graph Model for Massive Graphs.
In Proceedings of the 32nd Annual ACM Symposium on Theory of Computing,
2000.

Construction of Scale-Free Networks with Partial Information 155

2. R. Albert, H. Jeong, and A.-L. Barabási. The Diameter of the World Wide Web.
Nature, 401(9):130–131, 1999.

3. N. Alon and J.H. Spencer. The Probabilistic Method. John Wiley, 2000.
4. A.-L. Barabási and R. Albert. Emergence of Scaling in Random Networks. Science,

286:509–512, 1999.
5. N. Berger, B. Bollobás, C. Borgs, J. Chayes, and O. Riordan. Degree Distribution

of the FKP Network Model. In Proceedings of the 13th International Colloquium
on Automata, Languages and Programming, 2003.

6. N. Berger, C. Borgs, J.T. Chayes, R.M. D’Souza, and R.D. Kleinberg. Degree Dis-
tribution of Competition-Induced Preferential Attachment Graphs. In Proceedings
of the 14th International Colloquium on Automata, Languages and Programming,
2004.

7. B. Bollobás and O. Riordan. Mathematical Results on Scale-Free Random Graphs.
In Handbook of Graphs and Neworks, 2002.

8. B. Bollobás and O. Riordan. Coupling Scale-Free and Classical Random Graphs.
Internet Mathematics, 1(2):215–225, 2003.

9. B. Bollobás and O. Riordan. The Diameter of a Scale-Free Random Graph. Com-
binatorica, to appear.

10. B. Bollobás, O. Riordan, J. Spencer, and G. Tusnády. The Degree of Sequence of
a Scale-Free Random Graph Process. Random Structures and Algorithms, 18:279–
290, 2001.

11. A. Broder, R. Kumar, F. Maghoul, P. Raghavan S. Rajagopalan, R. Stata,
A. Tomkins, and J. Wiener. Graph Structure in the Web. In Proceedings of the
9th International World Wide Web Conference, 2002.

12. G. Buckley and D. Osthus. Popularity Based Random Graph Models Leading to
a Scale-Free Degree Distribution, Submitted. 2001.

13. C. Cooper and A. Frieze. A General Model of Web Graphs. Random Structures
and Algorithms, 22:311–335, 2003.

14. S.N. Dorogovtsev, J.F.F. Mendes, and A.N. Samukhin. Sturcture of Growing Net-
works with Preferential Linking. Physical Review Letters, 85(21):4633–4636, 2000.

15. E. Drinea and M. Enachescu and M. Mitzenmacher. Variations on Random Graph
Models for the Web. Technical report, Department of Computer Science, Harvard
University, 2001.

16. A. Fabrikant, E. Koutsoupias, and C. Papadimitriou. Heuristically Optimized
Trade-Offs: a New Paradigm for Power Laws in the Internet. In Proceedings of the
29th International Colloquium on Automata,Languages and Programming, 2002.

17. M. Faloutsos, P. Faloutsos, and C. Faloutsos. On Power-Law Relationships of the
Internet Topology. In Proceedings of ACM Conference on Applications, Technolo-
gies, Architectures, and Protocols for Computer Communication, 1999.

18. A.D. Flaxman, A.M. Frieze, and J. Vera. A Geometric Preferential Attachment
Model of Networks. In Proceedings of the 3rd International Workshop on Algo-
rithms and Models for the Web-Graph, 2004.

19. R. Kumar, P. Raghavan, S. Rajagopalan, D. Sivakumar, A. Tomkins, and E. Upfal.
Stochastic Models for the Web Graph. In Proceedings of the 41st Annual Sympo-
sium on Foundations of Computer Science, 2000.

20. C. McDiarmid. Concentration. In M. Habib, C. McDiarmid, J. Ramirez-Alfonsin,
and B. Reed (eds.), Probabilistic Methods in Algorithmic Discrete Mathematics,
Springer, 1998, pp. 195-248.

21. P. Erdős and A. Rényi. On Random Graphs I. Publicationes Mathematicae Debre-
cen, 6:290–297, 1959.

22. J. Zeng and W.-J. Hsu and S. Zhou. Construction of Scale-Free Networks with
Partial Information. Available at http://www.cais.ntu.edu.sg/∼zjy. 2005.

Radio Networks with Reliable Communication

Yvo Desmedt1,�, Yongge Wang2,��, Rei Safavi-Naini3, and Huaxiong Wang4

1 University College London
y.desmedt@cs.ucl.ac.uk

2 University of North Carolina at Charlotte
yonwang@uncc.edu

3 University of Wollongong
rei@uow.edu.au

4 Macquarie University
hwang@comp.mq.edu.au

Abstract. Problems of secure communication and computation have been stud-
ied extensively in network models, for example, Franklin and Yung have studied
secure communications in the general networks modeled by hypergraphs. Radio
networks have received special attention in recent years. For example, the Blue-
tooth and IEEE 802.11 networks are all based on radio network technologies. In
this paper, we use directed colored-edge multigraphs to model the radio networks
and study reliable and private message transmissions in radio networks.

Keywords: radio network, privacy, reliability

1 Introduction

If two parties are connected by a private and authenticated channel, then secure com-
munication between them is guaranteed. However, in most cases, many parties are only
indirectly connected, as elements of an incomplete network of private and authenti-
cated channels. In other words they need to use intermediate or internal nodes. Achiev-
ing participants cooperation in the presence of faults is a major problem in distributed
networks. The interplay of network connectivity and secure communication have been
studied extensively (see, e.g., [2, 5, 8, 9, 15]). For example, Dolev [8] and Dolev et al.
[9] showed that, in the case of k Byzantine faults, reliable communication is achievable
only if the system’s network is 2k + 1 connected. Hadzilacos [15] has shown that con-
nectivity k+1 is required to achieve reliable communication in the presence of k faulty
participants even if those faults are not malicious.

Goldreich, Goldwasser, and Linial [14], Franklin and Yung [13], Franklin and
Wright [12], and Wang and Desmedt [19] have initiated the study of secure commu-
nication and secure computation in multi-recipient (multicast) models. A “multicast
channel” (such as Ethernets) enables one participant to send the same message – si-
multaneously and privately – to a fixed subset of participants. Franklin and Yung [13]

� A part of this research was done while visiting the University of Wollongong. A part of this
work has been funded by CCR-0209092. The author is BT Professor of Information Security.

�� A part of this research was funded by NSF.

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 156–166, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Radio Networks with Reliable Communication 157

have given a necessary and sufficient condition for individuals to exchange private mes-
sages in multicast models in the presence of passive adversaries (passive gossipers). For
the case of active Byzantine adversaries, many results have been presented by Franklin
and Wright [12], and, Wang and Desmedt [19]. Note that Goldreich, Goldwasser, and
Linial [14] have also studied fault-tolerant computation in the public multicast model
(which can be thought of as the largest possible multirecipient channels) in the pres-
ence of active Byzantine adversaries. Specifically, Goldreich, Goldwasser, and Linial
[14] has made an investigation of general fault-tolerant distributed computation in the
full-information model. In the full information model no restrictions are made on the
computational power of the faulty parties or the information available to them. (Namely,
the faulty players may be infinitely powerful and there are no private channels connect-
ing pairs of honest players). In particular, they present efficient two-party protocols for
fault-tolerant computation of any bivariate function.

There are many examples of multicast channels. A simple example is a local area
network like an Ethernet bus or a token ring. Another example is the Bluetooth or IEEE
802.11 network.

We consider a radio network in which stations can communicate with each other
using frequencies allocated to them. Let F be the set of frequencies. Each station knows
a subset of F . However at any given time it can only use a subset of its allocated
frequencies, according to a defined frequency schedule. Communication can be jammed
due to intentional or accidental jamming. The aim of this paper is to analyze these
networks and construct protocols that allow reliable communication when it is possible.

The radio networks studied in [1] is similar to our model. In particular, they con-
sidered a special case of jamming as follows: a processor receives no messages if it is
the recipient of of two or more partial broadcasts simultaneously. However, they do not
consider privacy.

Note that a special case of frequencies allocation problem is the random key pre-
destribution problem. Recently, Eschenauer and Gligor [11] constructed a specific ran-
dom key distribution scheme and used it to build random sensor networks.

The outline of the paper is as follows. We introduce our model in Section 2. In Sec-
tions 3, 4, and 5, we study reliable message transmission against passive adversaries,
jamming adversaries, and active adversaries in radio networks respectively. We study
probabilistically reliable and perfectly private message transmission in certain radio net-
works in Section 7, and discuss the radio networks with minimal number of frequencies
in Section 8. We conclude our paper with some open problems in Section 9.

2 Model

A radio network is a directed colored-edge multigraph R(V,E, F, c), where V is the
node set (corresponding to radio stations), E is the directed edge set (there might be
more than one directed edge from one node to another one), F is the frequency (color)
set, and c is a map from E to F (the map c assigns a frequency to each edge).

In a radio network, we assume that any message sent by a node v on a frequency f
will be received identically by all nodes u such that there is a directed edge e ∈ E from
v to u and c(e) = f , whether or not v is faulty, and no other party (even if it has an
incoming edge with frequency f originated from another node or it can use frequency
f to broadcast to other nodes) learns anything about the content of the message.

158 Yvo Desmedt et al.

Franklin and Yung [13] used hypergraphs1 to model the multicast networks. A hy-
pergraph H is a pair (V,E) where V is the node set and E is the hyperedge set. Each
hyperedge e ∈ E is a pair (v, v∗) where v ∈ V and v∗ is a subset of V . In a hypergraph,
any message sent by a node v will be received identically by all nodes in v∗, whether
or not v is faulty, and all parties outside of v∗ learn nothing about the content of the
message. Unless specified otherwise, we will use radio networks throughout our paper
and will not use hypergraph networks.

It is easy to see that Franklin-Yung’s hypergraph networks is a special case of our
radio networks (the difference will be clear from the adversary model which we will
give later).

Let v, u ∈ V be two nodes of the radio network R(V,E, F, c). We say that there is
a “direct link” from node v to node u if there exists a directed edge e from v to u. We
say that there is an “undirected link” from v to u if there is a directed link from v to u
or a directed link from u to v. If there is a directed (undirected) link from vi to vi+1 for
every i, 0 ≤ i < k, then we say that there is a “directed path” (“undirected path”) from
v0 to vk.

Throughout the paper, we consider receiver-jamming, sender-jamming, destroy-
jamming, and multicast as our only communication primitives.

1. A node v can receiver-jam on a frequency f if there is a directed edge e from v to
some node u with c(e) = f . The result of receiver-jamming by v on frequency f is
that for any node u such that there is a directed edge e from v to u, u cannot receive
any message transmitted on the frequency f by any node.

2. A node v can sender-jam on a frequency f if there is a directed edge e from v to
some node u with c(e) = f . The result of sender-jamming by v on frequency f is
that for any node u such that there is a directed edge e from v to u, u cannot send
any message on the frequency f to any node.

3. A node v can destroy-jam on a frequency f if there is a directed edge e from v to
some node u with c(e) = f . The result of destroy-jamming by v on frequency f is
that for any node u such that there is a directed edge e from v to u, u cannot receive
or send any message on any frequency.

4. A message that is multicast by a node v on a frequency f in a radio network
R(V,E, F, c) shall be received by all nodes u satisfying the following conditions
with privacy (that is, other nodes learn nothing about what was sent) and authenti-
cation (that is, the node u is guaranteed to receive the value that was multicast and
to know which node multicast it)2

– There is a directed edge e from v to u and c(e) = f .
– u is not being jammed on the frequency f .

In addition to the intentional jamming by a malicious adversary, communications in ra-
dio networks can be accidentally jammed by honest users when a well planned schedule
is not followed. Consider the following scenario, if both nodes u and v try to send mes-
sages to the node w on the same frequency f at the same time slot, then it is clear that

1 Franklin-Yung’s hypergraphs are different from the the standard definition in [3].
2 Note that this is reasonable assumption if both u and v can share a private key. However, if
u and v does not share a private key, then no authenticity is guaranteed since nodes v′ might
impersonate v if there is a directed edge e′ from v′ to u.

Radio Networks with Reliable Communication 159

the node w will be “jammed”. We call this kind of jamming accidental jamming. Acci-
dental jamming is more or less a design problem and we will not further our study on
this topic in this paper (more details could be found in [4]).

We assume that all nodes in the radio network know the complete protocol spec-
ification and the complete structure of the radio network. In a message transmission
protocol, the sender A starts with a message MA drawn from a message spaceM with
respect to a certain probability distribution. At the end of the protocol, the receiver B
outputs a message MB . We consider a synchronous system in which messages are sent
via multicast in rounds. During each round of the protocol, each node receives any mes-
sages that were multicast for it at the end of the previous round, flips coins and perform
local computations, and then possibly multicasts a message. We will also assume that
the message spaceM is a subset of a finite field F.

Throughout this paper k denotes the number of faults under the control of the ad-
versary. We write |S| to denote the number of elements in the set S. We write x ∈R S
to indicate that x is chosen with respect to the uniform distribution on S.

We consider three kinds of adversaries. A passive adversary (or gossiper adversary)
is an adversary who can only observe the traffic through k internal nodes. A jamming
adversary is an adversary who can observe the traffics through some k internal nodes
and/or jam from these k internal nodes. An active adversary (or Byzantine adversary)
is an adversary with unlimited computational power who can control k internal nodes.
That is, an active adversary will not only listen to the traffics through the controlled
nodes, but also control the message (might be jamming noise) sent by those controlled
nodes. All kinds of adversaries are assumed to know the complete protocol specifica-
tion, message space, and the complete structure of the radio network. At the start of the
protocol, the adversary chooses the k faulty nodes. (An alternative interpretation is that
k nodes are collaborating adversaries.) The power of the adversaries is listed as follows
(weakest first).

k-passive adversary→ k-jamming adversary→ k-active adversary

Throughout the paper, we assume that an active adversary can mount jamming at-
tacks automatically. We will mainly consider three kinds of jamming in this paper:
receiver-jamming, receiver-and-sender-jamming, and destroy-jamming. Thus, we will
respectively have three kinds of active adversaries according to their jamming ability:
rj-active adversary, rsj-active adversary, and dj-active adversary.

For any execution of the protocol, let adv be the adversary’s view of the entire
protocol. We write adv(M, r) to denote the adversary’s view when MA = M and
when the sequence of coin flips used by the adversary is r.

Definition 1. 1. A message transmission protocol is δ-reliable if, with probability at
least 1 − δ, B terminates with MB = MA. The probability is over the choices of
MA and the coin flips of all nodes.

2. A message transmission protocol is reliable if it is 0-reliable.
3. A message transmission protocol is ε-private if, for every two messagesM0,M1 and

every r,
∑

c |Pr[adv(M0, r) = c] − Pr[adv(M1, r) = c]| ≤ 2ε. The probabilities
are taken over the coin flips of the honest parties, and the sum is over all possible
values of the adversary’s view.

160 Yvo Desmedt et al.

4. A message transmission protocol is perfectly private if it is 0-private.
5. A message transmission protocol is (ε, δ)-secure if it is ε-private and δ-reliable.
6. An (ε, δ)-secure message transmission protocol is efficient if its round complexity

and bit complexity are polynomial in the size of the network, log 1
ε (if ε > 0) and

log 1
δ (if δ > 0).

3 Achieving Perfect Privacy and Reliability
Against Passive Adversaries

Let R(V,E, F, c) be a radio network, and S ⊂ V be a node set. Then the reduced radio
network R(V \S,EV \pS , F, c) is defined by letting EV \pS = E \Ep

S , where Ep
S is the

set of the following directed edges:

1. all edges originated from nodes in S.
2. all incoming edges of nodes in S.
3. all edges e from u to v such that there is an edge e′ from u to some node in S and

c(e) = c(e′).

Theorem 1. Reliable and perfectly private message transmission from u to v in a ra-
dio network R(V,E, F, c) is possible against a k-passive adversary if and only if the
following conditions are satisfied:

1. There is a directed path from u to v in R(V,E, F, c).
2. For any k-node set S, there is an undirected path from u to v in the reduced radio

network R(V \ S,EV \pS , F, c).

Proof. The proof is the same as that in Franklin and Yung [13] for reliable and perfectly
private message transmission in hypergraphs. Q.E.D.

4 Achieving Reliability Against Jamming Adversaries

We first give a sufficient and necessary condition for achieving reliability against re-
ceiver-jammers. Let R(V,E, F, c) be a radio network, and S ⊂ V be a node set. Then
the radio network R(V \ S,EV \rjS , F, c) is defined by letting EV \rjS = E \ Erj

S ,

where Erj
S is the set of the following directed edges:

1. all edges originated from nodes in S.
2. all edges e from u to v such that there is an edge e′ from some node in S to v and

c(e) = c(e′).

Theorem 2. Reliable message transmission from u to v in a radio networkR(V,E, F, c)
against a k-receiver-jamming adversary is possible if and only if for any k-node set S,
there is a directed path from u to v in the reduced radio networkR(V \S,EV \rjS , F, c).

Proof. If the condition is not satisfied, then there is a k-node set S such that there is no
directed path from u to v in the reduced radio network R(V \ S,EV \rjS , F, c). Thus

Radio Networks with Reliable Communication 161

if the k-receiver-jammer controls all the nodes in S and keeps receiver-jamming on all
available frequencies, all message transmissions from u to v will be blocked.

If the condition of the Theorem is satisfied, then for each k-node set S, there is a
directed path pS from u to v in the reduced radio networkR(V \S,EV \rjS , F, c). Thus

u can transmit the message along all such paths (there are
(|V |−2

k

)
such paths) with

different
(|V |−2

k

)
time slots. Q.E.D.

Now we give similar necessary and sufficient conditions for achieving reliability
against receiver-and-sender-jammers and destroy-jammers. LetR(V,E, F, c) be a radio
network, and S ⊂ V be a node set. Then the radio network R(V \ S,EV \rsjS , F, c) is

defined by letting EV \rsjS = E \Ersj
S , where Ersj

S is the set of the following directed
edges:

1. all edges originated from nodes in S.
2. all edges e from u to v such that there is an edge e′ from some node in S to v or u

and c(e) = c(e′).

Similarly, the radio network R(V \ S,EV \djS , F, c) is defined by letting EV \djS =
E \ Edj

S , where Edj
S is the set of the following directed edges:

1. all edges originated from nodes in S.
2. all edges e from u to v such that there is an edge e′ from some node in S to v or u.

Theorem 3. Reliable message transmission from u to v in a radio networkR(V,E, F, c)
against a k-receiver-and-sender-jamming adversary (resp. k-destroy-jamming adver-
sary) is possible if and only if for any k-node set S, there is a directed path from u to v
in the reduced radio network R(V \ S,EV \rsjS , F, c) (resp. R(V \ S,EV \djS , F, c)).

Proof. The proof is the same as that of Theorem 2. Q.E.D.

In this section, we have studied receiver-only jamming, receiver-and-sender jam-
ming, and destroy-jamming. We will not discuss sender-jamming since a sender-jammer
can easily mount receiver-jamming attacks.

5 Achieving Reliability Against Active Adversaries

Definition 2. Let R(V,E, F, c) be a radio network, and u, v ∈ V be distinct nodes of
R. u, v are k-separable in R, k ≥ 0, if there is a node set W ⊂ V with at most k nodes
such that any directed path from u to v goes through at least one node in W . We say
that W separates u, v.

We have the following result.

Theorem 4. The nodes u, v of a radio network R is not 2k-separable if and only if for
all k-node sets V1 ⊂ V there is a set SV1 of directed paths from u and v such that for
all k-node sets V2 ⊂ V \ V1, the following conditions hold:

– the paths in SV1 are free of nodes in V1,
– there is at least one directed path in SV1 which is free of the nodes in V2.

162 Yvo Desmedt et al.

Proof. First consider the case when u, v are not 2k-seperable. We shall prove that the
conditions are satisfied. For any k-node set V1 ⊂ V , let SV1 be the set of all paths from
u to v which are free of nodes in V1. Now assume that there is one k-node set V2 ⊂ V
such that all paths in SV1 go through V2. Then V1 ∪ V2 separates u and v in R. That is
u and v are 2k-separable in R which is a contradiction.

For the converse observe that the conditions on the paths SV1 make it impossible to
have a k-node set V2 ⊂ V such that V1 ∪ V2 separates u and v. Indeed if there where
such a set V ′ = V1 ∪ V2 to separate u and v then there would be no path in SV1 free of
the of V1 and V2. Q.E.D.

For a radio networkR(V,E, F, c) and a node set S ⊂ V , the reduced radio networks
R(V \S,EV \rjS , F, c),R(V \S,EV \rsjS , F, c), andR(V \S,EV \djS , F, c) are defined
in Section 4. In the next Theorem, we give a sufficient and necessary condition for
achieving reliable communication against a k-active adversary over radio networks.

Theorem 5. A necessary and sufficient condition for reliable message transmission
against a k-rj-active (resp. k-rsj-active and k-dj-active) adversary from u to v is that for
any s-node set S (s < k), u and v are not 2(k − s)-separable in the reduced radio net-
workR(V \S,EV \rjS , F, c) (resp.R(V \S,EV \rsjS , F, c) andR(V \S,EV \djS , F, c)).

Proof. First assume that for any s-node set S (s < k), u and v are not 2(k − s)-
separable in the reduced radio network R(V \ S,EV \rjS , F, c) (respectively, R(V \
S,EV \rsjS , F, c) and R(V \ S,EV \djS , F, c)). Let P be the set of all directed paths
from u to v. The paths in P will be used for transmitting messages by u to v. Let mu

be a message selected by u for transmission via these paths. Now apply Theorem 4. For
any s-node set S, let V1 be a (k− s)-node set and PV1 be the set of paths in P ∩R(V \
S,EV \rjS , F, c) (resp. P ∩ R(V \ S,EV \rsjS , F, c) and P ∩ R(V \ S,EV \djS , F, c))
which are free of nodes in V1. Then:

– If the adversary mounts jamming attacks in the s nodes from S and send malicious
message from the k − s nodes in V1, v will receive the same messages mu via all
the paths in PV1 (since the adversary is bounded to k nodes and PV1 is free of the
nodes in V1).

– If the adversary mounts jamming attacks in the s nodes from S and send malicious
messages from some node outside V1, there is a set V2 which contains all these
nodes. By the property of P , there will be a directed path P ∈ PV1 which is free
from the nodes controlled by the adversary. In this case the messages received by v
via the paths PC1 may not all be the same, if the adversary is active.

Assuming that v knows the jamming nodes set S, then it follows that v can distinguish
the case when the message mu is corrupted by the adversary from the case when it is
not, by testing the messages received via the paths PV1 , for the s-node set S and each
(k − s)-node set V1. However, an active adversary may try to control a node w in such
a way that it will jam on some frequencies available to w and send malicious messages
on other available frequencies to w. An active adversary could also send out malicious
message no matter it has been receiver-jammed or not. Thus, the node v generally can-
not learn from the received messages which set is the S. To achieve reliability, u sends
to v via the paths PV1 the message mu labeled by (S, V1), for each s-node set S and

Radio Networks with Reliable Communication 163

each (k− s)-node set V1. v checks the messages received via the paths in PV1 , for each
label (S, V1). After receiving all these messages, v recover the message according the
the following rules: First, for the 0-node set S = ∅ and each k-node set V1, v tries to
recover the message from the messages received from the paths in PV1 . If v succeeds
then v outputs the message. Otherwise, for each possible 1-node set S (possible jam-
mers) and each (k − 1)-node set V1, v tries to recover the message from the messages
received from the paths in PV1 . If v succeeds, then v outputs the message. v repeat the
above steps until v finds the message. From our discussion above, v will find the correct
the message with 100%-reliability.

Next assume that there exists an s-node set S (s < k) such that u and v can be
separated by a 2(k−s)-node setW in the reduced radio networkR(V \S,EV \rjS , F, c)
(resp.R(V \S,EV \rsjS , F, c) andR(V \S,EV \djS , F, c)). Suppose that π is a message
transmission protocol from u to v and letW = W0∪W1 be a 2(k−s)-node separation of
u and v with W0 and W1 each having at most k−s nodes. Let m0 be the message that u
transmits. The adversary will attempt to maintain a simulation of the possible behavior
of u by executing π for message m1 �= m0. In addition to controlling the nodes in
S, the strategy of the adversary is to flip a coin and then, depending on the outcome,
decide which set of W0 or W1 to control. Let Wb be the chosen set. In each execution
step of the transmission protocol, the adversary sends receiver-jamming (resp. receiver-
and-sender jamming and destroy-jamming) messages on all nodes in S and causes each
node inWb to follow the protocolπ as if the protocol were transmitting the messagem1.
This simulation will succeeds with nonzero probability. Since v does not know whether
b = 0 or b = 1, at the end of the protocol v cannot decide whether u has transmitted
m0 orm1 if the adversary succeeds. Thus with nonzero probability, the reliability is not
achieved. Q.E.D.

6 Achieving Reliability and Perfect Privacy
Against Active Adversaries

Theorem 6. Reliable and perfect private message transmission from u to v in a ra-
dio network R(V,E, F, c) against a k-rj-active (resp. k-rsj-active and k-dj-active) ad-
versary is possible if for any k-node set S, reliable message transmission against a
k-rj-active (resp. k-rsj-active and k-dj-active) adversary is possible in the reduced ra-
dio network R(V \ S,EV \pS , F, c), where EV \pS = E \ Ep

S and Ep
S is the set of the

following directed edges:

1. all edges going to nodes in S.
2. all edges e from u to v such that there is an edge e′ from u to some node in S and

c(e) = c(e′).

Proof. Let Γ = {S1, . . . , St} be a list of all k-node subsets of V andmu be the message
that u wants to send to v. u constructs a t-out-of-t secret sharing scheme (su

1 , . . . , s
u
t)

of mu. For each i ≤ t, u reliably sends su
i to v via the reduced radio network R(V \

Si, EV \pSi
, F, c). For each i ≤ t, v reliably receives sv

i on the reduced radio network
R(V \ Si, EV \pSi

, F, c). Now assume that the adversary control all nodes in Si0 , then
the adversary will learn no information about su

s0
. Thus the above protocol is perfectly

164 Yvo Desmedt et al.

private. It suffices to show that the above protocol is reliable. It is straightforward to
show that v reliably receives all correct shares (sv

1 , . . . , s
v
t) = (su

1 , . . . , s
u
t). Thus the

above protocol is (0, 0)-secure. Q.E.D.

7 Probabilistically Reliable and Perfectly Private Message
Transmission in Certain Radio Networks

In this section, we briefly discuss the possibility of migrating Franklin and Wright’s
[12] message transmission protocol from neighbor networks to radio networks. Many
radio networks have the property that each station can use all available frequencies
to him/her both to receive messages and to multicast messages. We call such kind of
radio networks bi-directional radio networks. Two nodes u and v in a bi-directional
radio network R(V,E, F, c) is weakly (n, k)-connected if there are n paths p1, . . . , pn

between u and v such that for any k-node set S ⊂ V , there exists a path pi such that
there is neither edge from a node in S to a node on Pi nor edge from a node on pi to a
node in S.

Theorem 7. If two nodes u and v in a bi-directional radio network R(V,E, F, c) is
weakly (n, k)-connected for some n > k, then there is an efficient probabilistically
reliable and perfectly private message transmission between u and v.

Proof. The proof is the same as that for the corresponding result in neighbor networks
by Wang and Desmedt [19]. Q.E.D.

A similar example as in Desmedt and Wang [7] can be used to show that weak
(n, k)-connectivity is not a necessary condition for achieving probabilistically reliable
and perfectly private message transmissions in bi-directional radio networks. Also,
similar example as in Desmedt and Wang [7] shows that there is a radio network
where probabilistically reliable message transmission is possible though private mes-
sage transmission is impossible.

8 Minimizing the Number of Frequencies
in Certain Radio Networks

In this section, we study a specific case of radio networks initially studied in a narrow
context in [6]. Let F = {f1, . . . , fm}, and B = {B1, . . . , Bn} where Bi ⊆ F . Assume
that there are n participants, and each participants pi is given a set of frequency set
Bi. Each participant is able to send messages with any frequency fj ∈ Bi, and each
participant who has the same frequency will receive the message. This scenario can
be described by the radio network R(V,E, F, c) as follows: Let V = {p1, . . . , pn},
F = ∪iBi, E = ∪i{(pi, pj)f : f ∈ Bi ∩Bj , i �= j}, and c((pi, pj)f) = f .

By using Theorem 2, we derive a sufficient and necessary condition for robust fre-
quency broadcast systems against receiver-jammers. We first introduce some notations.
Let F = {f1, . . . , fm}, and B = {B1, . . . , Bn} where Bi ⊆ F .

– A system (F,B) is called a cover free family CFF (m,n, k) [10] if for any distinct
i, i1, . . . , ik ≤ n, we have Bi �⊆ (Bi1 ∪ . . . ∪Bik

) .

Radio Networks with Reliable Communication 165

– A system (F,B) is called a key distribution pattern [16] KDP (m,n, k) if for
any i1, . . . , ik ≤ n and i, j ≤ n (i, j are different from i1, . . . , ik), we have
(Bi ∩Bj) �⊆ (Bi1 ∪ . . . ∪Bik

) .
– A system (F,B) is called a semi key distribution pattern SKDP (m,n, k) if for any
i1, . . . , ik ≤ n and i, j ≤ n (i, j are different from i1, . . . , ik), at least one of the fol-
lowing conditions holds: there exist s1, . . . , st for some 0 ≤ t ≤ n−2 such that for
s0 = i and st+1 = j we have: (Bs0 ∩Bs1) �⊆ (Bi1 ∪ . . . ∪Bik

), (Bs1 ∩Bs2) �⊆
(Bi1 ∪ . . . ∪Bik

), (Bs2 ∩Bs3) �⊆ (Bi1 ∪ . . . ∪Bik
) . . .,

(
Bst ∩Bst+1

)
�⊆ (Bi1

∪ . . . ∪Bik
).

Obviously a KDP (m,n, k) is a SKDP (m,n, k), and a SKDP (m,n, k) is a
CFF (m,n, k).

Theorem 8. Let V = {p1, . . . , pn} be the participant set, F = {f1, . . . , fm} be
the frequency set, and Bi ⊂ F be the frequency set assigned to the participant pi.
Then any two participants can communicate reliably in the presence of a k-receiver-
jamming adversary if and only if the system (F,B) is a semi key distribution pattern
SKDP (m,n, k).

Proof. This follows from Theorem 2 and the above definitions. Q.E.D.
For practical efficient designs, we may be interested in minimizing the number of

frequencies to be used while maximizing the possible number k of jammers. For any
given n and k, let

– CFF (n, k) denote the minimal m such that a CFF (m,n, k) exists,
– SKDP (n, k) denote the minimal m such that a SKDP (m,n, k) exists,
– KDP (n, k) denote the minimal m such that a KDP (m,n, k) exists.

From [10] and [18] we know that for any given k, there exist an integer c1 such that
c1 logn ≤ CFF (n, k), and an integer c2 such that KDP (n, k) ≤ c2 logn. That is, for
a given k there exist integers c1 and c2 such that the following inequalities hold.

c1 logn ≤ CFF (n, k) ≤ SKDP (n, k) ≤ KDP (n, k) ≤ c2 logn.

Thus it shows that there exists an infinite family of radio networks with reliable com-
munication against receiver-jamming adversary, requiring only O(log n) frequencies
for n participants (nodes). We can even give constructions of SKDP with the asymptot-
ically optimal number of frequencies if the network topology can be designed as desired
(e.g a complete network in [6]). An interesting question is: if the network topology is
fixed and given, how can we design the corresponding SKDP such that the number fre-
quencies is as small as possible? We don’t know to to do it, and it seems to be a difficult
problem.

9 Conclusion and Open Problems

In this paper, we have established necessary and sufficient conditions for reliable mes-
sage transmissions against jamming adversaries and active adversaries. It is easy to

166 Yvo Desmedt et al.

show that it is NP-hard to check whether these conditions hold for a radio network, and
most of our protocols for the sufficient condition has exponential bit-complexity in the
size of the radio network. A more general and natural problem is: does there exist more
efficient reliable message transmission protocols when the sufficient condition is met?

References

1. N. Alon, A. Bar-Noy, N. Linial, and D. Peleg. On the complexity of radio communication.
In Proceedings of ACM STOC 1989, pages 274–285.

2. M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computing. In: Proc. ACM STOC, ’88, pages 1–10,
ACM Press, 1988.

3. C. Berge. Hypergraphs: Combinatorics of finite sets. Translated from the French. North-
Holland Mathematical Library 45, 1989.

4. D. Bertsekas and R. Gallager. Data Networks. Prentice-Hall, Inc., 1992.
5. D. Chaum, C. Crepeau, and I. Damgard. Multiparty unconditional secure protocols. In: Proc.

ACM STOC ’88, pages 11–19, ACM Press, 1988.
6. Y. Desmedt, R. Safavi-Naini, H. Wang, L.M. Batten, C. Charnes and J. Pieprzyk. Broadcast

anti-jamming systems. Computer Networks, 35(2-3): 223-236, 2001.
7. Y. Desmedt and Y. Wang. Perfectly secure message transmission revisited. In Proc. Euro-

Crypt’02, pages 502-517. Lecture Notes in Computer Science 2332, Springer-Verlag.
8. D. Dolev. The Byzantine generals strike again. J. of Algorithms, 3:14–30, 1982.
9. D. Dolev, C. Dwork, O. Waarts, and M. Yung. Perfectly secure message transmission. J. of

the ACM, 40(1):17–47, 1993.
10. P. Erdös, P. Frankl, and Z. Furedi. Families of finite sets in which no set is covered by the

union of r others. Israel Journal of Mathematics. 51:79-89, 1985.
11. L. Eschenauer and V. Gligor. A key-management scheme for distributed sensor networks. In:

Proc. 9th ACM Conference on Computer and Communication Security, pages 41–47, 2002.
12. M. Franklin and R. Wright. Secure communication in minimal connectivity models. Journal

of Cryptology, 13(1):9–30, 2000.
13. M. Franklin and M. Yung. Secure hypergraphs: privacy from partial broadcast. In: Proc.

ACM STOC ’95, pages 36–44, ACM Press, 1995.
14. O. Goldreich, S. Goldwasser, and N. Linial. Fault-tolerant computation in the full informa-

tion model. SIAM J. Comput. 27(2):506–544, 1998.
15. V. Hadzilacos. Issues of Fault Tolerance in Concurrent Computations. PhD thesis, Harvard

University, Cambridge, MA, 1984.
16. C. J. Mitchell and F. C. Piper. Key Storage in Secure Networks. Discrete Applied Mathemat-

ics. 21: 215-228, 1988.
17. T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols with honest ma-

jority. In: Proc. ACM STOC ’89, pages 73–85, ACM Press, 1989.
18. D. R. Stinson, T. van Trung and R. Wei. Secure frameproof codes, key distribution patterns,

group testing algorithms and related structures. J. Statist. Plan. Infer. 86:595-617, 2000.
19. Y. Wang and Y. Desmedt. Secure communication in multicast channels: the answer to

Franklin and Wright’s question. J. of Cryptology, 14(2):121–135, 2001.

Geometric Network Design with Selfish Agents

Martin Hoefer1,� and Piotr Krysta2,��

1 Department of Computer & Information Science, Konstanz University
Box D 67, 78457 Konstanz, Germany
hoefer@inf.uni-konstanz.de

2 Department of Computer Science, Dortmund University
Baroper Str. 301, 44221 Dortmund, Germany
piotr.krysta@cs.uni-dortmund.de

Abstract. We study a geometric version of a simple non-cooperative network
creation game introduced in [2], assuming Euclidean edge costs on the plane.
The price of anarchy in such geometric games with k players is Θ(k). Hence,
we consider the task of minimizing players incentives to deviate from a payment
scheme, purchasing the minimum cost network. In contrast to general games,
in small geometric games (2 players and 2 terminals per player), a Nash equi-
librium purchasing the optimum network exists. This can be translated into a
(1 + ε)-approximate Nash equilibrium purchasing the optimum network under
more practical assumptions, for any ε > 0. For more players there are games
with 2 terminals per player, such that any Nash equilibrium purchasing the opti-
mum solution is at least

(
4
3
− ε

)
-approximate. On the algorithmic side, we show

that playing small games with best-response strategies yields low-cost Nash equi-
libria. The distinguishing feature of our paper are new techniques to deal with the
geometric setting, fundamentally different from the techniques used in [2].

1 Introduction

The Internet is a powerful and universal artefact in human history and one of the most
dynamic driving forces in modern society. An interesting recent research direction is to
understand and influence the development of the Internet. A fundamental difference to
other networks is that the Internet is built and maintained by a number of independent
agents that pursue relatively limited, selfish goals. This motivated a lot of the research in
a field now called algorithmic game theory. A major direction in this field is to analyze
stable solutions in non-cooperative (networking) games. The most prominent measure
is the price of anarchy [13], which is the ratio of the worst cost of a Nash equilibrium
over the cost of an optimum solution. The price of anarchy has been considered in a
variety of fields, such as, load balancing [6, 13], routing [16], and flow control [8]. A
slightly different measure – the cost of the best Nash equilibrium instead of the worst
was considered in [17]. This is the optimum solution no user has an incentive to defect

� This author is supported by the DFG Graduiertenkolleg 1042 “Explorative Analysis and Vi-
sualization of Large Information Spaces” and partially supported by DFG grant Kr 2332/1-1
within Emmy Noether program

�� This author is supported by DFG grant Kr 2332/1-1 within Emmy Noether program.

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 167–178, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

168 Martin Hoefer and Piotr Krysta

from, hence we will follow [1] and refer to it as the price of stability. In this paper we
will consider both prices for the geometric version of a network creation game.

Network Connection Games. Anshelevich et al. [2] proposed a game theoretic model
called a connection game for building and maintaining the Internet topology, which
will be the basis for our paper. Agents are to build a network, and each agent holds a
number of terminals at nodes in a graph, which she wants to connect by buying edges
of the graph. The cost of edges can be shared among the players. An edge can only be
used for connection if fully paid for. However, once it is paid for, any player can use it
to connect her terminals. A strategy of a player is a payment function, i.e., her (possibly
zero) contribution to paying the cost of each edge. Given strategies of all players form a
Nash equilibrium if no player could deviate to a different strategy resulting in a smaller
total payment to this player. In this game the problem of finding the cheapest payment
strategy for one player is the classic Steiner tree problem. The problem of finding a
minimum cost network satisfying all connections and minimizing the sum of all players
payments is the Steiner forest problem.
Unfortunately, both the price of anarchy and the price of stability of this game can be in
the order of k, the number of players. This is also an upper bound, because if the price
of anarchy were more than k, there would be a player that could deviate by purchasing
the optimum network all by herself. It is NP-complete to determine that a given game
has a Nash equilibrium. Thus, in [2] a different approach was taken, in which a central
institution determines a network and payment schemes for players. The goal is twofold:
on one hand a cheap network should be purchased, on the other hand each player shall
have the least motivation to deviate. As a strict Nash equilibrium might not exist, a
payment scheme was presented that determines a 3-approximate Nash equilibrium on
the socially optimum network. Finding the minimum cost network, however, is NP-
hard. But, approximation algorithms for the Steiner tree (forest) problem [11, 15] can
be used to find a (4.65+ ε)-approximate Nash equilibrium purchasing a 2-approximate
network in polynomial time [2].
A different network creation game was proposed by Fabrikant et al. [9]. Here each
player corresponds to a node, and she can only contribute to edges incident to her node.
A similar game was also considered by [4, 12] in the context of social networks. Being
well-suited in this setting, for the global context of the Internet it is more appropriate
to assume that players hold more terminals, can share edge costs and can contribute to
costs anywhere in the network.
In a more recent paper Anshelevich et al. [1] have proposed a slightly different setting
for the connection game. Here the focus is put on the Shapley value, a classic cost
allocation protocol. Each edge is assumed to be shared equally among the players using
it, and an O(log k) upper bound on the price of stability is shown. They considered
bounds on the convergence of best-response dynamics and also studied versions of the
game with edge latencies and weighting schemes.

Our Contributions and Results. In this paper we consider a special case of the connec-
tion game, the geometric connection game. Geometric edge costs present an interesting
special case of the problem, as the connection costs of a lot of large networks can be
approximated by the Euclidean distance on the plane [7]. Furthermore, for the geo-
metric versions of combinatorial optimization problems usually improved results can

Geometric Network Design with Selfish Agents 169

be derived. For example, the geometric Steiner tree problem allows a PTAS [3], which
contrasts the inapproximability for the general case [5]. This makes consideration of the
geometric connection game attractive, and yields hope for significantly improved prop-
erties. In this paper, we present the following results for geometric connection games:

– The price of anarchy for geometric connection games with k players is k, even if we
have two terminals per player. This, unfortunately, is the same bound as for general
connection games [2].

– For games with 2 players each with 2 terminals, the price of stability is 1. The
equilibrium payment scheme assigns payments along an edge according to a con-
tinuous function. For cases, in which this is unreasonable, we split an edge into
small pieces, and each piece is bought completely by one player. Then a (1 + ε)-
approximate Nash equilibrium can be achieved, for any ε > 0.

– One cannot obtain results as above for more complicated games. Namely, for games
with three or more players and 2 terminals per player, these results cannot be
extended. There is a lower bound of

(
4
3 − ε

)
, for any ε > 0, on approximate

Nash equilibria purchasing the optimum network, which is slightly lower than the(
3
2 − ε

)
bound for general connection games in [2]. Thus, our result for geometric

games with 2 players and 2 terminals per player is tight.
– If players play the game iteratively with best-response deviations, then in games

with 2 players and 2 terminals per player the dynamics arrive at a Nash equilibrium
very quickly. Furthermore, the created network is a

√
2-approximation to the cost

of an optimum network.

The main difficulty when dealing with these geometric games is due to their inherent
continuous nature. Most of our results require specific geometric arguments and new
proof techniques that are fundamentally different from the ones previously used by
Anshelevich et al. [2] for general connection games. The development of these new
techniques is considered as an additional contribution of our paper.

Outline. Section 2 contains a formal definition of the geometric connection game, and
Section 3 presents our results on the price of anarchy. Section 4 describes the results
on the price of stability (Theorems 2, 3, and 5), and the analysis of the best-response
dynamics (Theorem 4). Missing proofs will be given in the full version of the paper.

2 The Model and Preliminaries

The geometric connection game is defined as follows. Let V be a set of nodes which
are points in the Euclidean plane. There are k non-cooperative players, each holding a
number of terminals located at a subset of nodes from V . Each player strives to con-
nect all of her terminals into a connected component. To achieve this a player offers
money to purchase segments in the plane. The cost of a segment equals its length in
the plane. Once the total amount of money offered by all players for a certain segment
exceeds its cost, the segment is considered bought. Bought segments can be used by
all players to connect their terminals, even if they contribute nothing to their costs. A
strategy of player i is a payment function pi that specifies how much she contributes
to each segment in the plane. A collection of strategies, one for each player, is called

170 Martin Hoefer and Piotr Krysta

a payment scheme p = (p1, . . . , pk). A Nash equilibrium is a payment scheme p, in
which no player i can connect her terminals at a lower cost by unilaterally reallocating
her payments and switching to another function p′i

1. We will denote the social optimum
solution, i.e., the minimum cost forest that connects the terminals of each player, by T ∗.
The subtree of T ∗ needed by player i to connect her terminals is denoted by T i.

Constructing a minimum cost network satisfying all connections is the geometric
Steiner forest problem. As the components of a Steiner forest are Steiner trees for a sub-
set of players, well-known properties of optimum geometric Steiner trees hold for T ∗.

Lemma 1. [10, 14] Any 2 adjacent edges in an optimal geometric Steiner tree connect
with an inner angle of at least 120 ◦.

Hence, every Steiner point of an optimal geometric Steiner tree has degree 3 and each
of the 3 edges meeting at it makes angles of 120 ◦ with the other two [10, 14].
Another powerful tool for the analysis of connection games is the notion of a connection
set that was the key ingredient to the analysis presented in [2].

Definition 1. A connection set S of player i is a subset of edges of T i, such that for
each connected component C in T ∗ \ S either (1◦) there is a terminal of i in C, or
(2◦) any player that has a terminal in C has all of its terminals in C.

Intuitively, after removing a connection set from T ∗ and reconnecting the terminals of
player i the terminals of all players will be connected in the resulting solution. As T ∗ is
the optimal solution, the maximum cost of any connection set S for player i is a lower
bound for the cost of any of her deviations. Connection sets in a game with 2 terminals
per player are easy to determine. Each T i forms a path inside T ∗, and two edges e, e′

belong to the same connection set for player i iff i ∈ {j ∈ {1, . . . , k} : e ∈ T j} =
{j′ ∈ {1, . . . , k} : e′ ∈ T j′}. We will mainly deploy geometric arguments and use
connection sets only to limit the number of cases to be examined.

3 The Price of Anarchy

Theorem 1. The price of anarchy for the geometric connection game with k players
and 2 terminals per player, is precisely k.

Proof. We have already argued in the introduction that the price of anarchy is at most
k. Let us show now that k is also a lower bound. At first we will somewhat generally
consider how a player in the geometric environment is motivated to deviate from a given
payment scheme. Suppose we are given a game with 2 terminals per player and a fea-
sible forest T , which satisfies the connection requirement for each player. Furthermore,
let p be a payment function, which specifies a payment for each player on each edge.
The next two Lemmas 2 and 3 follow directly from the Triangle Inequality.

Lemma 2. If the deviation for a player i from p includes an edge e �∈ T , this edge
is a straight line segment, with start and end either at a terminal or some other part
of T (possibly an interior point of some edge of T). It is located completely inside the
Euclidean convex hull of T .

1 An α-approximate Nash equilibrium is a payment scheme where each player may reduce her
costs by at most a factor of α by deviating.

Geometric Network Design with Selfish Agents 171

Using these observations we can specify some properties of Nash equilibria for geo-
metric connection games.

Lemma 3. In a Nash equilibrium of the geometric connection game for k players,
edges e1, e2 bought fully by one player are straight segments and meet with other, dif-
ferently purchased edges with an inner angle of at least 90 ◦. In the case of 2 terminals
per player e1 and e2 can only meet at a point if they have an inner angle of 180 ◦.

1,2 1,2

e

e

e1 3

2221 e

1,...,k 1,...,k

e

e

e

e

2

1

3

k

b)a)

ek−1

5

5

1

1

42

4

3

2

3

d)c)

x

t si i

y z

Fig. 1. (a),(b) Geometric games with maximum price of anarchy; (c),(d) Lower bound for approx-
imate Nash purchasing T ∗

Consider the game for 2 players and 2 terminals shown in Figure 1a. We have two
designated nodes, each containing one terminal of each player. Let e2 = e21 ∪ e22.
The payment scheme purchases T in the following way. Player 1 pays for e3 and e21.
Player 2 pays for e1 and e22. Let the costs be e1 = e3 = e21 = e22 = 1

2 . e1 and
e2 as well as e2 and e3 are orthogonal. The optimal solution in this network is the di-
rect connection between the terminals. The presented payment scheme, however, forms
a Nash equilibrium. Note that the necessary conditions of Lemma 3 are fulfilled. In
addition, no player can deviate by simply removing any payment from the network.
Lemma 2 restricts the attention to straight segments inside the rectangle, which is the
Euclidean hull of T . The argument is given for player 1 – it can be applied symmetri-
cally to player 2. We will consider all meaningful straight segments inside the convex
hull of T as deviations. Note that any deviation with both endpoints inside the same
edge e1, e21, etc. (or with endpoints in e21 and e22) and any segment between e1 and
e3 is unprofitable. Now consider a deviation d = (u, v) for player 1 connecting points
u ∈ e1 and v ∈ e22, which are the two segments paid for by player 2. Suppose d �= e21
then |d| > 1

2 . Using d, however, player 1 can save only a cost of 1
2 by dropping e21.

172 Martin Hoefer and Piotr Krysta

If u ∈ e3 and v ∈ e21, then d connects segments purchased by player 1. Suppose she
defects to such an edge. Let ed

3 be the part of e3 inside the cycle introduced by d in T
(ed

21 accordingly). Then with the Phythagorean Theorem and |ed
3|, |ed

21| ≤ 1
2 the lower

bound |d| ≥ |ed
21|+ 1

2 ≥ |ed
3|+ |ed

21| holds, so d is not profitable for player 1. Hence, all
edges player 1 would consider for a deviation are unprofitable. With the symmetric ar-
gument for player 2 it follows that the payment scheme represents a Nash equilibrium.
Since the optimum solution is half of the cost of T , the theorem follows for games with
2 players and 2 terminals per player.
In a network with more players assume that each player has one terminal at each of
the two designated nodes. The nodes are separated by a distance of 1. Construct a path
between the nodes, which approximates a cycle with k straight edges of cost 1 each (see
Figure 1b). Each player i is assigned to pay for one edge ei of cost 1. Observe that the
necessary conditions of Lemma 3 are fulfilled. Now consider the deviations for a player
i. She will neither consider segments that cost more than 1 nor segments that do not
allow her to save on ei. Of the remaining deviations none will yield any profit, because
the cyclic structure makes the interior angles between the edges amount to at least 90 ◦.
Any deviation d = (u, v) from a point u ∈ ei to any other point v will be longer than
the corresponding part ed

i that it allows to save. As the optimum solution is the direct
connection of cost 1, Theorem 1 follows. ��

This result is contrasted with a result on the price of stability, i.e., the cost of the best
Nash equilibrium over the cost of the optimum network.

4 The Price of Stability

Theorem 2. The price of stability for geometric connection games with 2 players and
2 terminals per player is 1.

Proof. We will consider all different games classifying them by the structure of their
optimum solution network. The networks in Figure 2 depict the different structures of
T ∗ we consider. In each of them there is an edge e3 ∈ T 1 and e3 ∈ T 2. If there is
no such edge, the solution is composed of one connection set per player, and a Nash
equilibrium can be derived by assigning each player to purchase her subtree T i.

Type 21 In this case the network is a path (see Figure 2a). The following Lemma 4
describes the structure of meaningful deviations. Nash equilibrium requires that every-
body contributes only inside her subtree. That means e1 is paid by player 1 and e2 by
player 2. The length of every segment lower bounds the deviation costs (by the connec-
tion set property)–so no deviation between points of the same segment is meaningful.
Furthermore, from the above we know that only straight segments inside the convex
hull need to be considered. Hence, the only cases left are described in the lemma below.

Lemma 4. Given an optimal network T of Type 21 and a payment function p that
assigns player i only to pay for edges in T i, the only deviations for player 1 are straight
segments from a point u ∈ e1 to a point v ∈ e3, player 2 only from u ∈ e2 to v ∈ e3.

Geometric Network Design with Selfish Agents 173

1

2

ee

e3

21

a) b)

2

e

e2

3

e12 1

1

1,2

1
2

c)

e e

e

11 22

21e

3

1

e

e
e

e

d)

1

11

21
3

12

e22

2
2

2

1

e21

Fig. 2. Network types for T ∗

Proof. (sketch) We analyze the payments of player 1. The claim follows for player 2 by
symmetry. By Lemma 2 and the fact that the segments of T ∗ are straight we can restrict
the possible deviations to 3 possible cases of straight segments d = (u, v): (1) u ∈ e1,
v ∈ e3; (2) u ∈ e1, v ∈ e2; (3) u ∈ e2, v ∈ e3. Cases 2 and 3 can both be disregarded,
because either they allow a player to deviate from (parts of) only one connection set, or
they can be decomposed into or bounded by deviations from Case 1. ��

An adjusted version of Lemma 4 will be true for most of the cases we consider in the
remaining proof (cf. Lemmas 5, 6 and 7). Proofs of these lemmas will be omitted.
By the Cosine Theorem the deviation lengths between two adjacent segments are mini-
mized if the angle between segments is minimized, i.e., amounts to 120 ◦ (cf. Lemma 1).
Hence, for the remaining proof we will use an
Angle Assumption: all the edges connecting in the optimal solution make inner angles
of exactly 120 ◦.
The following payment scheme forms a Nash equilibrium. Let e3,1 be a half subsegment
of e3 connecting the center of e3 with the terminal of player 1. Similarly, e3,2 is the other
half subsegment of e3, connecting the center of e3 with the terminal of player 2. Then,
for player 1, p1(e1) = |e1|, p1(e3,1) = |e3,1|, and p1 = 0 elsewhere. For player 2,
p2(e2) = |e2|, p2(e3,2) = |e3,2|, and p2 = 0 elsewhere.
Note first that the necessary conditions from Lemma 3 are fulfilled. Consider a deviation
d = (u, v) in Lemma 4 for player 1 with u ∈ e1 and v ∈ e3. As the angle between e1
and e3 is exactly 120 ◦, the length (and cost) of this segment by the Cosine Theorem is

|d| =
√
|ed

1|2 + |ed
3|2 + |ed

1||ed
3|,

174 Martin Hoefer and Piotr Krysta

where ed
1 and ed

3 are the segments of e1 and e3 in the cycle in T + d. The payment of
player 1 that can be removed when buying d is p1(ed

1) + p1(ed
3) = |ed

1| + max(|ed
3| −

|e3|
2 , 0). Once v lies in e3,2 paid by player 2, |ed

3| <
|e3|
2 and the deviation cannot be

cheaper than |ed
1|. Otherwise when |ed

3| ≥
|e3|
2 we can see that |ed

1||e3| + |ed
3||e3| −

|ed
1||ed

3| ≥
|e3|2

4 . Then it follows that

|ed
1|2 + |ed

3|2 + |ed
1||ed

3| ≥ |ed
1|2 + |ed

3|2 +
|e3|2

4
− |ed

1||e3| − |ed
3||e3|+ 2|ed

1||ed
3|.

Finally we get |d| ≥ |ed
1| + |ed

3| −
|e3|
2 = p1(ed

1) + p1(ed
3) and see that player 1 has

no way of improving her payments. By symmetry the same is true for player 2 and the
proof for this network type is completed. ��

Type 22 This network type consists of a star, which has a Steiner vertex in the middle
and three leaves containing the terminals of the players (see Figure 2b).

Lemma 5. Given an optimal network T of Type 22 and a payment function p that
assigns player i only to pay for edges in T i, the only deviations for player 1 are straight
segments from a point u ∈ e1 to a point v ∈ e3, player 2 only from u ∈ e2 to v ∈ e3.

The following is a Nash equilibrium payment scheme. Let e′3 = (u, v), with u, v ∈ e3,
be any subsegment of e3, where u, v are two interior points on e3. Then, in the strategy

for player 1, p1(e1) = |e1| and p1(e′3) = |e′
3|
2 for any such subsegment e′3 of e3. For

player 2, p2(e2) = |e2| and p2(e′3) = p1(e′3) for any subsegment e′3 of e3. For any other
segments in the plane, p1 = 0 and p2 = 0. Consider a deviation d = (u, v) for player 1
with u ∈ e1 and v ∈ e3. The amount of payment player 1 can save with this edge is

|ed
1|+

|ed
3|
2

=

√
|ed

1|2 + |ed
1||ed

3|+
|ed

3|2
4

=

√
|d|2 − 3|ed

3|2
4

< |d|.

Hence, the deviation is more costly than the possible cost saving for player 1. The proof
of a strict Nash for this type follows from the symmetric argument for player 2. ��

Type 23 In this network type we have two Steiner points and the terminals of a player
are located on different sides of the line through e3 (see Figure 2c). The connection set
for player i formed by edges that are only in T i now consist of two edges ei1 and ei2.

Lemma 6. Suppose we have Type 23 optimum Steiner network. Under the same as-
sumptions as of Lemma 4 the only deviations player 1 will consider in this game are
straight edges from a point u ∈ e11 or a point u ∈ e12 to a point v ∈ e3, player 2 only
from u ∈ e21 or u ∈ e22 to v ∈ e3.

We construct an equilibrium payment as follows. For player 1, p1(e11) = |e11|, p1(e12)
= |e12| and p1(e′3) = |e′

3|
2 with e′3 being any subsegment of e3, as for the scheme of

Type 22 above. For player 2, p2(e21) = |e21|, p2(e22) = |e22| and p2(e′3) = p1(e′3).
Otherwise, p1 = 0 and p2 = 0. For all possible deviations, the cost is greater than the
contribution to T ∗ a player could save. This follows with the proof of Type 22. ��

Geometric Network Design with Selfish Agents 175

Type 24 The last network type considered is the one including two Steiner points where
the terminals of a player are located on the same side of the line through e3 (see Figure
2d). Here we get some additional deviations that complicate the analysis.

Lemma 7. Given a network T of Type 24 and a payment function that assigns payments
to player i only in her subtree T i. Then the only deviations player 1 considers are
straight edges between u ∈ e11 or u ∈ e12 and v ∈ e3 as well as the direct connection
between her terminals. For player 2 the symmetric claim holds.

To present the payment function, we scale our game such that e3 has length 1. We now
treat e3 as an interval [0, 1] and introduce a function f(x, y) ∈ [0, 1], 0 ≤ x ≤ y ≤ 1
that specifies the fraction of the cost player 1 pays in the interval [x, y] of e3, i.e., the
payment of player 1 on [x, y] is (y − x)f(x, y). Let, w.l.o.g., the Steiner point of e11
be point 0 of e3 and the other Steiner point be point 1. We now have to ensure that for
every deviation from e11 or e12 to a point y, 1 − y ∈ e3 the savings on the segments
do not exceed the cost of the deviation. This results in the bounds |e11| + yf(0, y) ≤√
|e11|2 + y2 + |e11|y and |e12| + yf(1 − y, 1) ≤

√
|e12|2 + y2 + |e12|y. For player

2 the symmetric requirements lead to similar bounds with |e21| and |e22|. Furthermore,
we can derive bounds from the direct connections between the terminals. They will
be denoted as d1 and d2 for players 1 and 2, respectively. With the optimality of our
network and |e3| = 1 we have

|d1|+ |d2| ≥ |e11|+ |e12|+ |e21|+ |e22|+ 1. (1)

As we strive for a Nash payment scheme, d1 and d2 are not cheaper than the contribution
of the players, hence |d1| ≥ |e11| + |e12| + f(0, 1) and |d2| ≥ |e21| + |e22| + 1 −
f(0, 1). The nature of these edges implies that their bounds only apply to the payment
on the whole segment e3, i.e., they do not restrict the partition of the payment inside
the segment. Using a function h(x) =

√
x2 + x+ 1− x and solving for f the previous

bounds can be turned into

|e21|+ |e22|+ 1− |d2| ≤ f(0, 1) ≤ |d1| − |e11| − |e12|, (2)

1− h

(
|e21|
y

)
≤ f(0, y) ≤ h

(
|e11|
y

)
, (3)

1− h

(
|e22|
y

)
≤ f(1− y, 1) ≤ h

(
|e12|
y

)
. (4)

Now consider the behavior of h(x) in (3) and (4) when altering the constants |e11|
and |e12|. We observe that for the derivative h′(x) < 0 holds. The function is monotone
decreasing in x, and increasing |e11|, |e12|, |e21|, |e22| tightens lower and upper bounds.
So we will only consider deviations from terminals to e3, as this results in the strongest
bounds for the Nash payments.

We also require that payments can be feasibly split to subintervals. The payment of
player 1 on an interval [x, y] has to be the sum of the payments on the two subintervals
[x, v] and [v, y] for any v ∈ [x, y]. Using this property, we can define f(x, y) by using
the functions f(0, y) and f(1− y, 1). Namely, for 0 ≤ x ≤ y ≤ 1, we have:

176 Martin Hoefer and Piotr Krysta

f(x, y) =
yf(0, y)− xf(0, x)

y − x
, f(1− y, 1− x) =

yf(1− y, 1)− xf(1− x, 1)
y − x

.

(5)
In particular, we will focus on symmetric payment functions, i.e., we will assume that
f(0, y) = f(1−y, 1) for any y ∈ [0, 1]. This also implies that f(x, y) = f(1−y, 1−x),
where 0 ≤ x ≤ y ≤ 1. For the rest of the proof we will provide a feasible function
f(0, y), which obviously must obey all bounds (2)-(4). First, we pay some attention to
the feasibility of the bounds.

Lemma 8. The bounds (2)–(4) do not imply a contradiction. In particular the interior
bounds (3), (4) can be fulfilled by f(0, y) = 1

2 .

Proof. We already know that the upper bound function h(x) is monotone decreasing in
x. We observe that for any x, x′ > 0

lim
x→∞

(1− h(x)) =
1
2

= lim
x→∞

h(x), and 1− h(x) ≤ 1
2
≤ h(x′).

This proves the second part of the lemma. Regarding the first part, a negation of the
bounds leads to a contradiction with the Triangle Inequality with d1 and d2. ��

Lemma 8 supports our proofs for the previous network Types 23 and 22. The function
used is the linear function f(x, y) = 1

2 and satisfies bounds (3), (4), which are the only
ones present. For Type 24 network a solution is possible as well. In the easiest case if

|e21|+ |e22|+ 1− |d2| ≤
1
2
≤ |d1| − |e11| − |e12| (6)

holds, f(0, y) = f(x, y) = 1
2 again gives a Nash equilibrium payment function. Hence,

for the remainder of the proof we will assume (6) is not valid. A solution for this more
complicated situation is presented in the next lemma.

Lemma 9. There is a constant t and one of the two functions

f1(0, y) = h (t/y) or f2(0, y) = 1− h (t/y)

that allow us to construct a payment scheme forming a Nash equilibrium in a network
of Type 24.

Proof. In the first case we assume that r = |e21|+ |e22|+ 1 − |d2| > 1
2 . Then f(0, y)

must behave like the upper bounds and achieve a value of r for y = 1, so f1(0, y) =
h(t/y) with t = 1−r2

2r−1 .
In the second case we assume r = |d1|−|e11|−|e12| < 1

2 . Then f(0, y) must behave
like the lower bounds and achieves a value of r for y = 1, so f2(0, y) = 1 − h(t/y)
with t = 1−r2

2r−1 − 1. To achieve a consistent definition of f(x, y) we define f(1, 1) =
f(0, 0) := limy→0 f(0, y) = 1

2 .
Then, with Lemma 8 and the monotonicity of h(x) we see that the functions f1, f2

obey bounds (2)–(4) for any y ∈ [0, 1]. Lemma 8 says that the upper bound functions
of (3) and (4) map only to [0.5, 1], and the lower bound functions map only to [0, 0.5].

Geometric Network Design with Selfish Agents 177

Since f1 maps only to [0.5, 1], all lower bounds are feasible. The upper bounds for f1 are
feasible by the monotonicity of h(·) – the constants t in f1 are smaller than appropriate
constants in the upper bounds. Similarly for f2. Functions f1 and f2 allow to construct
a Nash equilibrium payment function. If the payment of player 1 is given by f1 (f2),
then the payment of player 2 is given by a function f2 (f1) with the same constant r as
for player 1. This concludes the proofs of Lemma 9 and Theorem 2. ��

The proof of the theorem requires that an edge e3 is purchased such that the payments
of players on the intervals follow a continuous differentiable function. This is a quite
strong and very unrealistic property. We present two possible alternatives to avoid this.
First a discretization of the payment scheme on e3 is considered such that subsegments
of the network are assigned to be purchased completely by single players. It slightly in-
creases the incentives to deviate. Second we let players play the game according to best-
response strategies. This will lead into a low-cost strict Nash equilibrium. Full proofs
are omitted due to space constraints. A divisible payment scheme p = (p1, . . . , pk) for
a geometric connection game is a payment scheme such that there is a partitionP of the
plane into segments with pi(e) = 0 or pi(e) = |e| for all i = 1, . . . , k and all e ∈ P .

Theorem 3. Given any ε > 0 and any geometric connection game with 2 players and
2 terminals per player, there exists a divisible payment scheme, which is a (1 + ε)-
approximate Nash equilibrium as cheap as the optimum solution.

Theorem 4. In any geometric connection game with 2 players and 2 terminals per
player, there exists a Nash equilibrium generated by at most 3 steps of the best-response
dynamics, which is a

√
2-approximation to the optimum solution.

The results cannot be generalized to games with more players. For games with 3 or
more players there is a constant lower bound on approximate Nash equilibria.

Theorem 5. For any k ≥ 3, ε > 0 there exists a game with k players and 2 terminals
per player, for which every optimum solution is at least a (4k−2

3k−1 − ε)-approximate Nash
equilibrium.

Proof. In the class of games delivering the bound there is a circle of terminals with unit
distance, and the optimal solution is a minimum spanning tree of cost 2k − 1. In the
geometric environment edges crossing the interior of the circle are not of interest, be-
cause their cost is always larger than 1. So no player will consider them as a reasonable
alternative. Consider the game in Figure 1c, in which every edge of T ∗ has cost 1. T ∗ is
depicted with an additional edge of cost 1, which will be the only deviation edge con-
sidered. The situation for a player i can be simplified to the view of Figure 1d. Note that
for players 1 and k, z = 0 and y = 0, respectively. For every player there are at least
two ways to deviate, either she just contributes to one half of the cycle by paying part x
of this half, or she completes the other half of the cycle by paying y+ z+ 1, where y, z
are the parts she pays on the depicted portions of the cycle. Thus her deviation factor

will be at least max
{

x+y+z
x , x+y+z

y+z+1

}
. Minimizing this expression with x = y+ z+ 1

there is at least one player, who pays for x+ y+ z = 2x−1 ≥ 2k−1
k . Solving for x and

combining with x = y + z + 1 results in: x+y+z
x = 2x−1

x ≥ 4k−2
3k−1 . Now move the ter-

minals s1 and tk a little further to the outside keeping the lengths of the edges (s1, s2)

178 Martin Hoefer and Piotr Krysta

and (tk−1, tk) to 1, but increasing the length of (s1, tk) to length (1 + ε). T ∗ will then

be the unique optimal solution, and the factor becomes at least
(

4k−2
3k−1 − ε

)
. ��

References

1. E. Anshelevich, A. Dasgupta, J. Kleinberg, É. Tardos, T. Wexler, and T. Roughgarden. The
price of stability for network design with fair cost allocation. In Proceedings of the 45th
Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 295–304,
2004.

2. E. Anshelevich, A. Dasgupta, É. Tardos, and T. Wexler. Near-optimal network design with
selfish agents. In Proceedings of the 35th Annual Symposium on Theory of Computing
(STOC), pages 511–520, 2003.

3. S. Arora. Polynomial time approximation schemes for Euclidean traveling salesman and
other geometric problems. Journal of the ACM, 45(5):753–782, 1998.

4. V. Bala and S. Goyal. A non-cooperative model of network formation. Econometrica,
68:1181–1229, 2000.

5. M. Chlebı́k and J. Chlebı́ková. Approximation hardness of the Steiner tree problem in graphs.
In Proceedings of the 8th Scandinavian Workshop on Algorithm Theory (SWAT), pages 170–
179, 2002.

6. A. Czumaj, P. Krysta, and B. Vöcking. Selfish traffic allocation for server farms. In Pro-
ceedings of the 34th Annual ACM Symposium on the Theory of Computing (STOC), pages
287–296, 2002.

7. M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational Geometry
- Algorithms and Applications. Springer Verlag, 1997.

8. D. Dutta, A. Goel, and J. Heidemann. Oblivious AQM and Nash equilibrium. In Proceedings
of the 22nd Annual Joint Conference of the IEEE Computer and Communications Societies
(INFOCOM), 2003.

9. A. Fabrikant, A. Luthera, E. Maneva, C. Papadimitriou, and S. Shenker. On a network cre-
ation game. In Proceedings of the 22nd Annual ACM Symposium on Principles of Distributed
Computing (PODC), pages 347–351, 2003.

10. E. Gilbert and H. Pollak. Steiner Minimal Trees. SIAM Journal on Applied Mathematics,
16:1–29, 1968.

11. M. Goemams and D. Williamson. A general approximation technique for constrained forest
problems. SIAM Journal on Computing, 24(2):296–317, 1995.

12. H. Heller and S. Sarangi. Nash networks with heterogeneous agents. Technical Report Work-
ing Paper Series, E-2001-1, Virginia Tech, 2001.

13. E. Koutsoupias and C. Papadimitriou. Worst-case equilibria. In Proceedings of the 16th
Annual Symposium on Theoretical Aspects of Computer Science (STACS), pages 404–413,
1999.

14. Z. Melzak. On the problem of Steiner. Canadian Mathematical Bulletin, 4:143–148, 1961.
15. G. Robins and A. Zelikovsky. Improved Steiner tree approximation in graphs. In Proceedings

of the 10th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 770–779,
2000.

16. T. Roughgarden and É.Tardos. How bad is selfish routing? Journal of the ACM, 49(2):236–
259, 2002.

17. A. Schulz and N. Stier Moses. Selfish routing in capacitated networks. Mathematics of Op-
erations Research, 29(4):961–976, 2004.

Bicriteria Network Design
via Iterative Rounding

Piotr Krysta�

Department of Computer Science, Dortmund University
Baroper Str. 301, 44221 Dortmund, Germany

piotr.krysta@cs.uni-dortmund.de

Abstract. We study the edge-connectivity survivable network design
problem with an additional linear budget constraint. We give a strongly
polynomial time (3, 3)-approximation algorithm for this problem, by ex-
tending a linear programming based technique of iterative rounding. Pre-
viously, a (4, 4)-approximation algorithm for this problem was known.
The running time of this previous algorithm is not strongly polynomial.

1 Introduction

Let G = (V,E) be an undirected multi-graph with cost ce ≥ 0 on each edge
e ∈ E. For S ⊂ V and E′ ⊆ E, we denote by δG′(S) the set of edges with one
end in S and the other end in V \ S in the graph G′ = (V,E′). We omit the
subscript G′ in δG′(S), if E′ = E or if E′ is clear from the context.

Edge-Connectivity Survivable Network Design Problem (EC-SNDP) is, given
integer requirements ruv for u, v ∈ V , u �= v, to find a minimum-cost subgraph,
with respect to costs ce, containing for any u, v at least ruv edge-disjoint u-
v paths. EC-SNDP can be formulated as the following integer linear program
(ILP), which we will call (IP1):

min
∑

e∈E cexe

s.t.
∑

e∈δG(S) xe ≥ f(S) ∀S ⊆ V (1)

xe ∈ {0, 1} ∀e ∈ E, (2)

where f(S) = max{ruv : u ∈ S, v �∈ S}.
The defined problem generalizes many known graph optimization problems,

e.g., the Steiner tree problem [10], Steiner forest problem [1, 3], minimum-cost
k-edge-connected spanning subgraph problem [5], and others. In a breakthrough
paper, Jain [4] has designed a 2-approximation algorithm for EC-SNDP by em-
ploying a technique of iterative rounding.

� The author is supported by DFG grant Kr 2332/1-1 within Emmy Noether program.
This work has been partially done while visiting the Department of Computer Science
of RUTGERS–The State University of New Jersey, Camden, NJ, U.S.A., May 2004.

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 179–187, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

180 Piotr Krysta

When designing networks it is often natural to seek for a cheap network as in
EC-SNDP that simultaneously optimizes some additional linear cost objective–
a so-called budget constrained problem. Such bicriteria optimization problems
have been studied by many researchers, see, e.g., [2, 6, 8, 9].

We now define a bicriteria version of EC-SNDP. Given an additional cost
(length) le ≥ 0 on each e ∈ E, and a number L > 0, we consider EC-SNDP with
an additional budget constraint,

∑
e∈E lexe ≤ L, called Constr EC-SNDP.

Let now opt(G) denote the cost of an optimum solution to a given instance
G of Constr EC-SNDP, e.g., the solution with minimum cost with respect to
c among all solutions with length at most L. An (α, β)-approximation algorithm
for Constr EC-SNDP is a polynomial time algorithm that always finds a
solution G′ to the instance G of this problem, such that G′ has cost at most
α · opt(G) with respect to c, and such that G′ has length at most β · L.

Results of Marathe et al. [6] and the 2-approximation algorithm for EC-SNDP
by Jain [4] imply a (4, 4)-approximation algorithm for Constr EC-SNDP. This
approach uses a parametric binary search and the 2-approximation algorithm as
a subroutine. Thus, the running time of the resulting (4, 4)-approximation algo-
rithm is not strongly polynomial. We extend the technique of iterative rounding
and obtain an improved (3, 3)-approximation algorithm for Constr EC-SNDP.
Our algorithm additionally has strongly polynomial running time.

2 A Polyhedral Theorem

This section contains the main technical ingredient of our method. To prove it,
i.e., to prove Theorem 2, we need some new notions and notations – we will
mostly rely on Jain’s paper [4] in this respect. Nevertheless, we will define below
the most important notions from [4]. The proof below also requires some basic
knowledge in linear programming and polyhedral combinatorics, see, e.g., [11].
A set function f : 2V → Z is weakly supermodular if:

1. f(V) = 0, and
2. For every A,B ⊆ V at least one of the following holds:

(a) f(A) + f(B) ≤ f(A \B) + f(B \A),
(b) f(A) + f(B) ≤ f(A ∩B) + f(A ∪B).

We note, that the specific set function f(S) = max{ruv : u ∈ S, v �∈ S} defined
before for EC-SNDP is weakly supermodular, see [4]. Let Π = Π(E) correspond
to constraints (1)–(2), and Π ′ be the linear programming relaxation of Π , that
is, Π ′ is Π with constraints (2) replaced by xe ∈ [0, 1] ∀e ∈ E. Thus, Π ′ is the
EC-SNDP polytope. Given an x ∈ Π ′, i.e., a feasible fractional solution to the
EC-SNDP relaxation Π ′ and a set S ⊆ V , we define x(δ(S)) =

∑
e∈δ(S) xe. For

a subset S ⊆ V , let x(S) ∈ {0, 1}|E| be the 0-1 vector of the coefficients in the
left-hand-side in constraint (1). Having fixed an x ∈ Π ′ and S ⊆ V , we say that
set S (or the corresponding constraint (1)) is tight if x(δ(S)) = f(S). Given a
family of sets T ⊆ 2V , let sp(T) denote the vector space spanned by the vectors
{x(S) : S ∈ T }. Finally, we say that two sets A,B ⊆ V cross if none of the sets

Bicriteria Network Design via Iterative Rounding 181

A \B, B \A and A∩B is empty. A family of sets is laminar if no two sets in it
cross. Each given edge e = (u, v) ∈ E has two endpoints, denoted by eu and ev.
Since we have |E| edges, we have exactly 2 · |E| endpoints.

2.1 A First Polyhedral Theorem

We first show that even without going into the combinatorial structure of the
Constr EC-SNDP polytope we are able to easily obtain a (4, 4)-approxima-
tion algorithm with strongly polynomial running time. Namely, we shall prove
the following fact.

Theorem 1. Let x∗ be any extreme point of the EC-SNDP polytope defined by
a weakly supermodular function f with an additional linear constraint lin. Then
there is an index e ∈ E such that x∗e ≥ 1/4.

Proof. Let x∗ be a given extreme point of the polytope as in the theorem. We
will use the following well known characterization of extreme points (see, e.g.,
page 104 in the book by Schrijver [11]).

Lemma 1. Let P = {x ∈ !m : Ax = a,Dx ≤ d} be a polytope defined by a
system Ax = a,Dx ≤ d of linear equations and inequalities. Then x̄ ∈ P is
an extreme point of P if and only if there exists a set of m equations and tight
inequalities from the system defining P , such that x̄ is the unique solution to the
corresponding equation system.

Thus, x∗ is determined by |E| = m linearly independent equations, say S∗,
from the system Π ′ ∪ {lin}. (Let us recall, that Π ′ corresponds to constraints
(1)–(2), with constraints (2) replaced by xe ∈ [0, 1] ∀e ∈ E.)

Assume first that constraint lin is present as a tight equation in system S∗. If
we skip the equation corresponding to constraint lin from S∗, we are remaining
with a new system, say S∗

1 . Since S∗
1 has m− 1 linearly independent equations,

it defines a 1-dimensional affine subspace, say F , of the polytope Π ′. We know
that x∗ ∈ F . Therefore, x∗ belongs to the intersection of F and the hyperplane
defined by constraint lin. Since F is a 1-dimensional face of polytope Π ′, we
can decompose x∗ into a convex combination of at most 2 extreme points of
polytope Π ′ (this fact basically follows from the theorem of Carathéodory, and
the fact that any point in a polytope is a convex combination of its vertices, see
[11]). If constraint lin is not present as a tight equation in system S∗, then x∗ is
an extreme point of the polytope Π ′ itself. Thus, we have shown the following
lemma.

Lemma 2. Any extreme point x∗ of the EC-SNDP polytope defined by a weakly
supermodular function f with an additional linear constraint lin can be expressed
as a convex combination of at most 2 extreme points of the EC-SNDP polytope
without constraint lin.

But we know by the result of Jain [4], that any extreme point of polytope
Π ′ has at least one entry of at least 1/2. We will use this fact to proceed. By

182 Piotr Krysta

Lemma 2, x∗ = λx1 + (1− λ)x2, where λ ∈ [0, 1], and x1, x2 are extreme points
of the polytope Π ′. Then, either λ ≥ 1/2 or 1− λ ≥ 1/2. Suppose without loss
of generality that λ ≥ 1/2. From the result of Jain mentioned above, we know
that there exists an e ∈ E, with x1

e ≥ 1/2. Therefore, we obtain that

x∗e = λx1
e + (1− λ)x2

e ≥ λx1
e ≥ 1/4.

This concludes the proof of Theorem 1. ��

2.2 An Improved Polyhedral Theorem

We will now show how to improve the result of Theorem 1 by exploring the
combinatorial structure of the Constr EC-SNDP polytope.

Theorem 2. Let x∗ be any extreme point of the EC-SNDP polytope defined by
a weakly supermodular function f with an additional linear constraint lin. Then
there is an index e ∈ E such that x∗e ≥ 1/3.

Proof. This proof builds on some arguments that have been already used by Jain
[4]. We assume w.l.o.g. that for any e ∈ E, 0 < x∗e < 1. Otherwise, we either can
project the polytope onto an x∗e = 0 or we are done if x∗e = 1. Let S∗ be a system
defining the extreme point x∗, see Lemma 1. If constraint lin is not tight, then
x∗ is an extreme point of the EC-SNDP polytope, so by result of Jain [4], there
exists an e ∈ E such that x∗e ≥ 1/2, and we are done.

Assume constraint lin is tight for x∗ and it is present as a tight equation in
the system S∗. Let T be a family of all tight sets for x∗, i.e.,

T = {S ⊂ V : x∗(δ(S)) = f(S)}.

Let L ⊆ T be a maximal laminar subfamily of T . By Lemma 4.2 in [4], sp(L) =
sp(T). We claim that the vector space sp(T) has dimension ≥ |E| − 1 = m− 1.
This is clear, since

dim(sp(T) ∪ xlin) = m,

where xlin is the vector of the coefficients of the left-hand-side of lin. If now
dim(sp(T)) = m then by Jain’s [4] theorem there is an e with x∗e ≥ 1/2, so the
theorem holds. So assume dim(sp(T)) = m− 1. Since sp(L) = sp(T), there is a
basis {x(S) : S ∈ B} of the vector space sp(T), with B ⊆ L and |B| = m − 1.
We also notice that for each S ∈ B we have f(S) ≥ 1. This fact follows by a
contradiction. Namely, suppose that f(S) < 0, then S cannot be tight; also if
f(S) = 0, then x(S) = 0, which gives a contradiction to linear independence.
The reasoning above leads therefore to the following lemma.

Lemma 3. There is a laminar family B of tight sets, such that |B| = m − 1,
vectors x(S), S ∈ B are linearly independent, and ∀S ∈ B, f(S) ≥ 1.

We represent the laminar family B as a directed forest as follows. The node
set of the forest is B, and there is an edge from C ∈ B to R ∈ B if R is the
smallest set containing C. We say that R is a parent of C and C is a child of
R. A parent-less node is called a root, and a child-less node is called a leaf. We
prove now the following lemma that will imply the theorem.

Bicriteria Network Design via Iterative Rounding 183

Lemma 4. Laminar family B contains at least one set S with |δ(S)| ≤ 3.

Proof. Assume towards a contradiction that for any set S ∈ B we have |δ(S)| ≥ 4.
We show a contradiction by distributing the 2|E| = 2m endpoints to the m− 1
nodes of the forest representing the laminar family B. In this distribution, each
internal node of a subtree gets at least 2 endpoints, and the root gets at least
4 endpoints. This is true for all subtrees of the forest that are leaves: each such
leaf S is crossed by at least 4 edges. Induction step is the same as in the proof
of Lemma 4.5 in [4], and we present it here for completeness.

Consider a subtree rooted at R. Suppose first R has two or more children.
By the induction hypothesis, each of those children gets at least 4 endpoints,
and each of their descendants gets at least 2 endpoints. We will now redistribute
these endpoints. Root R borrows two endpoints from each of its children – thus
getting at least 4 endpoints. Hence, each descendant of R will still have at least
2 endpoints, and we are done in this case. Assume now, that R has exactly one
child, say C. By the induction hypothesis, C gets at least 4 endpoints, and each
of its descendants gets at least 2 endpoints. We now borrow two endpoints from
C and assign them to R. If R had two more endpoints on its own, i.e., endpoints
which were incident to R, the induction step follows. Thus, the only case that is
left is to assume that R has at most one endpoint incident to it.

Since x(R) and x(C) are two distinct vectors, there is at least one edge
which crosses C but not R, or else crosses R but not C. In both cases there is an
endpoint incident to R. By our assumption R has at most one endpoint incident
to it, and so R has exactly one endpoint incident to it.

The value xe of the edge giving one endpoint incident to R is the difference
between the requirements of R and C. This is an integer, but by our assumption
xe is strictly fractional – a contradiction. This proves the induction step.

If the forest has at least two roots, we get a contradiction, since the number
of endpoints is 2m, but by the distribution it is at least 2(m− 1) + 4 = 2m+ 2.

Thus, we assume that the forest has exactly one root. In this case the forest
is just a tree. We know that after the distribution the (unique) root of the tree
has got 4 endpoints. We observe that the root corresponds to a set R of vertices
of the original graph, such that R contains every other set in the laminar family
B (by the uniqueness of the root). But by our assumption R must be crossed by
at least 4 edges. This means that there are at least 4 endpoints (corresponding
to the ends of these 4 edges that are outside R), and we know that these four
endpoints were not considered so far in the distribution (since they are not
contained in the tree). Therefore we can assign these 4 additional endpoints to
the root R. Thus the root gets at least 8 endpoints. This means that the number
of endpoints is at least 2(m− 1) + 6 = 2m+ 4. Contradiction. This finishes the
proof of Lemma 4, and the proof of Theorem 2, as well. ��

3 The Algorithm

Let G = (V,E) be a given undirected multigraph, with a cost function c : E →
!+ and a length function l : E → !+. Let L be a given positive number. Assume

184 Piotr Krysta

that problem IP (Π) is to find a minimum-cost (with respect to c) subgraph G′

of G such that (1) and (2) hold, and cost of G′ with respect to l is at most L.
Let Π = Π(E) correspond to constraints (1)–(2). We can formulate IP (Π) as:

min
∑

e∈E cexe (3)
s.t. x ∈ Π(E) (4)∑

e∈E lexe ≤ L (5)
xe ∈ {0, 1} ∀e ∈ E. (6)

Let (LP) denote the LP relaxation of IP (Π), that is, (LP) corresponds to
(3)–(6) with (6) replaced by xe ∈ [0, 1] ∀e ∈ E.

The algorithm is recursive. In the first step it solves the (LP) optimally,
producing a basic solution x̄ to (LP). By Theorem 2 there exists e ∈ E such
that x̄e ≥ 1

3 . Let E(1
3) = {e ∈ E : x̄e ≥ 1

3}, and optLP denote the value of an
optimal fractional solution to (LP).

The algorithm rounds each x̄e, for e ∈ E(1
3), to one: E(1

3) is a part of the
solution. Then the algorithm recursively solves the following integer program,
called (IP′).

min
∑

e∈E\E(1
3) cexe

s.t. x ∈ Π(E \ E(1
3))∑

e∈E\E(1
3) lexe ≤ L−

∑
e∈E(1

3) lex̄e

xe ∈ {0, 1} ∀e ∈ E \ E(1
3),

where Π(E \ E(1
3)) corresponds to constraints (1)–(2) with E replaced by E \

E(1
3), and constraints (1) replaced by∑

e∈δG′ (S)

xe ≥ f(S)− |E(1/3) ∩ δG(S)| ∀S ⊆ V, where G′ = (V,E \ E(1/3)).

We summarize our algorithm for Constr EC-SNDP in Figure 1 below.

Algorithm IterativeRound(E, L):
1 if E has constant size then solve E optimally and output its solution;
2 solve (LP) optimally; let x̄ ∈ [0, 1]|E| be the resulting basic solution;
3 E(1

3
) := {e ∈ E : x̄e ≥ 1

3
};

4 output E(1
3
) ∪ IterativeRound(E \ E(1

3
), L −∑

e∈E(1
3)

lex̄e).

Fig. 1. The recursive iterative rounding algorithm for Constr EC-SNDP.

We would like to note here that if we use in the algorithm above Theorem 1
instead of Theorem 2 this would obviously lead to a weaker approximation algo-
rithm for Constr EC-SNDP. However, the arguments in the proof of Theorem
1 may prove useful – see Section 5.

Bicriteria Network Design via Iterative Rounding 185

4 The Analysis

We will first prove the following fact about all linear programs that may appear
during the execution of the algorithm.

Lemma 5. All the linear programs of form (LP) as defined in Section 3 that the
algorithm IterativeRound will meet during its execution are fractionally feasible.

Proof. The proof is by induction on the iterations of the algorithm. Let us con-
sider the first iteration, in which the algorithm solves exactly (LP) as above.
Then, since our original integral problem Constr EC-SNDP has an integral
feasible solution, this solution is also feasible for the (LP).

We will now show the induction step. Let (LP′) be the LP relaxation of (IP′),
obtained in the same way as (LP). Suppose now that (LP) was a linear program
met by our algorithm in some iteration, and let (LP′) be the linear program met
in the very next iteration. By induction assumption (LP) is fractionally feasible,
and let x̄ be an optimal basic fractional solution to (LP). The restriction of x̄ to
E \ E(1

3) is a feasible solution to (LP′), and so the claim holds. ��

We are now ready to prove the main theorem in this paper.

Theorem 3. The algorithm IterativeRound defined in Section 3 is a strongly
polynomial time (3, 3)-approximation algorithm for the Constr EC-SNDP
problem.

Proof. We will prove the following statement: if a linear program (LP) as defined
in Section 3 is met by the algorithm at some iteration and this linear program is
fractionally feasible, then our algorithm outputs a corresponding integral solu-
tion to this (LP) which is within a factor of 3 of the optimal fractional solution
to this (LP), and the length of this integral solution is within a factor of 3 of the
budget in this (LP). We will prove this statement by induction on the number
of iterations of our algorithm.

Suppose first that an instance of Constr EC-SNDP requires only one it-
eration of the algorithm. By Lemma 5, the linear program involved, say (LP),
is fractionally feasible. Thus, the algorithm finds an optimum basic solution to
(LP), say x̄, and rounds up all edges e with x̄e ≥ 1/3. Thus, E(1

3) is an integral
feasible solution to (LP), and we will argue that it gives a (3, 3)-approximation.
Since for each e ∈ E(1

3), 3x̄e ≥ 1, we have that∑
e∈E(1

3)

ce ≤ 3 · optLP .

Similarly, we can argue that∑
e∈E(1

3)

le ≤
∑

e∈E(1
3)

3x̄ele ≤ 3
∑
e∈E

x̄ele ≤ 3L.

We will now show the induction step. Observe, that the LP which is the
relaxation of (IP′) still fulfills Theorem 2 (this follows from Theorem 2.5 in

186 Piotr Krysta

[4]). Thus, (IP′) is an instance of the same form as (IP). Let (LP′) be the LP
relaxation to (IP′), obtained in the same way as (LP). We now argue about
the approximation ratio. By Lemma 5 the linear program (LP′) is fractionally
feasible, and so by induction assumption there is an integral solution, say E′, to
(LP′) with cost at most 3 · optLP ′ and length at most

3 ·

⎛⎝L−
∑

e∈E(1/3)

lex̄e

⎞⎠ .

We show that E(1
3)∪E′ is an integral solution to (LP) with cost at most 3·optLP

and length at most 3L.
The restriction of x̄ to E \ E(1

3) is a feasible solution to (LP′), so

optLP ′ ≤ optLP −
∑

e∈E(1
3)

cex̄e.

But for each e ∈ E(1
3), 3x̄e ≥ 1, hence

3 · optLP ′ +
∑

e∈E(1
3)

ce ≤ 3 · optLP .

From the induction assumption,
∑

e∈E′ ce ≤ 3 · optLP ′ , thus∑
e∈E′

ce +
∑

e∈E(1
3)

ce ≤ 3 · optLP .

Also by the induction assumption,
∑

e∈E′ le ≤ 3 · (L−
∑

e∈E(1
3) lex̄e). Therefore,

the length of the output solution is∑
e∈E′

le +
∑

e∈E(1
3)

le ≤
∑
e∈E′

le + 3 ·
∑

e∈E(1
3)

lex̄e ≤ 3 · L.

Jain [4] has shown that LPs (LP) corresponding to our original problem
without the budget constraint can be solved in strongly polynomial time. Norton
et al. [7] prove that if we have a strongly polynomial time algorithm for a linear
program, then this linear program can still be solved in strongly polynomial time
when a constant number of linear constraints are added to the linear program.
This gives a strongly polynomial algorithm for our problem. (The approach in
[7] requires in fact a specific strongly polynomial time algorithm, called “linear”,
and [4] indeed provides such an algorithm.)

We will finally note that we could also use Theorem 1 instead of Theorem
2 to obtain a strongly polynomial time (4, 4)-approximation algorithm for the
Constr EC-SNDP problem. ��

Bicriteria Network Design via Iterative Rounding 187

5 Conclusions and Further Questions

We have obtained in this paper a strongly polynomial time (3, 3)-approximation
algorithm for the Constr EC-SNDP problem, by extending the iterative round-
ing technique. For this result we needed explore the combinatorial structure of
the Constr EC-SNDP polytope in Section 2.2.

We have also shown in Section 2.1 that a straightforward polyhedral argu-
ment implies a weaker strongly polynomial time (4, 4)-approximation algorithm
for this problem. This second polyhedral argument might be interesting for the
following reason. Suppose, that we are given a problem which can be formulated
as an integer linear program. Let us now take an LP relaxation to this integer
linear program, and suppose that we are able to prove that any two adjacent
extreme points of this relaxation have two large entries (maybe even at the same
vector position). Then, we will be able to show that an extreme point of this
polytope with an additional linear constraint also has a large entry – see the ar-
gument at the end of the proof of Theorem 1. Similar argument may be applied
in case where we add more than just one additional linear constraint. We leave
finding such applications as an open problem.

References

1. A. Agrawal, P. Klein and R. Ravi. When trees collide : An approximation algorithm
for the generalized Steiner problem on networks. SIAM Journal on Computing,
24(3), pp. 445–456, 1995.

2. J.L. Ganley, M.J. Golin and J.S. Salowe. The Mutli-Weighted Spanning Tree Prob-
lem. In the Proc. 1st Conference on Combinatorics and Computing (COCOON),
Springer Verlag, LNCS, pp. 141–150, 1995.

3. M.X. Goemans and D.P. Williamson. A General Approximation Technique for
Constrained Forest Problems. SIAM Journal on Computing, 24, pp. 296–317, 1995.

4. K. Jain. A Factor 2 Approximation Algorithm for the Generalized Steiner Network
Problem. Combinatorica, 21(1), pp. 39–60, 2001. Available at
http://www.cc.gatech.edu/people/home/kjain/

5. S. Khuller and U. Vishkin. Biconnectivity approximations and graph carvings.
Journal of the ACM, 41, pp. 214–235, 1994.

6. M.V. Marathe, R. Ravi, R. Sundaram, S.S. Ravi, D.J. Rosenkrantz and H.B. Hunt
III. Bicriteria Network Design. Journal of Algorithms, 28, pp. 142–171, 1998.

7. C.H. Norton, S.A. Plotkin and É. Tardos. Using Separation Algorithms in Fixed
Dimension. Journal of Algorithms, 13, pp. 79–98, 1992.

8. R. Ravi and M.X. Goemans. The Constrained Minimum Spanning Tree Problem. In
the Proc. of the Scandinavian Workshop of Algorithmic Theory (SWAT), Springer
Verlag, LNCS 1097, pp. 66–75, 1996.

9. R. Ravi, M.V. Marathe, S.S. Ravi, D.J. Rosenkrantz and H.B. Hunt III. Many
birds with one stone: multi-objective approximation algorithms. In the Proc. 25th
ACM Symposium on Theory of Computing (STOC), 1993.

10. G. Robins and A. Zelikovsky. Improved Steiner Tree Approximation in Graphs. In
the Proc. 10th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pp. 770–779, 2000.

11. A. Schrijver. Theory of Linear and Integer Programming. Wiley, Chichester, 1986.

Interference in Cellular Networks:
The Minimum Membership Set Cover Problem

Fabian Kuhn1, Pascal von Rickenbach1, Roger Wattenhofer1,
Emo Welzl2, and Aaron Zollinger1

1 Computer Engineering and Networks Laboratory, ETH Zurich, 8092 Zurich, Switzerland
{kuhn,pascalv,wattenhofer,zollinger}@tik.ee.ethz.ch
2 Department of Computer Science, ETH Zurich, 8092 Zurich, Switzerland

welzl@inf.ethz.ch

Abstract. The infrastructure for mobile distributed tasks is often formed by cel-
lular networks. One of the major issues in such networks is interference. In this
paper we tackle interference reduction by suitable assignment of transmission
power levels to base stations. This task is formalized introducing the Minimum
Membership Set Cover combinatorial optimization problem. On the one hand we
prove that in polynomial time the optimal solution of the problem cannot be ap-
proximated more closely than with a factor lnn. On the other hand we present an
algorithm exploiting linear programming relaxation techniques which asymptot-
ically matches this lower bound.

1 Introduction

Cellular networks are heterogeneous networks consisting of two different types of
nodes: base stations and clients. The base stations – acting as servers – are intercon-
nected by an external fixed backbone network; clients are connected via radio links to
base stations. The totality of the base stations forms the infrastructure for distributed
applications running on the clients, the most prominent of which probably being mo-
bile telephony. Cellular networks can however more broadly be considered a type of
infrastructure for mobile distributed tasks in general.

Since communication over the wireless links takes place in a shared medium, in-
terference can occur at a client if it is within transmission range of more than one base
station. In order to prevent such collisions, coordination among the conflicting base
stations is required. Commonly this problem is solved by segmenting the available fre-
quency spectrum into channels to be assigned to the base stations in such a way as
to prevent interference, in particular such that no two base stations with overlapping
transmission range use the same channel.

In this paper we assume a different approach to interference reduction. The basis of
our analysis is formed by the observation that interference effects occurring at a client
depend on the number of base stations by whose transmission ranges it is covered. In
particular for solutions using frequency division multiplexing as described above, the
number of base stations covering a client is a lower bound for the number of channels re-
quired to avoid conflicts; a reduction in the required number of channels, in turn, can be
exploited to broaden the frequency segments and consequently to increase communica-
tion bandwidth. On the other hand, also with systems using code division multiplexing,

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 188–198, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Interference in Cellular Networks: The Minimum Membership Set Cover Problem 189

c

Fig. 1. If the base stations (hollow points) are assigned identical transmission power levels
(dashed circles), client c experiences high interference, since it is covered by all base stations.
Interference can be reduced by assigning appropriate power values (solid circles), such that all
clients are covered by at most two base stations.

the coding overhead can be reduced if only a small number of base stations cover a
client.

The transmission range of a base station – and consequently the coverage properties
of the clients – depends on its position, obstacles hindering the propagation of electro-
magnetic waves, such as walls, buildings, or mountains, and the base station transmis-
sion power. Since due to legal or architectural constraints the former two factors are
generally difficult to control, we assume a scenario in which the base station positions
are fixed, each base station can however adjust its transmission power. The problem
of minimizing interference then consists in assigning every base station a transmission
power level such that the number of base stations covering any node is minimal (cf.
Figure 1). At the same time however, it has to be guaranteed that every client is covered
by at least one base station in order to maintain availability of the network.

In Figure 1 the area covered by a base station b transmitting with a given power level
is represented by a disk centered at b and having a radius corresponding to the chosen
transmission power. Practical measurements however show that this idealization is far
from realistic. Not only mechanical and electronical inaccuracies inevitable in the con-
struction of antennas, but more importantly the presence of obstacles to the propagation
of electromagnetic signals – such as buildings, mountains, or even weather conditions –
can lead to areas covered by signal transmission that hardly resemble disks in practice.
These considerations motivate that in order to study the described interference reduction
problem we abstract from network node positions and circular transmission areas.

In our analysis we formalize the task of reducing interference as a combinatorial op-
timization problem. For this purpose we model the transmission range of a base station
having chosen a specific transmission power level as a set containing exactly all clients
covered thereby. The totality of transmission ranges selectable by all base stations is
consequently modeled as a collection of client sets. More formally, this yields the Min-
imum Membership Set Cover (MMSC) problem: Given a set of elements U (modeling
clients) and a collection S of subsets of U (transmission ranges), choose a solution
S′ ⊆ S such that every element occurs in at least one set in S′ (maintain network

190 Fabian Kuhn et al.

availability) and that the membership M(u, S′) of any element u with respect to S′

is minimal, where M(u, S′) is defined as the number of sets in S′ in which u occurs
(interference)1.

Having defined this formalization, we show in this paper – by reduction from the
related Minimum Set Cover problem – that the MMSC problem is NP -complete and
that no polynomial time algorithm exists with approximation ratio less than lnn unless
NP ⊂ TIME (nO(log log n)). In a second part of the paper we present a probabilistic
algorithm based on linear programming relaxation and derandomization asymptotically
matching this lower bound, particularly yielding an approximation ratio in O(lnn).

The paper is organized as follows: Discussing related work in Section 2, we formally
define the MMSC problem in Section 3. Section 4 contains a description of the lower
bound with respect to approximability of the MMSC problem. In the subsequent section
we describe how the MMSC problem can be formulated as a linear program and provide
a O(lnn)-approximation algorithm for the problem. Section 6 concludes the paper.

2 Related Work

Interference issues in cellular networks have been studied since the early 1980s in the
context of frequency division multiplexing: The available network frequency spectrum
is divided into narrow channels assigned to cells in a way to avoid interference con-
flicts. In particular two types of conflicts can occur, adjacent cells using the same chan-
nel (cochannel interference) and insufficient frequency distance between channels used
within the same cell (adjacent channel interference). Maximizing the reuse of channels
respecting these conflicts was generally studied by means of the combinatorial problem
of conflict graph coloring using a minimum number of colors. The settings in which
this problem was considered are numerous and include hexagon graphs, geometric in-
tersection graphs (such as unit disk graphs), and planar graphs, but also (non-geometric)
general graphs. In addition both static and dynamic (or on-line) approaches were stud-
ied [11]. The fact that channel separation constraints can depend on the distance of cells
in the conflict graph was analyzed by means of graph labeling [6]. The problem of fre-
quency assignment was tackled in a different way in [2] exploiting the observation that
in every region of an area covered by the communication network it is sufficient that
exactly one base station with a unique channel can be heard. As mentioned, all these
studied models try to avoid interference conflicts occurring when using frequency divi-
sion multiplexing. In contrast, the problem described in this paper assumes a different
approach in aiming at interference reduction by having the base stations choose suitable
transmission power levels.

The problem of reducing interference is formalized in a combinatorial optimization
problem named Minimum Membership Set Cover. As suggested by its name, at first
sight its formulation resembles closely the long-known and well-studied Minimum Set
Cover (MSC) problem, where the number of sets chosen to cover the given elements
is to be minimized [7]. That the MMSC and the MSC problems are however of dif-
ferent nature can be concluded from the following observation: For any MSC instance

1 Note that naturally, for each base station, the client set corresponding to a particular power
level contains all sets corresponding to lower power levels. Thus, we can assume that w.l.o.g.,
only one client set is chosen for each base station.

Interference in Cellular Networks: The Minimum Membership Set Cover Problem 191

consisting of n elements, a greedy algorithm approximates the optimal solution with an
approximation ratio at mostH(n) ≤ lnn+1 [7], which has later been shown to be tight
up to lower order terms unless NP ⊂ TIME (nO(log log n)) [3, 10]. For the MMSC prob-
lem in contrast, there exist instances where the same greedy algorithm fails to achieve
any nontrivial approximation of the optimal solution.

The approximation algorithm for the MMSC problem introduced in this paper is
based on the formulation of a given instance as a linear program. Solving this linear
program yields values subsequently interpreted as probabilities with which to randomly
decide for every set in S whether it should belong to the solution. This technique, com-
monly known as randomized rounding was proposed in [12]. Also derandomization
based on the method of conditional probabilities – the technique exploited to transform
the above probabilistic algorithm into a deterministic one – was introduced in [12] and
extended as well as improved in [13].

In the context of network traffic congestion, [9] considered a problem similar to
our analysis of the MMSC problem in that linear program relaxation was employed to
minimize a maximum value.

3 Minimum Membership Set Cover

As described in the introduction, the problem considered in this paper is to assign to
each base station a transmission power level such that interference is minimized while
all clients are covered. For our analysis we formalize this problem by introducing a
combinatorial optimization problem referred to as Minimum Membership Set Cover. In
particular, clients are modeled as elements and the transmission range of a base station
given a certain power level is represented as the set of thereby covered elements. In the
following, we first define the membership of an element given a collection of sets:

Definition 1 (Membership) Let U be a finite set of elements and S be a collection of
subsets of U . Then the membership M(u, S) of an element u is defined as |{T | u ∈
T, T ∈ S}|.

Informally speaking, MMSC is identical to the MSC problem apart from the min-
imization function. Where MSC minimizes the total number of sets, MMSC tries to
minimize element membership. Particularly, MMSC can be defined as follows:

Definition 2 (Minimum Membership Set Cover) Let U be a finite set of elements
with |U | = n. Furthermore let S = {S1, . . . , Sm} be a collection of subsets of U
such that

⋃m
i=1 Si = U . Then Minimum Membership Set Cover (MMSC) is the problem

of covering all elements in U with a subset S′ ⊆ S such that maxu∈U M(u, S′) is
minimal2.

2 Besides minimizing the maximal membership value over all elements, also minimization of the
average membership value can be considered a reasonable characterization of the interference
reduction problem. The fact however that – given a solution S′ – the sum of all membership
values equals the sum of the cardinalities of the sets in S′ shows that this min-average variant
is identical to the Weighted Set Cover [1] problem with the set weights corresponding to their
cardinalities.

192 Fabian Kuhn et al.

Note that – as motivated in the introduction – the problem statement does not require
the collection of subsets S to reflect geometric positions of network nodes. For a given
problem instance to be valid,

⋃m
i=1 Si = U is sufficient.

4 Problem Complexity

In this section we address the complexity of the Minimum Membership Set Cover prob-
lem. We show that MMSC is NP -complete and therefore no polynomial time algorithm
exists that solves MMSC unless P = NP .

Theorem 1. MMSC is NP -complete.

Proof. We will prove that MMSC is NP -complete by reducing MSC to MMSC. Con-
sider an MSC instance (U, S) consisting of a finite set of elements U and a collection S
of subsets of U . The objective is to choose a subset S′ with minimum cardinality from
S such that the union of the chosen subsets of U contains all elements in U .

We now define a set Ũ by adding a new element e to U , construct a new collection
of sets S̃ by inserting e into all sets in S, and consider (Ũ , S̃) as an instance of MMSC.
Since element e is in every set in S̃, it follows that e is an element with maximum
membership in the solution S′ of MMSC. Moreover, the membership of e in S′ is equal
to the number of sets in the solution. Therefore MMSC minimizes the number of sets in
the solution by minimizing the membership of e. Consequently we obtain the solution
for MSC of the instance (U, S) by solving MMSC for the instance (Ũ , S̃) and extracting
element e from all sets in the solution.

We have shown a reduction from MSC to MMSC, and therefore the latter is NP-
hard. Since solutions for the decision problem of MMSC are verifiable in polynomial
time, it is in NP , and consequently the MMSC decision problem is also NP-complete.

��
Now that we have proved MMSC to be NP-complete and therefore not to be op-

timally computable within polynomial time unless P = NP , the question arises, how
closely MMSC can be approximated by a polynomial time algorithm. This is partly
answered with the following lower bound.

Theorem 2. There exists no polynomial time approximation algorithm for MMSC with
an approximation ratio less than (1 − o(1)) lnn unless NP ⊂ TIME (nO(log log n)).

Proof. The reduction from MSC to MMSC in the proof of Theorem 1 is approximation-
preserving, that is, it implies that any lower bound for MSC also holds for MMSC. In
[3] it is shown that lnn is a lower bound for the approximation ratio of MSC unless
NP ⊂ TIME (nO(log log n)). Thus, lnn is also a lower bound for the approximation
ratio of MMSC. ��

5 Approximating MMSC by LP Relaxation

In the previous section a lower bound of lnn for the approximability of the MMSC
problem by means of polynomial time approximation algorithms has been established.
In this section we show how to obtain a O(logn)-approximation using LP relaxation
techniques.

Interference in Cellular Networks: The Minimum Membership Set Cover Problem 193

5.1 LP Formulation of MMSC

We first derive the integer linear program which describes the MMSC problem. Let
S′ ⊆ S denote a subset of the collection S. To each Si ∈ S we assign a variable
xi ∈ {0, 1} such that xi = 1 ⇔ Si ∈ S′. For S′ to be a set cover, it is required that for
each element ui ∈ U , at least one set Sj with ui ∈ Sj is in S′. Therefore, S′ is a set
cover of U if and only if for all i = 1, ..., n it holds that

∑
Sj�ui

xj ≥ 1. For S′ to be
minimal in the number of sets that cover a particular element, we need a second set of
constraints. Let z be the maximum membership over all elements caused by the sets in
S′. Then for all i = 1, ..., n it follows that

∑
Sj�ui

xj ≤ z. The MMSC problem can
consequently be formulated as the integer program IPMMSC:

minimize z

subject to
∑

Sj�ui

xj ≥ 1 i = 1, ..., n

∑
Sj�ui

xj ≤ z i = 1, ..., n

xj ∈ {0, 1} j = 1, ...,m

By relaxing the constraints xj ∈ {0, 1} to x′j ≥ 0, we obtain the linear program
LPMMSC. The integer program IPMMSC yields the optimal solution z∗ for an MMSC
problem. The linear programLPMMSC therefore results in a fractional solution z′ with
z′ ≤ z∗, since we allow the variables x′j to be in [0,1].

5.2 Randomized Rounding

In [12] and [13], randomized rounding was introduced for covering and packing prob-
lems. In the following, we show that this technique can also be applied to solve IPMMSC

resulting in an almost optimal algorithm. We present an efficient (1+O(1/
√
z′))(ln(n)

+ 1)-approximation algorithm for the MMSC problem. Given an MMSC instance
(U, S), we first solve the linear program LPMMSC corresponding to (U, S), yielding
a vector x′ and z′ and then apply randomized rounding in order to obtain an integer
solution. Consider the following “simple” randomized rounding scheme. We compute
an integer solution x ∈ {0, 1}m by setting

xi :=

{
1 with probability pi := min{1, αx′i} for a value α ≥ 1
0 otherwise

independently for each i ∈ {1, . . . ,m}. Let Ai be the bad event that the ith element is
not covered.

Lemma 1. The probability that the ith element remains uncovered is

P(Ai) =
∏

Sj�ui

(1 − pj) < e−α.

194 Fabian Kuhn et al.

Proof. Let mi be the number of sets containing element i (mi = |{j|Sj # ui}|). By
the “means inequality”, we have

P(Ai) =
∏

Sj�ui

(1− pj) ≤
(

1−
∑

Sj�ui
pj

mi

)mi

≤
(

1− α

mi

)mi

< e−α.

Note that
∑

Sj�ui
pj ≥ α only holds if all pj < 1. We can safely make this assumption

because pj = 1 for some Sj # ui makes P(Ai) = 0. ��

Let Bi be the bad event that the ith element is covered by more than αβz′ sets for
some β ≥ 1.

Lemma 2. The probability that the ith element is covered more than αβz′ times is

P(Bi) <
1

βαβz′ ·
∏

Sj�ui

[1 + (β − 1)pj] ≤
(
eβ−1

ββ

)αz′

.

Proof. We use a Chernoff-type argument. For t = lnβ > 0, we have

P(Bi) = P

⎛⎝ ∑
Sj�ui

xj > αβz′

⎞⎠ = P
(
e

t·
∑

Sj�ui
xj > etαβz′

)

<
E
[
e

t·
∑

Sj�ui
xj
]

etαβz′ =
1

etαβz′ ·
∏

Sj�ui

[
pje

t + 1− pj

]
=

1
βαβz′ ·

∏
Sj�ui

[1 + (β − 1)pj] ≤
1

βαβz′ ·
∏

Sj�ui

e(β−1)pj ≤
(
eβ−1

ββ

)αz′

.

The inequality in the first line results by application of the Markov inequality. The
equations in the second line hold because of the independence of the xi and because
t = lnβ, respectively. For the inequalities in the last line, we apply 1 + x ≤ ex and∑

Sj�ui
pj ≤ αz′. ��

In the following, we denote the probability upper bounds given by Lemmas 1 and 2
by Ai and Bi:

Ai :=
∏

Sj�ui

(1− pj) and Bi :=
1

βαβz′ ·
∏

Sj�ui

[1 + (β − 1)pj] .

In order to bound the probability for any bad event to occur, we define a function P
as follows:

P (p1, . . . , pm) := 2−
n∏

i=1

(1−Ai)−
n∏

i=1

(1 −Bi).

Interference in Cellular Networks: The Minimum Membership Set Cover Problem 195

Lemma 3. The probability that any element is not covered or covered more than αβz′

times is upper-bounded by P (p1, . . . , pm):

P

(
n⋃

i=1

Ai ∪
n⋃

i=1

Bi

)
< P (p1, . . . , pm).

Proof. It is sufficient to prove that

P

(
n⋃

i=1

Ai

)
≤ 1−

∏
(1− P(Ai)) and P

(
n⋃

i=1

Bi

)
≤ 1−

∏
(1 − P(Bi)). (1)

The lemma then follows by Lemmas 1 and 2. If the eventsAi and Bi were independent,
the first and second inequality of (1) would hold with equality, respectively. Hence, we
have to show that the dependence of the events can only help us. As shown in [13],
the, the complementary events Ai are positively correlated, that is, the probability of
Ai (Ai does not occur) increases under the condition that any subset of {A1, . . . ,An}
occurs. This positive correlation follows from Harris-Kleitman inequality [5, 8], which
is a special case of the FKG inequality [4]. Hence, the first inequality of (1) follows.
For the events Bi exactly the same argumentation holds. ��

In the following we show that if α and β are chosen appropriately, P (p1, . . . , pm)
is always less than 1.

Lemma 4. When setting α = ln(n)+1, then for β = 1+max{
√

3/z′, 3/z′}, we have
P (p1, . . . , pm) < 4/5.

Proof. By Lemmas 1 and 2, we have

P (p1, . . . , pm) < 2−
(
1− e−α

)n −
(

1−
(
eβ−1

ββ

)αz′)n

.

In order to have P < 4/5, it therefore suffices to choose α and β such that

(
1− e−α

)n ≥ 3
5

and

(
1−

(
eβ−1

ββ

)αz′)n

≥ 3
5
. (2)

For α ≥ lnn + 1, we get (1 − e−α)n ≥ 3/5 and therefore the first inequality of (2) is
fulfilled. The second inequality of (2) can be transformed into a simpler form using the
following inequalities:

eβ−1

ββ
≤
{
e−(β−1)2/3 for 1 ≤ β ≤ 2,
e−(β−1)/3 for β > 2.

(3)

If we choose β = 1 +
√

3/z′, for z′ ≥ 3, we have β ≤ 2 and therefore by (3), the
second inequality of (2) simplifies to(

1−
(
eβ−1

ββ

)αz′)n

≥
(
1− e−αz′(β−1)2/3

)n

=
(
1− e−α

)n
.

196 Fabian Kuhn et al.

For z′ < 3, we can set β = 1 + 3/z′ ≥ 2 and proceed analogously using the second
case of (3). ��

Lemmas 1–4 lead to the following randomized algorithm for the MMSC problem.
As a first step, the linear program LPMMSC has to be solved. Then, all x′i are rounded
to integer values xi ∈ {0, 1} using the described randomized rounding scheme with
α = lnn + 1. The rounding is repeated until the solution is feasible (all elements
are covered) and the membership of the integer solution deviates from the fractional
membership z′ by at most a factor αβ for β = 1 + max{3/z′,

√
3/z′}. Each time, the

probability to be successful is at least 1/5 and therefore, the probability of not being
successful decreases exponentially in the number of trials.

5.3 Derandomization

We will now show that P (p1, . . . , pm) is a pessimistic estimator [12, 13] and that there-
fore, the algorithm described at the end of the previous section can be derandomized.
That is, P is an upper bound on the probability of obtaining a “bad” solution, P < 1
(P is a probabilistic proof that a “good” solution exists), and the pi can be set to 0 or
1 without increasing P . The first two properties follow by Lemmas 3 and 4, the third
property is shown by the following lemma.

Lemma 5. For all i, either setting pi to 0 or setting pi to 1 does not increase P :

P (p1, . . . , pm) ≥ min{P (. . . , pi−1, 0, pi+1, . . .), P (. . . , pi−1, 1, pi+1, . . .)}.

Proof. We prove the lemma by showing that P is a concave function of pi:

P (p1, . . . , pm) ≥ (1−pi)P (. . . , pi−1, 0, pi+1, . . .)+piP (. . . , pi−1, 1, pi+1, . . .). (4)

If all probabilities except pi are fixed, Aj and Bj are functions of pi. We define

Ak(pi) :=
k∏

j=1

(1−Aj) and Bk(pi) :=
k∏

j=1

(1−Bj).

In order to obtain (4), we prove that

Ak(pi) ≤ (1− pi)Ak(0) + piAk(1) and Bk(pi) ≤ (1− pi)Bk(0) + piBk(1) (5)

for all k ∈ [0, n] by induction over k. For k = 0, we have A0(pi) = B0(pi) = 1 and
therefore (5) holds. The induction step from k to k + 1 depends on whether element
k + 1 is in set Si. If element k + 1 is not in set Si, Ak+1 and Bk+1 do not depend
on pi and (5) follows from the induction hypothesis. It remains to prove the interesting
case where element k + 1 is contained in set Si. We first consider the inequality for
Ak+1(pi). When pi is set to 1, Ak+1 becomes 0. If pi is set to 0, the factor 1 − pi in
Ak+1 is replaced by 1 and therefore Ak+1 becomes

Ak+1,pi=0 =
∏

Sj∈uk+1\Si

(1− pj) =
Ak+1

1− pi
.

Interference in Cellular Networks: The Minimum Membership Set Cover Problem 197

We therefore have

(1− pi)Ak+1(0) + piAk+1(1) = (1− pi)Ak(0) ·
(

1− Ak+1

1− pi

)
+ piAk(1) · 1

= (1− pi)Ak(0) + piAk(1)−Ak(0) ·Ak+1

≥ Ak(pi)(1 −Ak+1) = Ak+1(pi).

The inequality in the third line follows from the induction hypothesis and fromAk(0) ≤
Ak(pi). For Bk+1(pi), setting pi to 0 and 1 replaces the factor 1 + (β − 1)pi in Bk+1

by 1 and β, respectively:

Bk+1,pi=0 =
Bk+1

1 + (β − 1)pi
and Bk+1,pi=1 =

βBk+1

1 + (β − 1)pi
.

Thus, we get

(1− pi)Bk+1(0) + piBk+1(1)

= (1− pi)Bk(0) ·
(

1− Bk+1

1 + (β − 1)pi

)
+ piBk(1) ·

(
1− βBk+1

1 + (β − 1)pi

)
=
(
(1− pi)Bk(0) + piBk(1)

)
·
(

1− Bk+1

1 + (β − 1)pi

)
− Bk+1pi(β − 1)Bk(1)

1 + (β − 1)pi

≥ Bk(pi) ·
(

1− Bk+1

1 + (β − 1)pi

)
− Bk+1pi(β − 1)Bk(pi)

1 + (β − 1)pi

= Bk(pi)(1−Bk+1) = Bk+1(pi).

The inequality in the fourth line follows from the induction hypothesis and from Bk(1)
≤ Bk(pi). ��

Lemmas 3, 4, and 5 lead to an efficient deterministic approximation algorithm for
the MMSC problem. First, the linear program LPMMSC has to be solved. The proba-
bilites pi are determined as described in the last section. For α and β as in Lemma 4,
P (p1, . . . , pm)<4/5. The probabilities pi are now set to 0 or 1 such thatP (p1, . . . , pm)
remains smaller than 4/5. This is possible by Lemma 5. When all pi ∈ {0, 1}, we have
an integer solution for IPMMSC. The probability that not all elements are covered or
that the membership is larger than αβz′ is smaller than P < 4/5. Because all pi are
0 or 1, this probability must be 0. Hence, the computed IPMMSC-solution is an αβ-
approximation for MMSC:

Theorem 3. For any MMSC instance, there exists a deterministic polynomial-time ap-
proximation algorithm with an approximation ratio of (1 + O(1/

√
z′))(ln(n) + 1).

6 Conclusion

Interference reduction in cellular networks is studied in this paper by means of for-
malization with the Minimum Membership Set Cover problem. Although this combi-
natorial optimization problem appears to be a natural and simply describable problem

198 Fabian Kuhn et al.

in the context of set covering, it has – to the best of our knowledge – not been stud-
ied before. We show using approximation-preserving reduction from the Minimum Set
Cover problem that MMSC is not only NP-hard, but also that no polynomial-time algo-
rithm can approximate the optimal solution more closely than up to a factor lnn unless
NP ⊂ TIME (nO(log log n)). In a second part of the paper this lower bound is shown to
be asymptotically matched by an algorithm making use of linear programming relax-
ation techniques.

Finally, the question remains as an open problem, whether there exists a simpler
greedy algorithm – considering interference increase during its execution – with the
same approximation quality.

References

1. V. Chvátal. A Greedy Heuristic for the Set-Covering Problem. Mathematics of Operations
Research, 4(3):233–235, 1979.

2. G. Even, Z. Lotker, D. Ron, and S. Smorodinsky. Conflict-Free Colorings of Simple Geo-
metric Regions with Applications to Frequency Assignment in Cellular Networks. In 43rd

Annual IEEE Symposium on Foundations of Computer Science (FOCS), 2002.
3. U. Feige. A Threshold of ln n for Approximating Set Cover. Journal of the ACM (JACM),

45(4):634–652, 1998.
4. C. Fortuin, P. Kasteleyn, and J. Ginibre. Correlations Inequalities on Some Partially Ordered

Sets. Comm. Math. Phys., 22:89–103, 1971.
5. T. E. Harris. A Lower Bound for the Critical Probability in a Certain Percolation Process.

Proc. Cambridge Philos. Soc., 60:13–20, 1960.
6. J. Janssen. Channel Assignment and Graph Labeling. In I. Stojmenovic, editor, Handbook

of Wireless Networks and Mobile Computing, chapter 5, pages 95–117. John Wiley & Sons,
Inc., 2002.

7. D. Johnson. Approximation algorithms for combinatorial problems. Journal of Computer
and System Sciences, 9:256–278, 1974.

8. D. Kleitman. Families of Non-Disjoint Subsets. Journal of Combinatorial Theory, 1:153–
155, 1966.

9. C.-J. Lu. A Deterministic Approximation Algorithm for a Minimax Integer Programming
Problem. In Proc. of the 10th ACM-SIAM Symp. on Discrete Algorithms (SODA), pages
663–668, 1999.

10. C. Lund and M. Yannakakis. On the Hardness of Approximating Minimization Problems.
Journal of the ACM, 41(5):960–981, 1994.

11. L. Narayanan. Channel Assignment and Graph Multicoloring. In I. Stojmenovic, editor,
Handbook of Wireless Networks and Mobile Computing, chapter 4, pages 71–94. John Wiley
& Sons, Inc., 2002.

12. P. Raghavan and C. Thompson. Randomized Rounding: A Technique for Provably Good
Algorithms and Algorithmic Proofs. Combinatorica, 7(4):365–374, 1987.

13. A. Srinivasan. Improved Approximations of Packing and Covering Problems. In Proc. of the
27th ACM Symposium on Theory of Computing, pages 268–276, 1995.

Routing and Coloring
for Maximal Number of Trees�

Xujin Chen, Xiaodong Hu, and Tianping Shuai

Institute of Applied Mathematics
Chinese Academy of Sciences

P. O. Box 2734, Beijing 100080, China
{xchen,xdhu,shuaitp}@amss.ac.cn

Abstract. Let G be a undirected connected graph. Given g groups each
being a subset of V (G) and a number of colors, we consider how to find a
subgroup of subsets such that there exists a tree interconnecting all ver-
tices in each subset and all trees can be colored properly with given colors
(no two trees sharing a common edge receive the same color); the objec-
tive is to maximize the number of subsets in the subgroup. This problem
arises from the application of multicast communication in all optical
networks. In this paper, we first obtain an explicit lower bound on the
approximability of this problem and prove Ω(g1−ε)-inapproximability
even when G is a mesh. We then propose a simple greedy algorithm that
achieves performance ratio O(

√|E(G)|), which matches the theoretical
bounds.

1 Introduction

All graphs considered in this paper are finite and undirected. Let G be a graph
with vertex set V (G) with |V (G)| = n and edge set E(G) with |E(G)| = m, and
Γ = {Γ1, . . . , Γg} be a set of g groups, where each Γi is a subset of V (G). A tree
interconnecting Γi is a tree of G with Γi ⊆ V (Ti). A family T = {T1, . . . , Tg}
of trees is said to be a tree family of Γ = {Γ1, . . . , Γg} if there is a permutation
ρ on {1, . . . , g} such that Tρ(i) is a tree interconnecting Γi for each 1 ≤ i ≤ g.
A coloring {(Ti, ci) : i = 1, . . . , t} of a tree family {T1, . . . , Tt} is called proper
if tree Ti (1 ≤ i ≤ t) receives color ci ∈ {1, . . . , c} such that ci �= cj whenever
E(Ti) ∩ E(Tj) �= ∅ for each i, where c is a positive integer and {1, . . . , c} is the
set of available colors. In this paper we study how to find the maximum tree
family of Γ that has a proper coloring. We call it Maximum Tree Routing and
Coloring (Max-TRC) problem.

Our study on Max-TRC problem, besides its theoretical significance, is in-
spired by the application of multicast communications in all optical wavelength
division multiplexing (WDM) networks. In a WDM network, nodes interested
in some particular data make a multicast group, which requires a multicast con-
nection for sending data from its source(s) to its destinations. Given a set of
multicast connection requests, two steps are needed to set up the connections,
� Supported in part by the NSF of China under Grant No. 70221001 and 60373012.

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 199–209, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

200 Xujin Chen, Xiaodong Hu, and Tianping Shuai

routing and wavelength assignment. Multicast routing is to connect all members
in each multicast group with a tree, so called light-tree. Wavelength assignment
is to assign a wavelength to each of generated light-trees in such a way that
no two trees sharing a common link are assigned the same wavelength. Since
the number of wavelengths can be used in WDM networks is not large, how to
make a good use of wavelengths becomes very important. This motivates exten-
sive studies on the problem of multicast routing and wavelength assignment in
WDM networks. A typical metric is throughput, the number of requests can be
accepted (or satisfied) given a prespecified number of wavelengths, and the goal
is to find optimal multicast routing and wavelength assignment for maximizing
the throughput. Clearly, this is exactly Max-TRC problem.

Lots of work has been done on the NP-hardness of some special versions of
Max-TRC problem (see Section 2), but the explicit approximability has not
been obtained. The focus of this paper is to study the explicit inapproxima-
bility and approximability of Max-TRC problem. The techniques introduced
manipulate graph structures and enable us to obtain two major results (among
others): (i) Unless NP = ZPP , Max-TRC problem is not approximable within
g1−ε for any ε > 0, even when the underlying topology is a mesh, and (ii) A
simple greedy strategy for Max-TRC problem has a nearly best possible ap-
proximation performance ratio of O(

√
m). To the best of our knowledge, this is

the first time this problem is analyzed in terms of explicit inapproximability and
approximability.

The remainder of this paper is organized as follows. In Section 2, we first
introduce a few notations and then present some known results related to Max-
TRC problem. In Section 3, we prove the inapproximability results for trees,
meshes and tori. In Section 4, we first propose a greedy algorithm for Max-
TRC problem in general graphs and prove its approximation performance ratio,
and then we propose two approximation algorithms for two special classes of
graphs. In section 5, we conclude this paper with some remarks.

2 Preliminaries

Given a graph G, the set of edges in E(G) incident with a vertex v ∈ V (G)
is denoted by δ(v). An independent set in G is a set of pairwise nonadjacent
vertices in V (G). The Maximum Independent Set (MIS) problem is to find
an independent set of largest cardinality α(G). MIS is a special case of the
Maximum k-Colorable Induced Subgraph (MCIS) problem which is to
find a maximum subset of V (G) that is the union of k independent sets in G.

A tree family T = {T1, . . . , Tg} in graphG is usually associated with its inter-
section graph GT with vertex set V (GT) = {v1, . . . , vg} and edge set E(GT) =
{vivj : Ti and Tj share at least one edge in G}. Clearly, an independent set
S in GT (resp. the union S of c independent sets in GT) corresponds to a set
{Ti : vi ∈ S} of edge-disjoint trees in G (resp. a set {Ti : vi ∈ S} of trees in G
that admits a coloring using colors in {1, . . . , c}).

Most of previous works related to Max-TRC problem focused on the special
case where every group has only two members, thus in this case a tree intercon-

Routing and Coloring for Maximal Number of Trees 201

necting a group is simply a path connecting the two members. The Max-TRC
problem in this case is commonly known as Maximum Path Routing and Coloring
(Max-PRC) problem, and has been extensively studied for several topologies,
such as trees, rings and meshes. Max-PRC Problem is NP-hard for all these
three topologies, and is approximable within 1.58 in trees [13], within 1.5 in
rings [11], within O(1) in 2-dimensional meshes [8, 13]. A simplified version of
Max-PRC Problem assumes that the set of paths is prespecified [12]. For this
version it was also proved NP-hard in general (but polynomial-time solvable
when the graph is a chain [12]) and inapproximable within mδ for some δ > 0
unless NP = P .

When the number of available colors reduces to one, Max-TRC problem
reduces to the maximum edge-disjoint Steiner tree problem, and its special case
mentioned above is referred to as the maximum edge-disjoint path problem. The
standard greedy approaches [13] guarantee that if the maximum edge-disjoint
Steiner tree problem is approximable within r, then Max-TRC problem is ap-
proximable within 1/(1− e−1/r). Nevertheless, even the maximum edge-disjoint
path problem seems hard to approximate: the current-best approximation guar-
antee is

√
m+ 1 achieved through greedy selection of shortest paths [9].

Both the decision and optimization versions of Max-TRC problem are
closely related to MCIS problem and its special case, MIS problem. It was
shown by Bellare, Goldreich, and Sudan [1] that MIS problem is inapproximable
within n

1
4−ε for any ε > 0 assuming NP �= P . Since the faith in the hypothe-

sis NP �= ZPP is almost as strong as NP �= P , the following negative result
from [7], as well as positive result from [6], explains the lack of progress on good
approximation for MIS problem and MCIS problem.

Theorem 1. (i) MIS problem is inapproximable within n1−ε for any ε>0, unless
NP = ZPP . (ii) MCIS problem is approximable within O(n(log logn/ logn)2).

3 Inapproximability Analysis

In this section, we shall show that Max-TRC problem is as hard as MIS problem.
Then our inapproximability results follow from Theorem 1 one way or another.
Roughly speaking, we assume the existence of an r-approximation algorithm A
for Max-TRC problem, and use A to design an r-approximation algorithm B
for MIS problem.

3.1 Trees

When the underlying graph is a tree, the tree interconnection group Γi is uniquely
determined by the group members in Γi. Our first inapproximable case occurs in
the star graph which is a tree with at most one vertex (called center) of degree
greater than one.

Theorem 2. The Max-TRC problem in trees is inapproximable within a ratio
max{g1−ε,m

1
2−ε} for any ε > 0, unless NP = ZPP .

202 Xujin Chen, Xiaodong Hu, and Tianping Shuai

Proof. Suppose for a contradiction that for some ε > 0, there is a max{g1−ε,

m
1
2−ε}-approximation algorithm A for the Max-TRC problem in trees. Con-

sider an arbitrary graph H with V (H) = {v1, . . . , vn} and E(H) = {e1, . . . , em}.
We construct a star graph G with m + 1 vertices and m edges by setting
V (G) := {a, b1, . . . , bm} and E(G) := {abi : i = 1, . . . ,m}, where a is the
center. Define Γ := {Γ1, . . . , Γn} by Γi := {a} ∪

(⋃
ej∈δ(vi)

bj

)
, 1 ≤ i ≤ n.

Let Ti be the unique tree in G interconnecting Γi for each 1 ≤ i ≤ n. Then
T = {T1, . . . , Tn} is the unique tree family of Γ , and GT = H . Now algorithm
B runs A on the instance (G,Γ , 1) and outputs {vi : A outputs Ti}. It is easy to
see that B is an approximation algorithm for MIS problem and has performance
ratio, max{g1−ε,m

1
2−ε} = max{n1−ε,m

1
2−ε} = n1−ε, the same as that of A, a

contradiction to Theorem 1. ��

Notice that the star graph used in the above reduction has its center a very
large degree. A natural question is: whether low degrees make Max-TRC prob-
lem easier? The answer is almost negative as shown by our results on meshes
and tori in the next subsection.

3.2 Meshes

This subsection is devoted to the proof of the following inapproximability result
on 2-dimensional meshes and tori. (We will only prove the case of meshes since
the proof for tori is similar.)

Theorem 3. The Max-TRC problem in meshes (tori) is inapproximable within
max{g1−ε,13m

1
4−ε} for any ε > 0, unless NP = ZPP .

To prove the theorem, we first show a lemma. For graph H with V (H) =
{v1, . . . , vn} and E(H) = {e1, . . . , em}, we define groups Γ = {Γ1, . . . , Γn} on
a 5m × 5m mesh G as follows. Assume the vertices in G are labelled as in the
Cartesian plane with its corners located at (0, 0), (0, 5m− 1), (5m − 1, 0), and
(5m − 1, 5m − 1), respectively. Associate each edge ej (1 ≤ j ≤ m) in H with
two vertex sets in G: Rj := {(�, 5j − k) : � = 0, 1, . . . , 5m − 1; k = 1, 2, 3, 4, 5}
and Sj := {(5j − k, �) : � = 0, 1, . . . , 5m − 1; k = 1, 2, 3, 4, 5}. Notice that Rj

(resp. Sj) consists of vertices located on five consecutive rows (resp. columns) of
G, and satisfies the following two properties

Each of {R1, . . . , Rm} and {S1, . . . , Sm} is a (disjoint) partition of V (G). (1)
Rj ∩ Sk induces a 5× 5 submesh Gjk of G, for 1 ≤ j, k ≤ m. (2)

Now corresponding to vertex vi in G, the i-th group

Γi :=
⋃

ej∈δ(vi)

(Rj ∪ Sj) (3)

in G is defined as the union of Rj ∪ Sj for all ej incident with vi.

Routing and Coloring for Maximal Number of Trees 203

Lemma 1. Let Γ = {Γ1, . . . , Γn} consist of n groups in 5m × 5m mesh G as
defined in (3), and let T ′ = {T ′

1, . . . , T
′
n} be a tree family in G such that Ti is a

tree interconnecting Γi, 1 ≤ i ≤ n. Then
(i) there is a tree family T = {T1, . . . , Tn} such that Ti is a tree interconnecting

Γi, 1 ≤ i ≤ n, and the intersection graph of T is H; and
(ii) there does not exist distinct i, j, k ∈ {1, . . . , n} such that vivj ∈ E(H) and

T ′
i , T

′
j, T

′
k are pairwise edge-disjoint in G.

Proof. To justify claim (i), let us first construct a tree family T = {T1, . . . , Tn}
so that each Ti (1 ≤ i ≤ n) is a tree obtained from its vertex set V (Ti) := Γi by
two steps. In the first step, for every ej incident with vi, we add five rows each
connecting all vertices in {(�, 5j−k) : � = 0, 1, . . . , 5m−1}, 1 ≤ k ≤ 5. Then the
horizontal edges on the five rows span Rj . Summing over all ej ∈ δ(vi), in total
5|δ(vi)| rows are added. In the second step, we use vertical edges with both ends
in Sj for some ej ∈ δ(vi) to connect the 5|δ(vi)| rows and the rest vertices in Γi

under the condition that the resulting graph is a tree. (Though there are many
possible Ti’s, it is not a hard task to pick any one of them.)

By the construction, it suffices to show that the intersection graph GT of T
is identical with H . Indeed, for every edge vhvi = ej in H , trees Th and Ti in
G share common edges on the rows that span Rj . On the other hand, for every
pair of nonadjacent vertices vh and vi in H , since δ(vh) ∩ δ(vi) = ∅, we deduce
from (1) that Rj ∩ Rk �= ∅ �= Sj ∩ Sk for all ej ∈ δ(vh), ek ∈ δ(vi). Therefore,
combining the definitions of Γh and Γi (recall property (3)) and the constructions
of Th and Ti we see that Th and Ti shares neither a common horizontal edge
nor a common vertical edge. In other words, Th and Ti are edge-disjoint. Thus
GT = H as desired.

We now prove claim (ii). Suppose on the contrary that vivj = ep ∈ E(H)
and T ′

i , T
′
j, T

′
k are pairwise edge-disjoint. Since ep ∈ δ(vi) ∩ δ(vj), by property

(3), both T ′
i and T ′

j contain (Rp ∪ Sp) ⊆ Γi ∩ Γj . Take eq ∈ δ(vk). Obviously
ep �= eq. Recalling property (2), we have a 5 × 5 submesh Gpq in G induced by
Rp ∩ Sq. Note that the 25 vertices of Gpq are all contained in Γi ∩ Γj ∩ Γk ⊆
V (T ′

i) ∩ V (T ′
j) ∩ V (T ′

k), and hence every vertex in Gpq is incident with three
distinct edges one from each of T ′

i , T
′
j, T

′
k. Consequently none of T ′

h, T
′
i , T

′
j can

have a branching vertex in Gpq, and each of the 9 internal vertices of Gpq is a
leaf of at least two of T ′

i , T
′
j, T

′
k. Therefore there are in total at least 18 different

paths in T ′
i ∪ T ′

j ∪ T ′
k connecting these leaves to the boundary of Gpq because

every of T ′
i , T

′
j, T

′
k has vertices outside Gpq. Two of those paths must have a

common edge in Gpq as Gpq has only 16 boundary vertices. The two different
paths are contained in exactly one tree in {T ′

h, T
′
i , T

′
j}. It follows that this tree

has a branching vertex in Gpq. The contradiction establishes claims (ii). ��

Proof of Theorem 3. Suppose that for some ε>0, there is a max{g1−ε, 1
3m

1
4−ε}-

approximation algorithmA for the Max-TRC problem in 2-dimensional meshes.
By Theorem 1, it suffices to present a polynomial time algorithm B which always
finds an independent set of size at least α(H)/n1−ε in any given graph H on n
vertices. If H is a complete graph, then B outputs an arbitrary vertex of H . So

204 Xujin Chen, Xiaodong Hu, and Tianping Shuai

we assume that α(H) ≥ 2, and by examining all pairs of vertices in H , B can
find two nonadjacent vertices v1 and v2 in H in square time,

Suppose V (H) = {v1, . . . , vn} and E(H) = {e1, . . . , em′}, respectively. Let
groups Γ = {Γ1, . . . , Γn} on a 5m′×5m′ mesh G be defined for H as in (3). Then
the number of the edges in G is m = 10m′(5m′− 1) < 50n4, and by Lemma 1(i)
there is a tree family T = {T1, . . . , Tn} in G such that Ti interconnects Γi (1 ≤
i ≤ n) and GT = H . This implies that there is a subset S of T consisting of α(H)
pairwise edge-disjoint trees. Observe that S is a solution to the instance (G,Γ , 1)
of the Max-TRC problem with only one color available. Hence the optimal
value OPT (G,Γ , 1) ≥ |S| = α(H). Now running algorithm A on (G,Γ , 1),
algorithm B yields a solution {T ′

i1
, . . . , T ′

iβ
} consisting of β pairwise edge-disjoint

trees interconnecting multicast groups Γi1 , . . . , Γiβ
. As a result, algorithm B

outputs S = {v1, v2} if β = 2 and S = {vi1 , . . . , viβ
} if β ≥ 3. Notice that S

is an independent set in G of size β (recall Lemma 1(ii)). Moreover, α(H)
|S| ≤

OPT (G,Γ ,1)
β = OPT (G,Γ ,1)

A(G,Γ ,1)
≤ max

{
g1−ε, 1

3m
1
4−ε

}
= max

{
n1−ε, 1

3m
1
4−ε

}
=

n1−ε shows that |S| approximates α(H) within n1−ε. It follows that B is an
n1−ε-approximation algorithm for MIS problem. The proof is then finished. ��

4 Approximability Results

In this section, we will first propose a simple greedy algorithm Greedy Tree for
Max-TRC problem in general graphs, and then two approximation algorithms
for the Max-TRC problem in trees and rings.

4.1 Greedy Algorithm for General Graphs

The main philosophy of our greedy strategy is to produce trees of less edges
whenever possible. This is based on a natural intuition: a tree of less edges
potentially has more chances to use the same color with others, and therefore
coloring more trees.

In order to carry out the greedy strategy, it is worth noting that finding a tree
for each given group Γ with minimal number of edges is the classic Minimum
Steiner Tree (MST) problem, which is NP -hard in general [2] and has a 2-
approximation algorithm [10].

For a given instance (G,Γ , c) of Max-TRC problem, the implementation
of algorithm Greedy Tree consists of a number of iterations. In the (i + 1)-
th iteration, set Γ i contains all currently unrooted multicast groups. For every
j = 1, . . . , c, let Gi+1

j be the subgraph of G obtained by removing all edges
in the trees already colored with color j. Clearly, Gi+1

j contains a Steiner tree
of Γ , for every Γ ∈ Γ i whose connection can be established using color j.
Subsequently, for every such Γ , compute a 2-approximate MST [10] of Γ in
Gi+1

j ; all these 2-approximations are put into a set Ti (Steps 5-7). When all js
have been considered, every group in Γ i whose connection can be established
has at least a tree of Ti, and every tree in Ti can be colored with an appropriate

Routing and Coloring for Maximal Number of Trees 205

color. If Ti = ∅, then no more connection can be established and the algorithm
terminates; else among all produced trees in Ti, select the one with the minimum
number of edges and color it with an appropriate color (Steps 9-10), and then
proceed to the next iteration.

Algorithm Greedy Tree
Input A set Γ of g groups in graph G, and a set {1, . . . , c} of colors.
Output Routing and proper coloring C = {(Ti, ci) : i = 1, . . . , t}.

// Greedy Tree(G,Γ , c) = t

1. i← 0, C0 ← ∅, Γ 0 ← Γ .
2. while Γ i �= ∅ do begin
3. Ti ← ∅
4. For 1 ≤ j ≤ c do
5. while Gi+1

j contains a tree interconnecting Γ ∈Γ i do begin
6. Ti←Ti∪{ 2-approximate MST of Γ in Gi+1

j }
7. end-while
8. If Ti �= ∅ then
9. Pick Ti+1∈Ti and j∈{1, ..., c} s.t. |E(Ti+1)| = min

T∈Ti

|E(T)| and
E(Ti+1)∩(

⋃
T :(T,j)∈Ci

E(T))= ∅
10. Ci+1 ← Ci ∪ {(Ti+1, j)}
11. Γ i+1 ← Γ i − {Γ : Ti+1 interconnects Γ)}
12. else Γ i+1 ← ∅
13. t← i, i← i+ 1
14. end-while
15. Output C ← Ct

Theorem 4. Greedy Tree is a (
√

2m+1)-approximation algorithm for Max-
TRC problem.

Proof. Clearly, Greedy Tree terminates after at most g iterations (Steps 2-
14) since |Γ i+1| ≤ |Γ i| − 1 for every i (see Steps 10-12). Additionally, Step 11
implies that at most one tree is output for one group. The correctness follows
from Steps 4-11 which guarantee inductively that every Ci (1 ≤ i ≤ t) is a
solution to (G,Γ , c).

We now turn to estimate the performance ratio of Greedy Tree. It is obvi-
ous that t ≥ min{c, g}. If c ≥ g, then the algorithm solves (G,Γ , c) optimally. So
we assume c < g and therefore t ≥ c. Consider an optimal solution to (G,Γ , c)
and let S consist of the trees of the optimal solution for the multicast groups
unrouted by Greedy Tree. Therefore, we have

|OPT(G,Γ ,c)|≤|S|+t, and no c+1 trees in S can share the same edge in G. (4)

If S = ∅, then t = |OPT (G,Γ , c)| and we are done. So we assume S �= ∅
and consider an arbitrary S ∈ S. Suppose S is a tree interconnecting group Γ .
Observe in Step 11 Γ is contained in every of Γ 1, . . . ,Γ t. Since Γ t+1 must be
empty (otherwise Greedy Tree should output at least t + 1 trees), by Step

206 Xujin Chen, Xiaodong Hu, and Tianping Shuai

5, we have S � G\(
⋃

T:(T,j)∈CtE(T)) for every 1 ≤ j ≤ c. On the other hand,
it is clear that Cc−1 does not use color k for some k ∈ {1, . . . , c}, so the first c
rounds of while loop (Steps 2-14) always find S ⊆ G\(

⋃
T :(T,k)∈Ch−1E(T))= G

for 1 ≤ h ≤ c. Hence we may take an integer i(S) ≥ c such that

S ⊆
c⋃

j=1

(
G \ (

⋃
T :(T,j)∈Ch−1

E(T))
)

for each 1 ≤ h ≤ i(S), and (5)

E(S) ∩
(⋃

T :(T,j)∈Ci(S)

E(T)
)
�= ∅ for each 1 ≤ j ≤ c. (6)

Subsequently, for every tree S ∈ S, we can find an h(S) ≤ i(S) and charge
S to a common edge eS

h(S) ∈ E(S) ∩ E(Th(s)) of S and the tree Th(S) in a way
that no two trees in S are both charged to the same edge of the same tree in
{T1, . . . , Tt}, i.e.,

either eR
h(R) �= eS

h(S) or h(R) �= h(S), for any distinct R,S ∈ S. (7)

To establish such a correspondence between trees in S and edges in T1, . . . , Tt, we
shall make use of a matching in a bipartite graphH as follows: the vertex set ofH
is disjoint union of independent set X and independent set Y for which X := S
consists of |S| vertices one for a tree in S, while Y := {ei : e ∈ E(Ti), i = 1, . . . , t}
is considered a multiset of size

∑t
i=1 |E(Ti)| so that every edge e ∈ E(G) has a

number of copies ei in Y , each carrying an index i iff e ∈ E(Ti). The edge-set of
H contains an edge joining S ∈ X and eh ∈ Y iff h ≤ i(S) and e ∈ E(S)∩E(Th)
in G. Since, by Step 10, Ci(S) does not route any of Ti(S)+1, . . . , Tt, it follows
from (6) that in H every S ∈ X has at least c neighbors in Y . For any X ′ ⊆ X ,
we use N(X ′) to denote the set of vertices in H \X ′ each having a neighbor in
X ′. Clearly, N(X ′) ⊆ Y . If |N(X ′)| < |X ′| for some X ′ ⊆ X , then there exists
ei ∈ N(X ′) which has at least c + 1 neighbors in X ′, so these c + 1 neighbors
are c + 1 trees in S sharing the same edge e ∈ E(G), contradicting (4). Thus
|N(X ′)| ≥ |X ′| for everyX ′ ⊆ X , and Hall’s theorem [5] guarantees the existence
of a matching in H that saturates every S ∈ X . Suppose eh is the neighbor of S
in this matching. We then define h(S) := h and eS

h(S) := e. From the structure
of H , it is easy to see that (7) is satisfied.

Furthermore, since h(S) ≤ i(S), by (5) and by Steps 5-7, Th(S)−1 contains
a tree T interconnecting Γ with |E(T)| ≤ 2|E(S)|. In turn, from the choice
of Th(S) ∈ Th(S)−1 made in Step 9, we deduce that |E(Th(S))| ≤ |E(T)| ≤
2|E(S)|. Thus |E(S)| ≥ 1

2 |E(Th(S))| for every S ∈ S. Let si := |{S : S ∈
S, h(S) = i}| denote the number of trees in S that are charged to edges of Ti,
1 ≤ i ≤ t, then

∑t
i=1 si = |S|, and by (7), si ≤ |E(Ti)|. Recall from (4) that the

total number of edges of all trees in S does not exceed cm. This yields cm ≥∑
S∈S |E(S)| =

∑t
i=1

∑
S∈S,h(S)=i |E(S)| ≥

∑t
i=1

∑
S∈S,h(S)=i

1
2 |E(Th(S))| =

1
2

∑t
i=1 |E(Ti)|si ≥ 1

2

∑t
i=1 s

s
i . Combining this with t ≥ c, we have |S|/t =

(
∑t

i=1 si)/t ≤
√

(
∑t

i=1 s
2
i)/t ≤

√
2cm/t ≤

√
2m. This, together with (4), yields

the desired performance ratio OPT (G,Γ , c)/t ≤
√

2m + 1. The proof is then
finished. ��

Routing and Coloring for Maximal Number of Trees 207

One of our proof techniques borrows an idea used in the work [9] for Disjoint
Path Problem. However, combining two approaches in [9] and [13] can only obtain
a performance ratio 1/(1 − e−1/(

√
2m+1)) for Greedy Tree, which is greater

than
√

2m+ 1.

4.2 Approximation Algorithms for Special Graphs

When the underlying graph G is a tree, the tree family T for a given set Γ of
groups is unique, and Max-TRC problem is reduced to coloring as many trees
in T as possible. Clearly, the algorithm proposed in [6] for MCIS problem on GT
carries over to the Max-TRC problem on Γ , and has an approximation ratio
O(g(log log g/ log g)2).

When the size of a multicast group is upper bounded by a constant k [3], the
maximum degree of any tree in T is no more than k. We call such a tree family
a k-tree family. Notice that the Max-TRC problem on k-tree family in trees is
NP -hard even when k = 2 [13].
Theorem 5. The Max-TRC problem in tree graphs is approximable within
1/(1− e−1/k) for any given k-tree family.
To prove the theorem, we apply the idea of iterative application of an algorithm
Disjoint Trees for finding a maximal set of edge-disjoint trees. The standard
iterative method [13] goes as follows: First run Disjoint Trees on the tree
family T to get a maximal set of edge-disjoint trees. All trees in this set are
colored with color 1, and then removed from the current tree family. And then
run Disjoint Trees on the remaining tree family to find the maximal set of
edge-disjoint trees and color them using a new color. Repeat this process until
either no color can be used or no more tree is left uncolored. It is shown in [13]
that if Disjoint Trees is a k-approximation algorithm for finding a maximum
set of edge-disjoint trees, then the iterative method provides a 1/(1 − e−1/k)-
approximation for the Max-TRC problem.

We now present a k-approximation algorithm Disjoint Trees. Let us root
the tree G at an arbitrary vertex r. The level of a vertex v ∈ V (G) is defined
as the length of the path from r to v. We use � to denote the highest level of
vertices in G. Let T be a tree in G, the root of T is the vertex in T that has the
lowest level, and the level of T is equal to the level of its root.

Algorithm Disjoint Trees
Input A tree family T in tree graph G.
Output A set T of edge-disjoint trees with T ⊆ T . // Disjoint Trees(G, T) =
|T|
1. i← �− 1, T ← ∅
2. While i �= −1 do begin
3. Find a maximal set Ti of edge-disjoint trees in G\ ∪

T∈T
E(T) each of level

i in G.
4. T ← T ∪ Ti, i← i− 1
5. end-while
6. Output T

208 Xujin Chen, Xiaodong Hu, and Tianping Shuai

Proof of Theorem 5. It suffices to show that there are at most k·Disjoint Trees
(G, T) edge-disjoint trees in any k-tree family T . Note that T is the disjoint union
of T0, . . . ,T�−1. Denote by S the subset of T consisting of a maximum number
of edge-disjoint trees, and set Sj := {S ∈ S : S is edge-disjoint from every tree
in ∪�−1

i=j+1Ti, and shares a common edge with some tree in Tj}, � − 1 ≥ j ≥ 0.
Then the maximality in Step 3 implies |S| =

∑�−1
j=0 |Sj |. Since every tree in Sj is

edge-disjoint from every tree in T of level higher than j, and shares a common
edge with a tree in T of level j, every tree in Sj has a edge that is incident with
a vertex of level j and contained in a tree in Tj . It is easy to see that |Sj | ≤ k|Tj |
for all �− 1 ≥ j ≥ 0. Thus we have |S| =

∑�−1
j=0 |Sj | ≤ k

∑�−1
j=0 |Tj | = k|T|. ��

When the underlying graph is a ring, a tree for a group is simply a path
containing all vertices in the group. In this simple case, by combining techniques
used in [4, 11] we can prove the following theorem.

Theorem 6. The Max-TRC problem in ring graphs has an 1.5-approximation
algorithm.

5 Conclusions

In this paper we have studied the hardness of approximation for routing and
coloring maximum number of trees. The Ω(g1−ε)-inapproximability established
provides a lower bound for designing good approximation algorithms for Max-
TRC. In the positive aspect, we have shown that the general-purpose greedy
strategy achieves general lower bound, while focusing on network topology and
group size bring about improvements on approximating Max-TRC in special
networks.

As the future work, the counterpart of Max-TRC - Minimal Tree Routing
and Coloring (Min-TRC) problem deserves research efforts, where the goal is to
find a tree family T of the set of all given g groups and a coloring of T with
minimum number of colors.

References

1. M. Bellare, O. Goldreich, and M. Sudan, Free bits and nonapproximability–towards
tight results, SIAM J. Comput. 27 (1998), 804-915.

2. M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-completeness, W.H. Freeman and Company, 1979.

3. J. Gu, X.-D. Hu, X.-H. Jia, and M.-H. Zhang, Routing algorithm for multicast
under multi-tree model in optical networks, Theoretical Computer Science 314
(2004), 293-301.

4. U. I. Gupta, D. T. Lee, and Y.-T. Leung, Efficient algorithms for interval graphs
and circular-arc graphs, Networks 12 (1982), 459-467.

5. P. Hall, On representatives of subsets, J. London Math. Soc. 10 (1935), 26-30.

6. M. M. Halldórsson, Approximations of weighted independent set and hereditary
subset problems, J. Graph Algorithms and Applications 4(1) (2000), 1-16.

Routing and Coloring for Maximal Number of Trees 209

7. J. Hastad, Clique is hard to approximate within n1−ε, Acta Mathematica 182
(1999), 105-142.

8. J. Kleinberg and E. Tardos, Disjoint paths in densely embedded graphs, Proc. 36th
Annual ACM Symp. Theory of Computing, 1995, 52-61.

9. S. G. Kollipoulos and C. Stein, Approximating disjoint-path problems using greedy
algorithms and packing integer programs, Integer Programming and Combinatorial
Optimization, Houston, TX, 1998.

10. L. Kou, G. Markowsky, and L. Berman, A fast algorithm for steiner trees, Acta
Informatica 15 (1981), 141-145.

11. C. Nomikos, A. Pagourtzis, and S. Zachos, Minimizing request blocking in all-
optical rings, IEEE INFOCOM 2003.

12. C. Nomikos and S. Zachos, Coloring a maximum number of paths in graphs, Work-
shop on Algorithmic Aspects of Communication, Bologna, 1997.

13. P. J. Wan and L. Liu, Maximal throughput in wavelength-routed optical networks,
DIMACS Series in Discrete Mathematics and Theoretical Computer Science 46
(1998), 15-26.

Share the Multicast Payment Fairly

WeiZhao Wang1, Xiang-Yang Li1,�, and Zheng Sun2,��

1 Illinois Institute of Technology, Chicago, IL, USA
wangwei4@iit.edu, xli@cs.iit.edu

2 Hong Kong Baptist University, Hong Kong, China
sunz@comp.hkbu.edu.hk

Abstract. In this paper, we study how to share the payments to relay
links among the receivers for multicast. Based on a strategyproof mech-
anism whose multicast tree is at most 2 times the optimal, we propose
a payment sharing scheme that is 1

n2 -budget-balanced, cross-monotonic,
and in the core. We also prove that there is no payment sharing scheme
that can achieve β-budget-balance and cross-monotonicity for β = Ω(1

n
).

When both the relay agents and the receivers are selfish, we show a neg-
ative result: combining a strategyproof mechanism for the relay agents
and a strategyproof sharing scheme for the receivers does not necessarily
imply a strategyproof mechanism overall.

1 Introduction

Multicast has been a popular technique for supporting group-based applications,
such as video-conference and content distribution. Multicast routing often uses
a tree to connect the receivers to the source, and every internal node only sends
the data to its downstream nodes in the tree, which saves the bandwidth. Tra-
ditionally, whenever the source needs to send some data to a subset of receivers,
the multicast routing picks the shortest path tree (also called least cost path tree
in [1]) that spans these receivers. This simple approach ignores the fact that the
shortest path tree may be arbitrarily worse than the optimal tree with respect
to the total cost. Thus, we need to find the optimal tree connecting a given set
of receivers with the minimum total cost, a problem known as the Steiner tree
problem. However, this problem is well-known to be NP-hard for both the node
weighted and link weighted graph. Thus, a sequence of approximation algorithms
have been developed for the Steiner tree problems. In this paper, we assume that
the network is link weighted, i.e., only the links have costs.

Recently, sharing the cost of the multicast routing among receivers in a “fair”
manner has been studied extensively [2, 3]. An assumption made by the cost
sharing schemes is that the costs of the links (or nodes) are publicly known.
However, this is not the case in many application scenarios. When the links (or
nodes) are independent and self-interested agents, several strategyproof mecha-
nisms [1, 4, 5] have been developed so that a proper payment to each agent can
� The research of the author was supported in part by NSF under Grant CCR-0311174.

�� The research of the author was supported in part by Grant FRG/03-04/II-21 and
Grant RGC HKBU2107/04E.

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 210–219, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Share the Multicast Payment Fairly 211

be computed efficiently. When the payments to the agents needed to be shared
among the receivers, we need to design a payment sharing scheme instead of the
traditional cost sharing scheme. If every receiver is also selfish with a privately
known valuation, then a payment sharing mechanism is needed to determine
which receiver gets the multicast data and at what price. Surprisingly enough,
several results from cost sharing mechanisms do not carry over to the payment
sharing mechanism. In [1], Wang et al. first studied how to fairly share, among
the set of receivers, the payment of the mechanism that uses the shortest path
tree as its multicast tree. By assuming that each receiver is willing to pay the
computed charge, i.e., its valuation is sufficiently large, they proved that their
payment sharing scheme is fair. However, the cost of the shortest path tree could
be as large as r times of the optimum, where r is the number of receivers. In this
paper, we will study the payment sharing scheme when the payment is computed
by a certain mechanism using a multicast tree with a constant approximation
ratio, when the network links are selfish agents with privately known costs. We
first show that if a payment sharing scheme is cross-monotone and never over-
charges, then the total charge to receivers is at most Θ(1

n) of the total payment
to the selfish relay links in the worst case. We then present a payment sharing
scheme that is in the core and can recover at least Θ(1

n2) of the total payment
to the selfish links. When both the relay agents and the receivers are selfish, we
show a negative result: combining a strategyproof mechanism M for the relay
agents and a fair sharing scheme ξLST for the receivers do not necessarily imply
a strategyproof mechanism overall.

2 Preliminaries and Previous Works

2.1 Algorithmic Mechanism Design

In a non-cooperative game (such as multicast), there are n agents {1, 2, · · · , n}.
We assume each link is an agent for multicast. Each agent i ∈ {1, · · · , n} has
some private information ti, called its type (e.g. its cost to forward a packet
in multicast). All agents’ types define a profile t = (t1, . . . , tn). Each agent i
declares a valid type τ ′i which may be different from its actual type ti and all
agents’ strategies define a declared type vector τ . A mechanism M = (O,P) is
composed of two parts: an output method O that maps a declared type vector
τ to an output o, and a payment scheme P that decides the monetary payment
Pi = Pi(τ) for every agent i. Each agent i has a valuation function wi(ti, o) that
expressed its preference over different outcomes. Agent i’s utility is ui(ti, o) =
wi(ti, o) + pi, given output o and payment pi. An agent i is said to be rational
if it always chooses its strategy τi to maximize its utility ui.

Let τ |iti = (τ1, · · · , τi−1, ti, τi+1, · · · , τn). A mechanism M = (O,P) is strat-
egyproof if it satisfies the following conditions. (1) Incentive Compatibility
(IC): ∀ agent i,∀τ , wi(ti,O(τ |iti)) + pi(τ |iti) ≥ wi(ti,O(τ)) + pi(τ). (2) In-
dividual Rationality (IR)(a.k.a., Voluntary Participation): Each agent must
have a non-negative utility. We always require that O and P are computed in
polynomial time, which is called Polynomial Time Computability (PC).

212 WeiZhao Wang, Xiang-Yang Li, and Zheng Sun

2.2 Payment Sharing

In multicast transmission, one of the major concerns is how to charge the re-
ceivers in a fair way. If the relay links are cooperative, i.e., the costs of relay
links are publicly known, we need to share the costs of the multicast tree among
receivers fairly. For the fair cost sharing, most of the literatures [2, 6, 7] used
the Equal Link Split Downstream (ELSD) sharing scheme to charge receivers:
the cost of each link is shared equally among all its downstream receivers. If the
relay links are selfish, we have to share the payments paid to these links, where
the payment to a selfish link should be computed by a certain strategyproof
mechanism. If we simply apply ELSD as our charging scheme, it usually is not
fair in a common sense. Thus, we focus on the payment sharing in this paper.

Consider a set U of n players. For a subset S ⊆ U of players, let P(S) be the
total payment of providing service to S. A payment sharing scheme is simply a
function ξi(S, c) with ξi(S, c) = 0 for i �∈ S, for every set S ⊆ U of players. For
payment sharing scheme, the definition of fairness is more subtle: many fairness
concepts were proposed in the literature, such as core and bargaining set [8]. We
call a charging scheme ξ reasonable or fair if it satisfies the following criteria.
1. Budget Balance (BB): The payment to all relay agents should be shared

by the receivers, i.e., P(R, c) =
∑

i∈R ξi(R, c). When budget-balance cannot
be met, we relax it to β-budget-balanced: for the receiver set R, β ·P(R, c) ≤∑

i∈R ξi(R, c) ≤ P(R, c), for some given parameter β ≤ 1.
2. No Positive Transfer (NPT): Any receiver i’s sharing should not be neg-

ative. In other words, we do not pay the receiver to receive service.
3. Cross-monotonicity (CM): For any two subsets S ⊆ T and i ∈ S, ξi(S, c) ≥

ξi(T, c). In other words, the payment share of a receiver i should not go up if
more receivers require the service. This is also called population monotone.

4. Fairness under core (Core): ∀S ⊆ R,
∑

i∈S ξi(R, c) ≤ P(S, c).
Notice that a budget-balanced and cross-monotonic cost sharing scheme is

always in the core. When each receiver qi has a maximum payment ζi it is
willing to pay to receive the multicast service, then we have to decide which
receivers will get the service and at what price, i.e., we need design a truthful
mechanism. This mechanism sometimes is called payment sharing mechanism.
A payment sharing mechanism satisfies group strategyproof if for any subset of
receiver S ⊆ R, they can not collude together such that every receiver does not
decrease its utility while at least one receiver increases its utility.

It is well-known [2] that a cross-monotonic budget-balanced cost sharing
scheme ξ implies a group-strategyproof mechanism M(ξ) that determines which
receiver will get the service and at what price. Moulin and Shenker [2] also offered
a characterization of a whole class of budget-balanced and group strategyproof
mechanisms when the agents providing service is not selfish.

2.3 Problem Statement

Given a network G = (V,E, c), where V = {v1, . . . , vn} is the set of terminals,
E = {e1, . . . , em} is the set of links. Every link ei has a cost ci to transmit a

Share the Multicast Payment Fairly 213

unit size of data. Assume that each link is an individual agent who is selfish and
rational. A set of receivers R = {q1, . . . , q|R|} ⊂ V are willing to receive the data
from a source node s. For notational simplicity, we assume that q0 = s is the
source node in one specific multicast and the size of the data is normalized to
1. To prevent monopoly, we assume that the graph G is bi-connected. We also
assume that links will not collude to improve their profits together.

To design a multicast protocol, we first need to design a strategyproof mech-
anism ME = (OE ,PE) such that the selected links form a topology (a tree, a
mesh, a ring, etc) that spans the set of receivers R. This has been well-studied
[1, 4, 5]. In this paper, we concentrate on designing a fair payment sharing scheme
ξ when the payment is computed by a strategyproof mechanismME = (OE ,PE)
whose multicast tree has a constant approximation ratio. We further assume that
each receiver has a valuation of receiving the data from the source. Let ζi be the
willing payment by receiver qi, and ζ be the vector of the willing payments of
the receivers. For simplicity of our notation, given a payment sharing scheme ξ,
we always use M(ξ) to denote its induced mechanism defined in [2]. If the links
are not selfish, then this is the cost sharing problem, for which Jain and Vazi-
rani [9] proposed a 1

2 -budget-balanced cross-monotonic cost sharing scheme in
[9], which implies a 1

2 -budget-balanced, group-strategyproof cost-sharing mech-
anism. In this paper, we focus on designing a fair and strategyproof payment
sharing scheme for multicast when relay links are selfish.

3 Payment Sharing for Multicast

3.1 Tree Construction and Payment Computation

In practice, the shortest path tree (SPT), which is the union of the shortest
paths from source to all receivers, is most widely used as a multicast tree. We
use SPT (R, c) to denote the shortest path tree of a network when the network
cost vector is c and receivers set is R. Notice the total cost of SPT (R, c) could
be as large as |R| times the optimal tree. Takahashi and Matsuyama [10] gave a
polynomial time algorithm computing a 2-approximation of the optimum tree.
Then a series of results have been developed to improve the approximation ra-
tio [11]. Due to its simplicity of construction, we will use algorithm in [10] to
construct the multicast tree, and the resulting tree is denoted as LST (R, c).

We now briefly review the truthful payment scheme for links when they are
selfish. We continue to present some important properties stating the relations
of different payment schemes, which are crucial to design our payment sharing
scheme. Wang et al. [4] gave the truthful payment schemes for tree SPT and
LST respectively. A more general framework to design the payment schemes
for any given multicast structure is given in [1, 5]. We use PSPT (R, c) and
PLST (R, c) to denote the payment scheme for tree SPT and LST respectively.
We also use PSPT (R, c) and PLST (R, c) to denote the total payment to the links
in the network based on the tree SPT and LST respectively.

214 WeiZhao Wang, Xiang-Yang Li, and Zheng Sun

Algorithm 1 Construct the Steiner Tree LST (R, c) (see [10])
1: Initialize LST (R, c) = ∅.
2: repeat
3: for each receive qzi in R do
4: Find the least cost path LCP(s, qi, c) between s and qi.
5: Find the receiver qj with the minimum cost of the shortest path LCP(s, qj , c).
6: R ←− R − {qj}, add LCP(s, qj , c) to LST (R, c), and set all links’ costs on

LCP(s, qj , c) as 0.
7: until R is empty.

For a link ek ∈ SPT (R, c), we compute an intermediate payment pi
k(c) to

link ek for any receiver qi as pi
k(c) = |LCP(s, qi, c|k∞)| − |LCP(s, qi, c|k0)|. The

final payment to link ek ∈ SPT (R, c) is PSPT
k (R, c) = maxqi∈R pi

k(c).
For a link ek ∈ LST (R, c), the payment PLST

k (R, c) is computed as follows:

Algorithm 2 Payment Scheme PLST (R, c) for a link ek on LST
1: Set ck = ∞ and apply Algorithm 1. For simplicity, denote the cost vector in the

beginning of ith round as c(i) and the path selected in round i as P(s, qσi).
2: for each round i = 1, 2, · · · , |R| do

3: Set c
(i)
k = 0.

4: Let LCPek (s, qt, c
(i)) be the path with the smallest weight among all paths be-

tween s and receivers in R.
5: Define an intermediate payment pi

k(c) as pi
k(c) = |P(s, qσi)| − |LCPek (s, qt, c

(i))|.
6: The final payment PLST

k (R, c) is PLST
k (R, c) = max

|R|
i=1 pi

k(c).

Lemma 1. Given a network G = (V,E, c), PSPT
k (R, c) ≤ PLST (R, c).

Proof. We prove it by contradiction. For the sake of contradiction, we as-
sume that PSPT

k (R, c) > PLST (R, c). Without loss of generality, we assume that
PSPT

k (R, c) = PLST (R, c) + δ where δ > 0. We also assume that PSPT
k (R, c)

= pj
k(R, c), i.e.,PSPT

k (R, c) = |LCP(s, qj , c|k∞)| − |LCP(s, qj , c|k0)|, where
LCP(s, qj , c|k0) is the shortest path between s and qj . Let ĉ = c|k(PLST (R, c) +
δ
2). Notice here that PLST

k (R, c) is the maximum cost that ek could declare
such that it is selected in tree LST (called cut-value in [5]). Thus, we have
ek �∈ LST (R, ĉ). Let ΠLST (s, qj) be the path between s and qj in the tree
LST (R, ĉ), then ek �∈ ΠLST (s, qj). Notice that LCP(s, qj , c|k∞) is the shortest
path between node s and qj when link ek is removed. Thus

PSPT
k (R, c) ≤ |LCP(s, qj , c|k∞)| ≤ |ΠLST (s, qj)| ≤ |LCP(s, qj , ĉ)|

≤ |LCPek
(s, qj , ĉ)| ≤ PLST (R, c) +

δ

2
< PLST (R, c) + δ = PSPT

k (R, c),

which is a contradiction. This finishes our proof.

Similarly, we have the following lemma.

Share the Multicast Payment Fairly 215

Lemma 2. Given a network G = (V,E, c), PLST
k (R, c) ≤ PSPT (R, c).

Proof. Recall that if ek �∈ LST (R, c), then PLST
k (R, c) = 0. Thus, we only need

to consider the case when ek ∈ LST (R, c). Without loss of generality, we assume
that PLST

k (R, c) = pi
k(c) (i.e., the payment is maximized at the ith round) and

qσi = qj . The tree shown in Figure 1 (a) is the tree at the beginning of iteration
i, and the path Π3 = LCP−ek

(s, qj , c). Now we discuss by cases:

q

3

s

1
qj qt

Π

qj

Π3

Π1

Π2

q1
qt

s

ek

(a) (b)

Fig. 1. The payment of LST. (a) the network at the beginning of ith iteration; (b) the
network at the end of ith iteration

Case 1: LCP(s, qj , c) = LCP−ek
(s, qj , c), i.e., link ek is not on the shortest

path between s and qj . In this case, |Π3| = |LCP(s, qj , c)| ≤ |SPT (R, c))| ≤
PLST (R, c). Here |H | denotes the total cost of links in H .

Case 2: LCP(s, qj , c) = LCPek
(s, qj , c), i.e., link ek is on the shortest path

between s and qj . Recall that PSPT
k (R, c) ≥ |LCP−ek

(s, qj , c)|−|LCP(s, qj , c|k0)|.
Thus, |LCP(s, qj , c|k0)| =

∑
ei∈LCP(s,qj ,c|k0)−{ek} ci ≤

∑
ei∈SPT (R,c)−{ek} ci ≤∑

ei∈SPT (R,c)−{ek} P
SPT
i (R, c). Therefore |Π3|= |LCP−ek

(s, qj , c)|=PSPT
k (R, c)

+ |LCP(s, qj , c|k0)| ≤ PSPT
k (R, c) +

∑
ei �=ek

PSPT
i (R, c) = PSPT (R, c).

This proves that |Π3| ≤ PSPT (R, c) no matter whether ek in on LCP(s, qj , c)
or not. Now we consider the ith iteration. For notational simplicity, we assume
that Π1 = LCPek

(s, qt, c
(i)) and Π2 = P(s, qσi). From the assumption that

PLST
k (R, c) = pi

k(c), PLST
k (R, c) = pi

k(c) = |P(s, qσi)| − |LCPek
(s, qt, c

(i))| =
|Π2| − |Π1| ≤ |Π3| − |Π1| ≤ |Π3| ≤ PSPT (R, c). This finishes our proof.

Theorem 1. For any graph G = (V,E, c), P
LST (R,c)

n ≤ PSPT (R, c) ≤
n · PLST (R, c).

3.2 Payment Sharing Scheme

Recall that, when the links in the network are selfish, we should give links some
payments that are least their costs. Thus, we need to share the payment instead
of cost of the multicast tree among the receivers in a fair way, which is called
payment sharing. For tree SPT, the ELSD scheme is not a fair payment sharing
scheme [1]. A fair payment sharing scheme ξSPT

i (·) is also given in [1].

216 WeiZhao Wang, Xiang-Yang Li, and Zheng Sun

Theorem 2 (Wang, Li et al. [1]). The payment sharing scheme ξSPT
i (R, d)

is fair, i.e., satisfies BB, NPT, NFR and CM.

For a strategyproof mechanism based on LST, if a payment sharing scheme
ξ is β-budget-balanced and cross-monotonic, then we have

Theorem 3. If a payment sharing scheme ξ is β-budget-balanced and cross-
monotonic, then β = O(1

n). Here n is the size of the network.

Proof. We prove it by presenting a network example here. The network and
the costs of the edges are shown in Figure 2. There are n nodes between v4 and
q1. The cost of link vivi+1 is ε, for 5 ≤ i ≤ n+3. Let ξLST be a payment sharing

q
1

q
2

6v

3v
4v

5v

n+4v

1.5

0.4

1

1

2.5(2.6)

0.6

ε
ε

s

1

ε

1
q

2

3v
4v

5v
n+4v

1

1.5

0.42.5

1(1.4)

1(1.5)0.6

q

s

ε(.5+ε)

1
q

2

3v
4v

5v
n+4v

1

1.5

2.5

1(1.5)
.4(.9)

1(1.5)

.6(1.1)

q

s

(a) LST (q1, c) (b) LST (q2, c) (c) LST (q1 ∪ q2, c)

Fig. 2. A bad example of payment sharing of LST

scheme for the mechanism (LST,PLST) that is β-budget-balanced and cross-
monotonic. Then from the β-budget-balance property we have ξLST

1 (q1, c) ≤
P1(q1, c) = 2.6 and ξLST

2 (q2, c) ≤ P1(q2, c) = 2.9. When the receiver set is q1∪q2,
the cross-monotonicity property implies that ξLST

1 (q1∪q2, c)+ξLST
2 (q1∪q2, c) ≤

ξLST
1 (q1, c) + ξLST

2 (q2, c) = 5.5. Notice that P(q1 ∪ q2) = 6 + 0.5 · n. Thus,
β ≤ ξLST

1 (q1∪q2,c)+ξLST
2 (q1∪q2,c)

P(q1∪q2) = 5.5
6+0.5·n = O(1

n). This finishes our proof.

The above theorem shows the limitations on the payment sharing scheme
when the payment is computed by mechanism (LST,P). In the following, we
present a payment sharing scheme for LST that achieves 1

n2 -budget-balance and
cross-monotonicity, based on payment sharing scheme in [1].

Algorithm 3 Payment Sharing Scheme for LST
1: Compute the payment sharing ξSPT

k (R, c) for each receiver qk (see [1]).

2: For each receiver qk, set ξLST
k (R, c) =

ξSP T
k (R,c)

n
, where n is the number of the

nodes in G.

Share the Multicast Payment Fairly 217

Theorem 4. The payment sharing scheme defined in Algorithm 3 satisfies
NPT, CM, 1

n2 -budget-balance, and is in the core.

Proof. Recall that ξLST
k (R, c) = ξSPT

k (R,c)
n . From Theorem 2, we obtain that

ξLST (R, c) satisfies NPT and CM directly. Thus, we only need to prove that
ξLST (R, c) is 1

n2 -budget-balance and in the core.

To prove the 1
n2 -budget-balance property, we need to show that P

LST (R,c)
n2 ≤∑

i ξ
LST
i (R, c) ≤ PLST (R, c). From Theorem 1, we have P

LST (R,c)
n2 ≤ P

SPT (R,c)
n ≤

PLST (R, c). From Theorem 2, we know that ξSPT (R, c) satisfies BB. Thus,
P

SPT (R,c)
n =

∑
i ξSP T

i (R,c)

n =
∑

i ξ
LST
i (R, c). Consequently, we have P

LST (R,c)
n2 ≤∑

i ξ
LST
i (R, c) ≤ PLST (R, c). This proves that the payment sharing scheme is

1
n2 -budget-balanced.

Since
∑

i ξ
LST
i (R, c) =

∑
i

ξSPT
i (R,c)

n = P
SPT (R,c)

n ≤ PLST (R, c), ξLST is in
the core. This finishes our proof.

Notice that there is a gap between the upper bound O(1
n) and lower bound

Ω(1
n2) on β for β-budget-balanced cross-monotonic payment sharing scheme. A

future work is to close the gap. We conjecture that Θ(1
r·n) is a bound for both.

3.3 Satisfy Budget Balance with γ-Relaxed Core

In Section 3.2, we present a payment sharing scheme ξLST (R, c) that is 1
n2 -budget

balanced, cross-monotonic, and in the core. This payment sharing scheme will
most likely run to deficit. However, under certain circumstances, one would like
to achieve the budget balance while sacrifice some other properties such as core.
Thus, we generalize the core property as follows to γ-relaxed core: for any receiver
set S ∈ R,

∑
qi∈S ξi(R, c) ≤ γ ·P(S, c). Here γ is fixed. Following theorem shows

that a payment sharing scheme that is α-budget balanced and core implies a
payment sharing scheme that is budget balanced and 1

α -relaxed core.

Theorem 5. For any payment sharing scheme ξ that is α-budget-balanced and
core, then payment sharing scheme ξ̂i(R, c) = ξi(R, c) · P(R,c)∑

qi∈R ξi(R,c) is budget

balanced and 1
α -relaxed core.

4 Selfish Relay Links and Receivers

So far, we assume that the receivers will pay the fair amount of sharing of
payment to receive data using multicast. However, in practice, each individual
receiver often has a maximum valuation indicating how much it is willing to pay
to participate the multicast. A receiver chooses to join if and only if the charge
is at most its valuation. Furthermore, receiver could also be non-cooperative and
selfish: it will always maximize its profit by manipulating its reported valuation,
should it be possible. This makes the multicast design even harder when both
the relay agents and the receivers could be selfish. It is well-known that a cost

218 WeiZhao Wang, Xiang-Yang Li, and Zheng Sun

sharing scheme satisfying CM implies a group-strategyproof mechanism [2]. Thus,
when each receiver qi has a valuation ζi, the first intuition is that we can design
a payment sharing mechanism as follows.

Algorithm 4 Payment Sharing Mechanism for Tree LST
1: S ← R, where R is the set of possible receivers.
2: repeat
3: Construct the tree LST (S, c).
4: For each receiver qi ∈ S, we compute the payment sharing ξLST

i (S, c) based on
the declared cost of all possible relay agents.

5: For each receiver qi ∈ S, the receiver qi is removed from S if ξLST
i (S, c) > ζi,

i.e., S ← S − {qi} if ξi(S, c) > ζi.
6: until no receiver is removed in this round
7: All remaining receivers S, denoted as R̂ ⊆ R, will receive the multicast data and

pay a sharing ξLST
i (R̂, d) ≤ ζi.

However, following theorem shows that the payment sharing mechanism de-
fined by Algorithm 4 is not strategyproof.

Theorem 6. Payment sharing mechanism defined by Algorithm 4 is not strat-
egyproof, and moreover, some links may have incentives to lie up and lie down.

3.4

5

5

3

5
3

2.4q

43

q

v

2

s

v

1

3

3.4

3

5

5

2.4

3

v

s

q
21

43v

q

2−>7

2

2

6

6

3

v

v5

3

v4

s

1
q

2(3)

6

6

3

7(8)

2(3)

v5

v3

v4

s

1
q

(a) Original Tree (b) Tree after v4q2 lies (c) Original Tree (d) Tree after v3q5 lies

Fig. 3. A relay agent could either lie down or lie up its cost to improve its utility when
use payment sharing mechanism 4

Figure 3 (a), (b) show that a link(v4q2) has incentive to lie down its cost
from 5 to 3; and Figure 3 (c), (d) show that a link v3v5 has incentive to lie up
its cost from 2 to 7. Examples where receivers may lie are omitted due to space
limit. Theorem 6 shows that combining two strategyproof mechanisms for links
and receivers does not imply a strategyproof mechanism overall.

5 Conclusion

Sharing the multicast cost among the receivers in a certain fair way has been
studied widely in the literature. In this paper we studied how the payment

Share the Multicast Payment Fairly 219

should be shared among the receivers when the payment is computed by a
mechanism M = (LST,P). Here, LST is the multicast tree construction method
with approximation ratio 2. We described a payment sharing scheme that is 1

n2 -
budget-balanced, cross-monotonic, and in the core. We also proved that there
is no payment sharing scheme that is β-budget-balanced and cross-monotonic
for β = Ω(1

n). When both the relay agents and the receivers are selfish, we
showed a negative results: combining the strategyproof mechanism M and the
fair payment sharing scheme ξLST (·) does not necessarily imply a strategyproof
mechanism.

There are two future research directions. The first one is, for the β-budget-
balanced and cross-monotonic payment sharing scheme for M = (LST,P),
to close the gap between the upper bound 1

n on β and the achievable lower
bound 1

n2 . The second direction is to design an overall strategyproof mechanism
M = (O,P) that will form an approximately efficient multicast tree, decide the
payment to each relay links, determine which receiver will receive the data and
at what price. We have to make sure that both the relay links and receivers max-
imize their profit when they report their costs (or willing payment) truthfully.

References

1. Wang, W., Li, X.Y., Sun, Z., Wang, Y.: Design multicast protocols for non-
cooperative networks. In: IEEE INFOCOM, 2005

2. Moulin, H., Shenker, S.: Strategyproof sharing of submodular costs: Budget balance
versus efficiency. In: Economic Theory. Volume 18. (2001) 511–533

3. Feigenbaum, J., Papadimitriou, C.H., Shenker, S.: Sharing the cost of multicast
transmissions. Journal of Computer and System Sciences 63 (2001) 21–41

4. Wang, W., Li, X.Y., Wang, Y.: Truthful multicast in selfish wireless networks. In:
ACM Mobicom. 2004

5. Kao, M.Y., Li, X.Y., Wang, W.: Towards truthful mechanisms for binary selection
problems: A general design framework. In: ACM EC. 2005

6. Feigenbaum, J., Papadimitriou, C.H., Shenker, S.: Sharing the cost of multicast
transmissions. Journal of Computer and System Sciences 63 (2001) 21–41

7. Herzog, S., Shenker, S., Estrin, D.: Sharing the “cost” of multicast trees: an ax-
iomatic analysis. IEEE/ACM Transactions on Networking 5 (1997) 847–860

8. Osborne, M.J., Rubinstein, A.: A course in game theory. The MIT Press (2002)
9. Jain, K., Vazirani, V.V.: Applications of approximation algorithms to cooperative

games. In: ACM EC. (2001) 364–372
10. Takahashi, H., Matsuyama, A.: An approximate solution for the steiner problem

in graphs. Mathematical Japonica 24 (1980) 573–577
11. Robins, G., Zelikovsky, A.: Improved steiner tree approximation in graphs. In:

SIAM-ACM SODA. (2000) 770–779

On Packing and Coloring Hyperedges in a Cycle

Jianping Li1,2,�, Kang Li3, Ken C.K. Law2, and Hao Zhao2

1 Department of Mathematics, Yunnan University
Kunming 650091, P.R. China

jianping@ynu.edu.cn
2 Department of Computer Science, City University of Hong Kong

Tat Chee Avenue, Kowloon, Hong Kong, P.R. China
{csjpli,cskckl}@cityu.edu.hk, zhaoh@cs.cityu.edu.hk

3 School of Information Science and Engineering, Shandong University
Shandong 250100, P.R. China

kangli@sdu.edu.cn

Abstract. For a hypergraph and k different colors, we study the prob-
lem of packing and coloring some hyperedges of the hypergraph as paths
in a cycle such that the total profit of the chosen hyperedges are max-
imized, here each link ej on the cycle is used at most cj times, each
hyperedge hi has a profit pi and any two paths, each spanning all ver-
tices of its corresponding hyperedge, must receive different colors if they
share a link. This new problem arises in optical communication networks
and it is called the Maximum Profits of Packing and Coloring Hyperedges
in a Cycle problem (MPPCHC).
In this paper, we prove that the MPPCHC problem is NP-hard and
present a 2-approximation algorithm. For the special case, where each
hyperedge has the same profit and each capacity cj is k, we propose a
3
2
-approximation algorithm to handle the problem.

Keywords: Minimum-cost flow, hyperedge, path coloring, approxima-
tion algorithm.

AMS Classifications: 90B10, 94C15.

1 Introduction

Ganley and Cohoon [4] proposed the Minimum-Congestion Hypergraph Embed-
ding in a Cycle problem (MCHEC). The objective is to embed all hyperedges
of a hypergraph as paths in a cycle such that the congestion, i.e., the maxi-
mum number of paths over any physical link of the cycle, is minimized, here
the hypergraph has the same vertices as the cycle and a path spans all vertices
of its corresponding hyperedge. This is a challenging problem with applications
to various areas such as computer networks, multicast communication, parallel
computation, electronic design automation.

Ganley and Cohoon [4] proved that the MCHEC problem is NP-hard for
general hypergraphs, they provided a 3-approximation algorithm for the prob-
lem and gave an algorithm to determine whether the problem has an embedding
� Correspondence author

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 220–229, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

On Packing and Coloring Hyperedges in a Cycle 221

with congestion k or such an embedding does not exist in time O((nm)k+1), here
n is the order of the cycle, a hypergraph has the same vertices as the cycle and m
hyperedges. Gonzalez [6] derived two 2-approximation algorithms for the prob-
lem, Lee and Ho [8] developed a linear-time approximation algorithm to provide
an embedding with congestion at most two times the optimum for the weighted
version of the problem. There exist other approximation algorithms [2, 7] for the
problem. Recently, Deng and Li [3] designed a polynomial time approximation
scheme (PTAS) for the unweighted version of the problem.

In applications of the MCHEC problem, to set up a connection to all vertices
in a hyperedge, a path is selected from many c-paths, each spanning all vertices
of its corresponding hyperedge, and a wavelength is assigned to every link in
the path. In all cases, when the wavelength assignments are made, there are
no conflicts, i.e., no two connections (or paths) whose routes share a link can
be assigned the same wavelength along that link. Current optical technologies
impose limitations on the number of available wavelengths per fiber. This number
is typically between 30 and 100.

When the number of wavelengths allowed in the network is fixed, it might be
impossible to route the network to serve all hyperedges. In this case, one may
try to route the network to serve as many hyperedges as possible. This reason
leads us to redefine the problem as a variantly dual version of the MCHEC
problem, called Maximum Packing and Coloring Hyperedges in a Cycle problem
(MPCHC).

In this paper, we study the general version of the MPCHC problem, where
each hyperedge has a profit, and the problem is to pack some hyperedges as paths
in a cycle and to color these paths, the objective is to maximize the total profit
of the chosen hyperedges, here each link ej on the cycle is used at most cj times
and any two paths, each spanning the vertices of its corresponding hyperedge,
must receive different wavelengths (i.e., colors) if they share a link. We call it as
the Maximum Profits of Packing and Coloring Hyperedges in a Cycle problem
(MPPCHC).

Let P = {P1, . . . , Pq} be a set of q paths on the cycle. The set P is k-colorable
if we can assign k colors to the paths in P such that any two paths sharing a
link on the cycle must receive different colors. For a subset Q ⊆ P and each link
ej , the load L(Q, ej) of ej corresponding to Q is the number of paths in Q that
contains the link ej .

The MPPCHC problem is formally stated as follows:

Instance: a set T of k colors, a cycle G = (V,E) on n vertices, a hypergraph
G′ = (V,H), a ‘capacity’ function c : E → Z+ and a ‘profit’ function
p : H →R+.

Question: Design a routing Q consisting of some paths on G, each path span-
ning all vertices of its corresponding hyperedge in H , such that Q is k-
colorable, L(Q, ej) ≤ cj holds for all 1 ≤ j ≤ n and

∑
Pi∈Q pi is maximum.

There are two special cases for the MPPCHC problem: (1) The MPCHC
problem is a special case of the MPPCHC problem, here each hyperedge has

222 Jianping Li et al.

the same profit and each capacity cj is the number k of colors, and (2) The
Maximum Packing Hyperedges in a Cycle problem (MPHC) is a special case of
the MPPCHC problem, here the k-colorable constraint is omitted.

It is obvious that, for a hypergraph consisting of n vertices and m hyper-
edges, the MCHEC problem is solvable in polynomial time with the minimum
congestion c if and only if the MPHC problem is solvable in polynomial time
with the optimal value m, where each link capacity of the cycle is the same c. So
the NP-hardness of the MCHEC problem [4] implies that the MPHC problem
remains NP-hard, which shows that the MPPCHC problem is also NP-hard.

In this paper, we introduce some preliminaries and a fundamental algorithm
in Section 2, then we present a 2-approximation algorithm for the MPPCHC
problem in Section 3, and we also design a 3

2 -approximation algorithm for the
MPCHC problem in Section 4. We conclude our work with some remarks and
discussions on future work in the last section.

2 Preliminaries and Fundamental Algorithm

A cycle C consisting of n vertices is an undirected graph G = (V,E) with vertex
set V = {i|1 ≤ i ≤ n} and link set E = {ei|1 ≤ i ≤ n}, here each link
ei connects two vertices i and i + 1, i = 1, 2, . . . , n, and we treat the vertex
n + 1 as the vertex 1. Without loss of generality, we think the numbers on the
vertices ordered in the clockwise direction. Let H = (V,EH) be a hypergraph
with the same vertex set V = {i|1 ≤ i ≤ n} as C and the hyperedge set
EH = {h1, h2, . . . , hm}, here each hyperedge hi is a subset of V with two or
more vertices.

For each 1 ≤ i ≤ m, a connecting path (simply a c-path) Pi in G for hyperedge
hi is a minimal path in G such that all vertices in hi are in Pi, so the two end-
vertices of Pi must in hi. For a hyperedge hi consisting of mi vertices, i.e.,
hi = {vj1 , vj2 , . . . , vjmi

}, here vj1 , vj2 , . . ., vjmi
are successively located on the

cycle in the clockwise direction, there are exactly mi possible c-paths for hj , i.e.,
P (vj1 , vjmi

), P (vj2 , vj1), . . . and P (vjmi
, vjmi−1), here P (vjt , vjt−1) (1 ≤ t ≤ mi)

is the path from the vertex vjt to the vertex vjt−1 along the clockwise direction
on G.

2.1 The MPC Problem

To design an approximation algorithm for the MPPCHC problem, our basic
idea is to delete a suitable link en = (n, 1) from the cycle G to get a chain L that
consists of the same vertices as G. We need an optimal algorithm [9] on L for
the MPC problem defined below, then we derive a 2-approximation algorithm
to the MPPCHC problem.

The Maximizing Profits in Chain Problem (MPC) is stated as follows:

Instance: a set T of k colors, a chain L = (V,E) consisting of n vertices, a
set of m paths P = {P1, . . . , Pm}, a ‘capacity’ function c : E → Z+ and a
‘profit’ function p : P → R+.

On Packing and Coloring Hyperedges in a Cycle 223

Question: Find a subset Q ⊆ P such that Q is k-colorable, L(Q, ej) ≤ cj
holds for all 1 ≤ j < n and

∑
Pi∈Q pi is maximized.

2.2 An Optimal Algorithm to the MPC Problem

We need an optimal algorithm to solve the MPC problem. The detailed al-
gorithm can be found in Li, Li, Wang and Zhao [9], which is an extension of
the Carlisle-Lloyd algorithm [1]. Here, we only outline the algorithm and the
fundamental steps.

For P = {P1, . . . , Pm} in the instance I of the MPC problem on the chain L,
where Pi has two end-vertices si and ti (si < ti) for 1 ≤ i < m, set xj = L(P , ej)
for each link ej (1 ≤ j < n) and pmax = max{pi : 1 ≤ i ≤ m}.

The new (directed) network is constructed as N = (V,A; s, t; c, p), where V
contains n vertices as L, the source s is the first vertex 1 and the sink t is the
last vertex n, and A, c and p are defined in three cases:

Step 1. For j = 1, 2, . . . , n − 1, put a ‘clique-arc’ ej = (j, j + 1) into A with
capacity k and cost zero, i.e., c(ej) = k and p(ej) = 0;

Step 2. For i = 1, 2, . . . ,m, construct an ‘interval-arc’ e∗i = (si, ti) into A with
capacity one and cost −pi, i.e., c(e∗i) = 1 and p(e∗i) = −pi;

Step 3. For j = 1, 2, . . . , n−1, only if min{k, xj} > cj , construct a ‘dummy arc’
e∗∗j = (j, j + 1) into A with capacity min{k, xj} − cj and cost −pmaxm− 1,
i.e., c(e∗∗j) = min{k, xj} − cj and p(e∗∗j) = −pmaxm− 1.

The complete algorithm to the MPC Problem is given below:

Algorithm: Maximizing Profits in Chain (MPC)
Input: an instance I of the MPC problem.
Output: Find a subset Q ⊆ P such that Q is k-colorable, L(Q, ej) ≤ cj holds

for all 1 ≤ j < n and
∑

Pi∈Q pi is maximized.
Step 1. Construct the directed network N = (V,A; s, t; c, p);
Step 2. Compute the minimum-cost s-t flow for N = (V,A; s, t; c, p);
Step 3. Construct the set Q of ‘interval-arc’s of value one, i.e., Q = {e∗i =

(si, ti) : f(e∗i) = 1, 1 ≤ i ≤ m};
Step 4. For all ‘interval-arc’s in Q, assign the same color to the arcs that belong

to the identical path sharing a unit of flow from the source s to the sink t.
(There are at most k colors used since the flow f has its value k)

End of MPC

The MPC algorithm can solve the MPC problem optimally.
Theorem 1 (Li, Li, Wang and Zhao [9]) Algorithm MPC solves the MPC
problem in O(k(2n + m)) time, where n is the number of vertices, m is the
number of paths on the chain and k is the number of colors.

3 A 2-Approximation Algorithm for MPPCHC

The main difficulty for the MPPCHC problem is that there are |hi| choices to
serve a hyperedge hi in the cycle G. The basic ideas to solve the problem are:

224 Jianping Li et al.

(i) delete a suitable link ej possessing the minimum capacity from G to obtain
the chain L, (ii) use algorithm MPC in [9] for L to obtain an optimal solution
to the MPC problem fixed on L, (iii) use the greedy algorithm to choose a set
of min{k, cj} suitable c-paths passing through the link ej to have the heaviest
profits, each c-path being corresponding to its corresponding hyperedge, and
(iv) select the better solution obtained in (ii) and (iii). Hence, we give a 2-
approximation algorithm.

Without loss of generality, we may assume that the link en = (n, 1) has the
minimum capacity on G, i.e., cn = min{cj|1 ≤ j ≤ n}, otherwise if the link
ej0 = (j0, j0 + 1) has the minimum capacity on G, i.e., cj0 = min{cj |1 ≤ j ≤ n},
we can obtain a permutation

σ =
(

1 2 · · · n− j0 n− j0 + 1 n− j0 + 2 · · · n
j0 + 1 j0 + 2 · · · n 1 2 · · · j0

)
where all arithmetic involving integers are performed implicitly using modulo n
operation if necessary, then we obtain that the link eσ(n) = (σ(n), σ(n) + 1) has
the minimum capacity on G. We do the following operations (or steps) under the
constraints where each integer j is replaced by the integer σ(j), then we shall
obtain the final results under the constraints where each integer j′ is replaced
by the integer σ−1(j′), here σ−1 is the inverse permutation of σ, i.e.,

σ−1 =
(

1 2 · · · j0 j0 + 1 j0 + 2 · · · n
n− j0 + 1 n− j0 + 2 · · · n 1 2 · · · n− j0

)
We now assume that en = (n, 1) has the minimum capacity on G. Let L be

the chain obtained by deleting en from G. Then L has the same vertices as G.
For each hyperedge hi of a hypergraph, different from the facts that there exist
|hi| c-paths on G to span all vertices in hi, there exists a unique c-path on L
to span all vertices in hi, then we choose such a unique c-path on L to span all
vertices in hi (this c-path is also on G, but it does not pass through en in G).

For each hyperedge hi = {vj1 , vj2 , . . . , vjmi
}, we assume 1 ≤ vj1 < vj2 <

· · · < vjmi
≤ n. Since hi determines a unique c-path Pi = P (vj1 , vjmi

) on L
to span all vertices in hi such that Pi has two end-vertices vj1 and vjmi

on L,
we may exchangeably use Pi and hi to represent the same matter on L. For
convenience, we assume that hi has si and ti (si < ti) as two end-vertices of Pi

on L and other internal vertices (if any) are omitted to be written in detail. We
denote hi = {si, . . . , ti} (si < ti).

Our algorithm for the MPPCHC problem is described as follows

Algorithm: Maximum Profits of Packing and Coloring Hyperedges in a Cycle
(MPPC)

Input: an instance I of the MPPCHC problem.
Output: a feasible set of paths Q, corresponding to the set of hyperedges H ′,

such that
∑

Pj∈Q pj is maximized.
Step 1. Choose a link ej0 = (j0, j0 + 1) to satisfy cj0 = min{cj|1 ≤ j ≤ n},

without loss of generality, we assume j0 = n, i.e., cn = min{cj|1 ≤ j ≤ n}.

On Packing and Coloring Hyperedges in a Cycle 225

Step 2. Delete en = (n, 1) from G, and then obtain the chain L.
Step 3. Put D = {{si, ti} : hj = {si, . . . , ti} ∈ H satisfies si < · · · < ti for each

1 ≤ i ≤ m}.
Step 4. Use algorithm MPC on L with the pairs in D, the source s = 1 and

the sink t = n. Let D′ be the optimal set obtained (note D′ ⊆ D).
Step 5. Put H ′ = {hi = {si, . . . , ti} ∈ H : {si, ti} ∈ D′, where si < · · · < ti}.
Step 6. Let P be the set of c-paths on L according to the pairs in D′ (also

corresponding to the hyperedges in H ′), then each c-path in P has the
two end-vertices si and ti for some {si, ti} ∈ D′ (also the hyperedge hj =
{si, . . . , ti} ∈ H ′) and each {si, ti} ∈ D′ uniquely determines a c-path in P .

Step 7. Choose min{k, cn} hyperedges in H to possess the heaviest profits, and
then use Q to represents the set of such min{k, cn} c-paths, each containing
en to route, and H ′′ represents the set of such min{k, cn} hyperedges in H .

Step 8. Output the better solution of P and Q corresponding its set of hyper-
edges (either H ′ or H ′′).

End of MPPC

Now, we have three facts: (i) since en has the minimum capacity on G, we
choose min{k, cn} hyperedges from H such that no link capacity is violated
when we pack such min{k, cn} hyperedges as paths in G, (ii) for each chosen
hyperedge hi consisting of |hi| vertices in step 7, we choose a path corresponding
to its hyperedge from the |hi| − 1 c-paths that pass through en to span all |hi|
vertices in hi, and (iii) we use the greedy algorithm (Schrijver [12], 2003) to
assign k colors on all paths in P , and obviously each of the min{k, cn} paths
in Q (corresponding to hyperedges), which pass through en, can be assigned to
different color.

Theorem 2 Algorithm MPPC is a 2-approximation algorithm for the MP-
PCHC problem and it runs in O(k(2n + m)) time, where n is the number of
vertices of the cycle G, m is the number of hyperedges of a hypergraph and k is
the number of colors.
Proof Let OPT be an optimal set of c-paths, as well as the optimal set of
hyperedges, to the MPPCHC problem, and OUT = max{

∑
Pi∈P pi,

∑
Pj∈Q pj}

the output value obtained from algorithm MPPC. Let OPT1 be the set of c-
paths in OPT that do not pass through en and OPT2 the set of c-paths in OPT
that pass through en. So OPT can be partitioned in two subsets OPT1 and
OPT2, i.e., OPT = OPT1∪OPT2. For convenience, OPT , OPT1 and OPT2 are
also as the total profits of all c-paths in OPT , OPT1 and OPT2, respectively.

From Theorem 1, we get OPT1 ≤
∑

Pi∈P pi ≤ max{
∑

Pi∈P pi,
∑

Pj∈Q pj}.
So we derive OPT1 ≤ OUT .

We now show that the greedy algorithm (at step 7 from the algorithm)
ensures OPT2 ≤

∑
hj∈Q pj . Since en has the minimum capacity on G, the

min{k, cn} hyperedges chosen (at step 7 from the algorithm) satisfies the prop-
erty that, when these min{k, cn} hyperedges as paths are packed in G, no link
capacity is violated. Let Q = {Pj1 , . . . , Pjmin{k,cn}} and OPT2 = {Pj′1

, . . . , Pj′
m′
}.

Without loss of generality, we assume that pj1 ≥ pj2 ≥ · · · ≥ pjmin{k,cn} and

226 Jianping Li et al.

pj′1
≥ pj′2

≥ · · · ≥ pj′
m′

. Since OPT2 is a feasible solution to an instance I of
the MPPCHC problem, we get min{k, cn} ≥ m′. By the fact that we choose
the min{k, cn} hyperedges corresponding to the c-paths possessing the heaviest
profits at step 7, we obtain pj′

l
≤ pjl

for each 1 ≤ l ≤ m′ (≤ min{k, cn}). Then

OPT2 =
∑m′

l=1 pj′
l
≤
∑m′

l=1 pjl
≤
∑min{k,cn}

l=1 pjl
=
∑

hjl
∈Q pjl

≤ max{
∑

Pi∈P pi,∑
Pj∈Q pj}. So we get OPT2 ≤ OUT .
Hence, we conclude OPT = OPT1 + OPT2 ≤ 2OUT , which implies that

MPPC is a 2-approximation algorithm for the MPPCHC problem.
Now, we analyse the complexity of algorithm MPPC.
In step 1, it needs n steps to choose the link to have the minimum capacity

from G. In steps 4, 5 and 6, Theorem 1 provides the complexity of O(k(2n+m)).
In step 7, it needs O(k) time to choose the min{k, cn} hyperedges to possess the
heaviest profits. Other steps need constant time to execute. Thus, algorithm
MPPC runs in O(k(2n +m)) time.

This completes the proof of Theorem 2.

4 A 3
2
-Approximation Algorithm to MPCHC

Here, we study the MPCHC problem. Combining algorithm MPC and a tech-
nique of matching theory, we design a 3

2 -approximation algorithm for the
MPCHC problem.

As in [10], two hyperedges hs = {vi1 , . . . , vims
} and ht = {uj1 , . . . , ujmt

} of
a hypergeaph are parallel on the cycle G if there exist two c-paths Phs and Pht

such that Phs and Pht contain no common link on G, here Phs spans all |hs|
vertices in hs and Pht spans all |ht| vertices in ht. See Figure 1 (a). Otherwise,
they are crossing on G, i.e., for each c-path Phs on G spanning all |hs| vertices in
hs and each c-path Pht on G spanning all |ht| vertices in ht, Phs and Pht always
contain at least one common link on G. See Figure 1 (b). If two hyperedges hs

and ht are parallel on G, then there exist two c-paths Phs and Pht on G such that
Phs and Pht are edge-disjoint on G, then they would be assigned by the same
color. See Figure 1 (a). Before we design a 3

2 -approximation algorithm to the
MPCHC problem, we construct an auxiliary graph D = (H,EH) corresponding
to the set H of hyperedges of a hypergraph, where two hyperedges hs and ht of
H is adjacent in D, i.e., hsht ∈ EH , if and only if they are parallel on G.

Now, we can design an algorithm to the MPCHC problem:

Algorithm: Maximum Packing and Coloring Hyperedges in a Cycle (MPCH)
Input: an instance I of the MPCHC problem.
Output: a feasible solution OUT such that |OUT | is maximized.
Step 1 Delete the link en = (n, 1) from the cycle G to obtain a chain L1 with

the source 1 and the sink n;
Step 2 Put H2 = {{si, ti} : a hyperedge hj = {si, . . . , ti} ∈ H satisfies si <
· · · < ti for each 1 ≤ i ≤ m}.

Step 3 Use algorithm MPC on L1 with the pairs in H2, the source s = 1 and
the sink t = n. Let H ′

2 be the optimal set obtained (note H ′
2 ⊆ H2).

On Packing and Coloring Hyperedges in a Cycle 227

smi
v

1
iv

2
iv

1
ju

2
ju

tmj
u

1n

smi
v

1
iv

2
iv

1
ju

2
ju

tmj
u

1n

(a) Parallel hyperedges (b) Crossing hyperedges

thP

shP

shP

thP

Fig. 1. Structures of two kinds of hyperedges

Step 4 Put H ′ = {hi = {si, . . . , ti} ∈ H : {si, ti} ∈ H ′
2, where si < · · · < ti}.

Step 5 Let P be the set of c-paths on L1 according to the pairs in H ′
2 (also

corresponding to the hyperedges in H ′), i.e., each c-path in P has the two
end-vertices si and ti for some {si, ti} ∈ H ′

2 and each {si, ti} ∈ H ′
2 uniquely

determines a c-path in P .
(*/ the set P is k-colorable and L(P , ej) ≤ k holds for all 1 ≤ j < n /*)

Step 6 Construct the auxiliary graph D = (H,EH), and find a maximum
(cardinality) matching M in D;

Step 7 Choose any min{|M |, k} edges from M , each corresponding to the two
parallel hyperedges ∈ H ; these 2 × min{|M |, k} parallel hyperedges, corre-
sponding to the c-paths Q, form an approximation solution;
(*/ the set Q is also k-colorable with exactly 2min{|M |, k} paths /*)

Step 8 Output the better solution obtained in step 5 and step 7.
End of MPCH

Theorem 3 Algorithm MPCH is a 3
2 -approximation algorithm to the MPCHC

problem.
Proof For an optimal solution OPT to the MPCHC problem and the approx-
imation solution OUT by algorithm MPCH, let OPT1 be the set of c-paths
(corresponding to the hyperedges) in OPT that do not pass through en and
OPT2 to be the set of c-paths (corresponding to the hyperedges) in OPT that
pass through en. So OPT can be partitioned in two subsets OPT1 and OPT2,
i.e., OPT = OPT1 ∪ OPT2. For convenience, OPT2 also represents the set of
colors that are assigned to the c-paths (corresponding to the hyperedges) in
OPT2.

Choose an optimal solution OPT such that the value |OPT2| is minimum
among all optimal solutions to an instance I of the MPCHC problem. Then
OPT2 contains the least number of colors, i.e., there are minimum |OPT2| colors
assigned to the c-paths in OPT2, and each color in OPT2 must be assigned to
some c-paths in OPT1. (Otherwise, if the color c in OPT2 is not assigned to
any c-path in OPT1, we choose the c-path Phs(vi1 , vims

) assigned by color c in
OPT2 corresponding to the hyperedge hs = {vi1 , . . . , vir , vir+1 , . . . , vims

}, here
1 ≤ vir+1 < · · · < vims

< · · · < vi1 < · · · < vir ≤ n. See Figure 2 (a). Noting that

228 Jianping Li et al.

Phs(vi1 , vims
) passes through en along the clockwise direction to span all |hs|

vertices in hs from vi1 to vims
, we construct a c-path Phs(vir+1, vir) to span all

|hs| vertices in hs from vir+1 to vir along clockwise direction, then this new path
does not pass through en and it is assigned the same color c. See Figure 2 (b).
We obtain the other optimal solution such that the number of paths through en

in this new optimal solution is exactly |OPT2|−1. This contradicts the selection
of the optimal solution OPT .)

smi
v

1
iv

2
iv

1n

ri
v

1+ri
v

(a) The path),(
1 sms iih vvP),(

1 rrs iih vvP
+

smi
v

1
iv

2
iv

1n

ri
v

1+ri
v

(b) The path

Fig. 2. Construction of P ′
hs

from Phs

Since each color in OPT2 must be assigned to some c-paths in OPT1, we
get the fact that each color in OPT2 must color a pair of c-paths, one c-path in
OPT1 and the other in OPT2. Then their corresponding hyperedges are adjacent
in D The set of such |OPT2| pairs of hyperedges form a matching in D. By
algorithm MPCH, M is a maximum (cardinality) matching in D, then we get
|OPT2| ≤ |M |. Again, since each path in OPT2 passes through en, we obtain
|OPT2| ≤ k. Combining the above two facts, we get |OPT2| ≤ min{|M |, k}.

On the other hand, Theorem 1 ensures that algorithm MPCH implies |P| ≥
|OPT1| = |OPT | − |OPT2|, then we obtain |OPT | ≤ |P| + |OPT2| ≤ |P| +
min{|M |, k}.

By step 7 at algorithm MPCH, we have 2 min{|M |, k} = |Q|, i.e., min{|M |, k}
= |Q|

2 .
Hence, we conclude |OPT | ≤ |P|+min{|M |, k} = |P|+ |Q|

2 ≤ 3
2 |OUT |. This

completes the proof of Theorem 3.

5 Conclusion and Further Work

In this paper, we study the MPPCHC problem and its special version, then
we derive a 2-approximation algorithm to the MPPCHC problem and a 3

2 -
approximation algorithm to the MPCHC problem.

Since the MCHEC problem admits a PTAS by Deng and Li [3], we could
consider to design a PTAS or a better approximation algorithms with factor
less than 3

2 to the MPCHC problem. We might ever find better approximation

On Packing and Coloring Hyperedges in a Cycle 229

algorithms for the MPPCHC problem with factor less than two. These provide
some challenging and interesting problems to study in future.

Acknowledgements

Jianping Li is fully supported by the National Natural Science Foundation of
China [Project No. 10271103], the Project-sponsored by SRF for ROCS, SEM,
China, and Leadership in Teaching & Research of Department of Education of
Yunnan Province.

Ken C K Law is partially supported by the City University Research Grant
[Grant Ref: 7100255].

Hao Zhao are fully supported by a grant from the Research Grants Council
of the Hong Kong Special Administrative Region, China [Project No. Cityu
1196103E].

References

1. M.C. Carlisle and E.L. Lloyd, On the k-coloring of intervals, Discrete Applied
Mathematics 59 (1995) 225-235. T.

2. T. Carpenter, S. Cosares, J.L. Ganley and I. Saniee, A simple approximation algo-
rithm for two problems in circuit design, IEEE Trans. Compt. Vol. 47 (1998), no.
11, 1310-1312.

3. X.T. Deng and G.J. Li, A PTAS for embeding hypergraph in a cycle (extended
abstract), accepted by the 31st International Colloquium on Automata, Languages
and Programming (ICALP’04), July 12-16, 2004, Turku, Finland 2004.

4. J.L. Ganley and J.P. Cohoon, Minimum-congestion hypergraph embedding in a
cycle, IEEE Trans. Comput. 46, No. 5 (1997) 600-602.

5. M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the The-
ory of NP-Completeness, W.H. Freeman, San Francisco (1979).

6. T.F. Gonzalez, Improved approximation algorithms for embedding hyperedges in a
cycle, Information Processing Letter 67 (1998) 267-271.

7. Q. Gu and Y. Wang, Efficient algorithm for embedding hypergraphs in a cycle, in:
Proceedings of the 10th International Conference on High Performance Computing,
December 2003, Hyderabad, India.

8. S.L. Lee and H.J. Ho, On minimizing the maximum congestion for weighted hyper-
graph embedding in a cycle, Information Processing Letter 87 (2003) 271-275.

9. J.P. Li, K. Li, L.S. Wang and H. Zhao, Maximizing Profits of Requests in WDM
Networks, to appear in Journal of Combinatorial Optimization, 2005.

10. C. Nomikos, A. Pagourtzis and S. Zachos, Minimizing Request Blocking in All-
Optical Rings, Proceedings of IEEE INFOCOM (2003) 1355-1361.

11. P. Raghavan and E. Upfal, Efficient routing in all-optical networks, Proceeding of
the 26th Annual ACM Symposium on the Theory of Computing (1994) 134-143.

12. A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, (Springer, The
Netherlands, 2003).

13. R. Tarjan, Data Structures and Network Algorithms (SIAM, Philadelphia, PA,
1983).

Fault-Tolerant Relay Node Placement
in Wireless Sensor Networks

Hai Liu, Peng-Jun Wan, and Xiaohua Jia

Department of Computer Science, City University of Hong Kong
Tat Chee Avenue, Kowloon, Hong Kong, P.R. China

{liuhai,pwan,jia}@cs.cityu.edu.hk

Abstract. The paper addresses the relay node placement problem in
two-tiered wireless sensor networks. Given a set of sensor nodes in an
Euclidean plane, our objective is to place minimum number of relay
nodes to forward data packets from sensor nodes to the sink, such that:
1) the network is connected, 2) the network is 2-connected. For case
one, we propose a (6 + ε)-approximation algorithm for any ε > 0 with
polynomial running time when ε is fixed. For case two, we propose two
approximation algorithms with (24+ ε) and (6/T +12+ ε), respectively,
where T is the ratio of the number of relay nodes placed in case one to
the number of sensors.

Keywords: sensor networks, fault-tolerant, relay node placement.

1 Introduction and Related Work

A sensor network is composed of a large number of sensor nodes that can be
deployed on the ground, in the air, in vehicles, inside buildings or even on bod-
ies. Sensor networks are widely deployed in environment monitoring, biomedical
observation, surveillance, security and so on [4, 5]. Unlike the cellular networks
and MANETs where there is unlimited energy supply in base stations or by bat-
teries that can be replaced as needed, nodes in sensor networks have very limited
energy supply and their batteries cannot usually be replaced due to special en-
vironments [6]. Since sensors’ energy cannot support long range communication
to reach a sink which is generally far away from the data source, multi-hop
wireless connectivity is required to forward data to the remote sink. It is a key
problem regarding how to gather data packets from sensor nodes to the sink in
applications.

The two-tiered network architecture was proposed in [1, 2]. They employed
relay nodes as gateways that are more powerful than sensor nodes in terms
of energy storage, computing and communication capabilities. The network is
partitioned into a set of clusters. The relay nodes act as cluster heads and they
are connected with each other to perform the data forwarding task. (In the
following, relay node, gateway and cluster-head refer to the same thing in the
two-tiered sensor networks.) Each cluster has only one cluster-head and each
sensor belongs to at least one cluster, such that sensor nodes can switch to

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 230–239, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Fault-Tolerant Relay Node Placement in Wireless Sensor Networks 231

backup cluster heads when current communication fails. In each cluster, sensor
nodes collect raw data and report to the cluster-head. The cluster-head analyzes
the raw data, extracts useful information, and then generates outgoing packets
with much smaller total size to the sink through multi-hop path [3, 12]. Topology
control in two-tiered wireless sensor networks has been discussed in [12]. The
objective of the paper is to maximize the topological lifetime of the network,
where the topological lifetime is defined as the lifetime of a network with regard
to a given mission and the placement of sensor nodes, application nodes and base-
stations. The authors proposed approaches to maximize the topological lifetime
by arranging the base-stations location and the relay allocation. Similar to the
works in [1, 2], two-tiered wireless sensor network architecture was proposed in
[11] as a solution for structural health monitoring. The communication protocols
used in the lower-tier (in clusters) and in the upper-tier (inter-clusters) were both
described. Analysis in [11] showed that the maximum total number of sensor
nodes that a network can handle is about 2000 4000 under current wireless data
rates of 10Mbps.

Since a large number of nodes cooperate with each other in the network, fault-
tolerance is one of important issues in wireless sensor networks. Communication
faults in sensor networks can be caused by hardware damage, energy depletion,
harsh environment conditions and malicious attacks. A fault in transmitter can
cause the relay nodes to stop transmitting tasks to the sensors as well as relaying
the data to the sink. Data sent by the sensors will be lost if the receiver of a relay
node fails. So, a communication link failure to a sensor requires the sensor to be
re-allocated to other cluster-head within communication range. If faults occur in
inter-cluster-heads, the two corresponding cluster-head should be re-connected
by another multi-hop path. That is, in order to handle general communication
faults, there should be at least two node-disjoint paths between each pair of relay
nodes in the network.

An intuitive objective of relay node placement is to place the minimum num-
ber of relay nodes to make the network connected, such that each sensor is
covered by some relay nodes and all data packets can be gathered to the sink
through these relay nodes (node a is covered by node b means that node a
is within the communication range of node b). E. Biagioni et al. investigated
placement problem of sensors in [8]. Three parameters were considered in the
placement of sensors: resilience to single node failure, coverage of area of interest
and minimizing the number of sensors. The authors showed that the choice of
placement depends on sampling distance and communication radius. Different
from the placement of sensor nodes, the placement problem of relay nodes in two-
tiered sensor networks was discussed in [7]. The problem is to place the minimum
number of relay nodes such that 1) each sensor node can communicate with at
least two relay nodes and 2) the network of the relay nodes is 2-connected. An
approximation algorithm was proposed and ratio was proved within O(D logn),
where n is the number of sensor nodes in the network, and D the diameter of
the network. Obviously, the proposed ratio is not a constant, which is a function
of the size of input.

232 Hai Liu, Peng-Jun Wan, and Xiaohua Jia

In this paper, we propose three approximation algorithms for the minimum
relay-node placement problem (MRP in short). We discuss two cases of the
MRP: 1) the network is connected and 2) the network is 2-connected. We pro-
posed a (6 + ε)-approximation algorithm for case one. We further proposed a
(24+ε)-approximation algorithm and a (6/T +12+ε)-approximation algorithm
for case two, respectively, for any ε > 0, where T is the ratio of the number of
relay nodes placed to the number of sensors in case one.

2 System Model and Problem Specification

We first describe the MRP in two tiered wireless sensor networks, and then give
a formal formulation of the problem.

Given a set of sensor nodes that are randomly distributed in a region and
their location, in order to gather data packets from sensor nodes to the sink,
we need to place some relay nodes to forward the data packets, such that each
sensor node is covered by at least one relay node. Since sensor nodes have lim-
ited computing and communication capability, especially very limited energy
resource, we assume that sensor nodes only report data packets to relay nodes
within their communication range but not participate in data forwarding. That
is, there is no direct link between any pair of sensor nodes. We further assume
that all sensor nodes and all relay nodes have the same communication radius.
The problem is to
1) place the minimum number of relay nodes in the region, such that the network
(including sensor nodes and relay nodes) is connected;
2) place the minimum number of relay nodes in the region, such that there exists
at least two node-disjoint paths between any pair of nodes (sensor nodes or relay
nodes). That is, the whole network is 2-connected.

There are several major differences between our problem and the problem
addressed in [7]. Firstly, the network of sensor nodes was assumed to be 2-
connected in [7], we do not need this assumption. Secondly, sensor nodes also
participate forwarding of data packets in [7] while they are not in our problem.
Note that sensor nodes have very limited energy resource and computing ca-
pability. If they participate in data forwarding, it may cause early depletion of
sensors, and make the network disconnected. Finally, placement of relay nodes in
[7] only makes the network of relay nodes 2-connected, but we make the whole
network 2-connected. Since our problem is more general than that in [7], our
solution is also applicable to the problem in [7].

Now, we formally give the definition of the MRP problem.
Definition. Minimum Relay-node Placement problem (MRP): Given a set of
sensor nodes S in a region and a uniform communication radius d, the problem
is to place a set of relay nodes R, such that 1) the whole network G is connected
and 2) G is 2-connected. The objective of the problem is to:

Minimize|R|

where |R| denotes the number of relay nodes in R.

Fault-Tolerant Relay Node Placement in Wireless Sensor Networks 233

We first give a (6+ε)-approximation solution for the case one of MRP (MRP-
1 in short), and then propose a (24 + ε)-approximation and a (6/T + 12 + ε)-
approximation solutions for MRP-2 by adding some relay nodes to make the
network 2-connected.

3 Solution to MRP-1

Our solution is based on two foundational works. The first is the covering with
disks problem. Given a set of points in the plane, the problem is to identify the
minimum set of disks with prescribed radius to cover all the points. In [10], a
polynomial time approximation scheme (PTAS) for this problem was proposed.
That is, for any given error ε, the ratio of the solution found by the scheme to the
optimal solution is not larger than (1+ε). The running time is polynomial when
ε is fixed. We call the scheme min-disk-cover scheme. Different from covering
with disks problem, MRP requires not only covering all sensor nodes, but also
requires connection of the network, such that data packets can be gathered to
the sink.

The other problem is the Steiner tree problem with minimum number of
Steiner points (STP-MSP). Given a set of terminals in the Euclidean plane, the
problem is to find a Steiner tree such that each edge in the tree has length at
most d and the number of Steiner points is minimized. Du et al. proposed a
2.5-approximation algorithm for the STP-MSP [9]. We call the algorithm STP-
MSP algorithm. In our problem, sensor nodes do not relay messages for other
nodes. So STP-MSP algorithm cannot be used to MRP problem directly.

Based on the min-disk-cover scheme and the STP-MSP algorithm, our so-
lution for MRP-1 is composed in two steps. In step one, for any give error ε,
we use min-disk-cover scheme to find a set of relay nodes that cover all sensor
nodes. Note that the network of these relay nodes may not be connected if dis-
tance between them is larger than d. In order to connect these relay nodes, more
relay nodes are needed. In step two, we run the STP-MSP algorithm and place
additional relay nodes to get a Steiner tree. Finally, the Steiner tree and the
sensor nodes form the connected network we desire. The algorithm is formally
presented as follows.
(6 + ε)-approximation algorithm for MRP-1
1. Place a set of relay nodes R1 by using the min-disk-cover scheme, such that
for ∀s ∈ S, ∃r ∈ R1, and r cover s.
2. Place another set of relay nodes R2 by running STP-MSP algorithm with
input R1.
3. Output R1 +R2.

Let R denote the set of all relay nodes we place in the above algorithm.
Without loss of generality, we assume R1

⋃
R2 = Φ, i.e., R = R1 + R2 (or

R1

⋃
R2). Then the total number of relay nodes we place is |R1 + R2|. In the

following theorem, we show that the algorithm for MRP-1 has ratio (6 + ε) for
any ε > 0.
Theorem 1. Let R be our solution to MRP-1 and Ropt be the optimal solution
to MRP-1. Then |R|

|Ropt| ≤ (6 + ε).

234 Hai Liu, Peng-Jun Wan, and Xiaohua Jia

Proof. Let Ropt
1 denote the minimum set of relay nodes that cover S. Obviously,

we have |Ropt
1 | ≤ |Ropt|. Since R1 is the solution of PTAS to covering with disks

problem, we have

|R1| ≤ (1 + ε)|Ropt
1 |. (1)

Let Ropt
2 denote the minimum set of relay nodes that makes R1 connected.

Since R2 is the 2.5-approximation solution to STP-MSP problem, we have

|R2| ≤ 2.5|Ropt
2 |. (2)

s

r

u

v

Fig. 1. Communication circle of sensor s.

In order to find out the relationship between Ropt
2 and Ropt, we consider each

relay node r ∈ R1. For any r ∈ R1, there must be at least one sensor node s which
is covered by r (Otherwise, we can remove this useless r from R1). We consider
the communication circle of s (See Fig. 1). Note that for ∀s ∈ S, ∃v ∈ Ropt such
that both r and v can cover s. That is, relay nodes r and v are both in the
communication circle of sensor s. So we have d(r, v) ≤ 2d, where d(r, v) is the
Euclidean distance between r and v. If we place another relay node u in the
middle point of edge (v, r), we have d(u, v) = d(r, u) ≤ d. That is, node v can
communicate with node r via node u.

For any relay node r ∈ R1, we place another relay node according to the
above description, such that Ropt can communicate with every relay node in R1.
That is, Ropt and these added relay nodes make R1 connected. Note that Ropt

2

is the minimum set of relay nodes that makes R1 connected, and the number of
added relay nodes is equal to |R1|. So we have

|Ropt
2 | ≤ |Ropt|+ |R1|. (3)

According to (1),(2),(3), the total number of relay nodes placed by the algo-
rithm to MRP-1 is:

|R1|+ |R2| ≤ (1 + ε)|Ropt
1 |+ 2.5(|Ropt|+ |R1|)

≤ (1 + ε)|Ropt|+ 2.5(|Ropt|+ (1 + ε)|Ropt|)
≤ 6|Ropt|+ 3.5ε|Ropt|

Note that ε is an arbitrary positive number.
That is, |R|

|Ropt| = |R1|+|R2|
|Ropt| ≤ (6 + ε)

Fault-Tolerant Relay Node Placement in Wireless Sensor Networks 235

4 Solution to MRP-2

MRP-2 requires the network is 2-connected. It means that when one relay node
fails, the network is still connected and data packet gathering operation can be
carried out. Let T denote the ratio of the number of relay nodes place in MRP-1
to the number of sensors. That is, T = |R|/|S|. We first propose a (24 + ε)-
approximation algorithm for general case of MRP-2, then improve the ratio to
(6/T + 12 + ε) if T > 1/2.

4.1 (24 + ε)-Approximation

Based on the solution R to MRP-1, our main idea is to add some backup nodes
to the communication circle of each relay node r in R, such that the whole
network is 2-connected. We first study the features these backup nodes should
have. For∀r ∈ R,
C1. The backup nodes should cover all nodes in the communication circle of r.
The first purpose of this condition is to make any node in the circle can switch
to one of the backup nodes when r is out of service. The other purpose is to
make at least one of the backup nodes communicate with outside when r is
out of service. The first is for collecting messages purpose and the second is for
forwarding messages purpose.
C2. The backup nodes in the communication circle of r should communicate
with each other. This is because that condition 1 only guarantees there exist
at least one backup node can communicate with outside, but some other nodes
in the circle may not communicate with outside if r is out of service. That is,
the purpose of this condition is to make all nodes in the circle can communicate
with outside.

We call the above two features 2-connected conditions. Are these two
conditions sufficient? The following lemma shows that for each relay node r in
R, if the backup nodes in the communication circle of r satisfy the 2-connected
conditions, the network is 2-connected.
Lemma 1. Let R

′
denote the set of backup nodes in all communication circles

of R. For ∀r ∈ R, if the backup nodes in the communication circle of r satisfy the
2-connected conditions, then the resulting network S +R +R

′
is 2-connected.

Proof. For ∀v ∈ S+R+R
′
, we assume v fails. There are three cases: v ∈ S, v ∈

R or v ∈ R
′
. We prove the lemma case by case.

If v ∈ S, note that sensor nodes only report data packets to its cluster-head
but not participate the data forwarding task, the network is connected.

If v ∈ R
′
, since R is the solution to MRP-1 and the network S + R is

connected, there is no need to use backup nodes in this case.
If v ∈ R, according to the 2-connected conditions, all nodes in the communi-

cation circle of v are covered by backup nodes and can send their data packets
to the outside. So the network is connected.

Since v is an arbitrary node in , Lemma 1 is proved.
According to Lemma 1, our algorithm is to add minimum number of backup

nodes to the communication circle of each r ∈ R, such that the backup nodes

236 Hai Liu, Peng-Jun Wan, and Xiaohua Jia

c

a

r

b

e

Fig. 2. Adding backup nodes to the communication circle of r.

satisfy the 2-connected conditions. For the condition C1, obviously, adding two
backup nodes can not cover the communication circle of r. That is, at least
three backup nodes are needed in each communication circle. Based on R, our
algorithm for MRP-2 is to add three backup nodes in the communication circle
of each relay node in R, such that the network is 2-connected. The algorithm is
formally presented as follows.
(24 + ε)-approximation algorithm for MRP-2
1. Place a set of relay nodes R by running (6 + ε)-approximation algorithm for
MRP-1, such that S +R is connected.
2. Place three backup nodes in the communication circle of each r ∈ R. The
three backup nodes are placed on the three vertices of an equilateral triangle
with length d. The center of the equilateral triangle is in r. See Fig. 2, where
a, b, c are backup nodes. We denote the set of all backup nodes in this step by
R

′
.

3. Output R+R
′
.

The following theorem claims the correctness of the algorithm.
Theorem 2. The set of backup nodes R

′
in the algorithm satisfy the 2-connected

conditions and the final network S + R+R
′
is 2-connected.

Proof. In the following proof, we use circlex denote the communication circle
of relay node x. We will prove the 2-connected conditions are satisfied one by
one.

First, it is not difficult to see that the three new circles can cover the circle
r. That is to say, any node in circle r is also in one of the three circles. See Fig.
2, since triangle abc is an equilateral triangle, we have

� ear = � eac+ � car = 60◦ + 30◦ = 90◦

d(e, a) = d,

then d(e, r) > d.

It means that the circle a crosses the circle c on point e, which is outside the
circle r. Likewise, points of intersection of circle r and circle b, circle c are both
outside the circle r. So all nodes in the circle r can be covered by the union of
circle a, circle b and circle c. The first condition C1 is satisfied.

Second, since edge length of each equilateral triangle is d, which equals the
communication radius of relay nodes. That means the three backup nodes can
communicate with each other. It satisfies the condition C2.

Fault-Tolerant Relay Node Placement in Wireless Sensor Networks 237

Associated with the Lemma 1, Theorem 2 is proved.
The following theorem states that the ratio of the above algorithm to MRP-2

is at most (24 + ε).
Theorem 3. Let R+ R

′
: our solution to MRP-2, R2−opt: the optimal solution

to MRP-2, we have |R+R
′
|

|R2−opt| ≤ (24 + ε).
Proof. Note that for each communication circle of relay node in R, we add three
backup nodes. We have |R′ | = 3|R|. So the total number of relay nodes we used
to make the network 2-connected is:

|R +R
′
| = |R|+ |R

′
| = 4|R|

≤ 4(6 + ε)|Ropt|
≤ 4(6 + ε)|R2−opt|
= 24|R2−opt|+ 4ε|R2−opt|

Note that ε is an arbitrary positive number.

That is, |R+R
′
|

|R2−opt| ≤ (24 + ε)
In the next section, we will show that the ratio can be improved if T > 1/2.

4.2 (6/T + 12 + ε)-Approximation

After placing relay nodes by running the algorithm for MRP-1, the network is
formed as a connected tree. Our main idea is to place backup nodes on each link
of the tree to make the network 2-connected. The algorithm is formally presented
as follows.
(6/T + 12 + ε)-approximation algorithm for MRP-2
1. Place a set of relay nodes R by running the (6 + ε)-approximation algorithm
for MRP-1, such that the tree S +R is connected.
2. Place one backup node in the middle point of each link in the tree. We denote
the set of all backup nodes in this step by R

′′
.

3. Output R+R
′′
.

The following theorem claims the correctness of the algorithm.
Theorem 4. The network S +R+R

′′
is 2-connected.

Proof. To prove the theorem, we need to prove for ∀v ∈ S+R+R
′′
, if v fails, the

resulting network is still connected. There are three cases: v ∈ S, v ∈ R or v ∈
R

′′
. We prove the theorem case by case.
If v ∈ S, note that sensor nodes only report data packets to its cluster-head

but not participate the data forwarding task, the network is still connected.
If v ∈ R

′′
, since R is the solution to MRP-1 and the network S + R is

connected, there is no need to use backup relay nodes in this case.
If v ∈ R, since v is a relay node, without loss of generality, we assume v

forwards data packets from node u to node w (see Fig. 3, a, b are backup nodes).
According to the above approximation algorithm, we have

d(a, v) = d(b, v) = 0.5d,

then, d(a, b) ≤ d.

238 Hai Liu, Peng-Jun Wan, and Xiaohua Jia

That is, the backup nodes a and b can communicate with each other. So
the data packets can be forwarded to w via u → a → b → w. The network is
connected.

u

v

a

wb

Fig. 3. Adding backup nodes a, b on the links of v.

Since v is an arbitrary node in S +R+R
′′
, Theorem 4 is proved.

The following theorem states that the ratio of the solution to MRP-2 can be
improved to (6/T + 12 + ε) if T > 1/2.
Theorem 5. Let R+R

′′
: our solution to MRP-2, R2−opt: the optimal solution

to MRP-2, we have |R+R
′′
|

|R2−opt| ≤ (6/T + 12 + ε).
Proof. Since we place a node on each link in the tree which contains |R + S|
nodes in total, we have

|R
′′
| ≤ |R + S| ≤ |R|+ |R|/T,

then |R+R
′′
| ≤ 2|R|+ |R|/T ≤ (2 + 1/T)(6 + ε)|Ropt|
≤ (6/T + 12 + (2 + 1/T)ε)|R2−opt|.

Note that ε is an arbitrary positive number.

That is, |R+R
′′
|

|R2−opt| ≤ (6/T + 12 + ε).

5 Conclusions

The fault-tolerant relay node placement problem in two-tiered wireless sensor
networks was studied in the paper. Given a set of sensor nodes in a Euclidean
plane, our objective is to place minimum number of relay nodes, such that 1)
the network is connected and 2) the network is 2-connected.

Given an arbitrary positive number ε, we proposed a (6 + ε)-approximation
algorithm for the problem one. The running time is polynomial when ε is fixed.
We further proposed a (24 + ε)-approximation algorithm and a (6/T + 12 + ε)-
approximation algorithm for problem two, where T is the ratio of the number
of relay nodes placed in problem one to the number of sensors.

References

1. G. Gupta, M. Younis, “Fault-Tolerant clustering of wireless sensor net-
works”,Proceeding of IEEE WCNC’2003, pp. 1579-1584.

2. G. Gupta, M. Younis, “Load-Balanced clustering of wireless sensor net-
works”,Proceeding of IEEE ICC’2003, pp. 1848-1852.

Fault-Tolerant Relay Node Placement in Wireless Sensor Networks 239

3. J. Pan, Y. T. Hou, L. Cai, Y. Shi, S. X. Shen, “Topology control for wireless sensor
networks”,Proceeding of ACM MOBICOM’2003, pp. 286-299.

4. C.-Y. Chong and S. P. Kumar, “Sensor Networks: Evolution, Opportunities, and
Challenges”,Proc. of the IEEE, Vol 91, No. 8, Aug. 2003.

5. I. F. Akyildiz, W. Su, Y. Sankarasubramaniam and E. Cayirci, “A Survey on Sensor
Networks”,IEEE Communications Magazine, Aug. 2002.

6. P. Rentala, R. Musunuri, S. Gandham and U. Saxena, “Survey on Sensor Net-
works”,http://citeseer.nj.nec.com/479874.html.

7. B. Hao, J. Tang and G. Xue, “Fault-tolerant relay node placement in wireless
sensor networks: formulation and approximation”, accepted by HPSR’2004.

8. E. Biagioni and G. Sasaki, “Wireless sensor placement for reliable and efficient
data collection”,In Proceeding of the Hawaii International Conference on Systems
Sciences, Jan. 2003.

9. D. Du, L. Wang and B. Xu, “The Euclidean Bottleneck Steiner Tree and Steiner
Tree with Minimum Number of Steiner Points”, Computing and Combinatorics,7th
Annual International Conference COCOON 2001, Guilin, China, Aug. 2001 Pro-
ceedings.

10. D. S. Hochbaum and W. Maass, “Approximation Schemes for Covering and Pack-
ing in Image Processing and VLSI”,Journal of the ACM (JACM), Vol 32, Issue 1,
pp 130-136, Jan. 1985.

11. V. A. Kottapalli, A. S. Kiremidjian, J. P. Lynch, E. Carryer, T. W. Kenny, K. H.
Law and Y. Lei, “Two Tiered Wireless Sensor Network Architecture for Structural
Health Monitoring”,10th Annual International Symposium on Smart Structures
and Materials, San Diego, CA, USA, March 2-6, 2003.

12. Jianping Pan, Thomas Hou, Lin Cai, Yi Shi and Sherman X. Shen, “Topology
Control for Wireless Sensor Networks”, MobiCom’03, September 14-19, 2003, San
Diego, California, USA.

Best Fitting Fixed-Length Substring Patterns
for a Set of Strings�

Hirotaka Ono1 and Yen Kaow Ng2,��

1 Kyushu University, Department of Computer Science and Communication
Engineering, 6-10-1, Hakozaki, Fukuoka, 812-8581, Japan

ono@csce.kyushu-u.ac.jp
2 Kyushu Institute of Technology, Graduate School of Computer Science and

Systems Engineering, Iizuka, 820, Japan
kalngyk@daisy.ai.kyutech.ac.jp

Abstract. Finding a pattern, or a set of patterns that best characterizes
a set of strings is considered important in the context of Knowledge Dis-
covery as applied in Molecular Biology. Our main objective is to address
the problem of “over-generalization”, which is the phenomenon that a
characterization is so general that it potentially includes many incorrect
examples. To overcome this we formally define a criteria for a most fit-
ting language for a set of strings, via a natural notion of density. We
show how the problem can be solved by solving the membership prob-
lem and counting problem, and we study the runtime complexities of the
problem with respect to three solution spaces derived from unions of the
languages generated from fixed-length substring patterns. Two of these
we show to be solvable in time polynomial to the input size. In the third
case, however, the problem turns out to be NP-complete.

1 Introduction

Extracting a common description for a set of strings is a central objective in
many fields of research such as Knowledge Discovery and Artificial Intelligence.
This description is sometimes expressed in a form of languages generated by
some patterns, such as the one introduced by Angluin [1]. In the context of
such patterns, the problem has received very intensive treatment in the field of
Molecular Biology, where the patterns discovered are commonly called consensus
patterns [4, 6].

A common problem in finding a language that best characterizes a set of
examples is that of avoiding “over-generalization”. A language that includes all
the correct examples is called a generalization of the examples. It is called an
over-generalization when it is overly general so that many potentially incorrect
examples are also included. It is in general difficult to avoid over-generalization
� This work was partially supported by the Scientific Grant in Aid of the Ministry of

Education, Science, Sports, Culture and Technology of Japan.
�� The second author is supported by the the Japanese Government Scholarship of the

Ministry of Education, Science, Sports, Culture and Technology of Japan.

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 240–250, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Best Fitting Fixed-Length Substring Patterns for a Set of Strings 241

in the absence of incorrect examples. To overcome this Angluin [1] and Shino-
hara [11] considered finding languages which are in a sense “minimal”. More
precisely, they considered finding a pattern language L covering a set of strings,
such that no other pattern language that covers the strings is a proper subset of
L. The solution space was extended to a subclass of the (bounded) unions of pat-
tern languages by Arimura et al. [3, 10, 12], using a polynomial time algorithm
called k-MMG. However, no algorithm has yet been proposed for the general
case, and the output of k-MMG is dependent on the search path traversed [2].
Also, we note that there is another notion of “minimality” not guaranteed us-
ing their approach. We illustrate this with an example: let S = {“abc”, “bca”},
and consider the language generated by the pattern “∗a∗” (“∗” can be replaced
with any string). While it does not contain any smaller proper subset which also
contain S, it is arguably an inferior characterization compared to “∗bc∗”.

We suggest a strategy to overcome this shortcoming. Our idea is to exclude as
many as possible of all the strings which has not appeared in the input strings
– up to a certain length. More precisely, given any input set S of strings, we
consider patterns where their languages include S, while excluding as many as
possible of the strings outside of S that are not longer than the longest string
in S. In this sense the solution we aim at is “minimal” with respect to the set
of all the strings of length up to that of the longest string seen. We define a
notion of “density” which naturally expresses this idea, and ask the following
questions: (1) with respect to a language and a set of examples, how efficiently
can this density measure be computed, and (2) with respect to a set of examples,
are there efficient computations for finding a language with the highest density?
In this paper we study this measure as applied to a subclass of the pattern
languages, namely the substring patterns.

This paper is structured as follows. We first introduce our notion of “density”
and formally define the problem of finding the most fitting pattern languages for
a set of strings. We then show how such densities can be computed in polynomial-
time for the languages generated by the substring patterns. Finally, we study the
hardness of finding a language of substring patterns that maximizes this density.

2 Preliminaries

Let N and N+ denote the set of natural numbers and the set of positive integers,
respectively. Cardinality of a set S is denoted by |S|. max(.), min(.) denote
maximum and minimum of a set, where by convention max(∅) = 0 and min(∅) =
∞. A word over a non-empty alphabet A is a finite string of symbols taken from
A. The empty word is a null string. The symbols A+, A=m and A�m denote
the sets of non-empty words, words of length m, and words of length m or less,
respectively. Let A \B denote the set {x | x ∈ A and x �∈ B}.

Let Σ be a fixed finite alphabet with at least 2 elements, and V = {x1, x2} be
an alphabet disjoint from Σ. Elements in Σ are called constants and elements in
V are called variables. Each constant and variable has unit length. A non-empty
word over Σ is called a constant word, or simply a string. A non-empty word

242 Hirotaka Ono and Yen Kaow Ng

over V ∪Π is called a pattern. The concatenation of two patterns p1 and p2, with
p2 as suffix, is written p1p2. An arbitrary string of length m is written “?m”,
and “?1” is written simply “?”. The length of a pattern p is denoted by |p|. For
a set of patterns P , the length of the longest word in it is denoted by �P �, the
length of the shortest word is denote by %P &, while the sum of all the lengths is
denoted by ‖ P ‖.

Let P denote the set of all patterns. A pattern is regular if each variable
in it appears at most once. Let RP denote the set of all regular patterns. A
pattern is a substring pattern just in case it is of the form “x1sx2” and s is
a non-empty word over Σ. Let Psub denote the set of all substring patterns.
We also denote the set of all substring patterns “x1sx2” where |s| is of length
l by Psub l. For each l ∈ N+, we let Psub∗

l = {P | P ⊆ Psub l}. For a set
T of strings, P (T) denotes a set of substring patterns constructed from T , i.e.,
P (T) = {x1sx2 | s ∈ T }. Two strings t1 and t2 are said to overlap if either
some suffix of t1 matches some prefix of t2, or some suffix of t2 matches some
prefix of t1. For a set T of strings, we say T is non-overlapping if no string in
T overlaps with itself (except when fully overlapping), and any two strings in T
are non-overlapping.

A substitution is a homomorphism from pattern to pattern that maps every
constant symbol to itself. For a pattern p and a substitution θ, we denote by
pθ the image of p by θ. The language of a pattern p, written as L(p), is the
set {w ∈ Σ+| exists substitution θ such that w = pθ}. For a set P of patterns,
L(P) denotes the language {w ∈ L(p) | p ∈ P} and L(P) denotes the class of
languages {L(p) | p ∈ P}. A set of patterns P is said to cover a set S of strings
if S ⊆ L(P).

3 Maximum Density Pattern for a Set of Strings

We consider the problem of finding a set of patterns such that their languages
best represent a given set of strings. Since we consider unions of sets of pattern
languages, this problem can be compared to those studied in [3, 5]. We introduce
a measure for how well a set of patterns cover a given set of strings. For a set of
patterns P and a set of strings S, we define the density of P with respect to S,

d(P, S) =
|L(P) ∩ S|

|L(P) ∩Σ�
S�|
.

For a set of strings S and two sets of patterns P and Q, both which covers S
individually, we argue that P generalizes S better than Q if d(P, S) > d(Q,S),
since Q includes more examples not in S within the size of the longest example
that is known to exist. For example, in the case where the input strings S is
{“abc′′, “bca′′}, “x1bcx2” would be chosen over “x1ax2”, since d(L(“x1bcx2”), S)
> d(L(“x1ax2”), S). Based on this, we introduce the following problem:

Problem Maximum Density Patterns (MDP)

Input: A set S of strings over Σ�
S�, and a set of sets of patterns PP .
Output: A set of patterns P ∈ PP covering S and maximizing d(P, S).

Best Fitting Fixed-Length Substring Patterns for a Set of Strings 243

The choice of the solution space PP fundamentally affects the problem. To
ensure that MDP output a target generalization P ∈ PP on input S, no other
generalization P ′ ∈ PP covering S should have d(P ′, S) ≥ d(P, S). For example
consider the case where PP is the set of all finite sets of patterns from P or
RP , for which given any input S, an optimal solution is simply S itself. Such
an output requires virtually no computation, and probably makes very poor
generalization of the input. Ideally, the solution space PP should be such that
any P ∈ PP maximizing d(P, S) is an interesting generalization.

3.1 Computing Density

Consider the computation for an instance of the MDP problem. Since we require
that S ⊆ L(P), we have |L(P)∩S| = |S|. To solve MDP with input PP it suffices
that we find among all sets of patterns P ∈ PP for one where: (1) S ⊆ L(P), and
(2) |L(P) ∩ Σ�
S�| is minimized. Condition (1) cannot be computed efficiently
if PP = {{p} | p ∈ L(P)} (refer Section 2 for pattern class P), since it is known
that the membership problem is NP-complete for the class L(P) [1]. However,
for any set of strings S and any P ⊆ RP , whether S ⊆ L(P) can be computed
in time O(|P |· ‖ S ‖ +|S|· ‖ P ‖) [11].

Condition (2) can be solved by counting |L(P) ∩ Σ�
S�|. For regular pat-
terns, counting the number of strings generated by a set of patterns can be done
efficiently by constructing a DFA that accepts strings in its languages, and then
counting the number of distinct paths of up to a given length it accepts. This
gives us the following.

Theorem 1 ([7, 9]). Given a set P of regular patterns and m ∈ N+, there
exists an algorithm which computes the total number of strings in L(P) of length
up to m in time O(m· ‖ P ‖ ·min({|Σ|, ‖ P ‖})). ��

3.2 Comparing Densities

Another way to solve Condition (2) is by comparing the number of strings gen-
erated. In this section we show how this can be done very efficiently for any two
substring patterns of the same length.

For substring patterns, there is a recurrence relation which allows us to count
the strings using a dynamic programming approach. The following algorithm
(CountStrings) computes, given as input a set of strings T and m ∈ N+, the
total number of unique strings of length up to m within L(P (T)). We assume
that no string in T is a substring of some other string in T . Otherwise, the strings
that are substring of some other string in T can be removed in time O(|T |2�T �),
and their removal will not affect the computation of |L(P (T)) ∩Σ�
S�|.

CountStrings(T, m)
1. For each r from 1 to m,
2. For each string t ∈ T where |t| ≤ r,
3. For each r′ from r − |t| + 1 to r − 1, calculate S(T, t, r, r′).
4. Calculate Φ(T, r).
5. Output

∑m
r=1 Φ(T, r).

244 Hirotaka Ono and Yen Kaow Ng

For each r ∈ N+, Φ(T, r) is the total number of strings of length r in L(P (T)).
For t ∈ T , r, r′ ∈ N+ where r > r′, S(T, t, r, r′) is the number of strings
in L(“x1t”) of length r which does not begin with some string of length r′ in
L(P (T)). It is easy to see that S(T, t, r+|t|, r) = |Σ|r−|t|−Φ(T, r). The following
is the computation of S(T, t, r, r′). For a string t and n ∈ N , prefix(t, n) denotes
the prefix of t of length n, while suffix(t, n) denotes the suffix of t of length |t|−n.

S(T, t, r, r′)
1. If |t| > r, output 0.
2. Else if |t| = r, output 1.
3. Otherwise, for each t′ ∈ T , we try to find all 0 < n < |t′| such that
4. (a) suffix(t′, n) matches some prefix of t,
5. (b) n + |t| ≤ r,
6. (c) |t| − (|t′| − n) ≥ r − r′,
7. and collect all such prefix(t′, n) into a set At,r,r′ .
8. We then remove from At,r,r′ all the strings for which some of its suffixes
9. are also in At,r,r′ . (Hence At,r,r′ is a set of shortest prefix strings of T
10. where the suffix part is consistent with t.)
11. Let Bt,r,r′ = {(t′, suffix(t′, n)) | prefix(t′, n) ∈ At,r,r′}.
12. Output |Σ|r−|t| − Φ(T, r − |t|) − ∑

(t′,t′′)∈Bt,r,r′
S(T, t′, r − |t| + |t′′|, r − |t|).

For each r, the following is the computation of Φ(T, r).

Φ(T, r)
1. Initialize φ to |Σ| · Φ(T, r − 1) if r ≥ 1, 0 otherwise.
2. For each t ∈ T where |t| ≥ r, add S(T, t, r, r − 1) to φ.
3. Output φ.

Theorem 2. Given a set P (T) of substring patterns and m ∈ N+, m � �T �,
CountStrings computes the total number of strings in L(P (T)) of length up to
m in time O(m· ‖ T ‖2). ��

Note that its runtime is comparable to the algorithm in Theorem 1 for the
cases where |Σ| is large. A straightforward analysis of the recurrence relation in
CountStrings gives us the following.

Lemma 1. Let |Σ| ≥ 3, x ∈ N and d ∈ N+. For all t, t′ ∈ Σ∗ where |t| =
|t′| > d, S({t}, t, x+ d, x) >

∑
0<i<d S({t′}, t′, x+ i, x).

Lemma 2. Let |Σ| ≥ 4, x ∈ N and d ∈ N+. For all t, t′, t′′ ∈ Σ∗ where
|t| = |t′| = |t′′| > d, |S({t}, t, x+d, x)−S({t′}, t′, x+d, x)| ≤ S({t′′}, t′′, x+1, x).

Since |T | = 1, for all t, r and r′, for all (t, t1), (t, t2) ∈ Bt,r,r′, |t1| = |t2|
implies t1 = t2. That is, only the length of the overlap is needed. Let B(t, r) =
{|t′′| | (t, t′′) ∈ Bt,r,r−1}. It is clear that max(B(t, r)) < |t|. Note that for any
string t and r ≥ 2|t| − 1, B(t, r + 1) = B(t, r). For this reason we also let B(t)
denote B(t, 2|t| − 1).

Theorem 3. Let |Σ| ≥ 4. For all t, t′ ∈ Σ∗ where |t| = |t′|, if B(t) = B(t′),
then for all r ∈ N , Φ({t}, r) = Φ({t′}, r). Otherwise without loss of generality
let max(B(t) \B(t′)) < max(B(t′) \B(t)), in which case

Best Fitting Fixed-Length Substring Patterns for a Set of Strings 245

(1) Φ({t}, r) = Φ({t′}, r) for r < 2|t| −max(B(t′) \B(t)), and
(2) Φ({t}, r) > Φ({t′}, r) for r ≥ 2|t| −max(B(t′) \B(t)).

From Theorem 3, it is clear that for any strings t, t′ of the same length, it suf-
fices that we compute the sets B(t) and B(t′) to decide if CountStrings({t},m)
> CountStrings({t′},m) for any m ∈ N+.

4 Time Complexities of the MDP Problem

In this section we study the runtime complexities for MDP for three related
cases. We examine the classes derived from unions of languages in L(Psubl) for
some l ∈ N+. That is, the languages generated from substring patterns of a
fixed length l. We are interested in both the case where the number of languages
allowed in a union is bounded, and the case where it is unbounded.

We first look at the case where no union is allowed.

4.1 The Case of P = {{p} | p ∈ Psubl}
Theorem 4. Given l ∈ N+ and Σ where |Σ| ≥ 4. Let PP = {{p} | p ∈ Psubl}
and S ⊆ Σ∗. There exists an algorithm that solves the MDP problem in time
O(min({‖ S ‖, |Σ|l}) · (l2 + l|S|+ ‖ S ‖)).

Proof. We first consider the total possible candidates of length l. Since ideally
we want each pattern in the solution to cover some strings in S, we choose
only substrings of strings in S for candidates. There are possibly ‖ S ‖ such
substrings, of which at most |Σ|l are unique. This gives us a total of min({‖ S ‖,
|Σ|l}) candidates. We denote this candidate set by C. It is easy to verify, using
Theorem 3, that the following algorithm (SolveMDP) find a set from among C
which fulfills the requirement of the MDP problem.

SolveMDP (C, S)
1. Let maxSet = {−1}.
2. For each candidate t in C where S ⊆ L(P ({t}))
3. Compute B(t). If max(B(t) \ maxSet) > max(maxSet \ B(t)) and

�S� ≥ 2|t| − max(B(t) \ maxSet), set maxSet to B(t) and let p = {t}.
4. If no such t exists, no solution exists. Otherwise output p.

As discussed in Section 3.1, each check at line-2 takes O(‖ S ‖ + l|S|) time
and each computation of line-3 takes O(l2) time, that is, time needed for finding
B(t). Each of these is performed at most once for each candidate in C, thus
giving us the runtime as stated. ��

It is worth noting that in this case, a solution for MDP can be obtained in
time that is not directly dependent on the maximum length of the samples.

Corollary 1. Given Σ where |Σ| ≥ 4. Let PP = {{p} | p ∈ Psub} and S ⊆ Σ∗.
There exists an algorithm that solves the MDP problem in time O(‖ S ‖ ·(%S&3+
%S&2|S|+ %S& ‖ S ‖)).

246 Hirotaka Ono and Yen Kaow Ng

Proof. To find a solution in this case it suffices that we compute MDP for PP =
{{p} | p ∈ Psub l} for each l ≤ %S&. ��

We next look at the case where the unions can involve at most k languages,
for some k ∈ N+, k ≥ 2.

4.2 The Case of P = {P ⊆ Psubl | |P | ≤ k}
Theorem 5. Given l, k ∈ N+, k ≥ 2 and Σ where |Σ| ≥ 2. Let PP = {P ⊆
Psub l | |P | ≤ k} and S ⊆ Σ∗. There exists an algorithm that solves the MDP
problem in time O(min({‖ S ‖, |Σ|l})k ·(�S�· lk ·min({|Σ|, lk})+ lk|S|+k ‖ S ‖).

Proof. The proof is the same as that for Theorem 4 except that the number of
candidates in this case is min({‖ S ‖, |Σ|l})k, and the check at line-3 is not valid.
Hence in this case, we use the string counting algorithm as in Theorem 1 for the
comparison at line-3. Each computation is done in time �S� · lk ·min({|Σ|, lk}),
giving us the runtime as stated. ��

We next consider the computational complexity of MDP with respect to
unbounded unions of the languages in L(Psub l). Regrettably, in this case, the
MDP problem turns out to be NP-complete.

4.3 The Case of P = Psub∗
l

We first consider the case where l is very small. In this case, the problem can be
solved in time polynomial in the size of the input as follows. Let T = {s | |s| = l
and s is a substring of some w ∈ S}. Hence |T | ≤ |Σ|l. We then check if
S ⊆ L(P) for each P ⊆ P (T), compute its density, and find such P with the
highest density. Each computation for T is done in O(�S�l|T |min({|Σ|, l|T |}))
by Theorem 1, and the number of candidates T is bounded by 2|Σ|l . In total, all
the computation can be done in O(2|Σ|l �S� l2 |Σ|l+1) time.

Theorem 6. The problem of MDP for Psub∗
l can be solved in polynomial

time, if l is O(poly(log log(max{|S|, �S�})). ��
Unfortunately, this problem is NP-hard in general. More precisely, we can

show the NP-completeness of the decision version of MDP for Psub∗
l ; for input

parameter D, does there exist a set P of patterns in PP such that S ⊆ L(P) and
d(P, S) ≥ D?

Theorem 7. MDP for Psub∗
l (decision version) is NP-complete.

To prove this, we infer on the number of strings of length m in |L(P)| where
P ∈ Psub∗

l . We obtain the following bounds on this number for any P consisting
solely of non-overlapping strings from the inclusion-exclusion principle.

Lemma 3. Let T and T ′ be sets of non-overlapping strings of length l. If m ≤ l2,
|T ′| = |T | + 1 ≤ l, |Σ| ≥ 3 and l ≥ 14, then |L(P (T ′)) ∩ Σ=m| > (m − l +
1)|Σ|m−l > |L(P (T)) ∩Σ=m| holds. ��

Best Fitting Fixed-Length Substring Patterns for a Set of Strings 247

The Proof of Theorem 7. Obviously, the decision version of MDP for Psub∗
l

belongs to NP by Theorem 1.
We then show the completeness part. We reduce a well-known NP-complete

problem, Minimum 3-Set Cover (for short, M3SC) [8] to our MDP.

Problem Minimum 3-Set Cover
Input: A set U = {1, . . . , n}, its subsets V1, . . . , Vk ⊆ U , where |Vi| = 3

for i = 1, . . . , k, and an integer K > 0.
Question: Is there a family V ⊆ {V1, . . . , Vm} of subsets, such that⋃

Vi∈V Vi = U and |V| ≤ K?

For the M3SC instance, we construct a set of strings S ⊆ Σ=m, where Σ =
{a, b, c}, m = 3k(r + 2) with r = max{n, k}, and let l = 2(r + 2). In the
construction, we compose 3k component (sub)strings with length l = r + 2 into
strings with length m = 3k(r + 2). For this purpose, we first define component
strings. For each subset Vi, we define string v(i) ∈ Σ=r+2 as follows:

v(i) =

r+2︷ ︸︸ ︷
c bb · · · b︸ ︷︷ ︸

i

a bb · · · b︸ ︷︷ ︸
i

ab · · · ba bb · · · b︸ ︷︷ ︸
p

,

where p ≡ r + 1 (mod i + 1). For example, v(1) = cbaba · · ·, v(2) = cbbabba · · ·.
Also, for each element i ∈ U we define three strings u(i,α,β):

u(i,α,β) =

r+2︷ ︸︸ ︷
αa · · ·a︸ ︷︷ ︸

p

b · · ·ab aa · · ·a︸ ︷︷ ︸
i

b aa · · ·a︸ ︷︷ ︸
i

bβ,

where α, β ∈ {a, b, c} and p ≡ r (mod i + 1). For example, u(3,a,c) = aa · · ·
abaaabaaac. By using these component strings in R = {v(i), for i = 1, . . . , k} ∪
{u(i,α,β), for i = 1, . . . , n, and α, β ∈ {a, b, c}}, we now construct a set S of
strings corresponding to the base set U of a given M3SC problem instance. Each
string w ∈ S consists of 3k substrings of length (r+ 2), each of which is a string
in R. Let us denote the j-th substring of string w by wj . For an element i ∈ U ,
the corresponding string w(i) is defined as follows:

w
(i)
h =

{
u(i,α,β) if h ≡ 0 (mod 3)
v(j) if h �≡ 0 (mod 3) and i ∈ Vj , where j = �h/3�
u(i,c,c) otherwise.

where

α =

⎧⎨⎩ a if i ∈ Vj and |{1, 2, . . . , i− 1} ∩ Vj | = 0,
b if i ∈ Vj and |{1, 2, . . . , i− 1} ∩ Vj | = 1,
c otherwise,

β =

{
a if i ∈ Vj+1 and |{1, 2, . . . , i− 1} ∩ Vj+1| = 0,
b if i ∈ Vj+1 and |{1, 2, . . . , i− 1} ∩ Vj+1| = 1,
c otherwise.

For example, if in the original M3SC instance the sets to which element 4 belongs
are only V1 = {4, 5, 6} and V3 = {1, 4, 6}, the corresponding string is

w(4) = v(1)v(1)u(4,a,c)︸ ︷︷ ︸
4∈V1

u(4,c,c)u(4,c,c)u(4,c,b)︸ ︷︷ ︸
4�∈V2

v(3)v(3)u(4,b,c)︸ ︷︷ ︸
4∈V3

u(4,c,c) · · ·u(4,c,c) · · · .

248 Hirotaka Ono and Yen Kaow Ng

Note that each segment u(i,α,β) is unique to w(i) and only v(j)s may appear in
more than one string in S. Now we claim that for this string set S = {w(i), i ∈ U},
the maximum density of P ∈ Psub∗

l is not smaller than n/(K ·
∑m

j=l((j − l +
1)3j−l)), if and only if the M3SC’s answer is yes.

We prove the only-if part. Let P (T ′) ∈ Psub∗
l be a cover for S with the

highest density. By the above argument, every t ∈ T ′ must be a substring of
some s ∈ S. Here we have the following three types of substrings t with length
l = 2(r + 2):

1) t = v(i)v(i), where i ∈ {1, 2, . . . ,m},
2) t contains u(j,α,β) as its substring where j ∈ {1, . . . , n},

3) t =

q︷ ︸︸ ︷
a · · ·abaa · · ·β v(i)

r+2−q︷ ︸︸ ︷
cbb · · · babb · · ·, or

q︷ ︸︸ ︷
b · · · babb · · · v(i)

r+2−q︷ ︸︸ ︷
αaa · · · abaa · · ·,

where α, β ∈ {a, b, c} and i ∈ {1, 2, . . . ,m}.

Type 1) and 2) of substring pattern covers three strings and one string in S,
respectively. As for Type 3), t covers just one string in S, since all the three
strings which contain v(i) have different α or β. From these, it follows that when
we maximize the density of patterns to cover S, only Type 1) strings are in T ′.
For solution P with only Type 1) strings, its density is d(P, S) = |L(P)∩S|

|L(P)∩Σ�m| =
|S|∑m

i=k |L(P)∩Σ=i| , where m = 3k(r + 2) and l = 2(r + 2). By the construction of

v(i), P with only Type 1) strings are non-overlapping, m = 3k(r + 2) ≤ l2 and
|P | ≤ k ≤ l. By these properties and Lemma 3, solutions P with |P | = K and
P ′ with |P ′| = K + 1 satisfy that

d(P, S) =
|S|∑m

i=l |L(P) ∩Σ=i| ≥
n∑m

j=l(K(j − l + 1) · 3j−l)
(1)

≥ |S|∑m
i=l |L(P ′) ∩Σ=i| = d(P ′, S). (2)

Inequality (1) implies that, if the optimal solution is not smaller than n/(K ·
(
∑m

j=l((j − l+ 1) · 3j−l)), K ≥ |P | holds. Recall that each member of P is Type
1) and forms x1v

(i)v(i)x2, which corresponds to set Vi. Thus, by solving MDP
for Psub∗

l , we can obtain the solution of M3SC, which proves the only-if part.
The opposite direction can also be shown by a similar argument and (2). ��

5 Conclusions and Future Work

In this paper, we considered the problem of finding patterns that covers a given
set of strings. We have argued in this paper our dissatisfactions with current
strategies to avoid over-generalizations in the solution pattern languages. We pro-
posed a natural measure, “density”, to evaluate the degree of over-generalization
of a given solution, and considered the problem of finding among all solutions
for one which maximizes such density.

Best Fitting Fixed-Length Substring Patterns for a Set of Strings 249

We showed that the resultant problem is closely related to the counting
problem and the membership problem. As such, we listed methods to perform
these efficiently for a few cases where such computations are possible. We showed
that for substring patterns of the same length, to compare between the number
of strings up to a certain length generated by any two patterns does not require
an exhautive counting of the strings. It remains to be seen if similar methods
exist for other subclasses of the pattern languages.

Finally, we studied the runtime complexities for solving the MDP problem on
three related classes of languages derived from unions of the substring pattern
languages. One of these turned out to be very efficient, the other less so, but still
within runtime polynomial to the input size. Regrettably, for the third class of
languages we considered, the set of unbounded unions of fixed-length substring
pattern languages, the problem of finding a solution which maximizes the density
can be related to the Minimum Set Cover Problem, and is shown to be NP-
complete.

Acknowledgement

The authors would like to thank Prof. Takeshi Shinohara for discussions.

References

1. D. Angluin. Finding patterns common to a set of strings. Journal of Computer and
System Sciences, 21:46–62, 1980.

2. H. Arimura, R. Fujino, T. Shinohara, and S. Arikawa. Protein motif discovery
from positive examples by Minimal Multiple Generalization over regular patterns.
In Proceedings of the Genome Informatics Workshop, pages 39–48, 1994.

3. H. Arimura, T. Shinohara, and S. Otsuki. Finding minimal generalizations for
unions of pattern languages and its application to inductive inference from positive
data. In Proc. Annual Symp. on Theoretical Aspects of Computer Sci., 1994.

4. A. Brāzma, I. Jonassen, I. Eidhammer, and D. Gilbert. Approaches to the auto-
matic discovery of patterns in biosequences. J. Comp. Biol., 5(2):277–304, 1998.

5. A. Brāzma, E. Ukkonen, and J. Vilo. Discovering unbounded unions of regular
pattern languages from positive examples. In Proceedings of the 7-th International
Symposium on Algorithms and Computation (ISAAC’96), 1996.

6. B. Brejova, T. Vinar, and M. Li. Pattern Discovery: Methods and Software, chap-
ter 29, pages 491–522. Humana Press, 2003.

7. Chee-Yong Chan, Minos Garofalakis, and Rajeev Rastogi. RE-tree: an efficient
index structure for regular expressions. The VLDB Journal, 12(2):102–119, 2003.

8. M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman and Co., New York, 1979.

9. Sampath Kannan, Z. Sweedyk, and Steve Mahaney. Counting and random genera-
tion of strings in regular languages. In Proceedings of the sixth annual ACM-SIAM
symposium on Discrete algorithms, pages 551–557. Society for Industrial and Ap-
plied Mathematics, 1995.

250 Hirotaka Ono and Yen Kaow Ng

10. M. Sato, Y. Mukouchi, and D. Zheng. Characteristic sets for unions of regular
pattern languages and compactness. In Algorithmic Learning Theory: Ninth Inter-
national Conference (ALT’ 98), volume 1501 of Lecture Notes in Computer Science,
pages 220–233. Springer-Verlag, 1998.

11. T. Shinohara. Polynomial time inference of extended regular pattern languages. In
RIMS Symposia on Software Science and Engineering, Kyoto, Japan, volume 147
of Lecture Notes in Computer Science, pages 115–127. Springer-Verlag, 1982.

12. J. Uemura and M. Sato. Compactness and learning of classes of unions of erasing
regular pattern languages. In Algorithmic Learning Theory: Thirteenth Interna-
tional Conference (ALT’ 02), volume 2533, pages 293–307. Springer-Verlag, 2002.

String Coding of Trees
with Locality and Heritability

Saverio Caminiti and Rossella Petreschi

Dipartimento di Informatica, Università degli Studi di Roma “La Sapienza”
Via Salaria 113, 00198 Roma, Italy

{caminiti,petreschi}@di.uniroma1.it

Abstract. We consider the problem of coding labelled trees by means of
strings of vertex labels and we present a general scheme to define bijective
codes based on the transformation of a tree into a functional digraph.
Looking at the fields in which codes for labelled trees are utilized, we
see that the properties of locality and heritability are required and that
codes like the well known Prüfer code do not satisfy these properties. We
present a general scheme for generating codes based on the construction
of functional digraphs. We prove that using this scheme, locality and
heritability are satisfied as a direct function of the similarity between
the topology of the functional digraph and that of the original tree.
Moreover, we also show that the efficiency of our method depends on
the transformation of the tree into a functional digraph. Finally we show
how it is possible to fit three known codes into our scheme, obtaining
maximum efficiency and high locality and heritability.

1 Introduction

Labeled trees are of interest in both practical and theoretical areas of computer
science. To take just two examples: Ethernet has a unique path between terminal
devices, labeling the tree vertices is necessary to identify each device in the
network without ambiguity; trees are used in biology to represent phylogenetic
relationships between species, populations, individuals, or genes represented by
labels.

Coding labeled trees by means of strings of vertex labels is an interesting al-
ternative to the usual representations of tree data structures in computer mem-
ories, since it has many practical applications [3]. Evolutionary algorithms over
trees maintain a population of data structures that represents candidate solu-
tions to a problem. The association between structures and solutions is realized
through a decoder which must exhibit efficiency, locality, and heritability if the
evolutionary search is to be effective [4, 5, 7, 12]. In this context it is possible to
show that representing a tree as a string increases the probability to guarantee
the required properties will be attained.

Furthermore, string base coding makes it possible to generate random uni-
formly distributed trees and random connected graphs [9]. Indeed the generation
of a random string, followed by the use of a fast decoding algorithm, is typically

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 251–262, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

252 Saverio Caminiti and Rossella Petreschi

more efficient than generating a tree by adding edges randomly, where one must
be careful not to introduce cycles.

Finally, tree codes are also used for data compression and in the computation
of forest volumes of graphs [8].

Unless stated otherwise, here we will consider the tree as rooted in vertex 0
and its n vertices labeled from 0 to n− 1.

The näıve method for relating a tree to a string P consists in associating to
each vertex x the value of its parent p(x); P has cardinality n− 1 since the root
node 0 can be omitted, in the following we refer to the näıve string as parent
array. It should be noted that an arbitrary string of length n− 1 over [0, n− 1]
is not necessarily a tree, but it may be either a non-connected or a cyclic graph.

We are interested in those types of coding that define a bijection between the
set of labeled trees of n vertices and a set of strings over [0, n− 1]. Since Cayley
has proved that the number of labeled trees on n vertices is nn−2, we know that
this kind of one-to-one correspondence requires the cardinality of the string to
be equal to n− 2 [1].

In his proof of Cayley’s theorem, Prüfer provided the first bijective string
based coding for trees [11]. Over the years since then many codings behaving
like that of Prüfer have been introduced. In [2] a complete survey on these codes
is presented, and it is shown that coding and decoding in sequential linear time is
possible using each of these codes; efficient parallel algorithms are also presented.

However, even if they are extremely efficient, Prüfer-like codes lack other
desirable properties, such as locality and heritability, as noted in [6]. An experi-
mental analysis [7] shows that these properties are much better satisfied by the
Blob code, defined by Picciotto [10].

In this paper we present a general scheme for defining bijective codes based
on the transformation of a tree into a functional digraph. We also show how
the properties of locality and heritability are related to differences between the
digraph and the original tree. Then we highlight the differences between Prüfer-
like codes and codes derivable from our scheme. Finally, we show how it is
possible to map some known codes, including the Blob code, to our scheme.

2 Preliminaries

In this section, we introduce some definitions that will be needed in the rest of
the paper.

Definition 1. Given a function g from the set [0, n] to the set [0, n], the func-
tional digraph G = (V,E) associated with g is a digraph with V = {0, . . . , n}
and E = {(v, g(v)) for every v ∈ V }.

For this class of graphs the following lemma holds:

Lemma 1. A digraph G = (V,E) is functional if and only if |E| = n and the
outer degree of each vertex is equal to 1.

String Coding of Trees with Locality and Heritability 253

Corollary 1. Each connected component of a functional digraph is composed
of several trees, each of which is rooted in a vertex belonging to the core of the
component, which is either a cycle or a loop (see Figure 1a).

Functional digraphs are easily generalizable for the representation of functions
which are undefined in some values: if g(x) is not defined, the vertex x in G does
not have any outgoing edge. The connected component of G containing an x,
such that g(x) is not defined, is a tree rooted in x without cycles or loops (see
Figure 1b).

Definition 2. A labeled n-tree is an unrooted tree with n vertices, each with a
distinct label selected in the set [0, n− 1].

Definition 3. In a labeled n-tree, the set of vertices between a vertex v to a
vertex u is called the path from v to u; u and v do not belong to the path.

Since in this paper we deal only with labeled trees, we will refer to them simply
as trees. In the following, when it is necessary to root a tree in one of its vertices,
we will consider its edges oriented upwards from leaves to root.

Remark 1. Let T be a rooted tree and p(v) be the parent of v for each v in T .
T is the functional digraph associated with the function p.

Let us call n-string a string of n elements in the set [0, n+ 1].

Definition 4. A code is a method for associating trees to strings in such a way
that different trees yield different strings. A bijective code is a code associating
n-trees to (n− 2)-strings.

Below, when there is no risk of confusion, we will identify a tree with its associ-
ated string, and vice versa.

A code satisfies the Locality Property if small changes in the tree correspond
to small changes in the associated string, and vice versa.

In evolutionary algorithms, where sometimes a new string is generated by
mixing two existing strings, another desirable property is the Heritability Prop-
erty: edges of the tree corresponding to the mixed string belong to one of the
two existing trees.

Let us look at the näıve code representing a tree with the parent vector. Since
each edge of a tree corresponds to an element of the string, this code exhibits
maximal locality: a single change in the tree corresponds to a single change in
the associated string, and vice versa (see Figure 1c and 1d). Näıve code also
maximally satisfies heritability: in each string the i-th element corresponds to
the edge (i, p(i)) of the tree, it implies that a tree obtained by mixing two existing
strings has only edges coming from the two existing trees. Unfortunately, this
code is not bijective, so a string obtained by modifying one or more strings is
not necessarily a tree: more precisely, the probability of obtaining a tree is 1

n .
This is a serious shortcoming of näıve code.

The Prüfer code proceeds recursively, deleting the leaf with smallest label
from the tree; when a leaf is deleted, the label of its parent is added to the

254 Saverio Caminiti and Rossella Petreschi

Fig. 1. a) A functional digraph associated with a fully defined function; b) A functional
digraph associated with a function undefined in 0, 8, and 9; c) A tree T , and the
corresponding näıve and Prüfer codes (notice that this tree is not rooted at 0 and then
the näıve code has cardinality n); d) T ′ = T − (1, 0) + (1, 5) and the corresponding
näıve and Prüfer codes.

code. This code is bijective, but exhibits extremely poor locality [6] (see Figure 1c
and 1d).

3 General Method

In this section we present a general method for defining bijections between the
set of labeled n-trees and (n−2)-strings. Our idea is to modify the näıve method
so as to reduce the dimension of the string that it yields.

In order to build an (n− 2)-string, we conjecture that the tree is rooted at a
fixed vertex x, and that there exists another fixed vertex y having x as parent.
Under these assumptions, in the parent array representation we may omit the
information related to both x and y. It is easy to root a given unrooted tree at
a fixed vertex x, however it is not so clear how to guarantee the existence of
edge (x, y). A function ϕ manipulates the tree in order to ensure the existence of
(x, y) and this is what characterizes each specific instance of our general method.
The function ϕ has to transform T into a functional digraph G, with n−1 edges
associated with a function g, such that g(x) is undefined and g(y) = x. Below
we see the coding scheme when ϕ, x, and y are known:

General Coding Scheme
Input: Input: an n-tree T
Output: Output: an (n− 2)-string C
1. Root T in x
2. Construct G = ϕ(T)
3. for v = 0 to n− 1 do
4. if (v �= x and v �= y) then add g(v) to C

To guarantee the bijectivity of the coding obtained, the function ϕ must be
invertible; only under this hypothesis is it possible to define the decoding scheme:

String Coding of Trees with Locality and Heritability 255

General Decoding Scheme
Input: Input: an (n− 2)-string C
Output: Output: an n-tree T

1. Reconstruct the graph G starting from code C
2. Add the fixed edge (x, y)
3. Compute T = ϕ−1(G)

In our method, the topology of graph G directly identifies the string C, since
for each vertex from 0 to n− 1 its outgoing edge is considered. The obtained C
is similar to the näıve code of the tree to precisely the same extent as the tree
topology is similar to the graph topology. Since the näıve code has naturally
maximal locality and heritability, if we are interested in obtaining high locality
and heritability codes we have to look for those ϕ functions that minimize the
variations introduced into the tree. Consequently the efficiency of our coding
and decoding schemes is strictly dependent on the computation of ϕ.

It should be noted that in all Prüfer-like codes the tree topology determines
the elimination order of vertices, so a small change in the tree may cause a
variation of this order and thus a big change in the string (see Figure 1c and
1d). This is the reason why Prüfer and Prüfer-like codes exhibit low locality and
heritability [6].

In the following, we show that several codes introduced in the literature [10]
can be mapped into our general scheme, and we provide optimal computation
for their ϕ functions.

4 Blob Code

The Blob code was introduced by Picciotto [10] in her Ph.D. Thesis. The algo-
rithm used to obtain a string starting from a tree is:

Blob Coding Algorithm
Input: Input: an n-tree T
Output: Output: an (n− 2)-string C

1. Initialize blob = {n}, C = ()
2. Root T in 0
3. for v = n− 1 to 1 do
4. if ((path(v, 0)

⋂
blob) �= ∅) then C[v − 1] = p(v)

5. delete (v, p(v)) and insert v in blob
6. else C[v − 1] = p(blob)
7. delete (blob, p(blob)) and add (blob, p(v))
8. delete (v, p(v)) and insert v in blob

In this algorithm blob is a macro-vertex, i.e. it has a parent but it contains many
other vertices. Each vertex included in blob maintains its own subtree, if any,
but this subtree is not necessarily included in the blob.

256 Saverio Caminiti and Rossella Petreschi

We will call stable all vertices satisfying the test in line 4; their corresponding
value in the code is their original parent.

Analyzing this algorithm we can see that the line 4 condition is not tied to
the incremental construction of the blob, but it can be globally computed in the
initialization phase as the Lemma 2 asserts:

Lemma 2. Stable vertices are all vertices v such that v < max(path(v, 0)).

Proof. At step v of main cycle the set blob contains all the vertices from v + 1
to n. Then the condition of line 4 holds if and only if at least a vertex greater
than v occurs in path(v, 0).

Note that path(v, 0) is a set as stated in Definition 3.

Lemma 3. For each unstable vertex v, p(z) is the corresponding value in the
code, where z is min{u|u > v and u unstable}.

Proof. In line 6 the current parent of blob defines the code value corresponding
to an unstable vertex v and in line 7 the blob becomes child of p(v). It implies
that when line 6 is executed for vertex v, p(blob) is equal to the parent of the
smaller unstable vertex greater than v, i.e. p(z).

Let us define a function ϕb constructing a graph G starting from a tree T in the
following way: for each unstable vertex v, removes edge (v, p(v)) and add edge
(v, p(z)) where z = min{u|u > v and u unstable}. If z does not exist, i.e. when
v = n, add the edge (v, 0).

In Figure 2a and 2b a tree T and a graph G = ϕb(T) are depicted.

Remark 2. Each path in T from a stable vertex v to m = max(path(v, 0)) is
preserved in G = ϕb(T).

Theorem 1. It is possible to fit Blob code into our general scheme when x = 0,
y = n, and ϕ = ϕb.

Proof. It is trivial to see that graph G = ϕb(T) is a functional digraph, since:
a) each vertex has outdegree equal to 1; b) the function g associated with G is
undefined in 0; c) g(n) = 0.

Lemmas 2 and 3 guarantee that the generated string C is equal to the code
computed by Blob Coding Algorithm.

Now we have to prove that ϕb is invertible, i.e. we have to show how to
rebuild T from G.

First we eliminate cycles from G, then we recompute stable and unstable
vertices of original T to identify, according to Remark 2, those vertices that
must recompute their parents in G.

Each cycle Γ is broken deleting the edge outgoing from γ, the maximum label
vertex in Γ . Remark 2 implies that γ was unstable in T , indeed if γ was stable
in T the path from γ to max(path(γ, 0)) must appear in G, but this implies a
vertex greater than γ in Γ . Notice that γ becomes the root of its own connected

String Coding of Trees with Locality and Heritability 257

Fig. 2. a) A sample tree T rooted in 0; b) GB = ϕb(T), stable vertices are repre-
sented in gray; c) GH computed from T by the original Happy Coding Algorithm;
d) GM = ϕm(T), maximal vertices are represented in gray; e) D computed from T by
the Dandelion Coding Algorithm; f) GD = ϕd(T), flying vertices are represented in
gray.

component, while 0 is the root of the only connected component not containing
cycles. The identification of γ is a step towards the recomputation of stable and
unstable vertices.

We call stable in G each vertex v such that max(path(v, γv)
⋃
{γv}) > v,

where γv is the root of the connected component containing v.
The path preservation stated in Remark 2 guarantees that each vertex v,

stable in T , is stable in G. Let us now prove that the vice versa is also true.
Let us assume, by contradiction, that there exists a vertex v stable in G but
unstable in T . And let us call m = max(path(v, γv)

⋃
{γv}) in G. It holds v < m

and m unstable both in G and in T . In G m is unstable because there are not
vertices greater than m in path(v, γv)

⋃
{γv}; in T m can not be stable because,

as noted before, each stable vertex in T remains stable in G.
W.l.o.g. we assume that all vertices between v and m are stable both in G

and in T . Let w be the parent of v in G. By definition of ϕb there exists a vertex
u > v unstable in T such that p(u) = w in T . In Figure 3 v, m, u, and w are
depicted both in G and in T .

258 Saverio Caminiti and Rossella Petreschi

Fig. 3. Vertices involved in the proof of Theorem 1 both in G and in T . Stable vertices
are represented in gray.

Since m is in the path from u to 0 in T , m must be smaller than u. Then
v < m < u and m is unstable in T contradicting the assertion that there are no
unstable vertices in T between v and u (by definition of ϕb).

The computational complexity of original Blob coding and decoding algorithms
are quadratic, due to the computation of paths at each iteration. Our charac-
terization of stable vertices (cfr. Lemma 2) decreases the complexity of coding
algorithm to O(n). Linear complexity for both coding and decoding can be ob-
tained by fitting Blob code into our general scheme. Indeed both ϕb and ϕ−1

b

can be implemented in O(n) sequential time: computation of the maximum ver-
tex in the upper path (coding) and cycles identification (decoding) can both be
implemented by simple search techniques.

In [7], an experimental analysis shows that locality and heritability are satis-
fied by the Blob code much better than by the Prüfer code. The reasons behind
the experimental results become clear when Blob code is analyzed according to
our method, which is quite different from Picciotto’s original idea. The functional
digraph generated by ϕb preserves an edge of the original tree for each stable
vertex, and for these vertices g(v) = p(v): this partial similarity with näıve code
is the reason for the soundness of locality and heritability.

In the next two sections we discuss two codes that better exploit similarities
with näıve code.

5 Happy Code

Happy code was introduced in [10], and it appears with a structure completely
different from the Blob code:

Happy Coding Algorithm
Input: Input: an n-tree T
Output: Output: an (n− 2)-string C
1. Root T in 0 and initialize J = p(1)
2. while p(1) �= 0 do
3. j = p(1), delete (1, j), delete (j, p(j)), and add (1, p(j))
4. if j > J then J = j and add (J, J)
5. else add (j, p(J)), delete (J, p(J)), and add (J, j)
6. for v = 2 to n do C[v − 2] = p(v)

String Coding of Trees with Locality and Heritability 259

This algorithm focuses on the path from 1 to 0. Since the aim of the algorithm
is to ensure the existence of edge (1, 0), all the vertices on the original path from
1 to 0 are sequentially moved in order to form cycles. Let us call maximal each
vertex v in path(1, 0) such that v > max(path(1, v)). The first cycle is initialized
with p(1) and each time a maximal vertex is analyzed a new cycle is initialized
(see Figure 2c).

Notice that the algorithm inserts a vertex j in a cycle immediately after J ,
the maximal vertex in the cycle. This implies that in the resulting graph the
vertices in a cycle will be in reverse order with respect to their position in the
original tree (see Figure 2c). Since we are interested in keeping the graph as close
as possible to the original tree, we will consider a slightly modified version of
this code which avoids this inversion: j is attached immediately before J instead
of immediately after. Let us call this modified version of happy code MHappy
code (see Figure 2d).

For MHappy code we define a function ϕm which, given a tree T , constructs
a graph G in the following way: for each maximal vertex v in path(1, 0) remove
the edge incoming at v in this path, and add an edge (z, v) where z is the child
of the next maximal vertex. If z does not exist, use the child of 0; finally remove
the edge incoming at 0 in the path and add the edge (1, 0).

Theorem 2. It is possible to fit MHappy code into our general scheme when
x = 0, y = 1, and ϕ = ϕm.

Proof. It is trivial to see that the MHappy coding transforms T into the same
functional digraph generated by ϕm: this corresponds to a function g undefined
in 0 (the root) and is such that g(1) = 0 (edge (1, 0)).

To show that ϕm is invertible, first sort all cycles in G into increasing order
with respect to their maximum vertex γ, then breack each cycle removing the
edge incoming at γ. Since the order of cycles obtained is the same as that in
which they where originally created, we rebuild the original tree inserting all the
vertices of each cycle in the path from 1 to 0 in accordance with the order of the
cycles.

ϕm and ϕ−1
m can be implemented in O(n) sequential time because coding requires

the computation of maximal vertices in the path from 1 to 0 and decoding
requires cycle identification and integer sorting. Therefore coding and decoding
require linear time both for Happy and MHappy algorithms. ϕm modifies only
edges on the path between 1 and 0, so it preserves the topology of T better than
ϕb: this improves the level of locality and heritability of this code.

6 Dandelion Code

In the following we present the Dandelion code as introduced in [10] with labels
on edges:

260 Saverio Caminiti and Rossella Petreschi

Dandelion Coding Algorithm

Input: Input: an n-tree T
Output: Output: an (n− 2)-string C
1. Root T in 0
2. for v = n to 2 do
3. h = p(v), k = p(1), delete (v, h), and add (v, 1) with label h
4. if a cycle has been created then delete (1, k), add (1, h), label(v, 1) = k
5. for v = 2 to n do C[v − 2] = label(v, 1)

The name of dandelion for this code derives from the fact that connecting all
the vertices to vertex 1, a tree which looks like a dandelion flower is created (see
Figure 2e). Analyzing the algorithm, we can see that the only vertices having
the outgoing edge labeled with a value different from their original parent are
those verifying the test of line 4, let us call them flying vertices.
In code C, a position corresponding to a non-flying vertex v merely displays
p(v), showing that the algorithm does not add new information if it considers
all the vertices. Hence let us restrict our attention to flying vertices.

Lemma 4. Flying vertices are all vertices v such that v ∈ path(1, 0) and v >
max(path(v, 0)).

Proof. The first condition trivially holds, otherwise cycles cannot be created.
Given v ∈ path(1, 0), let m = max(path(v, 0)). If m > v then m is processed

before v by the algorithm, m is directly connected to 1 and it introduces a cycle
containing v. When the cycle is broken (line 4), all the vertices in the cycle are
excluded from path(1, 0). This implies that in successive steps v can not be a
flying vertex.

On the other hand, if v > m it will be in path(1, 0) when it is processed by
the algorithm and so it obviously introduces a cycle.

When a cycle is broken (line 4) in a flying vertex v, 1 will be connected to h
(the old parent of v) and the label of edge (v, 1) becomes k (the old parent of 1).
In code C, the position corresponding to v displays the value k. Thus, assigning
p(v) = k, it is possible to avoid edge labels and to generate C directly from p.

Let us define a function ϕd which, given a tree T , constructs a graph G that
considers flying vertices of T in decreasing order. For each flying vertex v, ϕd

exchange p(v) and p(1) (see Figure 2f).

Theorem 3. It is possible to fit Dandelion code into our general scheme when
x = 0, y = 1, and ϕ = ϕd.

Proof. G = ϕd(T) is a functional digraph corresponding to a function g unde-
fined in 0 (the root) and such that g(1) = 0 (edge (1, 0)). It is also easy to see
that the code generated using ϕd is the same as that using Dandelion Coding
Algorithm. Considerations similar to those presented in Theorem 2 for ϕm can
be used to prove that ϕd is invertible; note that cycles of G must be considered
in increasing order of their maximum vertex.

String Coding of Trees with Locality and Heritability 261

The complexity of the original Dandelion algorithms for coding and decoding is
non linear, while it becomes linear when fitted into our general scheme, in view
of the fact that ϕd requires the same operations as ϕm.

Concerning locality and heritability, Dandelion code has a behavior which is
identical to MHappy code, in spite of the fact that in [10] it was introduced as “a
mélange of the methods for Happy code and Blob code”. Indeed, both ϕd and ϕm

work only on edges in the path between 1 and 0. On this path vertices that modify
their parent are maximal (i.e. all vertices v such that v > max(path(1, v))) for
MHappy code and flying (i.e. all vertices v such that v > max(path(v, 0))) for
Dandelion code.

7 Conclusion and Open Problems

In the introduction, we stated that we where looking for codes satisfying prop-
erties like efficiency, locality and heritability. Code that is built by associating
to each vertex its parent (näıve code), naturally satisfies these properties, but it
does not define a bijection between trees and strings.

In this paper we have presented a general scheme for defining bijective codes
based on the transformation of a tree into a functional digraph through a function
ϕ. We have emphasized that the required properties are satisfied by our general
scheme to the extent that function ϕ preserves the tree.

The value of our approach is that it returns the characteristics of näıve code
as much as is possible: the degree to which function ϕ preserves the topology
of the tree is precisely the same as the degree of similarity between the string
obtained using function ϕ and the string obtained using näıve code. Hence, the
required properties are satisfied to this same degree.

We have defined three functions ϕb, ϕm, and ϕd that allow us to fit into our
general scheme three known codes: Blob, Happy, and Dandelion codes.

For each of these codes we have shown that it is possible to code and decode
in linear time, achieving maximum efficiency. Regarding locality and heritability,
we have shown that Happy and Dandelion codes have a performance which is
better than Blob code, since they generate functional digraphs with a topology
that is very similar to original trees.

Since these codes seem to be suitable candidates for use in evolutionary
algorithms, it will be interesting to verify their performance experimentally in
tests similar to those reported in [6, 7].

Another interesting view point on these algorithms could be their implemen-
tation in a parallel setting: does an efficient parallel way to code and decode
trees with high locality and heritability exists?

References

1. Cayley, A.: A theorem on trees. Quarterly Journal of Mathematics, 23, pp. 376–
378, 1889.

262 Saverio Caminiti and Rossella Petreschi

2. Caminiti, S., Finocchi, I., and Petreschi, R.: A unified approach to coding
labeled trees. Proceedings of the 6th Latin American Symposium on Theoretical In-
formatics, LNCS 2976, pp. 339–348, 2004. Accepted for publication on Theoretical
Computer Science LATIN 2004 Special Issue.

3. Cormen, T.H., Leiserson, C.E., Rivest, R.L., and Stein, C.: Introduction to
algorithms. McGraw-Hill, 2001.

4. Deo, N. and Micikevicius, P.: Parallel algorithms for computing Prüfer-like
codes of labeled trees. Computer Science Technical Report, CS-TR-01-06, 2001.

5. Edelson, W. and Gargano, M.L.: Feasible encodings for GA solutions of con-
strained minimal spanning tree problems. Proceedings of the Genetic and Evolu-
tionary Computation Conference (GECCO 2000), Morgan Kaufmann Publishers,
pp. 754, 2000.

6. Gottlieb, J., Raidl, G., Julstrom, B.A., and Rothlauf F.: Prüfer Numbers:
A Poor Representation of Spanning Trees for Evolutionary Search. In Proceedings
of the Genetic and Evolutionary Computation Conference (GECCO-2001), pp. 343-
350, 2001.

7. Julstrom, B.A.: The Blob Code: A Better String Coding of Spanning Trees for
Evolutionary Search. In 2001 Genetic and Evolutionary Computation Conference
Workshop Program, pp. 256–261, 2001.

8. Kelmans, A., Pak, I., and Postnikov, A.: Tree and forest volumes of graphs.
DIMACS Technical Report 2000-03, 2000.

9. Kumar, V., Deo, N., and Kumar, N.: Parallel generation of random trees and
connected graphs. Congressus Numerantium, 130, pp. 7–18, 1998.

10. Picciotto, S.: How to encode a tree. Ph.D. Thesis, University of California, San
Diego, 1999.

11. Prüfer, H.: Neuer Beweis eines Satzes über Permutationen. Archiv für Mathe-
matik und Physik, 27, pp. 142–144, 1918.

12. Zhou, G. and Gen, M.: A note on genetic algorithms for degree-constrained
spanning tree problems. Networks, 30(2), pp. 91–95, 1997.

Finding Longest Increasing
and Common Subsequences in Streaming Data�

David Liben-Nowell1, Erik Vee2,��, and An Zhu3

1 Department of Mathematics and Computer Science, Carleton College
dlibenno@carleton.edu

2 IBM Almaden Research Center
vee@almaden.ibm.com

3 Google, Inc.
anzhu@google.com

Abstract. We present algorithms and lower bounds for the Longest
Increasing Subsequence (LIS) and Longest Common Subsequence (LCS)
problems in the data-streaming model. To decide if the LIS of a given
stream of elements drawn from an alphabet Σ has length at least k, we
discuss a one-pass algorithm using O(k log |Σ|) space, with update time
either O(log k) or O(log log |Σ|); for |Σ| = O(1), we can achieve O(log k)
space and constant-time updates. We also prove a lower bound of Ω(k)
on the space requirement for this problem for general alphabets Σ, even
when the input stream is a permutation of Σ. For finding the actual
LIS, we give a �log(1+1/ε)�-pass algorithm using O(k1+ε log |Σ|) space,
for any ε > 0. For LCS, there is a trivial Θ(1)-approximate O(log n)-
space streaming algorithm when |Σ| = O(1). For general alphabet Σ,
the problem is much harder. We prove several lower bounds on the LCS
problem, of which the strongest is the following: it is necessary to use
Ω(n/ρ2) space to approximate the LCS of two n-element streams to
within a factor of ρ, even if the streams are permutations of each other.

1 Introduction

Let S = x1, x2, . . . , xn be a sequence of integers. A subsequence of S is a sequence
xi1 , xi2 , . . . , xik

with i1 < i2 < · · · < ik. A subsequence is increasing if xi1 ≤
xi2 ≤ · · · ≤ xik

. We consider two problems: longest increasing subsequence
– find a maximum-length increasing subsequence of S – and longest common
subsequence – given sequences S and T , find a maximum-length sequence x
which is a subsequence of both S and T . Both LIS and LCS are fundamental
combinatorial questions which have been well-studied within computer science.

In the past few years, as we have witnessed the proliferation of truly massive
data sets, traditional notions of efficiency have begun to appear inadequate. The
theoretical computer science community has thus begun to explore new models
� Part of this work was done while the authors were visiting IBM Almaden. Thanks

to D. Sivakumar for suggesting the problem and for fruitful discussions. Thanks also
to Graham Cormode, Erik Demaine, Matt Lepinski, and Abhi Shelat.

�� Supported in part by NSF grant CCR-0098066.

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 263–272, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

264 David Liben-Nowell, Erik Vee, and An Zhu

of computation, with new notions of efficiency, that more realistically capture
when an algorithm is “fast enough.” The data-streaming model [1] is one such
well-studied model. In this model, an algorithm must make a small number of
passes over the input data, processing each input element as it goes by. Once
the algorithm has seen an element, it is gone forever; thus we must compute
and store a small amount of useful information about the previously read input.
We are interested in algorithms that use a sublinear (typically polylogarithmic)
amount of additional space, with polylogarithmic processing time per element.

In this paper, we study LIS and LCS in the data-streaming model. LIS and
LCS are both fundamental combinatorial questions that arise naturally in the
streaming context, and they are essentially different from other problems pre-
viously studied in this model. We believe that a solid characterization of the
tractability of basic questions like LIS and LCS will lead to a greater under-
standing of the power and limitations of the data-streaming model. In many
natural settings we face massive data upon which we must perform LIS and
LCS computations – e.g., the optimal-alignment problem in computational bi-
ology requires the computation of the LCS of two genomes, and sequentially
streaming the data from disk, using a small number of passes over the data, is
highly desirable. Another potential use for LIS/LCS in the streaming model
is that in certain real-life settings, high-speed data are passing by a bounded-
memory device – e.g., a stream of packets passing a router – and we wish to
perform some sort of computation on the stream. The question of “what is dif-
ferent about this data stream now, as compared to yesterday?” has been studied
from the perspective of large changes in the frequencies of particular elements in
the stream [2]; LCS looks at the same question from the perspective of changes
in the order of elements in the stream. In a related application, Banerjee and
Ghosh [3] have explored the use of LCS as a mechanism for clustering the users
of a website on the basis of their “clickstreams” through the site.

One notable difference between LIS (and, similarly, LCS) and problems pre-
viously considered in the streaming model is that the LIS of a stream is an
essentially global order-based property. Many of the problems that have been
considered in the streaming model – for example, finding the most frequently
occurring items in a stream [4, 5], clustering streaming data [6], finding order
statistics for a given stream [7, 8], or calculating the distance between two vectors
(presented as a stream of ordered pairs 〈xi, i〉) [8–13] – are entirely independent
of the order in which the elements are presented in S. Two exceptions are (1)
counting inversions [14] – i.e., the number of pairs of indices 〈i, j〉 such that
i < j but xi > xj , and (2) computing a stream’s histogram [15, 16] – i.e., a
compact approximation of the stream by a piecewise constant function. How-
ever, there are some significant distinctions between these problems and LIS.
Counting inversions is a much more local problem than LIS, in the sense that
an inversion is a relation between exactly two items in the stream, whereas an
increasing subsequence of length � is a relation among � items. Histograms are
much more robust than LIS to small changes in the data: if we consider an LIS
that consists primarily of the same repeated value, and we perturb the input so
that many occurrences of this value are slightly smaller, then the LIS radically

Finding Longest Increasing and Common Subsequences in Streaming Data 265

changes. While these differences do not preclude efficient streaming algorithms
for LIS or LCS, they do suggest some of the difficulties.

In this paper, we give a full characterization (up to logarithmic factors) of
LCS in the data-streaming model, even in the context of approximation. We
also fully characterize (again up to a logarithmic factor) the exact version of
LIS, leaving approximations for future work. We first present positive results
on LIS. Fredman’s algorithm [17] yields a one-pass streaming algorithm that
uses O(k log |Σ|) space with update time O(log k) to compute the length of the
LIS for a given input stream, where the elements of the stream are drawn from
the (ordered) alphabet Σ = {1, . . . , |Σ|}, and k is the length of the LIS. This
algorithm can also achieve an update time of O(log log |Σ|) [18, 19]. For the
problem of returning the length-k LIS of a given stream, Fredman’s approach
gives a one-pass streaming algorithm that uses O(k2 log |Σ|) space. We reduce
the space requirement to O(k1+ε log |Σ|) by using �log(1 + 1/ε)� passes over
the data, for any ε > 0. This space usage is nearly optimal, because simply
storing the LIS itself requires Ω(k log |Σ|) space when |Σ| = Ω(n). For streams
of elements drawn from a small alphabet, we can achieve O(|Σ| log k) space
and O(log |Σ|) update time – i.e., logarithmic space and O(1)-time updates if
|Σ| = O(1) – for computing the length of the LIS. For finding the LIS itself, we
achieve the same bounds using O(|Σ|2 log k) space.

We also present lower bounds on LIS/LCS in the streaming model. (In the
comparison model, Fredman has proven lower bounds on computing LIS, via a
reduction from sorting [17].) As with many lower bounds in the streaming model,
our results are based upon the well-observed connection between the space re-
quired by a streaming algorithm and communication complexity. Specifically, a
space-efficient streaming algorithm A to solve a problem gives rise to a solution
to the corresponding two-party problem with low communication complexity:
one party runs A on the first part of the input, transmits the small state of
the algorithm to the other party, who then continues to run A on the remain-
der of the input. We prove a lower bound of Ω(k) for computing the LIS of a
stream whenever n = Ω(k2), by giving a reduction from the Set-Disjointness
problem, which is known to have high communication complexity. For LCS, we
discuss a simple LIS-based algorithm requiring O(n log |Σ|) space to compute the
LCS of two n-element sequences presented as streams. We can also approximate
LCS in small space: we can achieve a |Σ|-approximation using O(|Σ| log n) space
and O(1) update time. Our main results on LCS, however, are lower bounds. We
prove that, if the two streams are general sequences, then we need Ω(n) space
to ρ-approximate the LCS of two streams of length n to within any factor ρ. If
the given streams are n-element permutations, we prove that Ω(n/ρ2) space is
required to ρ-approximate the LCS.

2 Algorithms for Longest Increasing Subsequence

We begin by presenting positive results on LIS, both for computing the length
of an LIS and for actually producing an LIS itself. An algorithm to calculate

266 David Liben-Nowell, Erik Vee, and An Zhu

the length of the LIS was given by Fredman [17] (and later rediscovered by
Bespamyatnikh and Segal [20]) in a context other than the data-streaming model.
In the data-streaming context, this algorithm yields a one-pass algorithm to find
the length k of the LIS using O(k log |Σ|) space and update time of O(log k) or
O(log log |Σ|). The algorithm also naturally gives a O(k2 log |Σ|)-space algorithm
to find the LIS itself. Here we briefly describe Fredman’s algorithm, then we give
a modification of this algorithm to handle the case of |Σ| = O(1), and finally we
extend this approach to a more space-efficient multipass streaming algorithm to
compute an LIS itself.

Let S = x1, x2, . . . , xn be a stream of data, and consider a length-� increasing
subsequence σ = xi1 , xi2 , . . . , xi�

of S. Write last(σ) := xi�
. Let σi denote the

ith element in a subsequence σ. For instance, last(σ) := σ|σ|. We say that σ is
〈�, j〉-minimal if last(σ) is minimized over all length-� increasing subsequences
of the substream x1, x2, . . . , xj . We say that such a sequence σ is an 〈�, j〉-
minimal increasing sequence, or simply an 〈�, j〉-MIS. The streaming algorithm
of Fredman [17] works as follows: we maintain an array A[1 . . . k′], where, after
we have scanned the first j elements of the stream, A[�] stores last(σ) for an 〈�, j〉-
MIS σ. We update A with xj by setting A[� + 1] := xj if A[�] ≤ xj < A[� + 1].
Every step of the algorithm takes O(1) time except for identifying �, which can
be done in O(log k) time by binary search; alternatively, we can use van Emde
Boas queues [18] or y-fast trees [19] to support updates in O(log log |Σ|) time.

When the alphabet is of small size, we can do much better. We maintain an
array B[1 . . . |Σ|] such that A[B[j]] = j < A[B[j] + 1], for each j ∈ Σ. That
is, after x1, . . . , xi have been read, the quantity B[j] denotes the length � of
the longest 〈�, i〉-MIS that ends with the element j. (In the case that A[�] �= j
for all �, we keep B[j] uninitialized.) When a new element xi of the stream ar-
rives, we simply reset B[xi] := 1 + max{B[1], . . . , B[xi − 1], B[xi]}. The length
of the LIS is then max{B[1], . . . , B[|Σ|]}. Notice that although we refer to the
array A conceptually, there is no need to actually maintain it in an implemen-
tation. Hence, we can compute the length of the LIS exactly using O(|Σ| log k)
space, with O(|Σ|) update time. The update time can be improved to O(log |Σ|)
by placing a complete binary tree on top of the array B, with each node aug-
mented to store the maximum value beneath it in the tree. (This data structure
is a simplified version of order-statistic trees [21].) When |Σ| is constant, this
requirement is O(log k) space and O(1) update time. We thus have the following.

Theorem 1. We can decide whether the LIS of a stream of integers from Σ
has length at least a given number k, or compute the length k of the LIS of the
given stream, with a one-pass streaming algorithm that uses O(k log |Σ|) space
and has update time O(log k) or O(log log |Σ|). Alternatively, we may compute
the length k of the LIS of the given stream with a one-pass streaming algorithm
that uses O(|Σ| log k) space and has update time O(log |Σ|). For |Σ| constant,
this requirement is O(log k) space and O(1) update time. ��
To return the actual LIS of a stream, we modify the above algorithm to maintain,
for each �, a length-� sequence σ� whose last element is A[�]. When we update
A[� + 1] := xi, we reset σ�+1 := σ�, xi. This modification adds only a constant

Finding Longest Increasing and Common Subsequences in Streaming Data 267

amount of extra running time per update, so the update time per element re-
mains O(log k) or O(log log |Σ|), and the space requirement is O(k2 log |Σ|).

We now describe a p-pass algorithm that requires less space. The key modifi-
cation is that during the first pass over the data, the algorithm only remem-
bers part of each σ�, specifically every qth element (for q specified below).
For each �, we maintain the sequence σ̃� = σ�

1, σ
�
q+1, σ

�
2q+1, . . . , σ

�
�(�−2)/q�q+1, σ

�
� ,

where σ�
� = A[�], as before. After the first pass, we discard the subsequences

σ̃1, . . . , σ̃k−1, retaining only σ̃k = σk
1 , σ

k
q+1, σ

k
2q+1, . . . , σ

k
�(k−2)/q�q+1, σ

k
k where σk

is a length-k LIS of the input. We may then fill in the gaps in a recursive fashion
on subsequent passes. Specifically, the algorithm uses p − 1 passes to find the
length-q increasing subsequence starting with the element σ̃k

i and ending at σ̃k
i+1

for each i = 1, 2, . . . , k−1. Let S(k, p) denote the space required by a p-pass algo-
rithm to find a subsequence of length k. We then have the following recurrence:
S(k, p) = max(O(k2 log |Σ|/q), S(q, p−1))+O(k log |Σ|). Solving the recurrence,
we find that the space requirements are optimized when q = k1−1/(2p−1), and
where S(k, p) = O(k1+1/(2p−1) log |Σ|).

Theorem 2. Fix ε > 0. For a given k, we can find a length-k increasing subse-
quence of a stream of integers from Σ with a �log(1+1/ε)�-pass streaming algo-
rithm using O(k1+ε log |Σ|) space and has update time O(log k) or O(log log |Σ|).
We can find the LIS even when its length k is not known in advance, using the
same number of passes and update time, and space O(1

εk
1+ε log |Σ|). ��

Actually finding an LIS is also easier for small |Σ|. Rather than maintaining σ�

for each �, we need only maintain σB[j] for each j ∈ Σ. Further, we only need
O(|Σ| log k) space for each sequence σ�, because it suffices to keep track of the
indices i for which σ�

i �= σ�
i+1, and there are at most |Σ| such indices. Hence, we

can find the LIS using space O(|Σ|2 log k) and update time O(log |Σ|). When
|Σ| = O(1), this requirement is just O(log k) space and O(1) update time.

3 Lower Bounds for LIS

We now turn to a lower bound on the space requirements for streaming algo-
rithms for LIS. We prove that Ω(k) bits of storage are required to decide if the
LIS of a stream of N elements has length at least k, for any N = Ω(k2). Our
proof is based on a reduction from the set-disjointness problem:

Definition 3 (Set Disjointness). Party A holds an n-bit string sA, and Party
B holds another n-bit string sB. The pair 〈sA, sB〉 is a ‘yes’ instance for Set
Disjointness iff the ith bit of both sA and sB is 1, for some i. The communication
complexity for a protocol solving Set-Disjointness is the maximum number of
bits communicated between Party A and Party B, taken over all valid inputs.

Lower bounds for the set-disjointness problem have been studied extensively
(e.g., [9, 22, 23]). The most recent results show that even in the randomized
setting, Set-Disjointness requires a large amount of communication:

268 David Liben-Nowell, Erik Vee, and An Zhu

Theorem 4 ([9]). Let δ ∈ (0, 1/4). Any randomized protocol solving the Set-
Disjointness problem with probability at least 1−δ requires at least n

4 (1−2
√
δ)

bits of communication, even when sA and sB both contain exactly n/4 ones. ��

We now reduce Set-Disjointness to the problem of determining if an increasing
subsequence of length

√
N exists in an N -element stream. This reduction shows

that – even with randomization and some chance of error – deciding whether
the LIS has length k requires Ω(k) space in the streaming model.

Suppose we are given an instance 〈sA, sB〉 of Set-Disjointness, where n :=
|sA| = |sB|. We construct a stream S-lis(sA, sB) whose first half depends only on
sA, whose second half depends only on sB, and whose LIS has length at least n+1
if and only if 〈sA, sB〉 are non-disjoint. For each index i ∈ {1, . . . , n}, let Ni =
(n+ 1) · (i− 1) for readability. We define A-part(i) to be the length-i increasing
sequence Ni + 1, Ni + 2, . . . , Ni + i and B-part(i) to be the length-(n− i+ 1)
increasing sequence Ni+i+1, Ni+i+2, . . . , Ni+1. Let S-lisA(sA) be the sequence
consisting of the concatenation of the sequences A-part(i) for every i ∈ {i :
sA(i) = 1}, listed in decreasing order of the index i. Similarly, let S-lisB(sB) be
the sequence consisting of the sequences B-part(i) for every i ∈ {i : sB(i) = 1},
also listed in decreasing order of the index i. Clearly, S-lisA(sA) (and S-lisB(sB),
respectively) only depends on sA (and sB, respectively). Then we define the
stream S-lis(sA, sB) to be S-lisA(sA) followed by S-lisB(sB).

Lemma 5. If vectors sA, sB intersect, then |LIS(S-lis(sA, sB))| ≥ n + 1. If vec-
tors sA, sB do not intersect, then |LIS(S-lis(sA, sB))| ≤ n.

Proof. If sA(i) = sB(i) = 1, then S-lis(sA, sB) contains the length-(n+1) increas-
ing subsequence A-part(i),B-part(i). Conversely, suppose sA and sB do not inter-
sect. Whenever i < j, we have that (1) A-part(i) follows A-part(j) in S-lisA(sA)
and (2) the integers in A-part(i) are all smaller than those in A-part(j). Thus
the LIS within S-lisA(sA) has length at most n and can contain integers from
A-part(i) for only a single i, and analogously for S-lisB(sB). Thus the only poten-
tial LIS of length n+1 must be subsequences of A-part(i),B-part(j) for some in-
dices i and j so that sA(i) = sB(j) = 1. (Thus i �= j.) Furthermore, unless i < j,
all the integers in A-part(i) are larger than the integers in B-part(j). Thus the LIS
in S-lis(sA, sB) is of length at most |A-part(i)|+|B-part(j)| = i+n−j+1 ≤ n. ��

We now improve the construction so that the resulting stream S-lis(sA, sB) is
a permutation, i.e., contains each element of {0, 1, . . . , �} exactly once. We will
show that a suitable � = Θ(n2) suffices. We modify S-lisA and S-lisB as follows:
we include the integers from A-part(i) and B-part(i) even when sA(i) = 0 or
sB(i) = 0, but so that only two of these elements can be part of an LIS:

– Let UA := {x | ∃i : sA(i) = 0, x ∈ A-part(i)}. Then we define pad-A(sA)
to be the sequence consisting of integers in UA listed in decreasing order,
followed by 0. We define S-lisπ

A(SA) to be pad-A(sA) followed by S-lisA(sA).
– Let UB := {x | ∃i : sB(i) = 0, x ∈ B-part(i)}. Define pad-B(sB) to be the

sequence consisting of (n + 1) · n + 1, followed by the integers in UB listed
in decreasing order. Define S-lisπ

B(SB) as S-lisB(sB) followed by pad-B(sB).

Finding Longest Increasing and Common Subsequences in Streaming Data 269

Now define S-lisπ(sA, sB) := S-lisπ
A(sA), S-lisπ

B(sB). One can easily verify that
S-lisπ(sA, sB) is a permutation of the set {0, . . . , (n+1)·n+1}, and that pad-A(sA)
and pad-B(sB) each increase the LIS by exactly one.

Lemma 6. If vectors sA, sB intersect, then |LIS(S-lisπ(sA, sB))| ≥ n + 3. If
vectors sA, sB do not intersect, then |LIS(S-lisπ(sA, sB))| ≤ n+ 2. ��

Theorem 7. For any length k and for any N ≥ k(k − 1) + 2, any streaming
algorithm which decides whether LIS(S) ≥ k for a stream S that is a permutation
of {1, . . . , N} with probability at least 3/4 requires Ω(k) space.

Proof. Suppose that an algorithm A(S) decides with probability at least 3/4
whether stream S contains an increasing subsequence of length k, where |S| = N .
We show how to solve an instance 〈sA, sB〉 of the Set-Disjointness problem
with |sA| = k − 1 = |sB| with probability at least 3/4 by calling A. The stream
we consider is S := Extra Numbers, S-lisπ(sA, sB), where Extra Numbers := N −
1, N−2, . . . , k·(k−1)+2. Then the LIS of S has exactly the same length as the LIS
of S-lisπ(sA, sB) because the prepended elements of S are all larger than those in
S-lisπ(sA, sB), and they are presented in descending order. Thus, by Lemma 6,
the LIS of S has length k – and A(S) returns true with probability at least 3/4
– if and only if sA and sB do not intersect. A lower bound on the space required
by A follows: to solve the instance 〈sA, sB〉 of the Set-Disjointness problem,
Party A simulates the algorithm A on the stream Extra Numbers, S-lisπ

A(sA),
then sends all stored information to Party B, who continues simulating A on the
remainder of the stream S. By Theorem 4, then, Party A must transmit at least
Ω(k) bits in this protocol, and thus A must use Ω(k) space. ��

4 Longest Common Subsequence

We now turn to the LCS problem. We consider the adversarial streaming model,
where elements from the two streams can be presented in any order of interleav-
ing. In our lower bounds, the algorithm is presented all of S1 before any of S2.

As with all streaming problems, there is a trivial streaming algorithm using
Θ(n log |Σ|) space: simply store both n-element streams in their entirety and
then run a standard LCS algorithm. There is also a trivial |Σ|-approximation
working in O(|Σ| log n) space and O(1) update time. For each element a ∈
Σ, calculate the value of ka so that a appears at least ka times in both S1

and S2. The maximum ka is within a factor of |Σ| of the optimal LCS. When
|Σ| = O(1), we then have a constant-factor approximation streaming algorithm
to LCS using logarithmic space. We can give another algorithmic upper bound
for a version of LCS, based upon a simple connection with LIS. Suppose that
we are first given one reference permutation R and then given a large number of
test permutations S1,S2, . . . ,Sq; we want to compute the LCS of R and Si. Our
streaming algorithm stores the permutation R as a lookup table and then, for
each Si, runs the LIS algorithm from Section 2, where we take x < y if x appears
before y in R. This algorithm requires O(n log |Σ|) total space – O(n log |Σ|) to

270 David Liben-Nowell, Erik Vee, and An Zhu

store R, and O(k log |Σ|) = O(n log |Σ|) for the LIS computation. Note that this
bound is independent of q.

Lower Bounds for Exact/Approximate LCS for Non-permutations. It is straight-
forward to see that if we do not require the streams S1 and S2 to be permutations
of each other, then the lower bound is trivial, even for approximation:

Theorem 8. For any length N ≥ 1 and approximation ratio ρ > 1, any stream-
ing algorithm which ρ-approximates the LCS of two streams S1,S2 (in adversarial
order) each of length N with probability at least 3/4 requires Ω(N) space.

Proof. Let S be a sequence consisting of sequence S1 followed by sequence S2.
Suppose that an algorithm A(S) decides with probability at least 3/4 whether
streams S1 and S2 contain an LCS of length one. We show how to solve an
instance 〈sA, sB〉 of Set-Disjointness with probability at least 3/4 with |sA| =
4N = |sB|, where sA and sB both contain exactly N ones, by using A.

Let stream S1 consist of all indices i such that sA(i) = 1, and let S2 consist of
all indices i such that sB(i) = 1. Thus LCS(S1,S2) ≥ 1 if sA and sB have at least
one element in common and LCS(S1,S2) = 0 otherwise. Thus, if A(S) outputs
the correct answer within any ratio ρ, it must distinguish between the length-0
and length-1 cases. This fact implies the desired lower bound, because we can
solve the Set-Disjointness using A as in Theorem 7. To show that we still
require Ω(N) space when one or both of the streams has length strictly larger
than N , we simply add arbitrary new elements to each of the above streams. ��
Although this construction is for multiplicative approximation, a simple variant
shows that any data-streaming algorithm solving LCS within additive α takes
space at least Ω(N/α); simply repeat each element in the streams 2α+ 1 times.

Lower Bounds for Exact LCS for Permutations. We now improve the construc-
tion to show a lower bound on the space required for LCS even when S1 and S2

are both permutations of the set {1, . . . , n}. Given an instance 〈sA, sB〉 of the
Set-Disjointness problem where there are exactly n/4 ones in each sA and
sB, we construct two streams as follows: (1) S-lcsπ

A(sA) = RA, RA, where RA

contains {i : sA(i) = 1} in increasing order andRA contains {i : sA(i) = 0} in de-
creasing order; and (2) S-lcsπ

B(sB) = RB , RB, where RB contains {i : sB(i) = 1}
in increasing order and RB contains {i : sB(i) = 0} in decreasing order.

Lemma 9. If vectors sA and sB intersect then |LCS(S-lcsπ
A(sA), S-lcsπ

B(sB))| ≥
n/2 + 2. Otherwise, the length of the LCS is at most n/2 + 1. ��
Theorem 10. For any length k and for any N ≥ 2k − 4, any streaming al-
gorithm which decides whether LCS(S1,S2) ≥ k for streams S1,S2 which are
permutations of {1, . . . , N} with probability at least 3/4 requires Ω(k) space.

Proof. Analogous to Theorem 8 if N = 2k−4. For larger N , we pad the streams,
as in Theorem 7, by adding the decreasing sequence N,N−1, N−2, . . . , 2k−4+1
to the beginning of S-lcsπ

A(sA) and the increasing sequence 2k − 4 + 1, 2k − 4 +
2, . . . , N to the end of S-lcsπ

B(sB). As before, the LCS has length k if and only if
sA and sB intersect, and thus we require Ω(k) space to compute the LCS. ��

Finding Longest Increasing and Common Subsequences in Streaming Data 271

Lower Bounds for Approximate LCS for Permutations. Suppose we wish to ρ-
approximate LCS on permutations for a desired factor ρ > 1. For each i, we
construct sequences apxρA(i,sA), apxρB(i,sB) so |LCS(apxρA(i,sA), apxρB(i,sB))|
is ρ2 if sA(i) = sB(i) = 1 and is at most ρ otherwise. For each i ≤ n, both
sequences are of length ρ2, and consist of all of the integers Zi,ρ := {(i−1) ·ρ2 +
1, (i− 1) · ρ2 + 2, . . . , (i− 1) · ρ2 + ρ2}.
– Let apxρA(i,sA) be Zi,ρ presented in increasing order if sA(i) = 1, and Zi,ρ

presented in decreasing order if sA(i) = 0.
– For sB(i) = 1, let apxρB(i,sB) to be Zi,ρ presented in increasing order.

For sB(i) = 0, we use the more complicated median ordering of Zi,ρ, so
that the LIS and the longest decreasing subsequence both have length ex-
actly ρ. (For the set {1, . . . ,m2}, this is achieved by the sequence m,m −
1, . . . , 1; 2m, 2m− 1, . . . ,m+ 1; . . . ;m2,m2 − 1, . . . ,m(m− 1) + 1.)

Given 〈sA, sB〉 with exactly n/4 ones in sA, sB, we construct two streams:

S-apxρ-lcs
π
A(sA) := apxρA(1,sA), apxρA(2,sA), . . . , apxρA(n,sA)

S-apxρ-lcs
π
B(sB) := apxρB(n,sB), apxρB(n− 1,sB), . . . , apxρB(1,sB).

Lemma 11. If sA, sB intersect, then |LCS(S-apxρ-lcs
π
A(sA), S-apxρ-lcs

π
B(sB))| ≥

ρ2. If sA, sB do not intersect, then the length of the LCS is at most ρ. ��
Theorem 12. For any approximation ratio ρ, and for any N , any streaming
algorithm which decides whether (i) LCS(S1,S2) ≥ ρ2 or (ii) LCS(S1,S2) ≤ ρ
for streams S1,S2 which are permutations of {1, . . . , N} with probability at least
3/4 requires Ω(N/ρ2) space (and thus ρ-approximating the LCS of N -element
permutations requires Ω(N/ρ2) space). ��

5 Conclusion and Future Work

A classic theorem of Erdös and Szekeres [24] follows from an elegant application
of the pigeonhole principle: for any sequence S of n+ 1 numbers, there is either
an increasing subsequence of S of length

√
n or a decreasing subsequence of S

of length
√
n. One of our original motivations for looking at the LIS problem

was to consider the difficulty of deciding, given a stream S, whether (1) the
length of the LIS of S is at least

√
|S|, (2) the length of the longest decreasing

sequence is at least
√
|S|, or (3) both. To do this, one needs an exact streaming

algorithm for LIS; a minor modification to the median sequence in Section 4
shows that one can have an LIS of length

√
n or length

√
n − 1 with a longest

decreasing subsequence of length
√
n or length

√
n+1, respectively. Of course, in

the streaming model one is usually interested in approximate algorithms using,
say, polylogarithmic space. Our lower bounds for LCS show that one needs a
large amount of space for any reasonable approximation. However, our lower
bounds for the LIS problem say that a streaming algorithm that distinguishes
between an LIS of length k and one of length k + 1 requires Ω(k) space. It is
an interesting open question whether one can use a small amount of space to
approximate LIS in the streaming model.

272 David Liben-Nowell, Erik Vee, and An Zhu

References

1. Henzinger, M.R., Raghavan, P., Rajagopalon, S.: Computing on data streams.
Technical Report 1998-011, Digital Equipment Corp., Systems Res. Center (1998)

2. Cormode, G., Muthukrishnan, S.: What’s new: Finding significant differences in
network data streams. In: Proc. INFOCOM. (2004)

3. Banerjee, A., Ghosh, J.: Clickstream clustering using weighted longest common
subsequence. In: ICM Workshop on Web Mining. (2001)

4. Charikar, M., Chen, K., Farach-Colton, M.: Finding frequent items in data streams.
In: Proc. ICALP. (2002)

5. Demaine, E.D., López-Ortiz, A., Munro, J.I.: Frequency estimation of Internet
packet streams with limited space. In: Proc. ESA. (2002) 348–360

6. Guha, S., Mishra, N., Motwani, R., O’Callaghan, L.: Clustering data streams. In:
Proc. FOCS. (2000) 359–366

7. Manku, G., Rajagopalan, S., Lindsay, B.: Approximate medians and other quantiles
in one pass and with limited memory. In: Proc. SIGMOD. (1998)

8. Alon, N., Matias, Y., Szegedy, M.: The space complexity of approximating the
frequency moments. JCSS 58 (1999) 137–147

9. Bar-Yossef, Z., Jayram, T.S., Kumar, R., Sivakumar, D.: An information statistics
approach to data stream and communication complexity. In: Proc. FOCS. (2002)

10. Feigenbaum, J., Kannan, S., Strauss, M., Viswanathan, M.: An approximate L1-
difference algorithm for massive data streams. In: Proc. FOCS. (1999)

11. Fong, J., Strauss, M.: An approximate Lp-difference algorithm for massive data
streams. In: Proc. STACS. (2000)

12. Indyk, P.: Stable distributions, pseudorandom generators, embeddings, and data
stream computations. In: Proc. FOCS. (2000)

13. Saks, M., Sun, X.: Space lower bounds for distance approximation in the data
stream model. In: Proc. STOC. (2002)

14. Ajtai, M., Jayram, T.S., Kumar, R., Sivakumar, D.: Approximate counting of in-
versions in a data stream. In: Proc. STOC. (2002)

15. Gilbert, A., Guha, S., Indyk, P., Kotidis, Y., Muthukrishnan, S., Strauss, M.: Fast,
small-space algorithms for approximate histogram maintenance. In: STOC. (2002)

16. Guha, S., Koudas, N., Shim, K.: Data-streams and histograms. In: STOC. (2001)
17. Fredman, M.L.: On computing the length of longest increasing subsequences. Dis-

crete Mathematics 11 (1975) 29–35
18. van Emde Boas, P.: Preserving order in a forest in less than logarithmic time and

linear space. IPL 6 (1977) 80–82
19. Willard, D.E.: Log-logarithmic worst-case range queries are possible in space Θ(N).

IPL 17 (1983) 81–84
20. Bespamyatnikh, S., Segal, M.: Enumerating longest increasing subsequences and

patience sorting. IPL 76 (2000) 7–11
21. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms.

McGraw-Hill (2002)
22. Kalyanasundaram, B., Schnitger, G.: The probabilistic communication complexity

of set intersection. SIAM J. Disc. Math 5 (1992) 545–557
23. Razborov, A.: On the distributional complexity of disjointness. JCSS 28 (1984)
24. Erdös, P., Szekeres, G.: A combinatorial problem in geometry. Compositio Math-

ematica (1935) 463–470

O(n2 log n) Time On-Line Construction
of Two-Dimensional Suffix Trees

Joong Chae Na1, Raffaele Giancarlo2,�, and Kunsoo Park1,��

1 School of Computer Science and Engineering, Seoul National University, Korea
{jcna,kpark}@theory.snu.ac.kr

2 Dipartimento di Matematica ed Applicazioni, Università di Palermo, Italy
raffaele@math.unipa.it

Abstract. The two-dimensional suffix tree of an n×n square matrix A
is a compacted trie that represents all square submatrices of A [9]. For
the off-line case, i.e., A is given in advance to the algorithm, it is known
how to build it in optimal time, for any type of alphabet size [9, 15].
Motivated by applications in Image Compression [18], Giancarlo and
Guaiana [12] considered the on-line version of the two-dimensional suffix
tree and presented an O(n2 log2 n)-time algorithm, which we refer to as
GG. That algorithm is a non-trivial generalization of Ukkonen’s on-line
algorithm for standard suffix trees [19]. The main contribution in this
paper is an O(log n) factor improvement in the time complexity of the
GG algorithm, making it optimal for unbounded alphabets [7]. More-
over, the ideas presented here also lead to a major simplification of the
GG algorithm. Technically, we are able to preserve most of the structure
of the original GG algorithm, by reducing a computational bottleneck
to a primitive operation, i.e., comparison of Lcharacters, which is here
implemented in constant time rather than O(log n) time as in GG. How-
ever, preserving that structure comes at a price. Indeed, in order to make
everything work, we need a careful reorganization of another fundamen-
tal algorithm: Weiner’s algorithm for the construction of standard suffix
trees [20]. Specifically, here we provide a version of that algorithm which
takes linear time and works on-line and concurrently over a set of strings.

1 Introduction

The suffix tree is a compacted trie that represents all substrings of a given
string. Over the years, it has gained the status of a fundamental data structure
not only for Computer Science, but also for Engineering and Bioinformatics
applications [2, 6, 13]. It should not be surprising that it has been the object of
quite a bit of algorithmic investigation [3, 7, 17, 19, 20].

� Partially supported by the Italian MIUR projects “Bioinformatica per la Genomica
e la Proteomica”, and “Metodi Combinatori ed Algoritmici per la Scoperta di Pat-
terns in Biosequenze”. Additional support provided by a CNRS Fellowship, France,
sponsoring visits to Institut Gaspard Monge, Marne La Vallee, France.

�� Corresponding Author. Supported by the MOST Grant M6-0203-00-0039.

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 273–282, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

274 Joong Chae Na, Raffaele Giancarlo, and Kunsoo Park

In the late 80’s-early 90’s, many of the basic string matching algorithms and
data structures were studied in “higher dimensions”, i.e., for matrices. The inter-
ested reader may find relevant references as well as an account of the evolution
of that subject in [1, 11]. Here we are interested in the two-dimensional analog of
the suffix tree, i.e., a data structure that stores all submatrices of an n×m ma-
trix, n ≥ m. Unfortunately, building that data structure takes Ω(nm2) time [8].
So, attention has been restricted to square matrices and submatrices.

In that context, Giancarlo [9] proposed the Lsuffix tree, compactly storing
all square submatrices of an n× n matrix A, together with an O(n2 logn)-time
construction algorithm that uses O(n2) space. Giancarlo and Grossi [10, 11] also
introduced the general framework of two-dimensional suffix tree families and
gave an expected linear-time construction algorithm. Kim and Park [15], and
Cole and Hariharan [5] gave a worst-case linear-time and randomized linear-time
construction algorithms, respectively. Two-dimensional suffix arrays (extension
of Manber and Myers’s suffix arrays [16]) are also constructed in O(n2 logn)
time [9, 14]. All of the mentioned results apply to the off-line case, i.e., the
matrix is given in advance to the algorithm and does not change during its exe-
cution. However, Storer [18] showed that the on-line case, i.e., the matrix is given
one row or column at a time, would be of considerable theoretical interest for
Data Compression. Indeed, he obtained generalizations to matrices, i.e., images,
of LZ1-type compression methods that would greatly benefit from efficient algo-
rithms for the on-line construction of the Lsuffix tree. Motivated by the findings
by Storer, Giancarlo and Guaiana [12] presented an O(n2 log2 n)-time algorithm
for on-line construction of the Lsuffix Tree. We refer to that algorithm as the
GG algorithm. It is a nontrivial extension to square matrices of the algorithm
by Ukkonen for the on-line construction of the standard suffix tree [19].

Our main contribution is an O(log n) time improvement in the GG algorithm.
That yields the first optimal algorithm for the on-line construction of the Lsuffix
tree over unbounded alphabets [7]. We assume that an n×n matrix A is read on-
line in column or row major order. Our algorithm keeps most of the structure
of the GG algorithm. Indeed, based on a careful analysis of that algorithm,
we identify a computational bottleneck and formalize it as a primitive operation
needed by the algorithm. That operation is the comparison of Lcharacters which,
intuitively, are the analog of characters for strings and are therefore considered
as atomic items in the GG algorithm. Here we are able to provide techniques
by means of which the comparison of two Lcharacters requires constant time
rather than O(log n) time as in the GG algorithm. We point out that, for off-
line Lsuffix tree construction, it is known how to compare two Lcharacters in
constant time, since we can preprocess the entire matrix and therefore all the
needed auxiliary data structures for that comparison are static. In the on-line
case, the auxiliary data structures are dynamic and it is not so obvious that one
can compare Lcharacters in constant time. Moreover, our implementation of the
primitive operation alluded to before must be consistent with the remaining part
of the GG algorithm. As a by-product of our new technique, we also obtain a
simpler version of the GG algorithm.

O(n2 log n) Time On-Line Construction of Two-Dimensional Suffix Trees 275

Our main result comes from an apparently novel solution to the following
problem, which may be of independent interest:

Problem We are given a set of m strings x1, . . . , xm of the same length n. At
time p, p = 1, . . . , n, we only know the first p characters of each string, i.e.,
xi[1..p], 1 ≤ i ≤ m. We want a data structure that, at time p, takes in input
(i1, j1) and (i2, j2), 1 ≤ i1, i2 ≤ m and 1 ≤ j1, j2 ≤ p, and returns the length of
the longest common suffix between xi1 [1..j1] and xi2 [1..j2].

We note that for the solution of the problem just stated, it is not evident
how to use either McCreight’s or Farach-Colton et al.’s suffix tree algorithms be-
cause they are not on-line. Use of Ukkonen’s on-line algorithm yields an O(log n)
solution per query, as shown in [12]. That is due to the fact that Ukkonen’s al-
gorithm does not maintain a one-to-one correspondence between the leaves of
the tree and the suffixes of the strings, while the strings are read on-line and the
tree is being built. In fact, only at the end there will be such a correspondence.
Here we are able to modify Weiner’s algorithm so that we can obtain constant
time per query and overall linear time. Indeed, we give a version of Weiner’s
algorithm that works on-line and cuncurrently for a set of strings. We also make
use of recent results by Cole and Hariharan on dynamic LCA queries [4].

2 Preliminaries

2.1 One-Dimensional Suffix Trees

Let S be a string of length n over a fixed alphabet Σ. We denote the ith character
by S[i] and the substring S[i]S[i+1] · · ·S[j] by S[i..j]. We assume that S[n] = #
is a unique character which is lexicographically smaller than any other character
in Σ. For 1 ≤ i ≤ n, the suffix S(i) of S is the longest substring of S that starts
at position i in S. We denote by αR the reversed string of a string α.

The suffix tree T of string S is a compacted trie over the alphabet Σ that
represents all suffixes of S. Each internal node, other that the root, has at least
two children and each edge is labelled with a nonempty substring of S. No two
edges out of a node can have edge-labels beginning with the same character. We
refer to [7, 13, 17, 19, 20] for a more formal description as well as linear-time
construction algorithms.

In this paper, we make use of Weiner’s algorithm [3, 20]. It constructs a suffix
tree by inserting suffixes from shortest to longest. That is, it first inserts suffix
S(n) into the tree, then suffix S(n−1), . . . , and finally it inserts the entire string
S into the tree. Weiner’s algorithm constructs the suffix tree in O(n) time using
O(n|Σ|) space [3, 20]. The key to Weiner’s algorithm is two vectors of size Σ, a
bit vector and a link vector, stored at each node. Let L(v, x) specify the entry of
the link vector at a node v indexed by a character x.

Definition 1. For any character x and any node v of T , link vector L(v, x)
points to (internal) node u if and only if the string on the path from the root to
u is xα, where α is the string on the path from the root to v. Otherwise, L(v, x)
is null.

276 Joong Chae Na, Raffaele Giancarlo, and Kunsoo Park

ba

a
a
b
b
b
b
bbb

1$
2$
3$
4$1$ 2$ 3$

bbbbbbba $4 $1$2$3 $1$2$3a

b
b b
a

1$ 2$ 3$

b
b

Lcharacters

1$ 2$ 3$ 4$

1$
2$
3$

a
b
b
b
b
bbb

b
bb

1$ 2$ 3$

b
b

b
bb

1$
2$
3$

3$
3$ 4$

2$

2$
3$

3$ 4$

A(1,1) A(2,1)

A(1,2) A(2,2)

A(3,3)

(d)

(b)(a)

(c)

Matrix A

b b

Fig. 1. (a) A matrix A, (b) the suffix A(2, 1) and Lcharacters composing A(2, 1), (c)
the Lstring of A, and (d) the suffix tree of A.

For the definition of a bit vector, we refer the reader to [3, 20]. The total space
of vectors is O(n|Σ|) because a suffix tree has O(n) nodes.

Weiner’s algorithm can be modified to use O(n) space and O(n log |Σ|) time
for construction by eliminating a bit vector and keeping a link vector in the form
of a balanced tree at each node. We omit the details.

2.2 Two-Dimensional Suffix Trees

Let A be an n × n matrix with entries defined over a finite alphabet Σ. We
denote by A[i..k, j..l] the submatrix of A with corners (i, j), (k, j), (i, l), and
(k, l). When i = k or j = l, we omit one of the repeated indices. For 1 ≤ i, j ≤ n,
the suffix A(i, j) of A is the largest square submatrix of A that starts at position
(i, j) in A. That is, A(i, j) = A[i..i+ k, j..j + k] where k = n − max(i, j). See
Fig. 1 (a) and (b) for an example.

Let LΣ =
⋃∞

i=1 Σ
2i−1. We refer to the strings of LΣ as Lcharacters, and

we consider each of them as an atomic item. We refer to LΣ as the alphabet of
Lcharacters. Two Lcharacters are equal if and only if they are equal as strings
over Σ. Moreover, given two Lcharacters La and Lb of equal length, we say that
La is lexicographically smaller than or equal to Lb if and only if the string corre-
sponding to La is lexicographically smaller than or equal to that corresponding
to Lb.

We describe a linear representation of square matrices. Given A[1..n, 1..n],
we can divide A into n L-shaped characters. Let a(i) be the concatenation of
row A[i, 1..i− 1] and column A[1..i, i]. Then a(i) and a(i)R can be regarded as
Lcharacters. The linearized string of matrix A, called the Lstring of matrix A, is
the concatenation of Lcharacters a(1)R, . . . , a(n)R. See Fig. 1 (c) for an example.
Note that the linearization given here is slightly different from the original one
given in [9, 12], which is a(1)a(2) · · ·a(n).

The suffix tree of matrix A is a compacted trie over the alphabet LΣ that
represents Lstrings corresponding to all suffixes of A. See Fig. 1 (d) for an exam-
ple. We refer to [9, 12] for a more formal description. Although the definition of
the Lstring given here differ from that in [9, 12], our suffix trees have the same
capability as suffix trees of [9, 12].

O(n2 log n) Time On-Line Construction of Two-Dimensional Suffix Trees 277

2.3 On-Line Construction

We assume that A is read on-line in column major order. However, our algorithm
also works in case that A is read in row major order. Let Ap = A[1..n, 1..p]. At
time p − 1, we know Ap−1 and nothing else about A. At time p, we get Ap by
getting in input subcolumn A[1..n, p].

The GG algorithm works in n stages, so we can limit ourselves to outline
stage p, 1 ≤ p ≤ n. At the end of that stage the algorithm has built a suffix tree
LTp of Ap. At the beginning of stage p, i.e., when Ap−1 is extended into Ap,
it takes in input LTp−1 and transforms it into LTp. Notice that when Ap−1 is
extended into Ap, each suffix of Ap−1 is extended by one Lcharacter. Moreover, n
new suffixes of size 1×1 are created: A[1, p], · · · , A[n, p]. To transform LTp−1 into
LTp, these changes on the matrix must be reflected on the tree. The insertion of
the new suffixes in LTp−1 is simple. The extension of the suffixes may cause the
following changes in the topology of LTp−1.

(1) Leaves become internal nodes by generating new leaves.
(2) Internal nodes generate new leaves.
(3) Edges are broken by the insertion of new internal nodes and leaves.

Those changes are carried out in two phases: Frontier Expansion and Internal
Structure Expansion. The first phase takes care of the changes in (1) and some
other changes that do not modify the topology of the tree. The second phase
takes care of changes in (2)-(3).

In the GG algorithm, each Lcharacter is regarded as an atomic unit. Compar-
ing two Lcharacters is regarded as an atomic operation and the time complexity
of the GG algorithm can be shown to be O(n2 logn)× (time taken by com-
paring two Lcharacters). Giancarlo and Guaiana [12] showed how to compare
two Lcharacters in O(logn) time. Consequently, the time complexity of the GG
algorithm is O(n2 log2 n).

We point out, omitting the details, that the auxiliary data structures allow-
ing to compare Lcharacters in the original GG algorithm are dynamic. Indeed,
they must be updated when LTp−1 is transformed into LTp. Moreover, efficient
support of dynamic LCA queries is an essential ingredient of that construction.
In view of the results by Cole and Hariharan [4] (see next subsection), it is
simple to get LCA queries in constant time over a dynamically changing tree.
However that is not enough to get constant time for the comparison of Lcharac-
ters. Indeed, as we discuss in section 3 and 4, we need a solution to the problem
stated in the Introduction that takes constant time per query. That is based on
a version of Weiner’s algorithm [20] that works both on-line and cuncurrently
for a set of strings.

2.4 Dynamic LCA Queries

Our algorithm needs LCA queries in the middle of construction. Given two
nodes in a tree, LCA queries are to find the least common ancestor (LCA) of the
two nodes. We make use of Cole and Hariharan’s results [4]. They considered

278 Joong Chae Na, Raffaele Giancarlo, and Kunsoo Park

vc

f1 f2

Lb

aL

j2

i1

CTp

i2

j1A p

LCA

n

p

k

Fig. 2. Comparing column elements of two Lcharacters.

the dynamic version of the problem, i.e., maintaining a data structure which
supports the following tree operations: insertion of leaves and internal nodes,
deletion of internal nodes with only one child, and LCA queries. They gave an
algorithm which perform the above operations in constant worst-case time.

3 Comparing Lcharacters Efficiently

We describe how to compare two Lcharacters of Ap of the same length at time p.
Given two Lcharacters La and Lb, Comparing Lcharacters is to establish whether
La is lexicographically smaller than or equal to Lb and to compute the length
of the common longest prefix between these two strings. It can be performed in
constant time using auxiliary data structures. Consequently, we can construct
the suffix tree of A in O(n2 logn) time.

We describe the auxiliary data structures. Consider the matrix Ap and let
rrowi,p be the reversed string of the ith row for 1 ≤ i ≤ n, i.e., rrowi,p =
A[i, p]A[i, p− 1] . . . A[i, 1]. Let #i be a special symbol not in the alphabet Σ
such that #i ≺ #j ≺ a for integers i < j and each symbol a ∈ Σ. To simplify
description of algorithms, we define the extended reversed row erri,p by con-
catenating #i at the end of rrowi,p. Let RTp be the one-dimensional suffix tree
representing the suffixes of err1,p, . . . , errn,p. There is one-to-one correspondence
between the leaves of RTp and the suffixes of err1,p, . . . , errn,p.

Similarly, let rcoli,p be the reversed string of the ith column for 1 ≤ i ≤ p,
i.e., rcoli,p = A[n, i]A[n− 1, i] . . . A[1, i]. We define the extended reversed column
erci,p by concatenating #i at the end of rcoli,p. Let CTp be the one-dimensional
suffix tree representing the suffixes of erc1,p, . . . , ercp,p. There is one-to-one cor-
respondence between the leaves of CTp and the suffixes of erc1,p, . . . , ercp,p. We
will show how to construct RTp and CTp in the next section.

Consider two Lcharacters La and Lb of length 2k+1, from submatrices of Ap,
that we need to compare. We compare separately column and row elements of
Lcharacters. Without loss of generality, we assume that La is the concatenation
of A[i1 − k..i1, j1]R and A[i1, j1 − k..j1 − 1]R, and Lb is the concatenation of
A[i2 − k..i2, j2]R and A[i2, j2 − k..j2 − 1]R. We explain how to compare column
elements A[i1 − k..i1, j1]R and A[i2 − k..i2, j2]R. See Fig. 2. We identify a leaf f1

of CTp that represents the (n−i1+1)st suffix of ercj1,p, i.e., A[1..i1, j1]R#j1 . We
find the leaf in constant time because there is one-to-one correspondence between

O(n2 log n) Time On-Line Construction of Two-Dimensional Suffix Trees 279

−1p

#1

#n

#iiR

ihead p()

iR p

01p . . .

1

nR

n

R

A
time

()

Fig. 3. n rows, Ri(p), and headi(p).

the leaves of CTp and the suffixes. We do the same for A[i2 − k, i2..j2]R. Let f2

be that leaf. We find the LCA vc of those two leaves in constant time using the
results of Cole and Hariharan. Using RTp, we perform the same operations for
A[i1, j1 − k..j1 − 1]R and A[i2, j2 − k..j2 − 1]R to identify a node vr analogous
to vc. Once we have found vc and vr, it is straightforward to establish in constant
time whether La is lexicographically smaller than or equal to Lb and to compute
the length of the common longest prefix between these two strings.

4 On-Line Suffix Tree

In this section, we show how to construct RTp and CTp. When we get subcolumn
A[1..n, p] at time p, we construct RTp and CTp from RTp−1 and CTp−1 in O(n)
time, respectively. For LCA queries, we maintain RTp and CTp in the form
of Cole and Hariharan’s data structure [4]. In order to transform CTp−1 into
CTp, we can make direct use of Weiner’s suffix construction algorithm [20]. The
details are given in subsection 4.2 for completeness. However, the transformation
of RTp−1 into RTp is not so immediate and we present it in the next subsection.

4.1 Constructing RTp

We describe how to construct RTp from RTp−1 at time p, so that LCA queries
can be supported in constant time. Roughly speaking, we modify Weiner’s al-
gorithm in order to handle n strings which are input character-by-character at
a time. At time p, Weiner’s algorithm handles one suffix of one string while
our algorithm does n suffixes, of the same length, of n strings. See Fig. 3. The
remainder of this subsection is organized as follows. We first describe our modifi-
cation of Weiner’s algorithm and then discuss why the original algorithm would
not work in overall linear time in this case.

Let Ri[n..0] be erri,n, that is, Ri[0] = #i and Ri[k] = A[i, k]. We denote
the suffix Ri[k..0] of Ri by Ri(k). We define headi(p) as the longest prefix
of Ri(p) that matches a substring of the n suffixes, R1(p), . . . , Ri−1(p), Ri(p −
1), . . . , Rn(p − 1). See Fig. 3. Recall that L(v, x) is the entry of the link vector
at a node v indexed by character x.

280 Joong Chae Na, Raffaele Giancarlo, and Kunsoo Park

p,i−1RT(b)iR p−(1) iR p−(1)

iR p()

1p− ,iRT(a)iR p−(1)

ihead p−(1)

(c) RTp,i

ihead p()

w
c

u

v

starting
position

w’

ending
position

c

x
w
c

u

v

w’x

u

v

x

z
x

c

z’

l

ff f

f ’

Fig. 4. Constructing RTp,i from RTp,i−1 using information in RTp−1,i.

At time p, we insert the n suffixes, R1(p), R2(p), . . . , Rn(p) into RTp−1 in
order. At the beginning of step i, R1(p), . . . , Ri−1(p) have already been inserted
into RTp−1 and we inserts Ri(p) at step i. We denote by RTp,i the suffix tree at
the end of step i in time p. Note that RTp,n is RTp.

We describe how to insert the suffix Ri(p) into RTp,i−1 to produce RTp,i at
step i in time p. For this, we first find the end of the path labeled with headi(p)
in tree RTp,i−1. We use the information which is created when Ri(p − 1) was
inserted at step i in time p−1. Let x be the first character of the suffix Ri(p), i.e.,
x = Ri[p]. Let f and u be the leaf and internal node such that the strings on the
paths from the root to f and u are Ri(p−1) and headi(p−1), respectively. Let v
be the parent node of u in RTp−1,i if u is not the root node. See Fig. 4. Note that
v may not the parent node of u in RTp,i−1 because RTp,i−1 is the tree which is
created by inserting the n suffixes, Ri+1(p−1), . . . , Rn(p−1), R1(p), . . . , Ri−1(p),
into RTp−1,i.

The Algorithm at Step i in Time p

1. (a) If L(u, x) is not null, say z′,
then headi(p) ends at z′. Go to Stage 3.

(b) If L(u, x) is null and u is the root,
then set w and w′ to be the root, and α to be the string Ri(p).

(c) If L(u, x) is null and u is not the root,
then start at node v of RTp,i−1 and walk toward the root searching for
the first node w on walk such that L(w, x) is not null.
i. If w was found such that L(w, x) is not null,

then set w′ to be L(w, x) and α to be the string on the path from w
to f .

ii. Otherwise, set w and w′ to be the root and α to be the string Ri(p).
2. Search for the edge e out of w′ whose first character is c, where c is the first

character of α.

O(n2 log n) Time On-Line Construction of Two-Dimensional Suffix Trees 281

(a) If such edge e exists,
then find the length l of the longest common prefix between α and β,
where β be the string on edge e. Then, headi(p) ends exactly at l char-
acters below w′ on edge e.

(b) Otherwise, headi(p) ends at node w′.
3. If a node already exists at the end of headi(p), then let z′ denote that node;

otherwise, create a node z′ at the end of headi(p). Create a new leaf f ′

representing Ri(p) and a new edge connecting z′ and f .
* How to update link vectors.

Updates for link vectors occur only in case that v′ is newly created. Let z
be the node on the path from w to f such that the string on the path from
w to z is α[1..l] if w′ is not the root, α[2..l] otherwise. It is guaranteed that
node z exists in RPp,i−1. We update L(z, x) to point to z′, which is the only
update needed.

The key of our algorithm is as follows. Differently with Weiner’s algorithm to
construct the suffix tree for one string, many nodes are created newly between
inserting Ri(p − 1) and inserting Ri(p) due to inserting suffixes of other rows.
We call such nodes intra-nodes. In Fig. 4, intra-nodes are represented by white
nodes. Because all entries of link vectors at intra-nodes are null, we do not need
to check link vectors of intra-nodes. Besides, traversing intra-nodes between v
and f increases time complexity. Thus, we skip intra-nodes between v and f by
first checking L(u, x), and then checking L(v, x) if L(u, x) is null and u is not
the root (i.e., Stage 1 (c)). The other intra-nodes are treated as ordinary nodes.
The correctness of our algorithm can be proved as that of Weiner’s algorithm.
We omit the details.

Lemma 1. We can insert all suffixes of a row Ri in O(n) time. That is, at
time p, we can insert the suffix Ri(p) into the suffix tree RTp,i−1 in amortized
constant time.

Corollary 1. At time p, we get the suffix tree RTp from RTp−1 in amortized
O(n) time. The total time to create RTn is O(n2).

4.2 Constructing CTp

Constructing CTp is easier than constructing RTp. Let Cp be the concatenation
of strings ercp,p, ercp−1,p, . . . , erc1,p. CTp is the suffix tree of Cp. We have the
suffix tree of Cp−1 at the beginning of time p. When we get subcolumn A[1..n, p],
we add ercp,p in front of Cp−1. In order to get the suffix tree CTp of Cp, we insert
the first (n+1) suffixes of ercp,pCp−1 into CTp−1 by Weiner’s algorithm. It take
O(n) time.

Lemma 2. At time p, we get the suffix tree CTp from CTp−1 in O(n) time. The
total time to create CTn is O(n2).

Theorem 1. The total time to construct on-line the two-dimensional suffix tree
for an n× n matrix A is O(n2 logn).

282 Joong Chae Na, Raffaele Giancarlo, and Kunsoo Park

References

1. A. Amir and M. Farach-Colton. Two-dimensional matching algorithms. In A. Apos-
tolico and Z. Galil, editors, Pattern Matching Algorithms, pages 267–292. Oxford
University Press, Oxford, 1997.

2. A. Apostolico. The myriad virtues of subword trees. In A. Apostolico and Z. Galil,
editors, Combinatorial Algorithms on Words, pages 85–95. Springer, 1985.

3. M.T. Chen and J. Seiferas. Efficient and elegant subword tree construction. In
A. Apostolico and Z. Galil, editors, Combinatorial Algorithms on Words, volume 12
of F, pages 97–107. NATO Advanced Science Institutes, Spring-Verlag, 1985.

4. R. Cole and R. Hariharan. Dynamic LCA queries on trees. In Proceedings of the
10th ACM-SIAM Symposium on Discrete Algorithms, pages 235–244, 1999.

5. R. Cole and R. Hariharan. Faster suffix tree construction with missing suffix links.
In Proceedings of the 30th Annual ACM Symposium on Theory of Computing, pages
407–415, 2000.

6. M. Crochemore and W. Rytter. Jewels of Stringology. World Scientific Publishing,
Singapore, 2002.

7. M. Farach-Colton, P. Ferragina, and S. Muthukrishnan. On the sorting-complexity
of suffix tree construction. Journal of the ACM, 47(6):987–1011, 2000.

8. R. Giancarlo. An index data structure for matrices, with applications to fast two-
dimensional pattern matching. In Proceedings of Workshop on Algorithm and Data
Structures, pages 337–348. Springer-Verlag, 1993.

9. R. Giancarlo. A generalization of the suffix tree to square matrices, with applica-
tion. SIAM Journal on Computing, 24(3):520–562, 1995.

10. R. Giancarlo and R. Grossi. On the construction of classes of suffix trees for square
matrices: Algorithms and applications. Information and Computation, 130(2):151–
182, 1996.

11. R. Giancarlo and R. Grossi. Suffix tree data structures for matrices. In A. Apos-
tolico and Z. Galil, editors, Pattern Matching Algorithms, chapter 11, pages 293–
340. Oxford University Press, Oxford, 1997.

12. R. Giancarlo and D. Guaiana. On-line construction of two-dimensional suffix trees.
Journal of Complexity, 15(1):72–127, 1999.

13. D. Gusfield. Algorithms on Strings, Tree, and Sequences. Cambridge University
Press, Cambridge, 1997.

14. D. K. Kim, Y. A. Kim, and K. Park. Generalizations of suffix arrays to multi-
dimensional matrices. Theoretical Computer Science, 302(1-3):401–416, 2003.

15. D. K. Kim and K. Park. Linear-time construction of two-dimensional suffix trees.
In Proceedings of the 26th International Colloquium on Automata, Languages, and
Programming, pages 463–372, 1999.

16. U. Manber and G. Myers. Suffix arrays: A new method for on-line string searches.
SIAM Journal on Computing, 22(5):935–948, 1993.

17. E. M. McCreight. A space-economical suffix tree construction algorithms. Journal
of the ACM, 23(2):262–272, 1976.

18. J. A. Storer. Lossless image compression using generalized LZ1-type methods. In
Proceedings of Data Compression Conference, pages 290–299, 1996.

19. E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–260, 1995.
20. P. Weiner. Linear pattern matching algorithms. In Proceedings of the 14th IEEE

Symposium on Switching and Automata Theory, pages 1–11, 1973.

Min-Energy Voltage Allocation
for Tree-Structured Tasks

Minming Li1,�, Becky Jie Liu2, and Frances F. Yao2

1 Department of Computer Science, Tsinghua University
liminming98@mails.tsinghua.edu.cn

2 Department of Computer Science, City University of Hong Kong
jliu@cs.cityu.edu.hk, csfyao@cityu.edu.hk

Abstract. We study job scheduling on processors capable of running at
variable voltage/speed to minimize energy consumption. Each job in a
problem instance is specified by its arrival time and deadline, together
with required number of CPU cycles. It is known that the minimum
energy schedule for n jobs can be computed in O(n3) time, assuming
a convex energy function. We investigate more efficient algorithms for
computing the optimal schedule when the job sets have certain special
structures. When the time intervals are structured as trees, the minimum
energy schedule is shown to have a succinct characterization and is com-
putable in time O(P) where P is the tree’s total path length. We also
study an on-line average-rate heuristics AVR and prove that its energy
consumption achieves a small constant competitive ratio for nested job
sets and for job sets with limited overlap. Some simulation results are
also given.

1 Introduction

Portable electronic devices have in recent years seen a dramatic rise in availabil-
ity and widespread use. This is partly brought on by new technologies enabling
integration of multiple functions on a single chip (SOC). However, with increas-
ing functionality also comes ever greater demand for battery power, and energy
efficient implementations have become an important consideration for portable
devices.

Generally speaking, the main approach is to trade execution speed for lower
energy consumption while still meeting all deadlines. A number of techniques
have been applied in embedded systems to reduce energy consumption. Modes
such as idle, standby and sleep are already available in many processors. More
energy savings can be achieved by applying Dynamic Voltage Scaling (DVS)
techniques on variable voltage processors, such as the Intel SpeedStep technol-
ogy [2] currently used in Intel’s notebooks. With the newest Foxon technology

� This work is supported by National Natural Science Foundation of China (60135010),
National Natural Science Foundation of China (60321002) and the Chinese National
Key Foundation Research & Development Plan (2004CB318108).

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 283–296, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

284 Minming Li, Becky Jie Liu, and Frances F. Yao

(announced in February 2005), future Intel server chips can choose from as many
as 64 speed grades, up from two or three in SpeedStep.

The associated scheduling problem for variable voltage processors has gen-
erated much interest, and an extensive literature now exists on this research
topic. One of the earliest models for energy-efficient scheduling was introduced
by Yao, Demers and Shenker in [1]. They described a minimum-energy off-line
preemptive scheduling algorithm, with no restriction on the power consumption
function except convexity. Also, two on-line heuristics AVR (Average Rate) and
OPA (Optimal Available) were introduced, and it was shown that AVR has a
competitive ratio of at most 8 for all job sets.

Under various related models and assumptions, more theoretical research
has been done on minimum energy scheduling. For jobs with fixed priority, it
was shown to be NP-hard to calculate the min-energy schedule and an FPTAS
was given for the problem by Yun and Kim [6]. For discrete variable voltage
processors, a polynomial time algorithm for finding the optimal schedule was
given by Kwon and Kim [3]. Recently a tight competitive ratio of 4 was proven
for the Optimal Available heuristic (OPA) [7]. Another related model which
focuses on power down energy was considered in [9].

On the practical side, the problem has been considered under different sys-
tems constraints. For example, in [5] a task slowdown algorithm that minimizes
energy consumption was proposed, taking into account resource standby energy
as well as processor leakage. By considering limitations of current processors,
such as transition overhead or discrete voltage levels, it was shown how to ob-
tain a feasible (although non-optimal) schedule [4].

In this paper, we present efficient algorithms for computing the optimal
schedules when the time intervals of the tasks have certain natural structures.
These include tree-structured job sets which can arise from executing recursive
procedure calls, and job sets with limited time overlap among tasks. We derive
succinct characterizations of the minimum-energy schedules in these cases, lead-
ing to efficient algorithms for computing them. For general trees we obtain an
O(P) algorithm where P is the tree’s total path length. In special cases when the
tree is a nested chain or has bounded depth, the complexity reduces to O(n). We
also study the competitive ratio of on-line heuristic AVR for common-deadline
job sets and limited-overlap job sets. A tight bound of 4 is proved in the for-
mer case, and an upper bound of 2.72 is proved in the latter case. Finally, we
establish a lower bound of 17

13 on the competitive ratio for any online schedule,
assuming that time is discrete.

The significance of our work is twofold. First, the cases we consider, such as
tree-structured tasks or common-deadline tasks, represent common job types.
A thorough understanding of their min-energy schedules and effective heuristics
can serve as useful tools for solving other voltage scheduling problems. Secondly,
the characterization of these optimal solutions give rise to nice combinatorial
problems of independent interest. For example, the optimal voltage scheduling
for tree job sets can be viewed as a special kind of weight-balancing problem on
trees (see Section 3).

Min-Energy Voltage Allocation for Tree-Structured Tasks 285

The paper is organized as follows. We first review the scheduling model, off-
line optimal schedule, and on-line AVR heuristic in Sections 2. In Section 3, we
consider tree job sets and develop effective characterizations and algorithms for
finding the optimal schedule. We also point out two special cases, the nested
chain and the common deadline cases and give particularly compact algorithms
for them. Analysis of competitive ratio is presented in Section 4 and lower bound
of competitive ratio is discussed in Section 5. After presenting some simulation
results in Section 6, we finish with concluding remarks and open problems in
Section 7.

2 Preliminaries

We first review the minimum-energy scheduling model described in [1], as well
as the off-line optimal scheduling algorithm and AVR online heuristic. For con-
sistency, we adopt the same notions as used in [1].

2.1 Scheduling Model

Let J be a set of jobs to be executed during time interval [t0, t1]. Each job jk ∈ J
is characterized by three parameters.

– ak arrival time,
– bk deadline, (bk > ak)
– Rk required number of CPU cycles.

A schedule S is a pair of functions {s(t), job(t)} defined over [t0, t1]. Both
s(t) and job(t) are piecewise constant with finitely many discontinuities.

– s(t) ≥ 0 is the processor speed at time t,
– job(t) defines the job being executed at time t (or idle if s(t) = 0).

A feasible schedule for an instance J is a schedule S that satisfies∫ bk

ak
s(t)δ(job(t), jk)dt = Rk for all jk ∈ J (where δ(x, y) is 1 if x = y and 0

otherwise). In other words, S must give each job j the required number of cycles
between its arrival time and deadline(with perhaps intermittent execution). We
assume that the power P , or energy consumed per unit time, is a convex function
of the processor speed. The total energy consumed by a schedule S is E(S) =∫ b

a
P (s(t))dt.
The goal of the scheduling problem is to find, for any given problem instance,

a feasible schedule that minimizes E(S). We remark that it is sufficient to focus
on the computation of the optimal speed function s(t); the related function job(t)
can be obtained with the earliest-deadline-first (EDF) principle.

2.2 The Minimum Energy Scheduler

We consider the off-line version of the scheduling problem and give a character-
ization of an energy-optimal schedule for any set of n jobs.

286 Minming Li, Becky Jie Liu, and Frances F. Yao

The characterization will be based on the notion of a critical interval for J ,
which is an interval in which a group of jobs must be scheduled at maximum con-
stant speed in any optimal schedule for J . The algorithm proceeds by identifying
such a critical interval for J , scheduling those ‘critical’ jobs, then constructing a
subproblem for the remaining jobs and solving it recursively. The optimal s(t)
is in fact unique, whereas job(t) is not always so. The details are given below.

Definition 1 Define the intensity of an interval I = [z, z′] to be g(I) =
∑

Rk

z′−z
where the sum is taken over JI = {all jobs jk with [ak, bk] ⊆ [z, z′]}.

Clearly, g(I) is a lower bound on the average processing speed,
∫ z′

z
s(t)dt/(z′−z),

that is required by any feasible schedule over the interval [z, z′]. By convexity of
the power function, any schedule using constant speed g(I) over I is necessarily
optimal on that interval. A critical interval I∗ is an interval with maximum
intensity max g(I) among all intervals I. It can be shown that the jobs in JI∗

allow a feasible schedule at speed g(I∗) with the EDF principle. Based on this,
Algorithm OS for finding the optimal schedule is given below and it can be
implemented in O(n3) time [1].

Algorithm 1 OS (Optimal Schedule)
Input: a job set J
Output: Optimal Voltage Schedule S

repeat
Select I∗ = [z, z′] with s = max g(I)
Schedule the jobs in JI∗ at speed s by EDF policy
J ← J − JI∗

for all jk ∈ J do
if bk ∈ [z, z′] then
bk ← z

else if bk ≥ z′ then
bk ← bk − (z′ − z)

end if
Reset arrival times similarly

end for
until J is empty

2.3 On-Line Scheduling Heuristics

Associated with each job jk are its average-rate dk = Rk

bk−ak
and the correspond-

ing step function

dk(t) =
{
dk if t ∈ [ak, bk]
0 elsewhere.

Average Rate Heuristic computes the processor speed as the sum of all avail-
able jobs’ average-rate. See Figure 1. At any time t, processor speed is set to be

Min-Energy Voltage Allocation for Tree-Structured Tasks 287

ai bi

Ri

AVR(t)

t

Fig. 1. Example of AVR heuristic

J1 J2 J3

J4 J5 J6

J7

J5

J6J4

J7

J3
J2

J1

Fig. 2. Example of a tree job set

s(t) =
∑

k dk(t). Then, it uses the EDF policy to choose among available jobs
for execution. Obviously this approach yields a feasible schedule.

Since the analysis of competitive ratio depends on the precise form of P (s),
our analysis is conducted under the assumption that P (s) = s2. For a given
job set J , let OPT (J) denote the energy consumption of the optimal schedule,
and let AV R(J) =

∫
(
∑

k dk(t))2dt denote the energy consumption of the AVR
heuristic schedule. The competitive ratio of the heuristic is defined as the least
upper bound of AV R(J)/OPT (J) over all J .

It has been proved in [1] that AVR heuristic has a competitive ratio of at
most 8 for any job set.

3 Optimal Voltage Schedule for Tree Job Sets

We consider the scheduling instance when the job intervals are properly nested as
in a tree structure. The motivations are twofold: 1) such job sets arise naturally
in practice, e.g. in the execution of recursively structured programs; 2) the char-
acterization of the optimal speed function is nontrivial and leads to interesting
combinatorial problems of independent interest.

3.1 Characterization of Optimal Schedule for Trees

Definition 2 A job set J is called a tree job set if for any pair of job intervals
Ij and Ik, one of the following relations holds: Ij ∩ Ik = ∅, Ij ⊆ Ik or Ik ⊆ Ij.

For a tree job set, the inclusion relationship among job intervals can be
represented graph-theoretically by a tree where each node corresponds to a job.
See Figure 2. Job ji is a descendant of job jk iff Ii ⊆ Ik; if furthermore no other
job ji′ satisfies Ii ⊆ Ii′ ⊆ Ik then job ji is a child of job jk.

Interesting special cases of trees include jobs forming a single path (a nested
chain), and jobs sharing a common deadline (or symmetrically, common arrival
time). We will present linear algorithms for these cases in the next subsection,
after first describing properties and algorithms for the general tree case. As
remarked before, it is sufficient to focus on the computation of the optimal

288 Minming Li, Becky Jie Liu, and Frances F. Yao

speed function s(t); the related function job(t) can be obtained with the EDF
principle.

We will prove a key lemma that is central to constructing optimal schedules
for tree job sets. Suppose an optimal schedule has been given for a tree job set
without its root node, we consider how to update the existing optimal schedule
when a root node is added.

Consider any job set J consisting of n jobs (not necessary tree-structured),
and an additional new job jn+1 with the property that [an+1, bn+1] ⊇ [ak, bk]
for any jk ∈ J . We will show that the optimal schedule s′(t) for job set J ′ =
J ∪ {jn+1} is uniquely determined from the optimal schedule s(t) of J and
description of jn+1. That is, information such as [ak, bk] and Rk for jk ∈ J is not
needed for computing s′(t) from s(t). This property will enable us to construct
the optimal schedule for a tree job set efficiently in a bottom-up procedure.

To prove the above claim, we compare the selection of critical intervals for
s′(t) versus that for s(t). Suppose s(t) consists of m critical intervals I∗1 , . . . , I∗m
with lengths l1, . . . , lm and speeds s1 > · · · > sm. Comparing the computation
of s′(t) by Algorithm OS versus that of s(t), we note that the only new candi-
date for critical intervals in each round is In+1 = [an+1, bn+1]. (Due to the fact
[an+1, bn+1] ⊇ [ak, bk], no other intervals of the form [an+1, bk] or [ak, bn+1] is a
feasible candidate.) Moreover, as soon as In+1 is selected as the critical interval,
all currently remaining jobs will be executed (since their intervals are contained
in In+1) and Algorithm OS will terminate.

By examining the intensity g(In+1) of interval In+1 in each round i and
comparing it with the speed si, we can determine exactly in which round In+1

will be selected as the critical interval. This index i will be referred to as the
terminal index (of job jn+1 relative to s(t)). To find the terminal index i, it is
convenient to start with the maximum i = m + 1 and search backwards. Let
gi(In+1) denote the intensity of In+1 as would be calculated in the i-th round
of Algorithm OS. Using wk = sklk to denote the workload executed in the kth

critical interval of s(t) for k = 1, . . . ,m, and letting wm+1 = Rn+1 and lm+1 =
|In+1| −

∑m
k=1 lk, we can write gi(In+1) as gi(In+1) = (

∑m+1
k=i wk)/(

∑m+1
k=i lk).

It follows that the terminal index is the largest i, 1 ≤ i ≤ m + 1, for which
the following holds: gi(In+1) ≥ si and gi−1(In+1) < si−1 (where we set s0 = ∞,
g0(In+1) = 0, and sm+1 = 0 as boundary conditions).

We have proven the following main lemma for tree job sets.

Lemma 1 Let the optimal schedule s(t) for a job set J be given, consisting
of speeds s1 > · · · > sm over intervals I∗1 , . . . , I

∗
m. If a new job jn+1 satisfies

[an+1, bn+1] ⊇ [ak, bk] for all jk ∈ J , then the optimal schedule s′(t) for J∪{jn+1}
consists of speeds s′1 > s′2 > · · · > s′i where
1) i is the terminal index of jn+1 relative to s(t),
2) critical intervals from 1 up to i− 1 are identical in s(t) and s′(t), and
3) the i-th critical interval for s′(t) has speed s′i = gi(In+1) over In+1−

⋃i−1
k=1 I

∗
k .

A procedure corresponding to the above lemma is given in Algorithm Merge,
which updates an optimal schedule when a root node is added. The exact method

Min-Energy Voltage Allocation for Tree-Structured Tasks 289

for finding the terminal index will be discussed in the next subsection. Based
on Merge, we obtain a recursive algorithm for finding the optimal schedule for
a tree job set as given in Algorithm OST. We also observe the following global
property of a tree-induced schedule.

Lemma 2 In the optimal schedule for a tree job set, the execution speeds of jobs
along any root-leaf path form a non-decreasing sequence.

Proof. By Lemma 1, for a tree job set J ′ consisting of a node jn+1 and all of
its descendants, the execution speed of jn+1 is the minimum among J ′ since it
defines the last critical interval. The lemma holds by treating every node as the
root of some subtree.

3.2 Finding Terminal Indices for Trees

Algorithm OST gives a recursive procedure for constructing optimal schedule for
a tree job set. The important step is to carry out Merge(SJ−{r}, r) at every node
r of the tree by finding the correct terminal index i. Naively, it would seem that
sorting the execution speeds of all of r′s descendants is necessary for finding the
terminal index quickly. It turns out that sorting (an O(n log n) process) can be
replaced by median-finding (an O(n) process [8]) as we show next. This enables
us to achieve O(P) complexity for the overall algorithm where P is the tree’s
total path length. For trees of bounded depth this gives an O(n) algorithm. In
the following discussion, we denote the optimal schedule of job set J as SJ .

Algorithm 2 Merge
Input: Optimal schedule S for J, new job jn+1

Output: Optimal schedule S′ for J ′ = J ∪ {jn+1}
S′ ← S
i← Find(S, jn+1) {find terminal index i}
In S′, replace si, si+1, . . . , sm with s′i = gi(In+1)
Return S′

Algorithm 3 OST (Optimal Scheduling for Tree)
Input: root r of tree job set J
Output: Optimal Schedule SJ for J

initialize SJ−{r} to be ∅
for all Children chk of r do
SJ−{r} ← SJ−{r} ∪OST (chk)

end for
SJ ←Merge(SJ−{r}, r)
Return S

Theorem 1 Algorithm OST can compute an optimal schedule for any tree job
set in O(P) time where P is the total path length of the tree.

290 Minming Li, Becky Jie Liu, and Frances F. Yao

Proof. For every Merge operation, we can find the terminal index by performing
a binary search on the median speed in SJ−r. That is, we find the median speed
sk and then decide in which half to search further. See Algorithm 4. Finding the
median of a list of t items costs O(t) time. Calculation of the associated g(In+1)
value is also O(t). The total cost of a binary search for the terminal index thus
amounts to a geometric series whose sum is bounded by O(t). Therefore, the
cost of Merge(SJ−{r}, r) is proportional to the number of descendant nodes of
r. Hence the total cost of Merge over all nodes of the tree is upper bounded by
the tree’s total path length.

Algorithm 4 Find (by Median Search)
Input: Schedule S consisting of speed {s1, s2, · · · , sm} in unsorted manner, new
job jn+1

Output: Index i such that gi(In+1) ≥ si and gi−1(In+1) < si−1.
s0 ←∞
sm+1 ← 0
Find median value sk in S
while k isn’t the terminal index do

if gk(In+1) < sk then
S ← {sj|j > k, sj ∈ S}

end if
if gk−1(In+1) ≥ sk−1 then
S ← {sj|j < k, sj ∈ S}

end if
Find median speed sk in S

end while
Return k

3.3 Finding Terminal Indices for Chains

For trees of depth O(n), the above algorithm can have worst case complexity
O(n2). However, we will show that for a nested chain of n jobs (corresponding
to a single path of depth n), its optimal schedule can still be computed in O(n)
time. Here, instead of using repeated median-finding, Algorithm Merge will keep
the speeds sorted and use a linear search to find the terminal index. We note that,
without loss of generality, the n nested jobs can be first shifted so they all have
a common deadline. (This is because the intersection relationship among time
intervals have not been altered.) See Figure 3. Thus it is sufficient to describe
an O(n) algorithm for job sets with a common deadline.

Theorem 2 The optimal schedule for a job set corresponding to a nested chain
can be computed in O(n) time.

Proof. Let the job intervals be [an+1, b] ⊇ [an, b] ⊇ · · · ⊇ [a1, b]. We implement
Find(SJ−{jn+1}, jn+1) with a linear search for the terminal index, starting with

Min-Energy Voltage Allocation for Tree-Structured Tasks 291

the lowest speed in SJ−{jn+1}. The key observation is that, as can be proven
by induction, the speed function s(t) is piecewise increasing from left to right.
Hence the search for the terminal index can proceed from left to right, comput-
ing gk(In+1) one by one from the smallest sk. Notice that computing gk(In+1)
with knowledge of gk−1(In+1) only costs constant operations. Furthermore, if we
needed to compute g for u consecutive k′s before arriving at the right terminal
index, then the total number of critical intervals will also have decreased by
u− 1. Suppose the Merge operation for the j-th job in the chain (starting from
the leaf) computes g for uj times, we have

∑n
k=1(uk − 1) ≤ n, which implies

that
∑n

k=1 uk ≤ 2n. Therefore, the algorithm can finish computing the optimal
schedule in O(n) time.

The linear search procedure described above is given in Algorithm 5, and one
execution of this Find procedure is illustrated in Figure 4.

Algorithm 5 Find (by Linear Search)
Input: Schedule S = {s1 > s2 > · · · > sm }, new job jn+1

Output: Index i such that gi(In+1) ≥ si and gi−1(In+1) < si−1.
s0 ←∞
sm+1 ← 0
for k = m downto 1 do

if gk(In+1) < sk then
Return k + 1

end if
end for

Jn

J1 J1

Jn

Fig. 3. Transforming chain job set into
common deadline job set

(1) (2)

(3) (4)

g6

s5

s4

s3

s2

s1

s4

s3

s2

s1

g5

s3

s2

s1

g4 s2

s1

g3

Fig. 4. Scheduling of a set of jobs with
common deadline

3.4 A Weight Balancing Problem for Trees

We have presented two different strategies for implementing the Find operation
on trees, as a subroutine used for computing the optimal voltage schedule. We

292 Minming Li, Becky Jie Liu, and Frances F. Yao

can formulate the problem as a pure weight balancing problem for trees, whose
solution will provide alternative algorithms for computing the optimal schedule.

We start with a tree where each node is associated with a pair of weights
(wk, lk). The goal is to adjust the weights so that the ratio sk = wk/lk along
any root-leaf path will be monotonically non-decreasing (see Lemma 2). The
rule for modifying the weights is to proceed recursively and, at each node r,
‘merge’ r′s weights with those of its descendants with smallest sk so that their
new ‘average’ ratio, as defined by (

∑
wk)/

∑
lk), will satisfy the monotonicity

condition. The challenge is to find a suitable data structure that supports the
selection of r′s descendants for the weight balancing . Two different solutions to
this problem were considered in Theorem 1 and 2 respectively. Are there other
efficient methods?

4 Analysis of Competitive Ratio

We will analyze the performance of AVR versus OPT for several types of job
sets. For convenience of reference, we state the definition of these job sets in the
following.

Definition 3 A Job set J is called
i) a chain job set if a1 ≤ a2 ≤ ... ≤ an and b1 ≥ b2 ≥ ... ≥ bn
ii) a common deadline job set if a1 ≤ a2 ≤ ... ≤ an and b1 = b2 = ... = bn
iii) a two-overlap job set if Ii ∩ Ii+2 = ∅ and a1 ≤ a2 ≤ ... ≤ an and

b1 ≤ b2 ≤ ... ≤ bn.

4.1 Chain Job Set

Theorem 3 For any nested chain job set J, AV R(J) ≤ 4 OPT (J).

This bound of 4 is tight, as an example J provided in [1] actually achieves
AV R(J) = 4 OPT (J). In this example, the ith job has interval [0, 1/n] and
density di = (n/i)3/2, this job set has competitive ratio 4 when n→∞.

It is obvious that transforming a chain job set into a common deadline job
set by shifting preserves both AV R(J) and OPT (J), hence does not affect the
competitive ratio. See Fig. 3. Thus we only need to focus on the competitive
ratio for the common deadline case. Given a common deadline job set J , the
algorithm in Theorem 2 will produce an optimal schedule with exactly one ex-
ecution interval for each job ji ∈ J . Denote the execution interval by [ci, ci+1]
where c1 = a1, ci ≥ ai and cn+1 = b. Given J , define J ′ to be the same as J
except a′i = ci for all i. We call J ′ the normalized job set for J .

We make use of the following algebraic relation; the proof is omitted here.

Lemma 3 Let X and X ′ be two positive constants such that
∫ b

a
X =

∫ b

a′ X
′

where a ≤ a′ ≤ b. If Y (t) is a monotone function such that Y (t) ≤ Y (t′) for
t ≤ t′, then

∫ b

a
(X + Y (t))2 ≤

∫ b

a′(X ′ + Y (t))2 +
∫ a′

a
Y (t)2.

Min-Energy Voltage Allocation for Tree-Structured Tasks 293

Lemma 4 Given a common deadline job set J , let J ′ be the normalized job set
for J . Then we have

1) OPT (J) = OPT (J ′)
2) AV R(J) ≤ AV R(J ′).

Proof. Property 1) is straightforward by the definition of J ′. Property 2) can be
proved by applying lemma 3 to the jobs inductively.

Proof of Theorem 3. We first convert J into a common deadline job set. Let J ′ be
the normalized job set for J . By lemma 4, AV R(J) ≤ AV R(J ′) and OPT (J) =
OPT (J ′). According to Theorem 2 in [1], this will result in a competitive ratio
of at most 4 for J ′. Combining with AV R(J) ≤ AV R(J ′), we obtain AV R(J) ≤
4 OPT (J).

4.2 Two-Overlap Job Set

We first consider the simple case of a two-job instance and show that AV R(J) ≤
1.36 OPT (J) (proof omitted here). It is then used as the basis for the n-job case.

Lemma 5 For any job set consisting of two jobs, AV R(J) ≤ 1.36 OPT (J).

Theorem 4 For any two-overlap job set, AV R(J) ≤ 2.72 OPT (J).

Proof. Denote the two-job instance {ji, ji+1} as Ji for 0 ≤ i ≤ n. (We also
introduce two empty jobs j0 and jn+1.) We have AV R(J) =

∑n
i=0 AV R(Ji) −∑n

i=1 d
2
i ti. On the other hand, using the result for two-job sets, we have∑n

i=0 AV R(Ji) ≤ 1.36
∑n

i=0 OPT (Ji). We observe that any two consecutive
jobs in a two-overlap job set must use more energy in the optimal schedule
than when they are scheduled alone. Thus,

∑n
i=0 OPT (Ji) ≤ 2 OPT (J). Com-

bining the above three relations, we obtain AV R(J) ≤ 2.72 OPT (J)−
∑n

i=1 d
2
i ti

which proves the theorem.

5 Lower Bound for Online Schedules

To prove a lower bound on the competitive ratio of all online schedules, we make
the assumption that the processor time comes in discrete units, i.e. the processor
must maintain the same speed over each time unit. Given any online scheduler,
we will construct a two-job instance for which the scheduler’s performance is no
better than 17

13 times optimal.
The first job arrives at time 0 and its interval lasts for two time units. Its

requirement is two CPU cycles. Suppose the online schedule allocates two CPU
cycles to the first job on the first time unit. We then just let the second job be
an empty job, and the schedule’s cost is already 2 times optimal.

Suppose the online schedule allocates one CPU cycle to the first job on the
first time unit. We construct the second job as follows: it starts from the second
time unit and lasts for one time unit and requires 3 CPU cycles. In this case
the online schedule’s cost is 17

13 times the optimal. This proves that 17
13 is a lower

bound on the competitive ratio of all online heuristics.

294 Minming Li, Becky Jie Liu, and Frances F. Yao

6 Simulation Results

We have simulated the performance of AVR online heuristic in three different
types of job sets: general, two-overlap and common deadline job sets. The fol-
lowing data are collected from 1000 randomly generated job sets of each type.
Each job set consists of 100 random jobs: the arrival times and deadlines are
uniformly distributed over a continuous time interval [0, 100] in the general case,
and suitably constrained in the other two cases. The required CPU cycles of
each job is chosen randomly between 0 and 200.

Average, maximum and minimum competitive ratios for each of the three
cases are shown in Table 5. For the general case, the maximum competitive
ratio we observed is 1.47, which is far better than the theoretical bound of 8.
The minimum observed ratio is always close to 1. Best among the three, the two-
overlap case is where AVR excels, achieving average ratio of 1.16 and maximum
ratio of 1.21. For the common deadline case, the maximum ratio encountered of
2.25 is also much better than the bound of 4 proved in Theorem 3.

Type of Job Set Average Maximum Minimum

General 1.215 1.469 1.007
Two-overlap 1.160 1.206 1.088

Common Deadline 1.894 1.255 1.113

Fig. 5. Summary of competitive ratios from simulations

Distribution of Competitive Ratio for General Job Sets

0

2

4

6

8

10

12

14

16

18

<1.1 1.1 1.12 1.14 1.16 1.18 1.2 1.22 1.24 1.26 1.28 1.3 1.32 1.34 >1.36

Competitive Ratio

P
er

ce
n

ta
g

e
o

f
J

o
b

 S
et

s
(%

)

.

Fig. 6. Simulation result of competitive
ratio for general job sets

Distribution of Competitive Ratio for two-overlap Case

0

5

10

15

20

25

30

<1.1 1.1 1.11 1.12 1.13 1.14 1.15 1.16 1.17 1.18 1.19 >1.20

Competitive ratio

P
er

ce
n

ta
g
e

o
f

J
o
b

 S
et

s
(%

)

.

Fig. 7. Simulation result of competitive
ratio for two-overlap job sets

Distribution of Competitive Ratio for Common Deadline

Case

0

5

10

15

20

25

30

35

<1.2 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 >2.2

Competitve Ratio

P
er

ce
n

ta
g

e
o

f
J

o
b

 S
et

s
(%

)

Fig. 8. Simulation result of competitive
ratio for common-deadline job sets

Fig. 9. Number of jobs vs. number of
critical intervals

Min-Energy Voltage Allocation for Tree-Structured Tasks 295

The detailed distributions of the competitive ratio obtained from the sim-
ulations are give in Figure 6, 7 and 8. The data suggest that the distributions
are close to normal for all three types of job sets, with standard deviations of
0.0528, 0.0162 and 0.1336 respectively.

In the second simulation, we look for the growth of the number of critical
intervals with respect to the number of jobs in the general case. For each n
between 10 and 300, we randomly generate a set of n jobs, and then compute
the average number of critical intervals over 1000 such job sets for each n. Quite
surprisingly, this average number does not seem to grow noticeably with the
number of jobs. According to Figure 9, the average number of critical intervals
always lies within the range from 3.8 to 4.1 for any n between 10 to 300, with
lowest value 3.81 for n = 300 and highest value 4.09 for n = 60.

7 Conclusion

In this paper, we considered the problem of minimum-energy scheduling for
preemptive job sets, under the assumption that energy consumption is a convex
function of processor speed. We first focus on the off-line scheduling of tree-
structured job sets, where jobs are either properly nested or disjoint. Based
on our observation that the optimal execution speeds form a non-decreasing
sequence along any root-leaf path in the tree, we derived efficient bottom-up
algorithm that computes the optimal voltage schedule for general tree-structured
job sets. In addition, we gave an O(n) algorithm for common-deadline or chain
job sets.

We also studied the competitive ratio of on-line heuristic AVR for common-
deadline job sets and limited-overlap job sets. A tight bound of 4 is proved in
the former case, and an upper bound of 2.72 is proved in the latter case. Finally,
we established that 17

13 is a lower bound on the competitive ratio for any online
schedule assuming that time is discrete.

Some interesting open problems remain. Our simulation results suggest that
the number of critical intervals grows slowly with n; what exactly is the asymp-
totic rate? Can our findings for tree-structured job sets be generalized to other
classes of job sets? Can the tree case itself be solved even more efficiently?

References

1. F. Yao, A. Demers and S. Shenker, A Scheduling Model for Reduced CPU Energy,
Proceedings of the 36th Annual Symposium on Foundations of Computer Science,
374-382, 1995.

2. Intel Corporation, Wireless Intel SpeedStep Power Manager - Optimizing Power
Consumption for the Intel PXA27x Processor Family,Wireless Intel SpeedStep(R)
Power Manager White Paper, 2004.

3. W. Kwon and T. Kim, Optimal Voltage Allocation Techniques for Dynamically Vari-
able Voltage Processors, 40th Design Automation Conference, 2003.

4. B. Mochocki, X. S. Hu and G. Quan, A Realistic Variable Voltage Scheduling Model
for Real-Time Applications, IEEE/ACM International Conference on Computer-
Aided Design, 2002.

296 Minming Li, Becky Jie Liu, and Frances F. Yao

5. R. Jejurikar and R. K. Gupta, Dynamic Voltage Scaling for Systemwide Energy
Minimization in Real-Time Embedded Systems, International Symposium on Low
Power Electronics and Design, 2004.

6. H. S. Yun and J. Kim, On Energy-Optimal Voltage Scheduling for Fixed-Priority
Hard Real-Time Systems, ACM Transactions on Embedded Computing Systems,
2(3): 393-430, 2003.

7. N. Bansal, T. Kimbrel and K. Pruhs, Dynamic Speed Scaling to Manage Energy
and Temperature, Proceedings of the 45th Annual Symposium on Foundations of
Computer Science, 520-529, 2004.

8. M. Blum, R. Floyd, V. Pratt, R. Rivest and R. Tarjan, Time Bounds for Selection,
Journal of Computer and System Sciences, 7:488-461, 1973.

9. J. Augustine, S. Irani and C. Swamy, Optimal Power-Down Strategies, Proceedings
of the 45th Annual Symposium on Foundations of Computer Science, 530-539, 2004.

Semi-online Problems on Identical Machines
with Inexact Partial Information�

Zhiyi Tan and Yong He

Department of Mathematics, and State Key Lab of CAD & CG
Zhejiang University, Hangzhou 310027, P.R. China

{tanzy,mathhey}@zju.edu.cn

Abstract. In semi-online scheduling problems, we always assume that
some partial additional information is exactly known in advance. This
may not be true in some application. This paper considers semi-online
problems on identical machines with inexact partial information. Three
versions are considered, where we know in advance that the total size of
all jobs, the optimal value, and the largest job size are in given inter-
vals, respectively, while their exact values are unknown. We give both
lower bounds of the problems and competitive ratios of algorithms as
functions of a so-called disturbance parameter r ∈ [1,∞). We establish
that for which r the inexact partial information is useful to improve the
performance of a semi-online algorithm with respect to its pure online
problem. Optimal or near optimal algorithms are then obtained.

1 Introduction

In scheduling theory, a problem is called offline if we have full information on
the job data before constructing a schedule. If jobs arrive one by one and the
jobs are required to be scheduled irrevocably on machines as soon as they are
given, without any knowledge of the jobs that will arrive later, the problem is
called online. If some partial additional information about the jobs is available in
advance, and we cannot rearrange any job that has been assigned to machines,
then the problem is called semi-online. Different partial information produces
different semi-online problems. Algorithms for (semi-) online problems are called
(semi-) online algorithms. Naturally, one wishes to achieve improvement of the
performance of a semi-online algorithm with respect to its corresponding online
problem by exploiting additional information. Though it is a relatively new area,
various papers and a number of results on semi-online algorithms for scheduling
problems have been published in the last decade. This paper will also consider
the design and analysis of algorithms for semi-online scheduling.

In semi-online research, it is crucial to determine which type of partial infor-
mation, and in how much extent, can improve the performance of a semi-online
algorithm. Here we use the competitive ratio to measure the performance of
an (semi-) online algorithm. For an (semi-) online algorithm A and a job se-
quence, let CA denote the objective function value produced by A and let C∗

� Supported by NSFC (10301028, 10271110, 60021201) and TRAPOYT of China.

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 297–307, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

298 Zhiyi Tan and Yong He

denote the optimal value in an offline version. Then the competitive ratio of A is
c = inf{c′ : CA ≤ c′C∗, for any job sequence}. An (semi-) online problem has a
lower bound ρ if no (semi-) online algorithm has a competitive ratio of smaller
than ρ. An (semi-) online algorithm is called optimal if its competitive ratio
matches the lower bound. With these definitions, we say that an information is
useful if it can admit an optimal semi-online algorithm with a competitive ratio
smaller than that of an optimal online algorithm or the lower bound of the pure
online problem.

We use the classical scheduling problem P2||Cmax to illustrate the idea and
method in this paper. Note that P2||Cmax is the most commonly studied problem
in the semi-online scheduling literature. It can be formulated as follows: We are
given a sequence of independent jobs with sizes p1, p2, . . . , pn, which must be
non-preemptively scheduled onto two identical machines M1,M2. We identify
the jobs with their sizes. The objective is to minimize the maximum machine
load (makespan), where the load of a machine is the total size of the jobs assigned
to it. It is well known that algorithm LS is an optimal algorithm for the online
version of P2||Cmax with a competitive ratio of 3/2 [6], [5]. Here LS always
assigns all the jobs to the machine with the smallest current load.

Several basic semi-online variants have been studied so far. Among others,
Azar and Regev [1] considered the information that the optimal value C∗ is
known in advance (denoted by opt), which is also called the online bin stretching
problem. Kellerer et al. [9] considered the information that the total size of all
the jobs T =

∑n
j=1 pj is known in advance (denoted by sum), which can be

also thought of the generalized online bin stretching problem [2]. He and Zhang
[8] considered the information that the largest job size pmax = maxj=1,···,n pj is
known in advance (denoted by max). It is interesting that optimal algorithms
for these semi-online problems have the identical competitive ratio of 4/3, which
seems to imply that these types of partial information are of the same usefulness.
Seiden et al. [10] studied another semi-online problem where jobs arrive in order
of decreasing sizes (denoted by decr). They proved that LS is still optimal with
a competitive ratio of 7/6.

To further shed light on usefulness of different types of information, combined
semi-online problems have attracted researchers’ attention. That is, determine
whether a combination of two types of information can admit to construct a
semi-online algorithm with much smaller competitive ratio than that of the case
where only one type of information is available. Tan and He [11] pointed out
several kinds of combination which make no sense. They further considered two
combined semi-online problems. One is the version where both the information
sum and decr are known in advance, and the other is the version where both
sum and max are known in advance. Optimal algorithms with competitive ratios
of 10/9 and 6/5 were provided, respectively. Epstein [4] considered a semi-online
version with combined information opt and decr. An optimal algorithm with a
competitive ratio of 10/9 was provided. Moreover, Dósa and He [3] studied the
semi-online versions where one type of information and one type of additional
algorithmic extension are combined.

Semi-online Problems on Identical Machines 299

In all the above considered semi-online problems, we assume that the known
partial information is exact. However, this assumption may not be true in some
application. Instead, we may know some partial information in advance, but
this information is sensitive and not accurate, or with uncertainty. That is, we
only know some disturbed partial information in advance. We would like to see
whether it is still useful, and how to design an algorithm based on this inexact
information if so. In this paper, we propose to introduce this concept in the
context of semi-online scheduling. Three variants regarding the basic semi-online
versions opt, sum,max will be studied. For the first variant P2|dis opt|Cmax, we
know in advance that there exist some p > 0 and r ≥ 1 such that C∗ ∈ [p, rp].
For the second one P2|dis sum|Cmax, we know in advance that there exist some
p > 0 and r ≥ 1 such that T ∈ [p, rp]. For the last one P2|dis max|Cmax, we
know in advance that there exist some p > 0 and r ≥ 1 such that pmax ∈ [p, rp].
We call r the disturbance parameter. We will present the competitive ratios of
semi-online algorithms and lower bound as functions of the r for each problem.
The results are summarized in Table 1, and Fig. 1 further depicts the competitive
ratios and the lower bounds of the three problems.

Table 1. The obtained results in this paper.

problem dis opt dis sum dis max

the interval of r where the [3+
√

21
6

, 1+
√

10
3

] [1,
√

5 − 1]
obtained algorithm is optimal ∪[6−

√
10

2
,∞) [3+

√
21

6
,∞) ∪[2,∞)

the gap between the upper and lower bound ≤ 0.0303 ≤ 0.0303 ≤ 0.0445

the total length of non-optimal interval ≤ 0.2957 ≤ 0.2635 ≤ 0.7640

Fig. 1. Left: The competitive ratios and lower bounds of P2|dis sum|Cmax and
P2|dis opt|Cmax. Solid curves are for the former problem and dashed curves for the
latter problem. Right: The competitive ratio and lower bound of P2|dis max|Cmax.

As the obtained competitive ratios and lower bounds are functions of the
disturbance parameter, we can see in what extent the disturbed information is
useful. For example, since the lower bounds of the first two problems are 3/2
when r ≥ 3/2, we conclude that the disturbed information becomes useless.
When 1 ≤ r < 3/2, each type of disturbed information is still useful, and we

300 Zhiyi Tan and Yong He

can know how the disturbance parameter affects the competitive ratios/lower
bounds from the obtained parametric competitive ratios/lower bounds.

Moreover, although sum is a relaxation of opt, all the results resemble or
even identical in the literature (e.g., competitive ratios, algorithms, and lower
bounds) for P |sum|Cmax and P |opt|Cmax. That is to say, an algorithm designed
for one problem may be applied to another with the same competitive ratio, and
they have the same lower bound [2]. However, we will show that this may not
be valid for our problems. In fact, when 1.3502 ≤ r ≤ 3/2, the lower bound for
P2|dis opt|Cmax is smaller than that for P2|dis sum|Cmax, and our algorithm
H1 also has a smaller competitive ratio when it is applied to P2|dis opt|Cmax.
Therefore, these two types of information have some similarity in semi-online
algorithm design and analysis, but definitely are not identical.

A little bit closely related problem is the basic semi-online problem of
P2||Cmax where it is assumed that there exist some p > 0 and r ≥ 1 such
that all the job sizes are in [p, rp]. He and Zhang [8] proved LS is an optimal
algorithm with a competitive ratio of (1 + min{r, 2})/2. He and Dósa [7] further
considered it on three identical machines. However, this problem is different from
those considered in this paper, since for this problem, we know the exact infor-
mation of every job once it arrives (for our considered problems we never know
the exact information of opt, sum and max, respectively). In addition, we know
in advance that every size is between a given upper and lower bound. Hence, it is
essentially semi-online with a type of exact information. Moreover, this problem
becomes optimally solvable for the case of r = 1 (we then have full information
of job sequence, and it is a very special case that all jobs are identical), which
is also unlike that in our considered problems, they become semi-online ones
P2|opt|Cmax, P2|sum|Cmax and P2|max|Cmax when r = 1.

The paper is organized as follows. Section 2 considers P2|dis opt|Cmax and
P2|dis sum|Cmax simultaneously. Section 3 considers P2|dis max|Cmax. When
analyzing a semi-online algorithm, we denote by lti the current load of Mi right
before the assignment of pt, and li the final load of Mi after all the jobs have
been assigned, i = 1, 2.

2 Problems with dis opt and dis sum

By normalization, we assume that p = 1 when considering P2|dis opt|Cmax, and
p = 2 when considering P2|dis sum|Cmax.

2.1 Lower Bounds
Theorem 1. Any semi-online algorithm A for P2|dis opt|Cmax has a competi-
tive ratio of at least⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

4
3 , for 1 ≤ r ≤ 8

7 ≈ 1.14286,
5r

2r+2 , for 8
7 ≤ r ≤ 3+

√
21

6 ≈ 1.26376,
7r+1
4r+2 , for 3+

√
21

6 ≤ r ≤ 1+
√

10
3 ≈ 1.38743,

6−
√

10
2 , for 1+

√
10

3 ≤ r ≤ 6−
√

10
2 ≈ 1.41886,

r, for 6−
√

10
2 ≤ r ≤ 3

2 ,
3
2 , for r ≥ 3

2 .

Semi-online Problems on Identical Machines 301

Proof. Since 4/3 is the lower bound for the problem P2|opt|Cmax, it is still valid
for P2|dis opt|Cmax when 1 ≤ r ≤ 8/7.

Remember that C∗ ∈ [1, r] in the following proof. Assume 3+
√

21
6 ≤ r ≤

1+
√

10
3 . Let p1 = 2r2−r−1

4r+2 and p2 = 3r2−r
4r+2 . If they are assigned to the same

machine, for example, M1, let p3 = r2+3r
4r+2 . If p3 is also assigned to M1, let

the last two jobs be p4 = 3+6r−5r2

4r+2 and p5 = 2+r−r2

4r+2 . Then we have CA ≥
p1 + p2 + p3 = 6r2+r−1

4r+2 ≥ 7r+1
4r+2 while C∗ = 1. It follows that CA

C∗ ≥ 7r+1
4r+2 . If p3 is

assigned to M2, let p4 = 2r2+3r+1
4r+2 . We obtain CA ≥ min{p1 +p2 +p4, p3 +p4} =

min{ 7r2+r
4r+2 ,

3r2+6r+1
4r+2 } = 7r2+r

4r+2 , and C∗ = r, resulting in CA

C∗ ≥ 7r+1
4r+2 .

Hence, we only need to consider the case that A assigns pi to Mi, i = 1, 2.
Then let p3 = 4r−2r2

4r+2 . If p3 is assigned to M1, let the last two jobs be p4 = 1

and p5 = 3+2r−3r2

4r+2 . We have C∗ = 1 and CA ≥ min{p1 + p3 + p4, p2 + p4} =

min{ 7r+1
4r+2 ,

3r2+3r+2
4r+2 } = 7r+1

4r+2 . It follows that CA

C∗ ≥ 7r+1
4r+2 . If p3 is assigned to M2,

let p4 = 1+4r−r2

4r+2 . If p4 is assigned to M1, let the last job be p5 = 6r2−2r
4r+2 . We

have CA ≥ min{p1 + p4 + p5, p2 + p3 + p5} = 7r2+r
4r+2 , and C∗ = r, implying

CA

C∗ ≥ 7r+1
4r+2 . If p4 is assigned to M2, let the last two jobs be p5 = p6 = 2+r−r2

4r+2 .

We have CA ≥ p2 +p3 +p4 = 7r+1
4r+2 , and C∗ = 1. It follows that CA

C∗ ≥ 7r+1
4r+2 , too.

The result for the remaining cases can be shown similarly. ��
Let r1 ≈ 1.3502 be the solution of the equation 7r+1

4r+2 =
√

1+32r−1
4 . The

following theorem states that the dis sum problem admits a greater lower bound
for r1 ≤ r ≤ 3/2.

Theorem 2. Any algorithm A for P2|dis sum|Cmax has a competitive ratio of
at least ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

4
3 , for 1 ≤ r ≤ 8

7 ,
5r

2r+2 , for 8
7 ≤ r ≤ 3+

√
21

6 ,
7r+1
4r+2 , for 3+

√
21

6 ≤ r ≤ r1,√
1+32r−1

4 , for r1 ≤ r ≤ 3
2 ,

3
2 , for r ≥ 3

2 .

2.2 Description of Algorithms

In this subsection, we present our semi-online algorithms. Noting that the lower
bounds are 3/2 for any r ≥ 3/2, LS is optimal for the problems considered in
this section. That is to say, the disturbed information becomes useless. Hence,
we focus on the interval of r ∈ [1, 3/2] in the following. Let c be a parameter
satisfying r ≤ c ≤ 2 whose exact value will be specified later. In fact, c will be
the desired competitive ratios of our algorithms. We call the process that assigns
jobs one by one by an algorithm as a scheduling process.

Definition 1. (1) If right before the assignment of job pt, lti1 ∈ [(2− c)r, c] and
lti2 ≤ c hold, where {i1, i2} = {1, 2}, then we say that a scheduling process is in
Stopping Condition 1 (SC1 for short).

302 Zhiyi Tan and Yong He

(2) If right before the assignment of job pt, lti1 ∈ [(4 − 2c)r − c, c − 1] and
lti2 < (2− c)r hold, where {i1, i2} = {1, 2}, then we say that a scheduling process
is in Stopping Condition 2 (SC2 for short).

We further present two basic assignment procedures as follows.
Assignment Procedure 1 (AP1 for short): Assign pt and all the remaining
jobs to Mi2 . Stop.
Assignment Procedure 2 (AP2 for short): Assign pt and subsequent ar-
riving jobs to Mi2 until there exists a job pt′ such that lt

′

i2
< (2 − c)r and

lt
′

i2 + pt′ ≥ (2− c)r. We do
1. If lt

′

i2
+ pt′ ∈ [(2 − c)r, c], assign pt′ to Mi2 and all the remaining jobs

according to AP1. Stop.
2. If lt

′

i2
+ pt′ > c and lt

′

i1
+ pt′ ≤ c, assign pt′ to Mi1 and all the remaining

jobs according to AP1. Stop.
3. If lt

′

i2 + pt′ > c and lt
′

i1 + pt′ > c, assign pt′ to Mi1 and all the remaining
jobs to Mi2 . Stop.

Lemma 1. For both problems considered in this section, if the scheduling process
of an algorithm A is in SC1 (SC2) right before assigning pt, then AP1 (AP2)
results in CA/C∗ ≤ c.

The main idea of the algorithms can be stated as follows. When we schedule
the jobs we try to achieve SC1 or SC2 of the scheduling process as early as
possible. If it is fulfilled, we then assign all the remaining jobs according to
corresponding assignment procedures AP1 or AP2, which guarantees the desired
competitive ratio by Lemma 1. If the scheduling process cannot be in one of
SC1 and SC2, then there must exist some jobs with larger sizes (e.g., ps, s ∈
{a, b, d, e, f} in the algorithm description) that prevent the scheduling process
from SC1 or SC2. Since we have properly assigned these jobs, the competitive
ratio remains valid. Note that for the former case, the lower bound 1 of the C∗

is sufficient for obtaining the desired competitive ratio, whereas for the latter
case, we need to establish tighter estimate of the C∗.
Algorithm H1:

1. Assign jobs to M1 until there exists a job pa such that la1 < (4−2c)r− c and
la1 + pa ≥ (4− 2c)r − c.

(1.1) If la1 + pa ∈ [(4− 2c)r − c, c− 1], assign pa to M1 and all the remaining
jobs by AP2. Stop.

(1.2) If la1 + pa ∈ (c− 1, (2− c)r), assign pa to M2.
(1.2.1) if pa ≤ c− 1, assign all the remaining jobs by AP2. Stop.
(1.2.2) if pa > c− 1, go to Step 2.

(1.3) If la1 + pa ∈ [(2 − c)r, c], assign pa to M1 and all the remaining jobs by
AP1. Stop.

(1.4) If la1 + pa > c, assign pa to M1 and all the remaining jobs to M2. Stop.
2. Assign subsequent arriving jobs to M1 until there exists a job pb such that

lb1 < (4− 2c)r − c and lb1 + pb ≥ (4− 2c)r − c.

Semi-online Problems on Identical Machines 303

(2.1) If lb1 + pb ∈ [(4− 2c)r − c, c− 1], assign pb to M1 and all the remaining
jobs by AP2. Stop.

(2.2) If lb1 + pb ∈ (c− 1, (2− c)r), and
(2.2.1) if pa + pb < (2− c)r, assign pb to M2 and go to Step 3.
(2.2.2) if pa + pb ∈ [(2− c)r, c], assign pb to M2 and all the remaining jobs

by AP1. Stop.
(2.2.3) if pa + pb > c, assign pb to M1 and go to Step 5.

(2.3) If lb1 + pb ∈ [(2 − c)r, c], assign pb to M1 and all the remaining jobs by
AP1. Stop.

(2.4) If lb1 + pb > c, assign pb to M1 and all the remaining jobs to M2. Stop.
3. Assign subsequent arriving jobs to M1 until there exists a job pd such that

ld1 < (4− 2c)r − c and ld1 + pd ≥ (4− 2c)r − c.
(3.1) If ld1 + pd ∈ [(4− 2c)r − c, c− 1], assign pd to M1 and all the remaining

jobs by AP2. Stop.
(3.2) If ld1 + pd ∈ (c− 1, (2− c)r), and

(3.2.1) if pa + pb + pd ≤ c, assign pd to M2 and all the remaining jobs by
AP1. Stop.

(3.2.2) if pa + pb + pd > c, assign pd to M1 and go to Step 4.
(3.3) If ld1 + pd ∈ [(2 − c)r, c], assign pd to M1 and all the remaining jobs by

AP1. Stop.
(3.4) If ld1 + pd > c, assign pd to M1 and all the remaining jobs to M2. Stop.

4. Assign subsequent arriving jobs to M1 until there exists a job pe such that
le1 < (2− c)r and le1 + pe ≥ (2− c)r.

(4.1) If le1 + pe ∈ [(2 − c)r, c], assign pe to M1 and all the remaining jobs by
AP1. Stop.

(4.2) If le1 + pe > c, and
(4.2.1) if pa + pb + pe ≤ c, assign pe to M2 and all the remaining jobs by

AP1. Stop.
(4.2.2) if pa + pb + pe > c, assign pe to a machine by LS algorithm, and all

the remaining jobs to another machine. Stop.
5. Assign subsequent arriving jobs to M1 until there exists a job pf such that

lf1 < (2 − c)r and lf1 + pf ≥ (2− c)r.
(5.1) If lf1 + pf ∈ [(2 − c)r, c], assign pf to M1 and all the remaining jobs by

AP1. Stop.
(5.2) If lf1 + pf > c, and

(5.2.1) if pa + pf ≤ c, assign pf to M2 and all the remaining jobs by AP1.
Stop.

(5.2.2) if pa + pf > c, assign pf to a machine by LS algorithm, and all the
remaining jobs to another machine. Stop.

Algorithm H2:

1. Assign jobs to M1 until there exists a job pa such that la1 < (4−2c)r− c and
la1 + pa ≥ (4− 2c)r − c.

(1.1) If la1 + pa ∈ [(4− 2c)r − c, c− 1], assign pa to M1 and all the remaining
jobs by AP2. Stop.

304 Zhiyi Tan and Yong He

(1.2) If la1 + pa ∈ (c− 1, 6r− 2c+ 1− 3cr), assign pa to M1 and go to Step 2.
(1.3) If la1 + pa ∈ [6r − 2c+ 1− 3cr, c(1 + r)− 2r], assign pa to M1 and go to

Step 3.
(1.4) If la1 + pa ∈ (c(1 + r) − 2r, (2 − c)r), assign pa to M2 and go to Step 4.
(1.5) If la1 + pa ∈ [(2 − c)r, c], assign pa to M1 and all the remaining jobs by

AP1. Stop.
(1.6) If la1 + pa > c, assign pa to M1 and all the remaining jobs to M2. Stop.

2. Assign subsequent arriving jobs to M1 until there exists a job pb such that
lb1 < 6r − 2c+ 1− 3cr and lb1 + pb ≥ 6r − 2c+ 1− 3cr.

(2.1) If lb1 + pb ∈ [6r − 2c+ 1− 3cr, c(1 + r)− 2r], assign pb to M1 and go to
Step 3.

(2.2) If lb1 +pb ∈ (c(1+r)−2r, (2−c)r), assign pb to M2 and all the remaining
jobs by AP2. Stop.

(2.3) If lb1 + pb ∈ [(2 − c)r, c], assign pb to M1 and all the remaining jobs by
AP1. Stop.

(2.4) If lb1 + pb > c, assign pb to M2.
(2.4.1) if pb ≤ c, assign all the remaining jobs by AP1. Stop.
(2.4.2) if pb > c, assign all the remaining jobs to M1. Stop.

3. Assign subsequent arriving jobs to M2 until there exists a job pd such that
ld2 < (4− 2c)r − c and ld2 + pd ≥ (4− 2c)r − c.

(3.1) If ld2 + pd ∈ [(4− 2c)r − c, c− 1], assign pd to M2 and all the remaining
jobs by AP2. Stop.

(3.2) If ld2 + pd ∈ (c− 1, (2− c)r), assign pd to M1 and all the remaining jobs
by AP1. Stop.

(3.3) If ld2 + pd ∈ [(2 − c)r, c], assign pd to M2 and all the remaining jobs by
AP1. Stop.

(3.4) If ld2 + pd > c, assign pd to M2 and all the remaining jobs to M1. Stop.
4. Assign subsequent arriving jobs to M1 until there exists a job pe such that

le1 < (4− 2c)r − c and le1 + pe ≥ (4− 2c)r − c.
(4.1) If le1 + pe ∈ [(4− 2c)r − c, c− 1], assign pe to M1 and all the remaining

jobs by AP2. Stop.
(4.2) If le1 + pe ∈ (c− 1, (2− c)r), and

(4.2.1) if pa + pe ≤ c, assign pe to M2 and all the remaining jobs by AP1.
Stop.

(4.2.2) if pa + pe > c, assign pe to M1 and go to Step 5.
(4.3) If le1 + pe ∈ [(2 − c)r, c], assign pe to M1 and all the remaining jobs by

AP1. Stop.
(4.4) If le1 + pe > c, assign pe to M1 and all the remaining jobs to M2. Stop.

5. Assign subsequent arriving jobs to M1 until there exists a job pf such that
lf1 < (2 − c)r and lf1 + pf ≥ (2− c)r.

(5.1) If lf1 + pf ∈ [(2 − c)r, c], assign pf to M1 and all the remaining jobs by
AP1. Stop.

(5.2) If lf1 + pf > c, and
(5.2.1) if pa + pf ≤ c, assign pf to M2 and all the remaining jobs by AP1.

Stop.
(5.2.2) if pa + pf > c, assign pf to a machine by LS algorithm, and all the

remaining jobs to another machine. Stop.

Semi-online Problems on Identical Machines 305

2.3 Competitive Analysis

Theorem 3. The competitive ratio of H1 for P2|dis sum|Cmax is

c = max{7r + 1
4r + 2

,

√
1 + 32r − 1

4
} =

{
7r+1
4r+2 , for 1 ≤ r < r1,√

1+32r−1
4 , for r1 ≤ r < 3

2 .

Proof. It is easy to verify that for 1 ≤ r ≤ 3/2, the value of c satisfies 0 <
(4− 2c)r− c < c− 1 < (2− r)c < c. So, algorithm H1 is well-defined. To obtain
the desired competitive ratio, we distinguish three cases with regard to how H1
terminates.

Case 1 The scheduling process stops at one of Steps 1.1, 2.1, 3.1, 2.2.2,
4.1, 5.1, 1.3, 2.3 and 3.3. Then from the description of H1, we know that the
scheduling process has been in SC1 or SC2 right before entering any one of
these steps. Hence, the desired competitive ratio follows directly from Lemma 1.

Case 2 The scheduling process stops at one of Steps 1.2.1, 3.2.1, 4.2.1 and
5.2.1. We show one by one that the scheduling process has indeed been in SC1
or SC2 before stopping, too. We only prove the result for the subcase of Step
1.2.1, other subcases can be done similarly.

For Step 1.2.1, according to the conditions of Steps 1 and 1.2, we have la1 <
(4−2c)r−c and la1 +pa > c−1, i.e. pa > (c−1)−((4−2c)r−c) = 2c−1−(4−2c)r.
Note that if 1 ≤ r ≤ 5+

√
41

8 , we have c ≥ 7r+1
4r+2 >

8r+1
4r+3 ; and if 5+

√
41

8 ≤ r ≤ 3
2 , we

have c ≥ r > 8r+1
4r+3 . Therefore, pa > 2c−1−(4−2c)r > (4−2c)r−c. On the other

hand, the condition of Step 1.2.1 states pa ≤ c−1. Hence, pa ∈ [(4−2c)r−c, c−1].
Since pa is the first job assigned to M2 and la1 ≤ la1 +pa < (2−c)r, the scheduling
process is in SC2 right after assigning pa to M2.

Case 3 The scheduling process stops at one of all the remaining Steps 1.4,
2.4, 3.4, 4.2.2 and 5.2.2. We show that the desired competitive ratio is still valid.
We first claim that it is impossible that the final loads of the two machines
are greater than c. In fact, if l1 > c and l2 > c, then T = l1 + l2 > 2c ≥ 2r,
contradicting T ∈ [2, 2r]. Therefore, if there exist an i1 ∈ {1, 2} such that li1 > c,
then CH1 = li1 . Hence, if the scheduling process stops at one of Steps 1.4, 2.4
and 3.4, we always have CH1 = ls1 + ps, where s ∈ {a, b, d}. Combining it with
ls1 < (4−2c)r−c and ls1+ps > c, we establish CH1

C∗ ≤ ls1+ps

ps
≤ 1+ ls1

ps
≤ 1+ ls1

c−ls1
=

c
c−ls1

≤ c
c−((4−2c)r−c) ≤ c, where the last inequality is because c−((4−2c)r−c) ≥

1 (due to c ≥ 7r+1
4r+2 > 4r+1

2r+2). Hence, we are left to consider the subcases that
the scheduling process stops at Steps 4.2.2 and 5.2.2, which will be done by
contradiction. Hence, we suppose CH1/C∗ ≥ c.

Noting that for these two subcases, assigning the job ps, s = e, f , to the
machine with current smaller load still makes its completion time greater than
c, so we have CH1 = min{ls1 + ps, l

s
2 + ps} > c and CH1 ≤ (T − ps)/2 + ps =

(T + ps)/2. We only prove the result for the subcase of Step 5.2.2, the subcase
of Step 4.2.2 can be done similarly. For Step 5.2.2, we have CH1 ≤ min{(T +
pf)/2, pa + pf}. Consider the assignment of pa, pb, pf in the optimal schedule.
Three subcases are considered as follows.

306 Zhiyi Tan and Yong He

(I) pa and pf are assigned to the same machine. Then C∗ ≥ pa + pf ≥ CH1,
a contradiction. (II) pa and pb are assigned to the same machine. Then C∗ ≥
pa+pb. Substituting it and CH1 ≤ (T+pf)/2 into CH1/C∗ ≥ c, we have T+pf >
2c(pa +pb). Since before entering Step 5.2.2, the scheduling process have entered
Step 2.2.3, and thus pa +pb > c. Therefore, 2T ≥ T +pa +pb +pf > 2c2 +c ≥ 4r,
where the last inequality is due to c ≥

√
1+32r−1

4 . It contradicts T ∈ [2, 2r]. (III)
pb and pf are assigned to the same machine. Then C∗ ≥ pb + pf . Substituting
it and CH1 ≤ pa + pf into CH1/C∗ ≥ c, we obtain pa ≥ cpb + (c− 1)pf . Noting
that pa + pb > c and pa + pf > c (due to the condition of Steps 2.2.3 and
5.2.2), we have 2cpa ≥ c(pa + pb) + (c− 1)(pa + pf) > (2c− 1)c. It follows that
pa > (2c− 1)/2 > (2 − c)r, contradicting the condition of Step 1.2.

In summary, we have shown that for all possible cases CH1/C∗ ≤ c holds. ��

Theorem 4. The competitive ratio of H1 for P2|dis opt|Cmax is

c = max{7r + 1
4r + 2

, r} =

{
7r+1
4r+2 , for 1 ≤ r < 5+

√
41

8 ,

r, for 5+
√

41
8 ≤ r < 3

2 .

For 1 ≤ r ≤ 3+
√

21
6 , H2 can be better than H1 for both two problems.

Theorem 5. If 1 ≤ r ≤ 3+
√

21
6 , then for P2|dis sum|Cmax and P2|dis opt|Cmax

algorithm H2 has a competitive ratio of

c = max{2r + 2
r + 2

,
12r + 1
6r + 4

} =

{
2r+2
r+2 , for 1 ≤ r < 6

5 ,
12r+1
6r+4 , for

6
5 ≤ r ≤ 3+

√
21

6 .

3 Problem with dis max

By normalization, we assume that p = 1 in this section. Hence pmax ∈ [1, r].

Theorem 6. Any semi-online algorithm A for P2|dis max|Cmax has a compet-
itive ratio of at least⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

2r+2
r+2 , for 1 ≤ r ≤

√
5− 1 ≈ 1.2360,

√
r2+2r−(r−2)

2 , for
√

5− 1 ≤ r ≤ 8
5 = 1.6000,

r+4
4 , for 8

5 ≤ r ≤ 12
7 ≈ 1.7143,√

9r2+28r+4−(3r−2)
4 , for 12

7 ≤ r ≤ 7+
√

65
8 ≈ 1.8828,

r+1
2 , for 7+

√
65

8 ≤ r ≤ 2,
3
2 , for r ≥ 2.

Because the lower bound is 3/2 for any r ≥ 2, we focus on the interval of
r ∈ [1, 2]. The following algorithm is modified from PLS [8], which is optimal
for P2|max|Cmax.

Semi-online Problems on Identical Machines 307

Algorithm MPLS:

1. Assign jobs to M1 until there exists a job pa such that one of the following
conditions happens: (1.1) pa ∈ [1, r]; (1.2) la1 + pa > 2.

2. Assign pa to M2, and all the remaining jobs by LS algorithm.

Theorem 7. For P2|dis max|Cmax, algorithm MPLS has a competitive ratio
of 2r+2

r+2 for r ∈ [1, 2], and is optimal for r ∈ [1,
√

5− 1].

References

1. Y. Azar, O. Regev, On-line bin-stretching, Theoretical Computer Science, 168,
17-41(2001).

2. T. C. E. Cheng, H. Kellerer, V. Kotov, Semi-on-line multiprocessor scheduling
with given total processing time, Theoretical Computer Science. Published online
doi:10.1016/j.tcs.2004.11.018

3. G. Dósa, Y. He, Semi-online agorithms for parallel machine scheduling problems,
Computing, 72, 355-363(2004).

4. L. Epstein, Bin stretching revisited, Acta Informatica, 39, 97-117(2003).
5. U. Faigle, W. Kern, G. Turan, On the performance of online algorithms for partition

problems, Acta Cybernetica, 9, 107-119(1989).
6. R. L. Graham, Bounds for certain multiprocessor anomalies, Bell Systems Technical

Journal, 45, 1563-1581(1966).
7. Y. He, G. Dósa, Semi-online scheduling jobs with tightly-grouped processing times

on three identical machines, Discrete Applied Mathematics, to appear.
8. Y. He, G. Zhang, Semi on-line scheduling on two identical machines. Computing,

62, 179-187(1999).
9. H. Kellerer, V. Kotov, M. G. Speranza, Z. Tuza, Semi on-line algorithms for the

partition problem, Operations Research Letters, 21, 235-242(1997).
10. S. Seiden, J. Sgall, G. Woeginger, Semi-online scheduling with decreasing job sizes,

Operations Research Letters, 27, 215-227(2000).
11. Z. Y. Tan, Y. He, Semi-on-line problems on two identical machines with combined

partial information, Operations Research Letters, 30, 408-414(2002).

On-Line Simultaneous Maximization
of the Size and the Weight

for Degradable Intervals Schedules

Fabien Baille, Evripidis Bampis, Christian Laforest, and Nicolas Thibault

Tour Evry 2, LaMI, Université d’Evry, 523 place des terrasses, 91000 EVRY France
{fbaille,bampis,laforest,nthibaul}@lami.univ-evry.fr

Abstract. We consider the problem of scheduling on-line a sequence of
degradable intervals in a set of k identical machines. Our objective is to
find a schedule that maximizes simultaneously the Weight (equal to the
sum of processing times) and the Size (equal to the number) of the sched-
uled intervals. We propose a bicriteria algorithm that uses the strategies
of two monocriteria algorithms (GOL [7], maximizing the Size and LR
[4], maximizing the Weight) and yields two simultaneous constant com-
petitive ratios. This work is an extension of [2] (COCOON’04), where
the same model of degradable intervals was investigated in an off-line
context and the two objectives were considered separately.

In this paper, we consider the problem of scheduling on-line degradable intervals
on k identical machines. We define a degradable interval σ by a triplet (r, q, d)
where r denotes the release date, q the minimal deadline and d the deadline
(r < q ≤ d). This means that σ is scheduled if and only if it is executed from
date r to date t (q ≤ t ≤ d) on one machine. Intuitively, in this model, each
interval can be shortened (with respect to the required total execution [r, d)). We
denote by [r, t) the numerical interval corresponding to the effective execution
of a degradable interval σ and by p(σ) = t− r its processing time. We define the
weight w(σ) of the effective execution of any interval σ by w(σ) = tσ − rσ. This
means that the weight of an interval σ is equal to its processing time (it is known
in the literature as the proportional weight model [8]). In our model, we consider
on-line sequences of degradable intervals σ1, ..., σn where the σi’s are revealed
one by one in the increasing order of their release dates (r1 ≤ r2 ≤ · · · ≤ rn),
and future intervals are not known in advance.

For any algorithm A, we denote by Ak the version of A running on k identical
machines. In our model, an on-line algorithm Ak has to build at each step a valid
schedule. A schedule is valid if and only if for every date t, there is at most one
interval on each machine and each interval is scheduled at most once. When a
new interval σi is revealed (at step i), the algorithm Ak can reject it (in this case,
it is definitively lost) or serve it. In this second case, if the algorithm schedules
σi on machine j, it interrupts at least the already scheduled interval intersecting
σi on machine j. The interrupted intervals are definitively lost and no gain is
obtained from them for both metrics. Thus, each step i of any on-line algorithm

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 308–317, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

On-Line Simultaneous Maximization 309

Ak can be decomposed into two stages: First, there is the interrupting stage
of step i. During this stage, the algorithm interrupts a subset of the already
scheduled intervals (note that this subset can be empty). Secondly, there is the
scheduling stage of step i. During this stage, the algorithm decides if the new
interval σi is served or rejected, and if it is served, on which machine σi is served.

Notation 1 (Schedule Ak(σ1, . . . , σi)) Let σ1, . . . , σn be any on-line sequence
of degradable intervals and let Ak be any algorithm running on k identical ma-
chines. For every step i (1 ≤ i ≤ n), we denote by Ak(σ1, . . . , σi) the schedule
returned by Ak at the end of step i.

We define the size N(O) = |{σ ∈ O}| (i.e. the number of scheduled intervals)
and the weight W (O) =

∑
σ∈O w(σ) (i.e. the weight of scheduled intervals) of

any schedule O. Our problem is then to find a schedule which has size and
weight the largest possible. In order to evaluate the quality of a schedule for our
measures (the Size and the Weight), we use the competitive ratio [5].

Definition 1 (Competitive ratio). Let σ1, ..., σn be any on-line sequence of
intervals. Let Ak(σ1, ..., σi) be the schedule on k machines given by an algorithm
Ak at step i (1 ≤ i ≤ n) and let O∗

i be the optimal (off-line) schedule on k
machines of {σ1, . . . , σi} for the criterion C (here, C = W or C = N). Ak has
a competitive ratio of ρ (it is ρ-competitive) for the criterion C if and only if we
have:

∀i, 1 ≤ i ≤ n, ρ · · ·C(Ak(σ1, ..., σi)) ≥ C(O∗
i)

An algorithmAk is (ρ, μ)-competitive if it is simultaneously ρ-competitive for the
Size and μ-competitive for the Weight. In this paper, we propose a

(
k
r ,

4k
k−r−2

)
-

competitive algorithm, called ABk (with 1 ≤ r < k). For example, if we set
r = k

2 (if k
2 ≥ 3 and k even), ABk is

(
2, 8

1− 4
k

)
-competitive.

Previous Works. The off-line version of the bicriteria non-degradable problem
has been treated in [3] where a (k

r ,
k

k−r)-approximation algorithm (1 ≤ r < k)
has been proposed. Concerning the monocriteria non-degradable problems, they
have been extensively studied for both the off-line and the on-line versions. In
particular, the off-line versions are polynomial (see Faigle and Nawijn [7] for
the Size and Carlisle and Lloyd [6] or Arkin and Silverberg [1] for the Weight
problems). In the on-line context, the algorithm GOL of Faigle and Nawijn [7] is
optimal for the Size problem. For the Weight problem, there is a series of works
going from the paper of Woeginger [8] to the paper of Bar-Noy et al. [4], who
proposed on-line algorithms with constant competitive ratios. Note that the two
degradable monocriterion intervals problem has been investigated in [2].

Outline of the Paper. In Section 1, we present two monocriterion algorithms
(GOLk [7] and LRk [4]) in the degradable interval model. Section 2 is devoted
to the description and the analysis of our on-line bicriteria algorithm ABk using
GOL and LR as subroutines.

310 Fabien Baille et al.

1 Two On-Line Monocriteria Algorithms for the size
and the Proportional Weight Metrics

In this section, we describe and analyze the competitiveness of the algorithm of
Faigle and Nawijn [7] and the algorithm of Bar-Noy et al. [4]. We use them as
subroutines of our algorithm ABk (see Section 2) in order to obtain a pair of
constant competitive ratios.

The Algorithm GOLk. We describe the algorithm GOLk of [7] in the degrad-
able interval model by decomposing it into an interrupting stage and a scheduling
stage.

Algorithm GOLk (adaptation of [7])
When a new interval σi, defined by (ri, qi, di), is revealed, choose its effective
execution σq

i = [ri, qi) (i.e. each new interval is totally degraded) and do:
Interrupting stage: If there are k served intervals intersecting the date ri, let

σmax be the one with the maximum deadline.
If σmax does not exist (there is a free machine), do not interrupt any interval.
Else, If dmax ≥ qi then interrupt σmax.
If dmax < qi then do not interrupt any interval.

Scheduling stage:
If there is a free machine, then schedule σq

i on it.
Else, reject σi.

Note that the original algorithm of [7] is described for the classical non-degradable
interval model. In the following, we denote by GOLk

N this original version of the
algorithm (notice that it is the same algorithm as GOLk, except that GOLk

N

does not degrade any interval).

Lemma 1 GOLk is optimal for the Size in the degradable interval model.

Proof. Let σ1, . . . , σn be an on-line sequence of intervals such that for all i,
1 ≤ i ≤ n, σi is defined by (ri, qi, di). Let σD

1 , . . . , σ
D
n be the sequence such that

for all i, 1 ≤ i ≤ n, σD
i = [ri, qi) (i.e. the sequence version with the intervals

totally degraded). Let O∗
D be an optimal schedule of σ1, . . . , σn in the degradable

interval model and let O∗
N be an optimal schedule of σD

1 , . . . , σ
D
n in the non-

degradable interval model. By [2], we know that N(O∗
D) = N(O∗

N). Furthermore,
since GOLk

N is optimal for the Size in the non-degradable interval model (See
[7]), we have N(O∗

N) = N(GOLk
N (σD

1 , . . . , σ
D
n)). By definition of GOLk we have

GOLk
N (σD

1 , . . . , σ
D
n) = GOLk(σ1, . . . , σn). If we combine all these equalities, we

obtain GOLk(σ1, . . . , σn) = GOLk
N (σD

1 , . . . , σ
D
n) = N(O∗

N) = N(O∗
D). Thus,

GOLk is optimal for the Size in the degradable interval model. ��
The Algorithm LRk. We now describe the algorithm LRk of [4] adapted to
our degradable interval model and decomposed into an interrupting stage and a
scheduling stage (for all k ≥ 3).

Algorithm LRk (adaptation of [4])
We denote by Ft the set of scheduled intervals containing date t. When a new
interval σi defined by (ri, qi, di) is revealed, choose the effective execution σd

i =
[ri, di) (i.e. do not degrade any interval) and do:

On-Line Simultaneous Maximization 311

Interrupting stage:
If |Fri | < k, then do not interrupt any interval.
If |Fri | = k, then

1. Sort the k+1 intervals of Fri∪{σd
i } by increasing order of release dates. If

several intervals have the same release date, order them in the decreasing
order of their deadlines and let L be the set of the

⌈
k
2

⌉
first intervals.

2. Sort the k + 1 intervals of Fri ∪ {σd
i } by decreasing order of deadlines

(ties are broken arbitrarily) and let R be the set of the
⌊

k
2

⌋
first intervals.

If σd
i ∈ L ∪R, then interrupt any interval σj in Fri − L ∪R,

Else do not interrupt any interval.
Scheduling stage:
If |Fri | < k, then schedule σd

i on any free machine.
If |Fri | = k and σd

i ∈ L ∪ R, then schedule σd
i on the machine where σj has

been interrupted.
If |Fri | = k and σd

i /∈ L ∪R, then reject σi.

In the following, we show that LRk is
(

4
1− 2

k

)
-competitive in the degradable

interval model for the Weight metric (note that this is very close to 4 when k
is large). We first show that the weight of an optimal degradable schedule is no
more than twice the weight of an optimal non-degradable schedule.

Lemma 2 For every set of intervals {σ1, . . . , σn}, let O∗nd be an optimal sched-
ule of {σ1, . . . , σn} for the proportional weight metric in the non-degradable in-
terval model (i.e. qi = di), and let O∗d be an optimal schedule of {σ1, . . . , σn}
for the same metric in the degradable interval model. We have:

W (O∗d) ≤ 2W (O∗nd)

Proof. Let O∗d
1 , · · · , O∗d

k be the k sub-schedules of O∗d (O∗d
i executes the same

intervals at the same dates as machine i of O∗d). Thus, we have:
W (O∗d) =

∑k
i=0 W (O∗

i)

Let Γi = {σj ∈ {σ1, . . . , σn} : σj ∈ O∗d
i }. O∗d

i is an optimal schedule of Γi in the
degradable interval model. Indeed, suppose, by contradiction, that there exists
a valid schedule O of Γi such that W (O∗d

i) < W (O). This means that the valid
schedule consisting in the union of the O∗d

j ’s, except for j = i, which is replaced
by O, generates a weight greater than O∗d and is valid. This contradicts the
optimality of O∗d.

Let us apply the 2-approximation algorithm for one machine schedules de-
scribed in [2] separately on each Γi (1 ≤ i ≤ k). Let O1, · · · , Ok be the obtained
schedules. Thus, by Theorem 5 of [2], for each i, we have W (O∗d

i) ≤ 2W (Oi). We
sum the k inequalities and we obtain W (O∗d) ≤ 2

∑k
i=1 W (Oi). Moreover, since

the 2-approximation algorithm of [2] does not degrade the intervals, the k ma-
chine schedule consisting in the union of the Oi’s is valid for the non-degradable
interval model. This means that

∑k
i=1 W (Oi) ≤ W (O∗nd). Combining this last

inequality with W (O∗d) ≤ 2
∑k

i=1 W (Oi) leads to:

W (O∗d) ≤ 2W (O∗nd) ��

312 Fabien Baille et al.

Corollary 1 LRk is
(

4
1− 2

k

)
-competitive for the degradable interval model on

k ≥ 3 machines.

Proof. It is known that LRk is (2
1− 2

k

)-competitive for the non-degradable interval
model (from an adaptation of the proof of [4]). Thus, by definition, we have

2
1− 2

k

W (LRk(σ)) ≥ W (O∗nd). By Lemma 2, we have 2W (O∗nd) ≥ W (O∗d).

Combining these two inequalities leads to 4
1− 2

k

W (LRk(σ)) ≥ W (O∗d). This

means that LRk is
(

4
1− 2

k

)
-competitive for the degradable model. ��

2 Our Algorithm ABk

Definition 2 (Cover relation). Let σ be an interval defined by the triplet
(r, q, d). Let σ1 = [r, t1) and σ2 = [r, t2) be two valid effective executions of σ
(i.e. q ≤ t1 ≤ d and q ≤ t2 ≤ d). We say that σ1 covers σ2 if and only if σ2 ⊆ σ1

(i.e. if and only if t2 ≤ t1).

Definition 3 (Union+ of sets of degraded intervals). Let {σ1, · · · , σn} be
a set of degradable intervals. For all i, 1 ≤ i ≤ n, σi is defined by (ri, qi, di).
For all σi ∈ {σ1, · · · , σn}, let σ1

i = [ri, t
1
i) and σ2

i = [ri, t
2
i) be two valid effective

executions of σi (i.e. qi ≤ t1i ≤ di and qi ≤ t2i ≤ di). Let E1 ⊆ {σ1
i : σi ∈

{σ1, . . . , σn}} and E2 ⊆ {σ2
i : σi ∈ {σ1, . . . , σn}}. We define E1 +E2 the union+

of E1 and E2 as follows:

– σ1
i ∈ E1 + E2 if and only if (σ1

i ∈ E1 and σ2
i /∈ E2) or (σ1

i ∈ E1 and σ2
i ∈

E2 and σ1
i covers σ2

i).
– σ2

i ∈ E1 + E2 if and only if (σ2
i ∈ E2 and σ1

i /∈ E1) or (σ2
i ∈ E2 and σ1

i ∈
E1 and σ2

i covers σ1
i).

Note that the union+ is commutative and it generalizes the usual definition of
the union of two non-degradable intervals sets since in that case, σ1

i = σ2
i . Thus,

for all σ, E1 and E2, if σ ∈ E1 +E2, then σ ∈ E1 ∪E2.
As, by definition, the two effective executions of a same interval σ defined by

(r, q, d) must start at the same release date r, the one with the smallest execution
time is covered by the other.

Note that, to be completely rigorous, we should not define an interval σi by
(ri, qi, di), but by (ri, qi, di, i). Indeed, let us consider the following problematic
example. Let σ1

i = [ri, t
1
i) be an effective execution of σi = (ri, qi, di) and σ1

j =
[rj , t

1
j) be an effective execution of σj = (rj , qj, dj), with i �= j. If we consider the

particular case where ri = rj and t1i = t1j (our model allows such a situation),
then we have σ1

i = [ri, t
1
i) = [rj , t

1
j) = σ1

j . Of course, in this paper, we consider
that the intervals are distinct (i.e. σ1

i �= σ1
j). That is why we should define

an interval σi by (ri, qi, di, i) and an effective execution σ1
i by ([ri, t

1
i), i). But,

in order to simplify the notations, we write σi = (ri, qi, di) instead of σi =
(ri, qi, di, i), and σ1

i = [ri, t
1
i) instead of σ1

i = ([ri, t
1
i), i).

On-Line Simultaneous Maximization 313

The Algorithm ABk. The main idea is the following. ABk is running on k
identical machines (called real machines because it is on these machines that
the effective schedule is built). It uses as subroutines GOL and LR (described
in Section 1). For the ease of notation, we use A for GOL and B for LR. For
each new submitted interval σi, we simulate the execution of the algorithm Ar

(resp. Bk−r) on r (resp. k − r) virtual machines, in order to control the size
(resp. the weight) of the schedule. These two simulations (for the size and for
the weight) are made on machines that we call virtual, because they are used
only in order to determine the set (potentially empty) of intervals ABk has to
interrupt and whether σi has to be rejected or served by ABk (and in this last
case, to decide in which degraded version ABk has to serve the new interval).
Indeed, ABk serves σi on a real machine if and only if Ar or Bk−r serves σi

(note that if both Ar and Bk−r serve it, ABk chooses the effective execution of
σi that covers the other).

In order to determine the schedule given by an algorithm after the interrupt-
ing and the scheduling stages, we introduce the following notation.

Notation 2 (Schedule returned by an algorithm on step i) For every
on-line sequence σ1, . . . , σn, for every algorithm ALG and for every step of ex-
ecution i (1 ≤ i ≤ n) of ALG, let Oi1(ALG) (resp. Oi2(ALG)) be the schedule
returned ALG after the interrupting (resp. scheduling) stage of step i.

Notation 3 (Set of intervals scheduled by ABk) For every on-line se-
quence σ1, . . . , σn, for every step of execution i (1 ≤ i ≤ n) of the algorithm
ABk, let Ri1 (ABk) (resp. Ri2 (ABk)) be the set of intervals scheduled and not
interrupted after the interrupting (resp. the scheduling) stage of step i on the k
machines associated to ABk, called real machines.

Notation 4 (Set of intervals scheduled by Ar and Bk−r) For every on-
line sequence σ1, . . . , σn, for every step of execution i (1 ≤ i ≤ n) of the algorithm
Ar (resp. Bk−r), let Vi1(Ar) (resp. Vi1(Bk−r)) be the set of intervals scheduled
and not interrupted after the interrupting stage of step i on the r (resp k − r)
machines associated to Ar (resp. Bk−r). Let Vi2(Ar) (resp. Vi2(Bk−r)) be the
set of intervals scheduled and not interrupted after the scheduling stage of step
i on the r (resp. k − r) machines associated to Ar (resp. Bk−r). The r (resp
k − r) machines associated to Ar (resp. Bk−r) are called virtual machines.

We give now a formal description of the algorithm ABk.

Input: An on-line sequence of intervals σ1, . . . , σn and k identical machines.

Output: After each step i (1 ≤ i ≤ n), a valid schedule Oi2(ABk) of σ1, . . . , σi

on the k real machines.

Step 0: V02(Ar) = V02(Bk−r) = R02(ABk) = ∅
Step i (date ri):

1. The interrupting stage of ABk:

314 Fabien Baille et al.

(a) Execute the interrupting stage of Ar (resp. Bk−r) on the r (resp.
k− r) virtual machines associated to Ar (resp. Bk−r) by submitting
the new interval σi to Ar (resp. Bk−r). Note that the set of intervals
scheduled and not interrupted by Ar (resp. Bk−r) is now Vi1(Ar)
(resp. Vi1(Bk−r)).

(b) Execute the interrupting stage of ABk on the k real machines associ-
ated to ABk by interrupting the subset of intervals of R(i−1)2(AB

k)
such that: Ri1(ABk) = Vi1(Ar) + Vi1(Bk−r)

2. The scheduling stage of ABk:
(a) Execute the scheduling stage of Ar (resp. Bk−r) on the r (resp. k−r)

virtual machines associated toAr (resp.Bk−r) by serving or rejecting
the new interval σi.

(b) Execute the scheduling stage of ABk on the k real machines associ-
ated to ABk by switching to the appropriate case:
i. If Ar and Bk−r reject σi, then ABk does not schedule σi. Thus,

we have: Ri2 (ABk) = Ri1 (ABk)
ii. If Ar serves σi (with effective execution σA

i) and Bk−r rejects σi

then ABk serves σA
i on any free machine and we have:

Ri2(ABk) = Ri1(ABk) ∪ {σA
i }

iii. If Ar rejects σi and Bk−r serves σi (with effective execution σB
i)

then ABk serves σB
i on any free machine and we have:

Ri2 (ABk) = Ri1 (ABk) ∪ {σB
i }

iv. If Ar and Bk−r serve σi one with effective execution σA
i and the

other with effective execution σB
i then ABk serves the effective

execution that covers the other on any free machine. If σB
i covers

σA
i then we have:

Ri2 (ABk) = Ri1 (ABk) ∪ {σB
i }

else we have:
Ri2(ABk) = Ri1(ABk) ∪ {σA

i }

Intervals Scheduled by the Algorithm ABk. We first present Lemma 3
which states that the algorithm ABk schedules the same intervals as the union+

of the intervals scheduled by Ar and the intervals scheduled by Bk−r.

Lemma 3 For each step i of execution of the algorithm ABk, the schedule
Oi2(ABk) is valid and Ri2(ABk) = Vi2(Ar) + Vi2(Bk−r).

Proof. We prove Lemma 3 by induction on the steps of execution i of ABk.
The basic case (step 0): By definition ofABk, we have V02(Ar) = V02(Bk−r) =
R02(ABk) = ∅. Thus, Oi2(ABk) is valid and we have Ri2(ABk) = Vi2(Ar) +
Vi2(B

k−r). The basic case is checked.
The main case (step i): Let us assume that O(i−1)2(AB

k) is valid and that
R(i−1)2(AB

k) = V(i−1)2(A
r) + V(i−1)2(B

k−r) (by the assumption of the induc-
tion).

1. The interrupting stage: We first need to prove that Ri1(ABk) = Vi1(Ar) +
Vi1(Bk−r) and that Oi1(ABk) is valid.

On-Line Simultaneous Maximization 315

(a) By definition, ABk interrupts the subset of intervals of R(i−1)2(AB
k)

such that:
Ri1 (ABk) = Vi1(Ar) + Vi1(Bk−r) (union)

We have to show that there is always a subset of intervals ofR(i−1)2(AB
k)

that can be removed such that the above equality is possible.
Since Vi1(A

r) ⊆ V(i−1)2(A
r), Vi1(B

k−r) ⊆ V(i−1)2(B
k−r), and

R(i−1)2 (AB
k) = V(i−1)2(A

r) + V(i−1)2(B
k−r) (by the assumption of the

induction), we have Vi1(Ar) + Vi1(Bk−r) ⊆ R(i−1)2(AB
k).

(b) By definition, ABk interrupts only intervals scheduled in O(i−1)2(AB
k),

and by assumption of induction, O(i−1)2(AB
k) is valid. Thus, there

cannot be intervals scheduled at the same time or more than once in
Oi1 (ABk). This means that Oi1(ABk) is valid. (valid)

2. The scheduling stage: We now prove that Ri2 (ABk) = Vi2(Ar) + Vi2(Bk−r)
and that Oi2 (ABk) is valid. By definition of ABk, several cases may happen:
(a) If Ar and Bk−r reject σi, then ABk does not schedule σi and we have:

i.
Ri2 (ABk) = Ri1 (ABk) = Vi1(Ar) + Vi1(Bk−r)

(by the definition of ABk and by (union))
= Vi2(Ar) + Vi2(Bk−r)

(since Ar and Bk−r reject σi, we have
Vi1(Ar) = Vi2(Ar) and Vi1(Bk−r) = Vi2(Bk−r))

ii. Oi2(ABk) = Oi1(ABk). ThusOi2(ABk) is valid (because by (valid),
Oi1(AB

k) is valid).
(b) If Ar serves σi (with effective execution σA

i) and Bk−r rejects σi, then
ABk schedules σA

i on any free real machine at time ri and we have:
i.
Ri2 (ABk) = Ri1 (ABk) ∪ {σA

i } = (Vi1(Ar) + Vi1(Bk−r)) ∪ {σA
i }

(by the definition of ABk and by (union))
= Vi2(Ar) + Vi2(Bk−r)

(union and union+ commute and since Ar serves σi

and Bk−rrejects σi, we have Vi2(Ar)=Vi1(Ar) ∪ {σA
i }

and Vi2(Bk−r)=Vi1(Bk−r))

ii. Since Oi1(ABk) is a valid schedule (by (valid)) and Oi2(ABk) is
built by ABk by adding σi toOi1(ABk) only once, the only reason for
which Oi2(ABk) could not be valid would be because σi is scheduled
by ABk at time ri whereas there is no free machine at time ri, i.e.
because there are at least k + 1 intervals of Ri2(ABk) scheduled
at time ri by ABk. Let us prove that this is impossible. Indeed,
since Ar and Bk−r build at each time valid schedules, there are at
most r + k − r = k intervals of Vi2(Ar) + Vi2(Bk−r) scheduled at
time ri by Ar and Bk−r , and thus, there are at most k intervals
of Ri2(ABk) scheduled at time ri by ABk (because we just proved
above that Ri2 (ABk) = Vi2(Ar) + Vi2(Bk−r)). Thus, Oi2(ABk) is a
valid schedule.

316 Fabien Baille et al.

(c) If Ar rejects σi and Bk−r serves σi (with effective execution σB
i), then

ABk schedules σB
i on any free real machine at time ri.

i. We prove that Ri2 (ABk) = Vi2(Ar) + Vi2(Bk−r) in the same way
that we prove it in 2(b)i, except that we replace σA

i by σB
i .

ii. We prove that Oi2(ABk) is valid in the same way as in 2(b)ii.
(d) If Ar and Bk−r serve σi one with effective execution σA

i and the other
with effective execution σB

i . Let σS
i (resp. σL

i) be the shortest (resp.
longest) effective execution of σi. Without loss of generality, we sup-
pose that Ar schedules σS

i and Bk−r schedules σL
i . By definition of the

algorithm, ABk schedules σL
i , and we have:

i.
Ri2 (ABk) = Ri1 (ABk) ∪ {σL

i } = (Vi1(Ar) + Vi1(Bk−r)) ∪ {σL
i }

(by definition of ABk and by (union))
= (Vi1 (A

r) + Vi1(B
k−r)) ∪ ({σL

i } + {σS
i })

(because, by definition of union+, {σL
i }={σL

i } + {σS
i })

= Vi1(Ar) + Vi1(Bk−r) + {σL
i } + {σS

i }
(because (Vi1(Ar) + Vi1(Bk−r)) ∩ ({σL

i } + {σS
i }) = ∅)

= (Vi1 (Ar) ∪ {σS
i }) + (Vi1(Bk−r) ∪ {σL

i })
(because the union+ is commutative and since σS

i /∈
Vi1(Ar), we have Vi1(Ar) + {σS

i } = Vi1(Ar) ∪ {σS
i })

= Vi2(Ar) + Vi2(Bk−r)
(because since Ar and Bk−r serve σi, we have Vi2(Ar)
= Vi1(Ar) ∪ {σS

i } and Vi2(Bk−r) = Vi1(Bk−r) ∪ {σL
i })

ii. We prove that Oi2(ABk) is valid in the same way as in 2(b)ii.
��

Corollary 2 Let Ar = GOLr and Bk−r = LRk−r. Let N(Vi2(GOLr)) =
|Vi2(GOLr)| and W (Vi2(LRk−r)) be the sum of the weight of the intervals of
Vi2(LRk−r). For every input sequence σ1, . . . , σn and for every step i (1 ≤ i ≤ n)
of the algorithm ABk, we have:

N(Vi2(GOLr)) ≤ N(Ri2 (ABk)) and W (Vi2(LRk−r)) ≤W (Ri2(ABk))

Proof. By Lemma 3, for every step i of the algorithm ABk, we haveRi2 (ABk) =
Vi2(A

r) + Vi2(B
k−r) = Vi2(GOL

r) + Vi2(LR
k−r), thus, by definition of union+,

Corollary 2 is checked. ��
Theorem 1. For all k ≥ 4, for all r, 1 ≤ r ≤ k− 3, the algorithm ABk applied
with GOLr and LRk−r is

(
k
r ,

4k
k−r−2

)
-competitive for the Size and Proportional

weights metrics.

Proof. Let σ1, · · · , σn be any on-line sequence of intervals and let ON∗
x (resp.

OW∗
x) be an optimal schedule of {σ1, · · · , σn} for the size N (resp. for the pro-

portional weight W) on x ≤ k machines. Let OGOL
r (resp. OLR

k−r) be the schedule
returned by GOLr (resp. LRk−r) on the on-line sequence σ1, · · · , σn on r ≤ k−3
(resp. k− r ≥ 3) machines. Since, by Lemma 1, GOLr is 1-competitive (resp. by
Corollary 1, LRk−r is

(
4

1− 2
k−r

)
-competitive), we have:

On-Line Simultaneous Maximization 317

N(ON∗
r) ≤ N(OGOL

r) (resp. W (OW∗
k−r) ≤

(
4

1− 2
k−r

)
W (OLR

k−r)) (1)

Let O′N (resp. O′W) be the r (resp. k − r) machine sub-schedule of ON∗
k (resp.

OW∗
k) executing all the intervals appearing on the r (resp. k − r) machines of

ON∗
k (resp. OW∗

k) generating the largest size (resp. weight). Since O′N (resp.
O′W) is a r (resp. k − r) machine schedule, we have N(O′N) ≤ N(ON∗

r) (resp.
W (O′W) ≤ W (OW∗

k−r)), otherwise, ON∗
r (resp. OW∗

k−r) would not be an optimal
schedule for the size (resp. weight). Combined with (1), we obtain:

N(O′N) ≤ N(ON∗
r) ≤ N(OGOL

r)
(resp. W (O′W) ≤W (OW∗

k−r) ≤
(

4
1− 2

k−r

)
W (OLR

k−r))
(2)

Since O′N (resp. O′W) is the r machine sub-schedule of ON∗
k (resp. OW∗

k) gener-
ating the largest size (resp. weight), the average size (resp. weight) per machine
in O′N (resp. O′W) is larger than the average size (resp. weight) per machine
in ON∗

k (resp. OW∗
k). Thus, we have N(ON∗

k)
k ≤ N(O′N)

r ⇒ N(ON∗
k) ≤ k

rN(O′N)

(resp. W (OW∗
k)

k ≤ W (O′W)
k−r ⇒ W (OW∗

k) ≤ k
k−rW (O′W)). Combined with (2), we

obtain:

N(ON∗
k) ≤ k

r
N(OGOL

r) (resp. W (OW∗
k) ≤ 4k

k − r − 2
W (OLR

k−r)) (3)

As N(OGOL
r) = N(Vi2(GOLr)) (resp. W (OLR

k−r) = W (Vi2(LRk−r))), by apply-
ing Corollary 2 on (3), we obtain:

N(ON∗
k) ≤ k

rN(Vi2(GOLr)) ≤ k
rN(Ri2 (ABk))

(resp. W (OW∗
k) ≤ k

rW (Vi2(LRk−r)) ≤ 4k
k−r−2W (Ri2(ABk)))

This means that ABk is (k
r ,

4k
k−r−2)-competitive. ��

Example. If r = k
2 (if k

2 ≥ 3 and k even), ABk is
(
2, 8

1− 4
k

)
-competitive.

References

1. E. Arkin and B. Silverberg, Scheduling jobs with fixed start and end times,
Discrete Applied Mathematics, 18 (1987), pp. 1–8.

2. F. Baille, E. Bampis, and C. Laforest, Maximization of the size and the weight
of schedules of degradable intervals, in proceedings of COCOON’04, K.-Y. Chwa
and I. Munro, eds., LNCS No. 3106, Springer-Verlag, 2004, pp. 219–228.

3. , A note on bicriteria schedules with optimal approximation ratios, Parallel
Processing Letters, 14 (2004), pp. 315–323.

4. A. Bar-Noy, R. Canetti, S. Kutten, Y. Mansour, and B. Schieber, Band-
width allocation with preemption, SIAM J. Comput., 28 (1999), pp. 1806–1828.

5. A. Borodin and R. El-Yaniv, Online computation and competitive analysis, Cam-
bridge University press, 1998.

6. M. C. Carlisle and E. L. Lloyd, On the k-coloring of intervals, Discrete Applied
Mathemetics, 59 (1995), pp. 225–235.

7. U. Faigle and M. Nawijn, Note on scheduling intervals on-line, Discrete Applied
Mathematics, 58 (1995), pp. 13–17.

8. G. J. Woeginger, On-line scheduling of jobs with fixed start and end times, Theor.
Comput. Sci., 130 (1994), pp. 5–16.

Off-Line Algorithms for Minimizing Total Flow
Time in Broadcast Scheduling

Wun-Tat Chan1,�, Francis Y.L. Chin1,��, Yong Zhang1, Hong Zhu2,
Hong Shen3, and Prudence W.H. Wong4,���

1 Department of Computer Science, University of Hong Kong, Hong Kong
{wtchan,chin,yzhang}@cs.hku.hk

2 Department of Computer Science and Engineering, Fudan University, China
hzhu@fudan.edu.cn

3 Graduate School of Information Science
Japan Advanced Institute of Science and Technology, Japan

shen@jaist.ac.jp
4 Department of Computer Science, University of Liverpool, UK

pwong@csc.liv.ac.uk

Abstract. We study the off-line broadcast scheduling problem to mini-
mize total (or average) flow time. Assume the server has k pages and the
requests arrive at n distinct times, we give the first algorithm to find the
optimal schedule for the server with a single channel, in O(k3(n+k)k−1)
time. For m-channel case, i.e., the server can broadcast m different pages
at a time where m < k, we find the optimal schedule in O(nk−m) time
when k and m are constants. In the single channel case, we also give
a simple linear-time approximation algorithm to minimize average flow
time, which achieves an additive (k − 1)/2-approximation.

1 Introduction

In an on-demand broadcasting system, the server receives requests for pages
from clients over time, and answers these requests by broadcasting (sending)
the pages via the broadcast channels. After the server broadcasts a page, all
pending requests for that page are satisfied. The scheduler of the server is to
arrange the order of the page broadcasts so as to minimize the total (or average)
flow time of the requests. In this paper we assume that time is discrete, all the
pages have unit length and the server has m broadcast channels, i.e., at most
m different pages can be broadcast at each time slot. We formalize the problem
as follows. Assume that the server contains k pages, namely P0, P1, . . . , Pk−1,
requested by clients at integral time only. Let rti denote the number of requests
for Pi at time t. For a schedule, let bti be the earliest time at or after time t
when Pi is broadcast. The flow time of a request for Pi is bti − t + 1 where

� This research was supported in part by Hong Kong RGC Grant HKU-5172/03E.
�� This research was supported in part by Hong Kong RGC Grant HKU-7142/03E.

��� This research was supported in part by Nuffield Foundation Grant NAL/01004/G.

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 318–328, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Off-Line Algorithms for Minimizing Total Flow Time 319

t is the time when Pi is requested. Suppose that the last requests arrive at
time n. The total flow time of the schedule, which is to be minimized, is equal
to

∑n
t=0

∑k−1
i=0 rti(bti− t+1). Note that an optimal schedule that minimizes the

total flow time is also an optimal schedule that minimizes the average flow time.
In this paper we consider the off-line version of the problem, in which the server
is aware of all the requests in advance.

Previous work of the problem considered that the number of broadcast chan-
nels m = 1 and the number of pages k is a variable. This problem was shown to
be NP-hard by Erlebach and Hall [5]. Recently, Bansal et al. [1] gave an additive
O(
√
k)-approximation algorithm in minimizing the average flow time, yet their

algorithm requires to solve a time-consuming linear programming. Besides, most
of the previous works considered the resource augmentation setting. In the set-
ting, an m-speed algorithm refers to an algorithm of a server with m broadcast
channels and an m-speed c-approximation algorithm is an m-speed algorithm
which produces the schedules with total (or average) flow time at most c times
that of the schedule produced by the optimal 1-speed algorithm. Kalyanasun-
daram et al. [9] gave an 1

ε -speed 1
1−2ε -approximation algorithm for any fixed

ε ∈ (0, 1
3]. Gandhi et al. [7] gave an 1

ε -speed 1
1−ε -approximation algorithm for

any fixed ε ∈ (0, 1
2]. To match the performance of the 1-speed optimal algo-

rithm, Erlebach and Hall [5] gave a 6-speed algorithm, which was improved to
4-speed [7] and then to 3-speed by Gandhi et al. [8]. The on-line version of the
problem has been studied by Edmonds and Pruhs [3, 4]. Bartal and Muthukr-
ishnan [2] have considered the problem with another objective function which is
to minimize the maximum flow time.

The main result of this paper is to give the first optimal algorithm for the
broadcast scheduling problem to minimize total flow time when the number
of pages k is fixed. Based on a dynamic programming technique and the con-
cave property of the optimization function, our algorithm constructs the optimal
schedule for the case when m = 1 in O(k3(n + k)k−1) time where the last re-
quests arrive at time n. When k is a constant, the time complexity is O(nk−1).
We generalize this result in the m-channel case where a server has 2 ≤ m < k
broadcast channels. We show that in this case the optimal schedule can be found
in O((k3 + (k−1

k−m))(n+ k
m)k−m) time, or O(nk−m) time when k and m are con-

stants. Note that the problem with multiple channels seems to be easier than
the problem with single channel and the multi-channel problem is not NP-hard
if k −m is a constant. In addition, we also give a simple approximation result
for the case of m = 1. Different from all previous works that need to solve the
time-consuming linear programming, we give a simple linear-time algorithm to
achieve a tight additive k−1

2 -approximation on minimizing the average flow time,
i.e., the average flow time of the schedules produced by our algorithm is at most
that of any schedule plus (k−1)/2. Although our approximation algorithm seems
inferior than the additive O(

√
k)-approximation algorithm [1], our algorithm is

much simpler and has comparable performance as k is usually small in practice.
The rest of the paper is organized as follows. Section 2 presents the optimal

algorithms. A linear-time optimal algorithm for m = 1 and k = 2 is given in

320 Wun-Tat Chan et al.

Section 2.1. For general k, the optimal algorithms for the cases of m = 1 and
general m are given in Sections 2.2 and 2.3, respectively. Section 3 presents the
approximation algorithm for m = 1 and general k.

2 Optimal Algorithms

2.1 Broadcast Scheduling for Two Pages

Assume we have m = 1 broadcast channel, and k = 2 pages, and the last request
arrives at time n. Let F denote the minimum total flow time in satisfying all
requests. Given that Pi is broadcast at time t where i = 0 or 1, for 0 ≤ t ≤ n+1,
let Fi(t) denote the minimum total flow time in satisfying all the requests made
at or after time t, i.e., the rab requests for Pb at time a for t ≤ a ≤ n and
b ∈ {0, 1}. Note that by definition Fi(n + 1) = 0 for i = 0 or 1 because there
is no request after time n. Otherwise, for example, Fi(0) is the minimum total
flow time to satisfy all requests given that Pi is broadcast at time 0. As only P0

or P1 can be broadcast at time 0, we can see that F = min{F0(0), F1(0)}. In the
following we define Fi(t) recursively. For the base case where t = n + 1,

F0(n + 1) = 0 and F1(n+ 1) = 0.

In general, we consider 0 ≤ t ≤ n. For F0(t), the optimal schedule must have
P0 broadcast at each time t, t + 1, . . . , s − 1 for some s ≥ t + 1, and then P1

broadcast at time s. Thus,

F0(t) = min
t+1≤s≤n+1

{c1(s, t) + F1(s)}

where c1(s, t) =
∑s−1

i=t (ri0 + ri1(s− i+ 1)) is the total flow time in satisfying
those requests arrived within time t to time s− 1 inclusively. Similarly,

F1(t) = min
t+1≤s≤n+1

{c0(s, t) + F0(s)}

where c0(s, t) =
∑s−1

i=t (ri0(s− i+ 1) + ri1).
With O(n)-time preprocessing (see Lemmas 8 and 9 in the Appendix), func-

tions c0(s, t) and c1(s, t) can be computed in constant time for any given s and t.
Hence, the brute-force method to find F by computing all Fi(t) for 0 ≤ i ≤ 1 and
0 ≤ t ≤ n takes O(n2) time. However, we show that it can be done in linear time
by using the algorithm of Galil and Park [6]. We say that a function τ() is con-
cave if it satisfies the quadrangle inequality, i.e., τ(a, c)+τ(b, d) ≤ τ(b, c)+τ(a, d)
for a ≤ b ≤ c ≤ d. Galil and Park have the following theorem.

Theorem 1 (Galil and Park [6]). Given a concave function τ(i, j) for integer
0 ≤ i ≤ j ≤ n and E(0), the recurrence E(j) = min0≤i<j{D(i) + τ(i, j)} for
1 ≤ j ≤ n can be solved in O(n) time, if D(i) can be computed in constant time.

We show that our recurrences can be transformed to that of Theorem 1, and
thus our recurrences can also be solved in linear time. We give the details for

Off-Line Algorithms for Minimizing Total Flow Time 321

the case of F0() and the case of F1() can be done similarly. Let E(j) = F0(n−
j + 1) for 0 ≤ j ≤ n + 1. We have the base case E(0) = F (n + 1) = 0. Let
w(i, j) = c1(n− i+ 1, n− j + 1) for 0 ≤ i < j ≤ n + 1. We have the recurrence
E(j) = min0≤i<j{D(i) +w(i, j)} for 1 ≤ j ≤ n+ 1, where D(i) = F1(n− i+ 1).
Given that the relevant values of F1() (resp. F0()) are already known when D(i)
is needed, D(i) can be obtained in constant time. Lemma 1 shows that function
w(i, j) satisfies the quadrangle inequality. Therefore, by Theorem 1, we can find
the optimal schedule in linear time, as given in Theorem 2.

Lemma 1. The function w(i, j) = c1(n− i+1, n− j+1) (resp. c0(n− i+1, n−
j + 1)) for integer 0 ≤ i < j ≤ n + 1 satisfies the quadrangle inequality, i.e.,
w(a, c) + w(b, d) ≤ w(b, c) + w(a, d) for integer a ≤ b ≤ c ≤ d.

Proof. We consider the case that w(i, j) = c1(n − i + 1, n − j + 1) and the
case of w(i, j) = c0(n − i + 1, n− j + 1) can be proved similarly. By definition,
w(i, j) = c1(n− i+ 1, n− j + 1) =

∑n−i
x=n−j+1(rx0 + rx1(n− i− x+ 2)). We can

see that
∑n−a

x=n−c+1 rx0 +
∑n−b

x=n−d+1 rx0 =
∑n−a

x=n−d+1 rx0 +
∑n−b

x=n−c+1 rx0 and∑n−a
x=n−c+1 rx1(n−a−x+2)+

∑n−b
x=n−d+1 rx1(n−b−x+2) =

∑n−a
x=n−c+1 rx1(n−

a − x + 2) +
∑n−c

x=n−d+1 rx1(n − b − x + 2) +
∑n−b

x=n−c+1 rx1(n − b − x + 2) ≤∑n−a
x=n−d+1 rx1(n− a−x+2)+

∑n−b
x=n−c+1 rx1(n− b−x+2). The last inequality

is due to n−a ≥ n−b. Therefore we have w(a, c)+w(b, d) ≤ w(b, c)+w(a, d). ��

Theorem 2. The minimum total flow time of the 2-page broadcast scheduling
problem with requests arriving at integer time 0 to time n can be computed in
O(n) time.

2.2 Broadcast Scheduling for k Pages

In this section we consider the problem with a single broadcast channel and k
pages, for any fixed integer k. Assuming that the last requests arrive at time n, we
formulate the problem as a dynamic programming problem which is a generaliza-
tion of that in Section 2.1. Each sub-problem in the dynamic programming can
be specified by a k-dimensional vector v = (v0, . . . , vk−1) where 0 ≤ vi ≤ n+k−1
and vi �= vj if i �= j. Let vmin = min0≤i≤k−1{vi}. The sub-problem correspond-
ing to v is to find the minimum total flow time for satisfying all the requests
between vmin and n, i.e., the rtj requests for Pj at time t for vmin ≤ t ≤ n and
0 ≤ j ≤ k − 1, with vi being Pi’s earliest broadcasting time. For example, when
k = 2, F0(t) defined in Section 2.1 refers to the minimum total flow time over all
sub-problems corresponding to the vectors v = (t, t′) with t′ > t. For general k,
there are O((n+k)k) possible k-dimensional vectors as well as sub-problems, the
time complexity will be at least Ω((n + k)k). In the following, we shall modify
the definition of the vectors corresponding to the sub-problems slightly so that
better than O((n + k)k) time can be achieved.

The vector v = (v0, . . . , vk−1) is similar to what is defined earlier except
that one of the vi’s value is unspecified, which is represented as “ ∗ ”. Suppose
that vα = ∗, it means that in the sub-problem corresponding to v, the earliest

322 Wun-Tat Chan et al.

broadcasting time of Pα is not fixed, yet it cannot be earlier than that of all
other pages. Let vmin = min1≤j≤k−1 & vj �=∗{vj}. The sub-problem corresponding
to v, say with vα = ∗, is to find the minimum total flow time for satisfying all
the requests between vmin and n with vi being Pi’s earliest broadcasting time
for i �= α. Pα’s earliest broadcasting time can be any possible value between
vmin + 1 and n + k − 1, i.e., some β ∈ Cv with Cv = {t | t �= vj for all vj �= ∗
and vmin + 1 ≤ t ≤ n+ k − 1}.

Let F (v) denote the minimum total flow time of the sub-problem corre-
sponding to v. We define F (v) recursively as follows. In the base case, we have
vmin = n + 1 which is the largest possible value for vmin as v needs to specify
k − 1 distinct values between vmin and n+ k − 1. By definition,

F (v) = 0 for all v with vmin = n+ 1

because there is no request after time n. In general, we consider 0 ≤ vmin ≤ n
and assume that vα = ∗. Although vα is unspecified, it can take the value
β ∈ Cv only, i.e., Pα can be broadcast the earliest at some time β ∈ Cv only.
We have to consider the |Cv| different cases of assigning a value β ∈ Cv to vα.
Therefore, F (v) equals the minimum total flow time among the sub-problems
corresponding to v with vα assigned time β, for each β ∈ Cv. Similar to the
2-page case, for each of these sub-problems, if vx = vmin, then the optimal
schedule must have Px broadcast at each time vmin, vmin + 1, . . . , s − 1 where
s = min{β,minvj �=vmin & vj �=∗{vj}} is the earliest broadcasting time among the
pages other than Px. Note that there is no pending request for Px immediately
after time s−1. Thus, each of these sub-problems depends on one “smaller” sub-
problem which is corresponding to another vector u = (u0, . . . , uk−1) constructed
from v as follows.

ui =

⎧⎨⎩
∗ for i where vi = vmin,
β for i where vi = ∗,
vi otherwise,

for each β ∈ Cv. To compute F (v), we consider the |Cv| different “smaller”
sub-problems, i.e.,

F (v) = min
Sub-problems u derived from v

{F (u) + c(u, v)}

where c(u, v) =
∑k−1

i=0

∑umin−1
t=vmin

fti(u, v) is the total flow time of the rti requests
for Pi at time t for vmin ≤ t ≤ umin − 1 and 0 ≤ i ≤ k − 1 and fti(u, v) is the
total flow time of the particular rti requests for Pi at time t, i.e.,

fti(u, v) =
{
rti for i where vi = vmin,
rti(ui − t+ 1) otherwise.

We give an analysis on a brute-force implementation in solving the above
recurrence of F (v). Then we show a faster implementation by generalizing the
approach used in Section 2.1. Lemma 2 implies that there are k(n+ k)!/(n+ 1)!
different sub-problems corresponding to a k-dimensional vector. Similar to the

Off-Line Algorithms for Minimizing Total Flow Time 323

case of k = 2 in Section 2.1, with O(kn)-time preprocessing,
∑umin−1

t=vmin
fti(u, v)

can be computed in constant time for any given i, vmin and umin − 1 (see Lem-
mas 8 and 9 in the Appendix) and thus c(u, v) can be computed in O(k) time.
Since the number of sub-problems corresponding to u, derived from a given
v, is O(n), a particular F (v) can be computed in O(kn) time. Therefore, the
brute-force method in finding F by computing all F (v) of the subproblems cor-
responding to v takes O(k2n(n+ k)!/(n+ 1)!), or concisely, O(k2(n+ k)k) time.

Lemma 2. There are k(n + k)!/(n + 1)! different k-dimensional vectors v =
(v0, . . . , vk−1) with 0 ≤ vj ≤ n− k+1 for all 0 ≤ j ≤ k− 1 except one vj’s value
equals ∗ and vi �= vj for all i �= j.

Proof. Since each vj �= ∗ should have a distinct value between vmin + 1 and
n+k−1, there are at most (n+k

k−1) ways of choosing k−1 distinct values between
0 and n + k − 1. As these k − 1 distinct values have k! ways of assigning to the
k positions, there are k(n+ k)!/(n + 1)! different valid vectors of v. ��

Note that up to this stage, there is no gain in the time complexity and
Ω((n+k)k) time is still needed. In order to improve the time complexity, concave
property of the function c(u, v) should be exploited as in Section 2.1. In the
faster implementation, we group the sub-problems into k2 groups. Two sub-
problems corresponding to v and u, respectively, belong to the same group Gxy,
for 0 ≤ x, y ≤ k − 1, if vmin = vx and umin = ux, and vy = uy = ∗, i.e., the two
sub-problems have the earliest broadcasting time for the same page Px and the
unspecified broadcasting time same for another page Py . We further divide the
sub-problems in each group into sub-groups. Two sub-problems corresponding
to v and v′, respectively, of the same group Gxy belong to the same sub-group
if except Px and Py all other pages among the two sub-problems have the same
corresponding earliest broadcasting time, i.e., vj = v′j for all j with j �= x and
j �= y. There are O(n) sub-problems in each sub-group and there are (n + k −
1)!/(n+ 1)! sub-groups in each group, as shown in the following lemma.

Lemma 3. There are (n + k − 1)!/(n+ 1)! sub-groups in each group.

Proof. WLOG, consider a particular group G01. The number of sub-groups in
G01 is equal to the number of ways in choosing k − 2 distinct values between 1
and n+k−1 for v2, v3, . . . , vk−1, i.e., (n+k−1

k−2) ways. As these k−2 distinct values
have (k−2)! ways of assigning to the k−2 positions, there are (n+k−1)!/(n+1)!
sub-groups in G01. Similarly, it applies to each of the other groups. ��

We can compute F (v) for all vectors v corresponding to the sub-problems of
the same sub-group in O(k(n + k)) time. It is done by transforming the recur-
rence in this section to that of Theorem 1 in Section 2.1. WLOG, we consider
a sub-group in G01. For all vectors v corresponding to the sub-problems in the
sub-group, we have v0 = vmin and v1 = ∗ and all other vj fixed. For ease of
explanation, we assume that vj ∈ [n + 2, n + k − 1] for all 2 ≤ j ≤ k − 1.
(The assumption is not necessary in proving the correctness of our algorithm.)
For 0 ≤ t ≤ n + 1, let E(t) = F (v) where vmin = n − t + 1. Then we have

324 Wun-Tat Chan et al.

E(0) = F (v) = 0 because vmin = n + 1. For 0 ≤ s ≤ n + 1, let D(s) = F (u)
where u1 = n − s + 1 and u is derived from v. For 0 ≤ s < t ≤ n + 1, let
w(s, t) = c(u, v), which is given as follows.

w(s, t) =
n−s∑

i=n−t+1

ri0 +
n−s∑

i=n−t+1

ri1(n− s− i+ 2) +
k−1∑
j=2

n−s∑
i=n−t+1

rij(vj − i+ 1)

It can be verified that the function w(s, t) satisfies the quadrangle inequality as
in Lemma 4. Hence, by Theorem 1, all F (v) for sub-problems corresponding to v
of the same sub-group can be computed in O(kn) time and all F (v) for all sub-
problems of “all” sub-groups can be computed in O(kn ·k2 ·(n+k−1)!/(n+1)!),
or concisely, O(k3(n+ k)k−1). Thus, we have Theorem 3.

Lemma 4. The function w(s, t) for 0 ≤ s < t ≤ n + 1 satisfies the quadrangle
inequality, i.e., w(a, c) + w(b, d) ≤ w(b, c) + w(a, d) for a ≤ b ≤ c ≤ d.

Proof. The proof is similar to that of Lemma 1, which will be given in the full
paper. ��

Theorem 3. The minimum total flow time of the k-page broadcast schedul-
ing problem with requests arriving at integral times 0 to n can be computed in
O(k3(n + k)k−1) time.

2.3 Broadcast Scheduling with Multiple Channels

Assume that there are m broadcast channels available to the server. At each
time slot, a server can broadcast at most m different pages among the k pages,
where m < k. WLOG we can assume that there is an optimal schedule that
broadcasts exactly m different pages at each time slot.

We apply the framework in solving the dynamic programming problem in
Section 2.2 to this problem. Each sub-problem in the dynamic programming
can be specified by a k-dimensional vector v = (v0, . . . , vk−1) where 0 ≤ vi ≤
n+ �(k−m)/m� because after time n we need at most �(k−m)/m� time units
to satisfy the pending requests. The sub-problem corresponding to v gives the
minimum total flow time for satisfying all the requests between vmin and n, i.e.,
the rij requests for Pj at time i for vmin ≤ i ≤ n and 0 ≤ j ≤ k − 1 with vj

being Pj ’s earliest broadcasting time. Since we assume that an optimal schedule
has m page broadcasts at each time slot, in particular the first time slot vmin, it
is sufficient to consider only those vectors v corresponding to the sub-problems
with m earliest page broadcasts at time vmin, i.e., there are exactly m vj ’s values
equal to vmin. Same as that in Section 2.2, we consider that every vector v has
one of the vj equal to ∗. For a vector v with vα = ∗, the possible values between
vmin + 1 and n+ �(k−m)/m� that can be assigned to vα are in Cv = {i | there
are less than m vj ’s values equal to i}.

To compute F (v) of a vector v with vα = ∗, we find the minimum total flow
time among the sub-problems corresponding to v with vα assigned value β for

Off-Line Algorithms for Minimizing Total Flow Time 325

each β ∈ Cv. For each of these sub-problems, if vx1 = vx2 = . . . = vxm = vmin

for some 0 ≤ x1, . . . , xm ≤ k− 1, then the optimal schedule must have all pages
Px1 , . . . , Pxm broadcast at each of times vmin, vmin + 1, . . . , s − 1 where s =
min{β,minvj �=vmin & vj �=∗{vj}} is the earliest broadcasting time among the pages
other than Px1 , . . . , Pxm . Note that there is no pending request for Px1 , . . . , Pxm

immediately after time s− 1. Thus, each of these sub-problems depends on one
“smaller” sub-problem which corresponds to a relaxed k-dimensional vector ũ in
which exactly m ũj ’s values equal to ∗. We construct ũ as follows.

ũi =

⎧⎨⎩
∗ for i where vi = vmin,
β for i where vi = ∗,
vi otherwise.

Let ũmin = minũj �=∗{ũj}. The sub-problem corresponding to ũ is to find the
minimum total flow time, denoted as F (ũ), to satisfy all requests between ũmin

and n, i.e., the rij requests for Pj at time i for umin ≤ i ≤ n and 0 ≤ j ≤ k− 1,
with ũj being Pj ’s earliest broadcasting time for ũj �= ∗. We do not need to
compute F (ũ) directly. In fact F (ũ) = min{F (v) | ũmin = vmin and ũj = vj for
all ũj �= ∗}, which is one of F (v′) for which the two sub-problems, corresponding
to ũ and v′, respectively, have all pages having the same corresponding earliest
broadcasting times except those pages Pj with ũj = ∗. We define the recurrence
of F (v) as follows.

F (v) = min
sub-problems ũ derived from v

{F (ũ) + c(ũ, v)}

where c(ũ, v) =
∑k

i=0

∑ũmin−1
t=vmin

fti(ũ, v) is the total flow time of the rti requests
for Pi at time t for 0 ≤ i ≤ k − 1 and vmin ≤ t ≤ ũmin − 1 and fti(ũ, v) is the
flow time of the particular rti requests for Pi at time t, i.e.,

fti(ũ, v) =
{
rti for i where vi = vmin,
rti(ũi − t+ 1) otherwise.

We give an analysis on a brute-force implementation in solving the above
recurrence of F (v), and then we show a faster implementation. Lemma 5 implies
that there are O(k(n + k/m)k−m) different sub-problems we need to consider.

Lemma 5. There are at most O(k(n + k/m)k−m) different k-dimensional vec-
tors v = (v0, . . . , vk−1) satisfying the following conditions: (i) For all 0 ≤ i ≤
k − 1, 0 ≤ vj ≤ n + k − 1 except that one vj’s value is equal to ∗; (ii) for each
0 ≤ t ≤ n, there are at most m vj ’s values equal to t; and (iii) exactly m out of
k vj’s values equal vmin.

Proof (Sketch). Consider those vectors with that v0 = ∗. As there are m vj ’s
values equal to vmin, the number of different vectors is bounded by the number
of ways in choosing k −m values, not necessarily distinct, between 0 and n +
�(k−m)/m�, which is O((n+k/m)k−m). Therefore the total number of different
vectors is at most O(k(n + k/m)k−m). ��

326 Wun-Tat Chan et al.

If all F (ũ) are known and can be retrieved in constant time, then each com-
putation of F (v) takes O(kn) time because computing c(ũ, v) takes O(k) time
and there are O(n) different ũ to be considered. We can compute all F (ũ) as
follows. Since F (ũ) = min{F (v) | ũmin = vmin and ũj = vj for all ũj �= ∗},
after each F (v) is computed we update the corresponding values of F (ũ) where
ũmin = vmin and ũj = vj for all ũj �= ∗, if F (v) < F (ũ). It takes O((k−1

k−m))
time to update each F (v) because there are (k−1

k−m) corresponding ũ, as shown
in the Lemma 6. Therefore, it takes O(kn+(k−1

k−m)) time to compute each F (v),
hence O((kn + (k−1

k−m))k(n + k)k−m) time to compute all values of F (v) in the
brute-force implementation.

Lemma 6. For a k-dimensional vector v with exactly one vj’s value equals to
∗, there are (k−1

k−m) k-dimensional (relaxed) vectors ũ with exactly m ũj’s values
equal to ∗ where ũmin = vmin and ũj = vj for all ũj �= ∗.

Proof (Sketch). It is equivalent to choosing k −m of the k − 1 vj ’s values with
vj �= ∗. ��

Similar to the efficient implementation in Section 2.2, we can partition the
sub-problems F (v) into groups and sub-groups so that we can apply the al-
gorithm of Galil and Park [6] to compute all F (v) of v corresponding to the
sub-problems in a sub-group in O(kn) time. Thus the overall time complexity
for computing all F (v) of v corresponding to the sub-problems of all sub-groups
in all groups is O((k3 + (k−1

k−m))(n + k/m)k−m). When k and m are constants,
the time complexity becomes O(nk−m).

Theorem 4. The minimum total flow time of the k-page broadcast scheduling
problem with m broadcast channels where requests arriving at integral time 0 to
time n can be computed in O((k3 + (k−1

k−m))(n + k/m)k−m) time, or O(nk−m)
time if k and m are constants.

3 Approximation Algorithms

We present an approximation algorithm for the problem in minimizing the aver-
age flow time for the case when the number of broadcast channels m = 1. Note
that the average flow time of a schedule equals the total flow time of the sched-
ule divided by the total number of requests. Assuming that there are k pages
that can be requested by clients, we give a simple algorithm with an additive
approximation ratio of (k − 1)/2.

When there are only two pages, P0 and P1, for clients to request, i.e., k = 2.
The algorithm considers two particular schedules, S0 = (P0, P1, P0, P1, . . .) and
S1 = (P1, P0, P1, P0, . . .). We show in Lemma 7 that either S0 or S1 has the
average flow time at most 1/2 more than that of the optimal schedule. Thus, the
algorithm achieves an additive approximation ratio of 1/2 by choosing among
S0 and S1 the schedule with a smaller total flow time.

Off-Line Algorithms for Minimizing Total Flow Time 327

Lemma 7. Either S1 or S2 has the average flow time at most 1/2 more than
that of the optimal schedule.

Proof. Let ri0 and ri1 be the number of requests for P0 and P1, respectively, at
time i for 0 ≤ i ≤ n. LetR =

∑n
i=0(ri0+ri1) be the total number of requests. The

average flow time of S0 is T (S0) = 1+W0/R where W0 =
∑n

i=1 ri,(i+1) mod 2 and
the average flow time of S1 is T (S1) = 1 + W1/R where W1 =

∑n
i=0 ri,i mod 2.

Since each page broadcast requires one flow time unit, the minimum average
flow time T ∗ ≥ 1. As R = W0 + W1, and thus min{W0/R,W1/R} ≤ 1/2 and
min{T (S0), T (S1)} ≤ T ∗ + 1/2. ��

For the problem of k pages P0, P1, . . . , Pk−1, we consider the following k
schedules which broadcast each page cyclically with different starting pages:
S0 = (P0, P1, . . . , Pk−1, P0, P1, . . . , Pk−1, . . .), S1 = (P1, . . . , Pk−1, P0, P1, . . . ,
Pk−1, P0, . . .), . . . Sk−1 = (Pk−1, P0, . . . , Pk−2, Pk−1, P0, . . . , Pk−2, . . .). Again
the approximation algorithm is to choose the minimum average flow time sched-
ule among these k schedules.

Theorem 5. The minimum average flow time among schedules S0, . . . , Sk−1 is
at most (k − 1)/2 more than that of the optimal schedule

Proof. Let Wi =
∑n

i=0 ri,(i+j) mod k for 0 ≤ j ≤ k − 1 and R =
∑k−1

i=0 Wi

be the total number of requests. The average flow time of Sj for 0 ≤ j ≤
k − 1 is T (Sj) = 1 +

∑k−1
i=1 (i ·W(i+j) mod k)/R, and the minimum among them

is at most
∑k−1

j=0 T (Sj)/k = 1 +
∑k−1

j=0

∑k−1
i=0 W(i+j) mod k/(kR) = 1 + k(k −

1)
∑k−1

j=0 Wj/(2kR) ≤ T ∗ + (k − 1)/2, where T ∗ ≥ 1 is the average flow time of
the optimal algorithm. ��

References

1. N. Bansal, S. K. M. Charikar, and J. Naor. Approximating the aversage response
time in broadcast scheduling. In SODA 2005.

2. Y. Bartal and S. Muthukrishnan. Minimizing maximum response time in scheduling
broadcasts. In SODA 2000, pages 558–559.

3. J. Edmonds and K. Pruhs. Multicast pull scheduling: When fairness is fine. Algo-
rithmica, 36(3):315–330, 2003.

4. J. Edmonds and K. Pruhs. A maiden analysis of longest wait first. In SODA 2004,
pages 818–827.

5. T. Erlebach and A. Hall. NP-hardness of broadcast scheduling and inapproximabil-
ity of single-source unsplittable min-cost flow. In SODA 2002, pages 194–202.

6. Z. Galil and K. Park. A linear-time algorithm for concave one-dimensional dynamic
programming. Inf. Process. Lett., 33(6):309–311, 1990.

7. R. Gandhi, S. Khuller, Y. A. Kim, and Y.-C. J. Wan. Algorithms for minimizing
response time in broadcast scheduling. Algorithmica, 38(4):597–608, 2004.

8. R. Gandhi, S. Khuller, S. Parthasarathy, and A. Srinivasan. Dependent rounding in
bipartite graphs. In FOCS 2002, pages 323–332.

9. B. Kalyanasundaram, K. R. Pruhs, and M. Velauthapillai. Scheduling broadcasts in
wireless networks. Journal of Scheduling, 4(6):339–354, 2001.

328 Wun-Tat Chan et al.

Appendix

Lemma 8. Given a sequence of n+ 1 numbers, a0, . . . , an, with O(n) time pre-
processing, we can compute

∑j
k=i ak for any 0 ≤ i ≤ j ≤ n in constant time.

Proof. As all the prefix sums bi =
∑i

k=0 ak can be computed in O(n) time, each
of the partial sums

∑j
k=i ak = bj − bi−1 can be computed in constant time. ��

Lemma 9. Given a sequence of n+ 1 numbers a0, . . . , an, with O(n) time pre-
processing, we can compute

∑j
k=i ak(d− k+1) for any 0 ≤ i ≤ j ≤ n and j ≤ d

in constant time.

Proof. As all the prefix sums bi =
∑i

k=0 ak and weighted prefix sums
wi =

∑i
k=0 ak(n − i + 1) can be computed in O(n) time, each of the func-

tions
∑j

k=i ak(d− k + 1) = wj −wi−1 + (d− n)(bj − bi−1), can be computed in
constant time. ��

Oblivious and Adaptive Strategies
for the Majority and Plurality Problems

Fan Chung1,�, Ron Graham1,��, Jia Mao1,���, and Andrew Yao2,†

1 Department of Computer Science and Engineering
University of California, San Diego

2 Department of Computer Science, Tsinghua University, China

Abstract. In the well-studied Majority problem, we are given a set of n
balls colored with two or more colors, and the goal is to use the minimum
number of color comparisons to find a ball of the majority color (i.e., a
color that occurs for more than �n/2� times). The Plurality problem has
exactly the same setting while the goal is to find a ball of the dominant
color (i.e., a color that occurs most often). Previous literature regarding
this topic dealt mainly with adaptive strategies, whereas in this paper
we focus more on the oblivious (i.e., non-adaptive) strategies. Given that
our strategies are oblivious, we establish a linear upper bound for the
Majority problem with arbitrarily many different colors. We then show
that the Plurality problem is significantly more difficult by establishing
quadratic lower and upper bounds. In the end, we also discuss some
generalized upper bounds for adaptive strategies in the k-color Plurality
problem.

1 Introduction

The 2-color Majority problem was first raised by J. Moore in 1982 in connection
with problems in the design of fault-tolerant computer systems. (It appeared
in an equivalent setting of finding the majority vote among n processors with
minimum number of paired comparisons[14]). In the colored-ball setting, we are
given a set of n balls, each of which is colored in one of k ∈ Z+ possible colors
φ = {c1, c2, ..., ck}. We can choose any two balls a and b and ask questions of
the form “Do a and b have the same color?”. Our goal is to identify a ball of
the majority color (i.e., meaning that this color occurs more than half of the
time) or determine there is no majority color, using minimum possible number
of questions.

We can view this problem as a game played between two players: Q, the
Questioner, and A, the adversary. Q’s role is to ask a sequence of queries
Q(a, b) := “Is φ(a) = φ(b)?”. A can answer each such query with the hope

� Research supported in part by NSF Grant DMS 0100472 and ITR 0205061
�� Research supported in part by NSF Grant CCR-0310991

��� Research supported in part by NSF Graduate Fellowship
† Research supported in part by CCR-0310466 and CCF-0426582

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 329–338, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

330 Fan Chung et al.

of extending the game as long as possible before Q can finally identify a ball of
the majority color or determine there is no majority. For the case when k = 2,
a number of proofs were given (see Saks and Werman[15], Alonso, Reingold,
Scott[5], and Wiener[17]) showing that n − w2(n) color comparisons are neces-
sary and sufficient in the worst case, where w2(n) is the number of 1’s in the
binary representation of n.

Recently, several variants of this problem were also analyzed by Aigner[1].
One natural generalization is the so-called Plurality problem where the goal is
just to identify a ball of the dominant color (i.e., meaning that this color occurs
more often than any other color). This variant seems to be more difficult variant
and only recently linear upper and lower bounds were given for k = 3 colors[2, 3].

In general, two types of strategies can be considered for Q. These are adaptive
strategies in which each query can depend on the answers given to all previous
queries, and oblivious (or non-adaptive) strategies in which all the queries must
be specified before A is required to answer any of them. Clearly, in the oblivious
case, A has more opportunity to be evasive. To the best of our knowledge, except
for the case when k = 2[1], very little is known about the bounds for oblivious
strategies for other variants of the Majority problem.

Let MO∗(n) denote the minimum number of queries needed by Q in the Ma-
jority problem for arbitrarily many colors (i.e., k is not fixed) over all Oblivious
strategies, POk(n) (resp. PAk(n)) the corresponding minimum in the Plurality
problem for k colors over all oblivious (resp. adaptive) strategies. In this paper
we will establish a linear upper bound for MO∗(n) assuming a majority color
exists, quadratic bounds for POk(n), and also a generalized linear upper bound
for PAk(n).

2 Oblivious Strategy for the Majority Problem

Consider the case where the number of possible colors k is unrestricted. In prin-
ciple, this is a more challenging situation for Q. At least the upper bounds we
have in this case are weaker than those for k = 2 colors[9]. A linear upper bound
can be shown assuming the existence of a majority color. We also remark that
without such assumption, a quadratic lower bound can be proven to be very
close to the worst-case

(
n
2

)
upper bound using similar argument as in the proof

of Theorem 2 in Section 3. In fact, this quadratic lower bound can also be ex-
tended to the general case where the goal is to identify a ball whose color has
appeared more than t ≥ �n/2� times.

Theorem 1. For all n,

MO∗(n) ≤ (1 + o(1))27n.

assuming a majority color exists.

Proof. Suppose the majority color is c. Let B denote the set of remaining colors
{c1, c2, . . . , cR} where R is unknown. Thus, v is not of majority color if and

Oblivious and Adaptive Strategies for the Majority and Plurality Problems 331

only if φ(v) ∈ B. We will specify the queries of Q by a graph H on the vertex
set V , where an edge {vi, vj} in H corresponds to the query Q(vi, vj) := “Is
φ(vi) = φ(vj)?”. The edge is colored blue if they are equal, and red if they are not
equal. By a valid assignment φ on S we mean a mapping φ : S → {c, c1, . . . , cR}
such that:
(i) φ(vi) = φ(vj)⇒ {vi, vj} is blue,
(ii) φ(vi) �= φ(vj)⇒ {vi, vj} is red,
(iii) |φ−1(c)| > n/2.

We are going to use certain special graphs Xp,q , called Ramanujan graphs,
which are defined for any primes p and q congruent to 1 modulo 4 (see [13]).

Xp,q has the following properties:
(i) Xp,q has n = 1

2q(q
2 − 1) vertices;

(ii) Xp,q is regular of degree p + 1;
(iii) The adjacency matrix of Xp,q has the large eigenvalue λ0 = p + 1 and all
other eigenvalues λi satisfying |λi| ≤ 2

√
p.

We will use the following discrepancy inequality (see [4][8]) for a d-regular
graph H = H(n) with eigenvalues satisfying

max
i�=0

|λi| ≤ δ.

For any subset X,Y ⊆ V (H), the vertex set of H , we have

| e(X,Y)− d

n
|X | |Y | |≤ δ

n

√
|X |(n− |X |)|Y |(n− |Y |) (1)

where e(X,Y) denotes the number of edges between X and Y .
Applying (1) to Xp,q, we obtain for all X,Y ⊆ V (Xp,q),

| e(X,Y)− p+ 1
n
|X | |Y | |≤

2
√
p

n

√
|X |(n− |X |)|Y |(n− |Y |) (2)

where n = 1
2q(q

2 − 1) = |V (Xp,q)|.
Now construct a Ramanujan graph Xp,q on our vertex set V = {v1, . . . , vn}.

Let φ be a valid assignment of V to {c, c1, . . . , cR} and consider the subgraph G
of Xp,q induced by φ−1(c) (the majority-color vertices ofXp,q under the mapping
φ).
Claim: Suppose p ≥ 41. Then G has a connected component C with size at least
c′n, where

c′ >
1
2
− 8p

(p− 1)2

Proof: We will use (2) with X = C, the largest connected component of G, and
Y = φ−1(c) \X . Write |φ−1(c)| = αn and |C| = βn. Since e(X,Y) = 0 for this
choice, then by (2) we have

(p + 1)2|X | |Y | ≤ 4p(n− |X |)(n− |Y |),
(p+ 1)2β(α − β) ≤ 4p(1− β)(1 − α+ β),

β(α − β) ≤ 4(1− α)p
(p− 1)2

,

332 Fan Chung et al.

There two possibilities:

β ≥ 1
2

(
α+

√
α2 − 16(1− α)p

(p− 1)2

)
or β ≤ 1

2

(
α−

√
α2 − 16(1− α)p

(p− 1)2

)

Subcase (a).

β ≥ 1
2

(
α+

√
α2 − 16(1− α)p

(p− 1)2

)

>
1
4

(
1 +

√
1− 32p

(p− 1)2

)
since α ≥ 1/2

≥ 1
2
− 8p

(p− 1)2
since p ≥ 37

as desired.
Subcase (b).

β ≤ 1
2

(
α−

√
α2 − 16(1− α)p

(p− 1)2

)

≤ 8(1− α)p
α(p− 1)2

Thus, we can choose a subset F of some of the connected components whose
union ∪F has size xn = | ∪ F | satisfying

α

2
− 4(1− α)p
α(p− 1)2

≤ x <
α

2
+

4(1− α)p
α(p− 1)2

(3)

Now we apply the discrepancy inequality (2) again by choosing X = ∪F and
Y = φ−1(c) \X . We have

(p+ 1)2x(α− x) ≤ 4p(1− x)(1 − α+ x)

or x(α− x) ≤ 4(1− α)p
(p− 1)2

.

However, it is easily checked that because of (3) this is not possible for
α ≥ 1/2 and p ≥ 41. Hence, subcase (b) cannot occur. This proves the claim.

Now we prove Theorem 1. Let n = 1
2q(q

2 − 1). Consider an algorithm Q
specified by a graph H = Xp,q where p ≥ 53. We show that a good element
can always be identified after all the queries are answered. Suppose we have
an arbitrary blue/red coloring of the edges of Xp,q with p ≥ 53, and φ : S →
{c, c1, . . . , cR} is a valid assignment on V = V (Xp,q). Consider the connected
components formed by the blue edges of Xp,q. By the Claim there is at least one
blue component of size at least (1

2 −
8p

(p−1)2)n > 1
3n (since p ≥ 53). Call any such

blue component large.

Oblivious and Adaptive Strategies for the Majority and Plurality Problems 333

If there is only one large component then we are done, i.e., every point in
it must be good. Since p ≥ 53, there cannot be three large blue components.
So the only remaining case is that we have exactly two large blue components,
say S1 and S2. Again, if either S1 ⊆ φ−1(c) or S2 ⊆ φ−1(c) is forced, then we
are done. So we can assume there is a valid assignment φ1 with S1 ⊆ φ−1

1 (c),
S2 ⊆ φ−1

1 (B), and a valid assignment φ2 with S2 ⊆ φ−1
2 (c), S1 ⊆ φ−1

2 (B) (where
we recall that B = {c1, c2, . . . , cR}).

Let us write S′
i = φ−1

i (c)\Si, i = 1, 2. Clearly we must have A := S′
1∩S′

2 �= ∅.
Also note that |A| ≤ n− |S1| − |S2| < 16p

(p−1)2n.
Define B1 = S′

1 \A,B2 = S′
2 \A. Observe that there can be no edge between

A and S1 ∪ S2 ∪B1 ∪B2. Now we are going to use (2) again, this time choosing
X = A, Y = S1 ∪ S2 ∪B1 ∪B2. Note that

n > |Y | = |φ−1
1 (c)| − |A|+ |φ−1

2 (c)| − |A| > n− 2|A|.

Since e(X,Y) = 0, we have by (2),

(p + 1)2|X | |Y | ≤ 4p(n− |X |)(n− |Y |),
(p + 1)2|A|(n− 2|A|) ≤ 4p(n− |A|)2|A|.

However, this implies

(p+ 1)2(n− 2|A|) ≤ 8p(n− |A|),
i.e., n((p+ 1)2 − 8p) ≤ 2|A|((p + 1)2 − 4p)

≤ 2|A|(p− 1)2

< 32pn
(p+ 1)2 − 8p < 32p

which is impossible for p ≥ 41.
Setting p = 53 (so that Xp,q = X53,q is regular of degree p + 1 = 54), we

see that X53,q has (1 + o(1))27n edges. This shows that Theorem 1 holds when
n = 1

2q(q
2 − 1) for a prime q ≡ 1(mod 4).

If 1
2qi(q2i − 1) < n < 1

2qi+1(q2i+1 − 1) = n′ where qi and qi+1 are consecutive
primes of the form 1(mod 4), we can simply augment our initial set V to a
slightly larger set V ′ of size n′ by adding n′−n = δ(n) additional good elements.
Standard results from number theory show that δ(n) = o(n3/5), for example.
Since the Ramanujan graph query strategy of Q actually identifies Ω(n′) balls
of the majority color c from V ′ (for fixed p) then it certainly identifies a ball of
the majority color of our original set V .

This proves Theorem 1 for all n. ��
We remark that the constant 27 can be further reduced by using random

sparse graphs and applying concentration estimates from probabilistic graph
theory. However, such methods can only deduce the existence of a graph with the
desired properties whereas we use an explicit construction (Ramanujan graphs)
here.

334 Fan Chung et al.

3 Oblivious Strategies for the Plurality Problem

The Plurality problem generalizes the Majority problem where the goal is to iden-
tify a ball whose color occurs most often or show that there is no dominant color.
When there are only k = 2 possible colors, the Plurality problem degenerates to
the Majority problem with two colors, and hence there are tight bounds for both
adaptive (n−w2(n)) and oblivious (n−2 for n odd, n−3 for n even) strategies[9].

In general, it seems clear that the k-color Plurality problem should take more
queries than the corresponding Majority problem. But exactly how much more
difficult it is compared with the Majority problem was not so clear to us at the
beginning. Similar arguments using concentration inequalities in random graphs
seemed possible for achieving a linear upper bound. In the following section, we
will prove the contrary by establishing a quadratic lower bound, even for the
case when k = 3. Also note that the lower bound would remain quadratic even
if we assume the existence of a plurality color through slight modification on the
proof of Theorem 2. Intuitively, we can say that this is because the existence of a
majority color gives us much more information than the existence of a plurality
color.

3.1 Lower Bound

Theorem 2. For the Plurality problem with k = 3 colors, the number of queries
needed for any oblivious strategy satisfies

PO3(n) >
n2

6
− 3n

2

Proof. Consider any query graph G with n vertices and at most n2

6 −
3n
2 edges.

Therefore there must exist a vertex v with deg(v) ≤ n/3− 3. Denote the neigh-
borhood of v by N(v) (which consists of all vertices adjacent to v in G), and
the remaining graph by H = G \ (N(v) ∪ {v}). Hence,H has at least 2n/3 + 2
vertices.

Now split H into three parts H1, H2, and X where |H1| = |H2| + 1 and
|X | ≤ 1. Assign color 1 to all vertices in H1, color 2 to all vertices in H2, color
3 to all vertices in N(v) and X , and color 1 or 2 to v. Note that based on either
one of the two possible color assignments, all query answers are forced.

Since color 3 cannot possibly be the dominant color, we see that whether
color 1 is the dominant color or there is no dominant color (because of a tie)
solely depends on the color of v, which the Questioner cannot deduce from the
query answers.

This proves the lower bound to the number of queries needed for the oblivious
strategy is n2

6 −
3n
2 .

��
This quadratic lower bound also applies to all k ≥ 3 colors for the Plurality

problem using oblivious strategies, since we don’t need to use any additional
colors beyond 3 for this argument.

Oblivious and Adaptive Strategies for the Majority and Plurality Problems 335

3.2 Upper Bound

A trivial upper bound is the maximum number of possible queries we can ask,
which is

(
n
2

)
. In this section we will improve this by showing that for k colors, we

have an upper bound of essentially (1 − 1/k)
(
n
2

)
on POk(n). This follows from

the following fact.

Fact. Let p ≥ 1 − 1/k + ε where ε > 0. Then for n sufficiently large, a random
graph Gp on n vertices almost surely has the property that for any subset S of
vertices of size at least n/k, the graph Gp[S] induced by S is connected.

Theorem 3. For every ε > 0

POk(n) < (1 − 1/k + ε)
(
n

2

)
provided n > n0(ε).

Proof. Given p ≥ 1 − 1/k + ε where ε > 0, we consider random graphs Gp

for sufficiently large n (i.e. n > n0(ε)). Using the above fact, let x1 ∈ S. Then
almost surely, x1 has a neighborhood of size at least (1 − 1/k + δ)n for some
fixed δ > 0. Thus, this neighborhood must intersect S, say in the point x2.
Now, look at the neighborhood of x1 ∪ x2. Almost surely, this neighborhood has
size at least (1 − 1/k + δ)n, and so, hits S\{x1, x2}, say in the point x3. We
can continue this process until we reach the set Xt = {x1, x2, . . . , xt} where
t ≈ log(n). It is clear (by the usual probabilistic arguments) that we can now
continue this argument until the growing set Xt becomes all of S. As a result,
using this graph, the Adversary cannot avoid forming a blue clique with all the
vertices with the dominant color (since there are more than n/k of them). This
proves Theorem 3. ��

4 Adaptive Strategies for the Plurality Problem

Aigner et al.[2, 3] showed linear bounds for adaptive strategies for the Plurality
problem with k = 3 colors. In this section, we first note a linear upper bound for
general k in this case, and then strengthen it using a generalized argument.

Theorem 4. For the Plurality problem with k colors where k ∈ Z+, the mini-
mum number of queries needed for any adaptive strategy satisfies

PAk(n) ≤ (k − 1)n− k(k − 1)
2

Proof. There are k possible colors for the given n balls. We will use k buckets,
each for a different possible color. All buckets are empty initially. The first ball
s1 is put in the first bucket b1. The second ball is compared against a ball from
b1; if they have the same color, it is put in b1, otherwise, it is put in a new

336 Fan Chung et al.

bucket b2. Similarly, the ith ball has to be compared against a ball from every
non-empty bucket (at most (i−1) ≤ k−1 many of them). Therefore the number
of comparisons is no more than

1 + 2 + ...+ (k − 1) + (k − 1)(n− k) = (k − 1)n− k(k − 1)
2

In [2], it was proved that PA3(n) ≤ 5
3n − 2. We will now give a generalized

proof for all k ≥ 3 in this setting. It is also known to us through a very recent
communication with the authors of [2] that they have independently come up
with a different proof for similar claims which will appear in [3].

Theorem 5. For the Plurality problem with k colors where k ∈ Z+, the mini-
mum number of queries needed for any adaptive strategy

PAk(n) ≤ (k − 1
k
− 1)n− 2

Proof. Let us denote the comparison of ball a against b by (a : b), and define
a color class to be a set of balls having the same color. There are two phases
in this game. Given n balls {s1, s2, ..., sn}, in Phase I the Questioner handles
one ball at a time (except for the first query) and keeps a state vector vi after
ball si is handled. Each vi is simply the list of color class cardinalities, in non-
decreasing order, (ai1, ai2, ..., aik) where ai1 ≥ ai2... ≥ aik. The Questioner also
keeps a representative ball from every non-empty color class for comparisons and
updates this list whenever there is a change in the state vector.
Claim: At every state, the Questioner has a strategy such that the total number
ti of comparisons up to vi (inclusive) satisfies

ti ≤ (k − 1)ai1 + (k − 2)
k−1∑
j=2

aij + (k − 1)aik − 2

Proof: We proceed by induction. After the first comparison, v2 = (1, 1, 0, ...) or
(2, 0, ...), so t2 = 1 ≤ (k − 1) + (k − 2)− 2 ≤ 2(k − 1)− 2 because k ≥ 3.

For 2 ≤ i ≤ n, let vi = (ai1, ai2, ..., aik) be the state vector and {Ai1, Ai2, ...,
Aik} be the set of corresponding representative balls (some may be null if the
color class has cardinality 0). Now, ball si+1 is to be handled as follows:

1. If there are no ties in the entries of vi (i.e., ais �= ait for all s, t), we will com-
pare si+1 with the middle representative balls first, namely, the comparison
order is

(si+1 : Ai2), (si+1 : Ai3), ..., (si+1 : Ai(k−1)), (si+1 : A1)

with a total number of no more than (k − 1) comparisons. Note whenever
the Adversary answers Yes, we know to which color class si+1 belongs, and
hence, we can skip the remaining comparisons.

Oblivious and Adaptive Strategies for the Majority and Plurality Problems 337

2. Otherwise, pick any tie, say aij = ai(j+1), and compare si+1 with all the
other representative balls first, namely, the comparison order is

(si+1 : Ai1), ..., (si+1 : Ai(j−1)), (si+1 : Ai(j+2)), ..., (si+1 : Aik)

with a total number of no more than (k − 2) comparisons.

After identifying to which color class si+1 belongs, only one of the numbers
in vi gets incremented by 1 and possibly moved forward, to maintain the non-
decreasing order in vi+1. Using the above strategy, we can ensure that no more
than (k − 2) comparisons have been used in this round unless ai1 or aik gets
incremented, in which case, their positions in the list do not change. Therefore,
by the inductive hypothesis, we have

ti+1 ≤ (k − 1)a(i+1)1 + (k − 2)
k−1∑
j=2

a(i+1)j + (k − 1)a(i+1)k − 2

This proves the claim.
At state vi, let ri be the number of the remaining balls that have not been

involved in any queries. Phase I ends when one of the following happens:

(A) ai1 = ai2 = ... = aik

(B) ri = ai1 − ai2 − 1
(C) ri = ai1 − ai2

(Note that one of (A), (B), (C) will eventually occur.) To prove the theorem, we
use induction where the cases for n ≤ 3 are easy to verify. More comparisons may
be needed in Phase II depending on in which case Phase I ends. If Phase I ends
in case (A), we use the induction hypothesis; in case (B), no more comparisons
are needed because Ai1 is a Plurality ball; in case (C), we need no more than ri

more comparisons to identify Ai1 or Ai2 as a Plurality ball. In all cases, we can
show (using the claim) with arguments similar to those in [2] that

PAk(n) ≤ (k − 1)n− n/k − 2 = (k − 1
k
− 1)n− 2

This proves the theorem. ��

5 Conclusion

In this paper, we established upper and lower bounds for oblivious and adaptive
strategies used to solve the Majority and Plurality problems. These problems
originally arose from applications in fault tolerant system design. However, the
interactive nature of these problems also places them in the general area of
interactive computing. It is therefore desirable to develop more techniques to
solve this type of problems efficiently as well as to understand the limits of our
ability in doing so.

338 Fan Chung et al.

References

1. M. Aigner, “Variants of the Majority Problem”, Applied Discrete Mathematics,
137, (2004), 3-25.

2. M. Aigner, G. De Marco, M. Montangero, “The Plurality Problem with Three
Colors”, STACS 2004, 513-521.

3. M. Aigner, G. De Marco, M. Montangero, “The Plurality Problem with Three
Colors and More”, Theoretical Computer Science, to appear, (2005).

4. N. Alon, “Eigenvalues and Expanders”, Combinatorica 6 (1986), 86-96.
5. L. Alonso, E. Reingold, R. Schott, “Average-case Complexity of Determining the

Majority”, SIAM J. Computing 26, (1997), 1-14.
6. P. M. Blecher, “On a Logical Problem”, Discrete Mathematics 43, (1983), 107-110
7. B. Bollobás, “Random graphs”, 2nd ed., Cambridge Studies in Advanced Mathe-

matics, 73. Cambridge University Press, Cambridge, 2001
8. F. R. K. Chung, “Spectral Graph Theory”, CBMS Lecture Notes, AMS Publica-

tions, 1997.
9. F. R. K. Chung, R. L. Graham, J. Mao, and A. C. Yao, “Finding Favorites”,

Electronic Colloquium on Computational Complexity(ECCC) (078): 2003
10. M. J. Fischer and S. L. Salzberg, “Finding a Majority among n Votes”, J. Algo-

rithms 3: 375-379 (1982).
11. D. E. Knuth, personal communication.
12. D. E. Knuth, “The Art of Computer Programming, Volume 3. Sorting and Search-

ing”, Addison-Wesley Publishing Co., Reading, Mass., 1973.
13. A. Lubotzky, R. Phillips and P. Sarnak, “Ramanujan Graphs”, Combinatorica 8

(1988), 261-277.
14. J. Moore, “Proposed problem 81-5”, J. Algorithms 2: 208-210 (1981).
15. M. Saks and M. Werman, “On Computing Majority by Comparisons”, Combina-

torica 11(4) (1991), 383-387.
16. A. Taylor and W. Zwicker, personal communication.
17. G. Wiener, “Search for a Majority Element”, J. Statistical Planning and Inference

100 (2002), 313-318.

A Note on Zero Error Algorithms
Having Oracle Access to One NP Query�

Jin-Yi Cai1,2 and Venkatesan T. Chakaravarthy3,��

1 Computer Science Department, Univ. of Wisconsin, Madison, WI 53726, USA
jyc@cs.wisc.edu

2 Tsinghua University, Beijing, China
3 IBM India Research Lab, IIT Campus, New Delhi 110016, India

vechakra@in.ibm.com

Abstract. It is known that Sp
2 ⊆ ZPPNP [3]. The reverse direction of

whether ZPPNP is contained in Sp
2 remains open. We show that if the

zero-error algorithm is allowed to ask only one query to the NP oracle
(for any input and random string), then it can be simulated in Sp

2. That
is, we prove that ZPPNP[1] ⊆ Sp

2.

1 Introduction

Symmetric alternation, or the class Sp
2, was independently introduced by Russell

and Sundaram [15] and Canetti [5]. It is a proof system in which a polynomial
time verifier ascertains whether or not an input string x belongs to a language L
by interacting with two computationally all powerful provers. The two provers,
called the Yes-prover and the No-prover, make contradictory claims: x ∈ L
and x �∈ L, respectively. Of course, only one of them could be honest. In order to
substantiate their claims, the two competing provers provide polynomially long
strings y and z, respectively, as certificates. The verifier analyzes the input x and
the certificates y and z, and votes in favor of one of the provers. We require that
if x ∈ L, then there exists a certificate y using which the Yes-prover can win
the vote, for any certificate z provided by the No-prover. Similarly, if x �∈ L,
then there should exist a z using which the No-prover can win the vote, for any
certificate y provided by the Yes-prover. We call the certificates satisfying the
above requirements as irrefutable certificates. We can rephrase the requirements
as follows. If x ∈ L, then the Yes-prover has an irrefutable certificate, and
if x �∈ L, then the No-prover has an irrefutable certificate. The symmetric
alternation class Sp

2 consists of languages having a proof system of the above
type. We will formally define Sp

2 later.
Russell and Sundaram [15] and independently Canetti [5] introduced the

class Sp
2 and showed that BPP ⊆ Sp

2. As it is easy to show Sp
2 ⊆ Σp

2 ∩ Πp
2 ,

the above result improves the classical Sipser–Lautemann theorem that BPP ⊆
Σp

2 ∩ Π
p
2 [12, 17]. Obtaining this improvement was one of their motivations in

� Research supported in part by NSF grant CCR-0208013.
�� Research conducted while the author was at the Univesity of Wisconsin

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 339–348, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

340 Jin-Yi Cai and Venkatesan T. Chakaravarthy

introducing Sp
2. It was also shown in [15] that Sp

2 contains MA and PNP. Sym-
metric alternation has been gaining attention recently and several nice results
involving the class are known (see [3, 4, 6–8, 16]).

Sp
2 shares some nice properties with ZPPNP. For instance, both contain PNP

and MA, and both are contained inΣp
2∩Π

p
2 . Based on this observation, Goldreich

and Zuckerman [8] raised the relationship between the two as an open question.
Cai [3] answered the question in part by showing that Sp

2 ⊆ ZPPNP. Figure 1
illustrates the relationships among Sp

2 and other classes.

Πp
2 Σp

2

Σp
2 ∩ Πp

2

������������

�����������

ZPPNP

��

AM

��

Sp
2

��

coAM

��

MA

�� ������������
PNP

��

coMA

���������������

NP

�� �����������
BPP

�����������

������������
coNP

��������������

P

������������

�� �������������

Fig. 1. Sp
2 and other classes

As discussed above, we have that PNP ⊆ Sp
2 ⊆ ZPPNP [3, 15]. The reverse

containments remain challenging open problems, but they can be obtained under
some widely-believed complexity theoretic assumptions. A long line of research
has demonstrated that randomized computations can be simulated deterministi-
cally for broad classes of problems under plausible assumptions. Working in this
framework, Klivans and van Melkebeek [11] built on a famous result of Impagli-
azzo and Wigderson [10] and showed that if there is a language L ∈ NE∩ coNE
such that any family of circuits with SAT oracle gates computing L is of size
2Ω(n) then BPPNP = PNP. Clearly, the same assumption also implies that
ZPPNP = Sp

2 = PNP. On the other hand, Shaltiel and Umans [16] showed that a
weaker assumption is sufficient to obtain Sp

2 = PNP. Their assumption involves
co-nondeterministic circuits, instead of circuits with SAT gates and it is the one
used in [13] to derandomize AM.

A Note on Zero Error Algorithms Having Oracle Access to One NP Query 341

The above discussion shows that PNP = Sp
2 = ZPPNP under some plausible

assumptions. However, it remains a challenging open problem to derive the above
result unconditionally. In this paper, we focus on the issue of whether ZPPNP is
contained in Sp

2 and prove a weak result along these lines. Recall that L ∈ ZPPNP

means that the language is computed by a zero-error polynomial time algorithm
having oracle access to a NP language. Such an algorithm may ask polynomially
many queries to the oracle. We consider a subset of these algorithms that make
only one oracle query (for any input and any random string). Our main result is
that such algorithms can be simulated in Sp

2. That is, we prove that ZPPNP[1] ⊆
Sp

2.
We note that whether ZPPNP[2] is contained in Sp

2 remains open. The class
ZPPNP[2] contains the class AM ∩ coAM, which in turn contains ZPPGI, where
GI is the graph isomorphism problem. Even determining whether AM ∩ coAM
or ZPPGI is contained in Sp

2 remain interesting open problems.
Our result that ZPPNP[1] ⊆ Sp

2 is tight in the following sense. We consider
the containment of ZPPNP[1] in other important classes in the second level of the
polynomial time hierarchy. It is unlikely that ZPPNP[1] is contained in AM, since
coNP ⊆ ZPPNP[1] and it is shown in [2] that coNP ⊆ AM implies PH collapses
to AM. Consequently, ZPPNP[1] is unlikely to be contained in smaller classes
such as MA and NP. One potential candidate that might contain ZPPNP[1] is
PNP. As remarked before, under some widely-believed hypothesis, ZPPNP[1] (or
more generally, BPPNP) is contained in PNP [11]. But, it is difficult to prove
the above claim unconditionally, since BPP ⊆ ZPPNP[1] and the containment of
BPP in PNP has been a long standing open problem.

The fact that BPP ⊆ ZPPNP[1] can be shown in many ways. Nisan and
Wigderson [14] and Goldreich and Zuckerman [8] present alternative proofs for
BPP ⊆ ZPPNP. The former proof is based on Nisan-Wigderson pseudorandom
generator [14] and the latter uses extractor based amplification [18] of BPP.
These proofs indeed show that BPP ⊆ ZPPNP[1]. But, they use the above-
mentioned heavy tools. We observe that the result can be obtained through
a small modification of a standard proof of the fact BPP ⊆ ZPPNP. We also
present the details of this observation.

We now sketch the main idea of the proof of ZPPNP[1] ⊆ Sp
2. Since the

satisfiability problem SAT is NP-Complete, it suffices to show that ZPPSAT[1] ⊆
Sp

2. Because the underlying computation is of the ZPP type, it is easy to handle
an input string x, if there is some random string y such that M accepts or
rejects x, i.e., M reaches a definitive answer, and the oracle query ϕ asked
by M along the computational path specified by y is satisfiable. In this case,
the honest prover has an irrefutable certificate consisting of the string y and a
satisfying truth assignment of ϕ. The harder part of the proof involves handling
input strings that do not satisfy the above property. Let x be such an input
string. We consider the following (possibly incorrect) simulation of M that does
not use the SAT oracle: given strings x and y, run the machine M with x as
input and y as the random string, assuming answer to the oracle query is “No”.
The main observation is that the set of all accepting paths in this simulation is

342 Jin-Yi Cai and Venkatesan T. Chakaravarthy

“large” if and only if x ∈ L. In our proof system, the Yes-prover (similarly, the
No-prover) would try to prove that x ∈ L (x �∈ L) by showing that the above
set is large (small). This is achieved by using ideas from the proof of BPP ⊆ Sp

2.
Organization. The paper is organized as follows. Section 2 provides the nec-
essary definitions. The main result is proved in Section 3. Section 4 presents
the details of our observation that BPP ⊆ ZPPNP[1]. We conclude the paper by
stating some open problems in Section 5.

2 Preliminaries

We start with the formal definition of Sp
2.

Definition 1 ([5, 15]). A language L is in Sp
2 if there exists a polynomial-time

computable boolean predicate P (·, ·, ·) and a polynomial p such that, for all x,

1. x ∈ L ⇐⇒ (∃p(|x|)y)(∀p(|x|)z)[P (x, y, z) = 1], and
2. x �∈ L ⇐⇒ (∃p(|x|)z)(∀p(|x|)y)[P (x, y, z) = 0].

Our next task is to define ZPPNP[1]. We first consider an issue pertaining
to its definition. The usual approaches for amplifying the success probability of
randomized computations involve running it multiple times using strings chosen
independently at random (or according to some suitable distribution). In the
case of a ZPPNP[1] algorithms, this approach involves asking multiple queries
to the NP oracle. It is not clear whether the success probability ZPPNP[1] algo-
rithms can be amplified asking only one query. In general, the issue arises in the
context of randomized bounded query computations. It seems to be an interest-
ing problem worthy of further investigation. In our discussion, we circumvent
the issue by defining ZPPNP[1] in a way that would make our ZPPNP[1] ⊆ Sp

2

result stronger: we require the success probability to be only 1/2 + 1/poly(n).
It remains open whether ZPPNP[1] machines with success probabilities less than
1/2 can be simulated in Sp

2.

Definition 2. We say that a language L ∈ ZPPNP[1], if there exists a ran-
domized oracle Turing machine M(·, ·), a language A ∈ NP and a polynomial
p(·) such that, given oracle access to A, the machine M satisfies the following
requirements for any input string x ∈ {0, 1}n.

– On any random string, M asks at most one query to the oracle A.
– The machine has zero-error. Meaning, for any random string, the output

belongs to {accept , reject , ?}, such that if x ∈ L then the output is
either accept or ?, and if x �∈ L then the output is either reject or ?.

– The machine has good success probability:

Pr[M outputs accept or reject] ≥ 1
2

+
1

p(n)
,

where the probability is taken over the random coin tosses of M .

A Note on Zero Error Algorithms Having Oracle Access to One NP Query 343

3 ZPPNP[1] ⊆ Sp
2

In this section, we prove our main result. As outlined in the introduction, the
proof involves considering two types of input strings. The first consists of input
strings x such that for some random string y, the zero-error algorithm outputs
accept or reject and the query ϕ asked by the algorithm is satisfiable. The
second type consists of inputs strings that do not satisfy the above property.
It is easy to handle the first type of strings. For the second type of strings, we
consider an incorrect simulation of the algorithm that assumes the answer to
the query is “No”. Under this simulation, the set of accepting paths is “large”
if and only if x belongs to the language. We make use of a standard lemma
regarding “large” and “small” sets for handling the second type of input strings.
The following notation is used in the lemma and our proof.

For two m-bit strings u = u1u2 . . . um and v = v1v2 . . . vm, let u ⊕ v denote
the bitwise XOR of u and v: u⊕ v = u1⊕ v1 . . . um⊕ vm. For a set S ⊆ {0, 1}m,
let S ⊕ u be the set {s⊕ u|s ∈ S}. We call S ⊕ u the shift of S by u.

Suppose a set S ⊆ {0, 1}m is sufficiently large. Then, if we choose a suitable
number of shift vectors s1, s2, . . . , sk at random, with high probability, the union
of these shifts will “cover” the entire space:

⋃k
i=1(S ⊕ ui) = {0, 1}m. On the

other hand, if S is a sufficiently small and k is small enough, then for any set
of vectors s1, s2, . . . , sk, the shifts will cover only a constant fraction of {0, 1}m.
The following lemma formalizes the above discussion.

Lemma 1. [12] Let S ⊆ {0, 1}m and k = %m
2 &.

1. If S/2m ≥ 1− 1/m then

Pr
s1,s2,...,sk∈{0,1}m

[
k⋃

i=1

(S ⊕ si) = {0, 1}m

]
≥ 1− 2m

mk
.

2. If S/2m < 1/m then for any s1, s2, . . . , sk ∈ {0, 1}m,

Pr
u∈{0,1}m

[
u ∈

k⋃
i=1

(S ⊕ si)

]
≤ 1

2
.

Theorem 1. ZPPNP[1] ⊆ Sp
2.

Proof. Since the satisfiability problem (SAT) is NP-complete, it suffices to show
that ZPPSAT[1] ⊆ Sp

2. Let L ∈ ZPPSAT[1] via a randomized oracle Turing machine
M . Let r(n) be the number of random bits used by M on an input of length
n, where r(·) is a polynomial. Consider running the machine M with some x ∈
{0, 1}n as the input and some y ∈ {0, 1}r(n) as the random string. Without loss
of generality, we assume that the machine asks a query to the SAT oracle and
let ϕx,y denote that query. Let M(x, y) be the output of the machine when the
query is answered correctly. Let Mno(x, y) denote the output when the answer
to the query is taken as “No” (which is an incorrect answer, if ϕx,y is satisfiable).
Myes(x, y) is defined similarly.

344 Jin-Yi Cai and Venkatesan T. Chakaravarthy

Fix an input string x ∈ {0, 1}n and write r = r(n). We call x nice if there
exists y ∈ {0, 1}r such that ϕx,y ∈ SAT and M(x, y) is either accept or
reject . Define

Ex = {y | y ∈ {0, 1}r and Mno(x, y) = accept }.

We observe that, if x is not nice, then the following two implications are true.

x ∈ L =⇒ |Ex|
2r

≥ 1
2

+
1

p(n)

x �∈ L =⇒ |Ex|
2r

≤ 1
2
− 1
p(n)

We wish to amplify the gap in the size of Ex in the two cases and we do it in
a standard way. Write t = (p(n))2 and m = t · r. Define a set Ẽx ⊆ {0, 1}m as
follows.

Ẽx = {y1 ◦ y2 ◦ · · · ◦ yt| majority of y1, y2, . . . , yt belong to the set Ex}

By Chernoff bounds, if x is not nice then we have the following two implications.

x ∈ L =⇒ |Ẽx|
2m

≥ 1− 1
m

x �∈ L =⇒ |Ẽx|
2m

≤ 1
m

We now present our proof system. Let x ∈ {0, 1}n be the input string. The
Yes-prover’s certificate consists of two components. The first component is a
single bit using which he makes his claim on whether x is nice or not. If he claims
it to be nice, then the second component should consist of a string y ∈ {0, 1}r and
a truth assignment σ to the formula ϕx,y. (We expect that M(x, y) = accept ,
ϕx,y ∈ SAT and σ is a satisfying truth assignment of ϕx,y, proving that x ∈ L.
Of course, the prover could be lying!) If he claims x is not nice, then the second
component should be sequence of k strings −→s = (s1, s2, . . . , sk) ∈ ({0, 1}m)k,
where k = %m

2 &. (The expectation is that the union of the shifts of Ẽx by these
strings covers the entire space). The No-prover’s certificate is similar. Its first
component is a bit using which the No-prover makes his claim on whether x is
nice or not. If he claims it to be nice, then the second component should consist
of a string y ∈ {0, 1}r and a truth assignment σ to the formula ϕx,y. If he claims
x is not nice, then the second component should consist of a sequence of � strings
−→u = (u1, u2, . . . , u�) ∈ ({0, 1}m)�, where � = km + 1. (The expectation is that
for any set of strings s1, s2, . . . , sk, there is at least one ui that is not covered by
these shifts).

The verifier’s algorithm works as follows. If the Yes-prover claims that x
is nice, the verifier checks whether the string y and σ provided by him satisfy
the conditions ϕx,y(σ) = 1 and Myes(x, y) = accept . If so, he votes in favor
of the Yes-prover, else he votes in favor of the No-prover. Suppose the

A Note on Zero Error Algorithms Having Oracle Access to One NP Query 345

Yes-prover claims x is not nice. If the No-prover claims x is nice, then the
verifier checks whether the string y and σ provided by the No-prover satisfy
the conditions ϕx,y(σ) = 1 and Myes(x, y) = accept . If so, he votes in favor of
the No-prover, else he votes in favor of the Yes-prover.

The interesting case is where both provers claim that x is not nice. Here we
consider the second components of the certificates −→s = (s1, s2, . . . , sk) and −→u =
(u1, u2, . . . , u�), provided by the Yes-prover and No-prover, respectively. We
say that −→s beats −→u , if

∀(1 ≤ j ≤ �)

[
uj ∈

k⋃
i=1

Ẽx ⊕ si

]
. (1)

If the above predicate is false, then we say that −→u beats −→s . Given −→s and −→u , if
−→s beats −→u , then the verifier votes in favor of the Yes-prover and otherwise,
he votes in favor of the No-prover.

Notice that
uj ∈ Ẽx ⊕ si ⇐⇒ uj ⊕ si ∈ Ẽx.

Checking whether a given string belongs to Ẽx involves membership testing in
Ex, which can be carried out in polynomial time. Thus the verifier’s algorithm
runs in polynomial time.

We next argue the correctness of the proof system. It is clear that the honest
prover has an irrefutable certificate, if the input string x is nice. The interesting
case is where x is not nice. Suppose x ∈ L and we will show that the Yes-prover
has an irrefutable certificate. In this scenario, since |Ẽx|/2m ≥ 1 − 1/m, by
Lemma 1, there exists −→s = (s1, s2, . . . , sk) such that

⋃k
i=1(S ⊕ ui) = {0, 1}m.

It follows that −→s beats any −→u = (u1, u2, . . . , u�). So the Yes-prover has an
irrefutable certificate. Now suppose x �∈ L. Here |Ẽx|/2m ≤ 1/m and hence, by
Lemma 1, for any −→s = (s1, s2, . . . , sk),

Pr
u∈{0,1}m

[
u ∈

k⋃
i=1

(Ẽx ⊕ ui)

]
≤ 1/2.

It follows that, choosing u1, u2, . . . , u� independently at random,

Pr−→u =(u1,u2,...,u�)
[−→s beats −→u] ≤ 1

2�
.

As a consequence,

Pr−→u =(u1,u2,...,u�)

[
∃−→s ∈ {0, 1}km(−→s beats −→u)

]
≤ 2km

2�
≤ 1

2
,

where the last inequality follows from our choice of �. We conclude that there
exists some −→u that beats all −→s ∈ {0, 1}km and hence, the No-prover has an
irrefutable certificate. ��

346 Jin-Yi Cai and Venkatesan T. Chakaravarthy

4 BPP ⊆ ZPPNP[1]: A Simple Proof

A standard way of proving BPP ⊆ ZPPNP (via Lemma 1) involves asking two
oracle queries. We observe that the number of queries can be reduced to one
via a small modification to the construction. This observation leads to a simple
proof of BPP ⊆ ZPPNP[1]. We note that the result can also be obtained by other
means. For instance, Nisan and Wigderson [14] and Goldreich and Zuckerman [8]
present alternative proofs for BPP ⊆ ZPPNP, by using Nisan-Wigderson pseudo-
random generator [14] and extractor based amplification [18], respectively. The
constructions in these proofs, in fact, make use of only one query.

Theorem 2. BPP ⊆ ZPPNP[1].

Proof. One standard way of proving BPP ⊆ ZPPNP uses Lemma 1 and it goes
as follows. Let L ∈ BPP and M be a randomized algorithm for L. Let x be
an input string. Via suitable amplification, we assume that M has error prob-
ability ≤ 1/m, where m is the number of coin tosses of M on input x. Let
Ex = {y|M(x, y) = 1}. Given the input x, our ZPPNP simulation chooses
s1, s2, . . . , sm ∈ {0, 1}m at random and asks two queries to NP oracle:

(Q1)
m⋃

i=1

[Ex ⊕ si] = {0, 1}m

(Q2)
m⋂

i=1

[Ex ⊕ si] = φ

If the answer to Q1 is “yes”, then the simulation outputs accept . If the answer
to Q2 is “yes” then it outputs reject . If both the answers are “no” it outputs
“?”. (It is not possible to have “yes” answers to both questions). Lemma 1
guarantees that the simulation is correct and that it has high probability of
success.

The above simulation uses two queries. We observe that the number of queries
can be reduced to one, using the following simple idea. We first simulate the
machine M , using a randomly chosen string. The outcome of the machine gives
us a clue as to whether or not x ∈ L, which is correct with high probability.
Then we take only one of the two paths of the previous ZPPNP simulation,
where the path is chosen according to the outcome. Formally, if M(x, y) = 1,
then we ask the query Q1. If the oracle answers “yes”, then output accept ,
else output “?”. On the other hand, if M(x, y) = 0, then we ask the query Q2.
If the oracle answers “yes”, then output reject , else “?”. It is easy to argue
that this algorithm is correct and that it has high probability of success. ��

5 Open Problems

As we discussed before, it is known that PNP ⊆ Sp
2 ⊆ ZPPNP[3, 15]. The reverse

containments are challenging open problems. But, we can prove them under

A Note on Zero Error Algorithms Having Oracle Access to One NP Query 347

some complexity theoretic assumptions. Under a plausible hypothesis, we know
that ZPPNP = PNP [11]. In a recent work, Shaltiel and Umans [16] present a
conditional derandomization of Cai’s simulation [3] of Sp

2 in ZPPNP. They show
that a hypothesis weaker than the one used in [11] suffices to obtain Sp

2 = PNP.
Their hypothesis is the one used in [13] to show AM = NP. In a similar spirit, it
would be nice if we could weaken the assumptions needed for showing ZPPNP ⊆
Sp

2.
It is also worthwhile to consider classes contained in ZPPNP and show them to

be in Sp
2. We proved that ZPPNP[1] is in Sp

2, but we required that the randomized
algorithms have success probability greater than half. It would be nice to show
the same result when the success probability is less than half (say, 1/4). Whether
ZPPNP[2] (even with success probability close to one) is contained in Sp

2 also
remains open. AM∩coAM is another interesting class contained in ZPPNP that is
not known to be in Sp

2. The above questions are related and are in the decreasing
order of difficulty. First of all, it is not hard to show that AM∩coAM ⊆ ZPPNP[2].
Secondly, we can easily simulate two queries to an NP oracle with only one
query incurring a loss in the success probability by a factor of two. Another
open question along these lines is the containment of ZPPGI in Sp

2, where GI
refers to the graph isomorphism problem. This might be easier to prove, since
ZPPGI ⊆ AM ∩ coAM [1, 9].

References

1. L. Babai and S. Moran. Arthur-merlin games: A randomized proof system, and
a hierarchy of complexity classes. Journal of Computer and System Sciences,
36(2):254–276, 1988.

2. R. Boppana, J. H̊astad, and S. Zachos. Does Co-NP have short interactive proofs?
Information Processing Letters, 25(2):127–132, 1987.

3. J. Cai. Sp
2 ⊆ ZPPNP. In Proceedings of the 42nd IEEE Symposium on Foundations

of Computer Science, 2001.
4. J. Cai, V. Chakaravarthy, L. Hemaspaandra, and M. Ogihara. Competing provers

yield improved Karp–Lipton collapse results. In Proceedings of the 20th Annual
Symposium on Theoretical Aspects of Computer Science, 2003.

5. R. Canetti. More on BPP and the polynomial-time hierarchy. Information Pro-
cessing Letters, 57(5):237–241, 1996.

6. L. Fortnow, R. Impagliazzo, V. Kabanets, and C. Umans. On the complexity of
succinct zero-sum games. Technical Report TR04–001, Electronic Colloquium on
Computational Complexity, 2004. Available at http://www.eccc.uni-trier.de/eccc.

7. L. Fortnow, A. Pavan, and S. Sengupta. Proving SAT does not have small circuits
with an application to the two queries problem. In Proceedings of the 18th Annual
IEEE Conference on Computational Complexity, 2003.

8. O. Goldreich and D. Zuckerman. Another proof that BPP ⊆ PH (and more).
Technical Report TR97–045, Electronic Colloquium on Computational Complex-
ity, 1997. Available at http://www.eccc.uni-trier.de/eccc.

9. S. Goldwasser and M. Sipser. Private coins versus public coins in interactive proof
systems. In Proceedings of the 18th ACM Symposium on Theory of Computing,
1986.

348 Jin-Yi Cai and Venkatesan T. Chakaravarthy

10. R. Impagliazzo and A. Wigderson. P=BPP unless E has subexponential circuits:
Derandomizing the XOR lemma. In Proceedings of the 29th ACM Symposium on
Theory of Computing, 1997.

11. A. Klivans and D. van Melkebeek. Graph nonisomorphism has subexponential size
proofs unless the polynomial hierarchy collapses. SIAM Journal on Computing,
31(5):1501–1526, 2002.

12. C. Lautemann. BPP and the polynomial hierarchy. Information Processing Letters,
17(4):215–217, 1982.

13. P. Miltersen and N. Vinodchandran. Derandomizing Arthur-Merlin games using
hitting sets. In Proceedings of the 40th IEEE Symposium on Foundations of Com-
puter Science, 1999.

14. N. Nisan and A. Wigderson. Hardness vs randomness. Journal of Computer and
System Sciences, 49(2):149–167, 1994.

15. A. Russell and R. Sundaram. Symmetric alternation captures BPP. Computational
Complexity, 7(2):152–162, 1998.

16. R. Shaltiel and C. Umans. Pseudorandomness for approximate counting and sam-
pling. Technical Report TR04–086, Electronic Colloquium on Computational Com-
plexity, 2004. Available at http://www.eccc.uni-trier.de/eccc.

17. M. Sipser. A complexity theoretic approach to randomness. In Proceedings of the
15th ACM Symposium on Theory of Computing, 1983.

18. D. Zuckerman. Simulating BPP using a general weak random source. Algorithmica,
16(4/5):367–391, 1996.

On the Complexity of Computing
the Logarithm and Square Root Functions

on a Complex Domain�

Ker-I Ko and Fuxiang Yu

Department of Computer Science
State University of New York at Stony Brook

Stony Brook, NY 11794, USA
{keriko,fuxiang}@cs.sunysb.edu

Abstract. The problems of computing single-valued, analytic branches
of the logarithm and square root functions on a bounded, simply con-
nected domain S are studied. If the boundary ∂S of S is a polynomial-
time computable Jordan curve, the complexity of these problems can be
characterized by counting classes #P , MP (or MidBitP), and ⊕P : The
logarithm problem is polynomial-time solvable if and only if FP = #P .
For the square root problem, it has been shown to have the upper bound
P MP and lower bound P⊕P . That is, if P = MP then the square root
problem is polynomial-time solvable, and if P �= ⊕P then the square
root problem is not polynomial-time solvable.

1 Introduction

Let S and T be two bounded, simply connected domains in the two-dimensional
plane such that S and T are disjoint (i.e., S ∩ T = ∅). The logarithm function
defined on S×T is the multi-valued function log (z− a) that satisfies elog (z−a) =
z − a for z ∈ S and a ∈ T . It is well known that the real part of log (z− a)
is always log |z− a|. On the other hand, log (z− a) has infinitely many single-
valued, analytic branches; furthermore, for a fixed pair 〈z0, a0〉 ∈ S × T , f1(z−
a)−f1(z0−a0) remains the same for an arbitrary single-valued, analytic branch
f1 of log (z − a) (cf. Henrici [8]). Therefore, to compute all single-valued, analytic
branches of log (z− a), we only need to compute f1(z− a)− f1(z0 − a0) for an
arbitrary single-valued, analytic branch f1 of log (z− a). However, in general,
it is still not an easy task. For example, even if z − a0 and z0 − a0 have the
same argument(i.e., there exists an angle θ ∈ [0, 2π) such that z − a0 = |z −
a0|eiθ and z0 − a0 = |z0 − a0|eiθ), the imaginary part of f1(z − a0) − f1(z0 −
a0) is not necessarily zero. Indeed, this imaginary part depends on how many
times a path in S from z0 to z must wind around the point a0. This suggests
that the computational complexity of finding single-valued, analytic branches

� This material is based upon work supported by National Science Foundation under
grant No. 0430124.

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 349–358, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

350 Ker-I Ko and Fuxiang Yu

of log (z− a) depends on the complexity of the domains S and T . We study
this problem and the related square root problem of finding the single-valued,
analytic branches of

√
z− a, in the context of complexity theory of real functions

of Ko and Friedman [11]. In this model, we use the oracle Turing machine as
the basic computational model, and define the complexity of a real function in
terms of precision of the output values of the functions under consideration.

Note that since f1(z−a)−f1(z0−a0) = (f1(z−a)−f1(z0−a))−(f1(z0−a)−
f(z0−a0)), as far as the computational complexity of the single-valued, analytic
branches of log (z− a) is concerned, by symmetry, we only need to study how
to compute f1(z − a) − f1(z0 − a). That is, there is only one bounded, simply
connected domain S under consideration. Moreover, we assume that a is not
on the boundary ∂S of S, and z0 is allowed to be on ∂S. We also assume that
the boundary ∂S of S is a polynomial-time computable Jordan curve (see the
definition in Section 2). Under these settings, we consider the following problem.
(In the following, we let S − a denote the domain {w− a | w ∈ S}.)

Logarithm Problem: Let S be a bounded, simply connected domain
whose boundary ∂S is a polynomial-time computable Jordan curve. Let
z0 be a fixed point in S∪∂S. Given two points z ∈ S and a ∈ C−(S∪∂S),
compute f1(z− a) − f1(z0 − a), where f1 is an arbitrary single-valued,
analytic branch of log z on domain S − a.

Similarly, the problem of computing single-valued, analytic branches of√
z− a is equivalent to the following problem.

Square Root Problem: Let S be a bounded, simply connected domain
whose boundary ∂S is a polynomial-time computable Jordan curve. Let
z0 be a fixed point in S∪∂S. Given two points z ∈ S and a ∈ C−(S∪∂S),
compute f1(z− a)/f1(z0 − a), where f1 is an arbitrary single-valued,
analytic branch of

√
z on domain S − a.

We observe that, in the above two problems, when z or a is on or very close to
the boundary ∂S, the function value, or its approximation, may be incomputable
or very hard to compute. This is because the underlying function cannot, in gen-
eral, be extended beyond ∂S, and because the problem of determining whether
a point z is on a computable curve Γ is undecidable.

To overcome this problem, we adopt a less restrictive model of computation
and allow the oracle Turing machines that compute these functions to make
errors when z or a is very close to the boundary ∂S. We use a simple rule to
control the errors: when the oracle Turing machine computes the value of a
function at z and a up to precision 2−n, it may make errors if either z or a is
close to ∂S within a distance of ≤ 2−n.

Based on this less restrictive model, we are able to characterize the compu-
tational complexity of the logarithm problem and the square root problem with
the counting complexity classes #P , ⊕P and MP (also denoted MidBitP in
literature).Our main results can be stated in terms of the relations between class
P and these counting complexity classes:

On the Complexity of Computing the Logarithm and Square Root Functions 351

(1) The logarithm problem is polynomial-time solvable if and only if FP = #P .
(2) If P = MP , then the square root problem is polynomial-time solvable.
(3) If P �= ⊕P , then the square root problem is not polynomial-time solvable.

Result (1) reflects the intuition that computing single-valued, analytic branches
of the logarithm function is closely related to the computation of winding num-
bers, which is known to have complexity P#P [3]. However, compared to the al-
gorithm for the winding number problem in [3], our algorithm for the logarithm
and square root problems is more involved and makes use of many properties of
simply connected domains and Jordan curves. We include a detailed description
of this method in Section 3.

Our basic computational model for real-valued functions and two-dimensional
regions is the oracle Turing machine. For the general theory of computable anal-
ysis based on the Turing machine model, see, for instance, Pour-El and Richards
[12] and Weihrauch [15]. For the theory of computational complexity of real
functions based on this computational model, see Ko [9]. The extension of this
theory to include the computational complexity of two-dimensional regions has
been presented in Chou and Ko [3]. Computational complexity of problems
related to two-dimensional regions has been studied recently in several direc-
tions [1, 2, 4, 5, 10, 13, 14]. All these works used Turing machine and oracle
Turing machine as the basic model.

2 Definitions and Notation

The basic computational objects in continuous computation are dyadic rationals
D = {m/2n : m ∈ Z, n ∈ N}, and we denote Dn = {m/2n : m ∈ Z}. We use
R to denote the class of real numbers and C the class of complex numbers. A
complex number z = x + iy is also denoted by 〈x, y〉. For any point z ∈ C
and any set S ⊆ C, we let δ(z, S) be the distance between z and S; that is,
δ(z, S) = inf{|z− z′| : z′ ∈ S}, where | · | denotes the absolute value.

We say a function φ : N→D binary converges to (or represents) a real number
x, if (i) for all n ≥ 0, φ(n) ∈ Dn, and (ii) for all n ≥ 0, |φ(n)− x| ≤ 2−n. We say
two functions φx, φy : N→D binary converge to (or represent) a complex number
〈x, y〉 if φx and φy binary converge to two real numbers x and y, respectively.

To compute a real-valued function f : R→R, we use oracle Turing machines
as the computational model. We say an oracle Turing machine M computes a
function f : R→R if, for a given oracle φ that binary converges to a real number
x and for a given input n > 0, Mφ(n) halts and outputs a dyadic rational e such
that |e−f(x)| ≤ 2−n. We say a function f : R→R is polynomial-time computable
if there exists a polynomial-time oracle Turing machine that computes f .

The notions of computable and polynomial-time computable real functions
can be extended naturally to functions f : R→C and functions f : C→C. A
Jordan curve (simple, closed curve) Γ in C is polynomial-time computable if
there exists a polynomial-time computable function f : [0, 1]→C such that the
range of f is Γ , f is one-to-one on [0, 1) and f(0) = f(1). It is well known that
the interior of a Jordan curve is a simply connected domain.

352 Ker-I Ko and Fuxiang Yu

Let S be a bounded, simply connected domain in C whose boundary ∂S is
a polynomial-time computable Jordan curve. One question is how to define the
computability and complexity of a function g : S→C. Based on the discussions
in Section 1, it might be much harder to compute the value g(z) when z is very
close to the boundary ∂S of S, and hence we need to take the distance of z
to the boundary ∂S into consideration. Our approach to resolve this issue is to
be less restrictive and allow the machine M that computes the function f to
make errors, while the errors are required to be under control. This notion is a
generalization of polynomial-time recognizable sets in Chou and Ko [3].

Definition 1 (a) Let S be a bounded, simply connected domain whose boundary
∂S is a computable Jordan curve. A function f : S→C is computable on the
domain S if there exists an oracle Turing machine M such that for any oracles
(φ, ψ) representing a complex number z ∈ S, |Mφ,ψ(n) − f(z)| ≤ 2−n for all
inputs n > 0 whenever δ(z, ∂S) > 2−n.

(b) Furthermore, f is polynomial-time computable on the domain S if f is
computable on S by an oracle Turing machine that operates in polynomial time.

The fundamental complexity classes we are interested in are the class P of sets
accepted by deterministic polynomial-time Turing machines, and the class FP of
functions (mapping strings to strings) computable by deterministic polynomial-
time Turing machines. We will also use in this paper the following complexity
classes (see Du and Ko [6] and Green et al [7]):

#P : the class of functions that count the number of accepting paths of nonde-
terministic polynomial-time machines.

⊕P : the class of sets A such that there exists a nondeterministic polynomial-
time Turing machine M such that for all x, x ∈ A iff there are an odd
number of accepting paths for x in M ; equivalently, a set A is in ⊕P if there
exists a function G ∈ #P such that for all x, x ∈ A if and only if the least
significant bit of G(x) is one.

MPb: the class of sets A for which there exist a function G ∈ #P and a function
φ ∈ FP such that for all x, x ∈ A if and only if the φ(x)-th bit in the b-ary
representation of G(x) is not zero, where b is an integer greater than one.

MP : the union of MPb over all b ≥ 2.

3 An Algorithm for Continuous Argument Functions

In this section, we will present a method for computing continuous argument
functions, which is a critical step for the logarithm problem. Throughout this
section, let S be a bounded, simply connected domain whose boundary ∂S is a
polynomial-time computable Jordan curve. We assume that ∂S is represented
by a polynomial-time computable function f : [0, 1]→C and also use f to denote
the image of f(i.e., ∂S).

Let arg(z) denote the arguments of z ∈ C if z �= 0; that is, arg is a multi-
valued function from C − {0} to R such that z = |z|earg(z)i (note that we also

On the Complexity of Computing the Logarithm and Square Root Functions 353

treat arg(z) as a set of real numbers). We define a function hS : (S ∪∂S)× (C−
(S ∪ ∂S))→R such that (i) for any fixed point a ∈ (C − (S ∪ ∂S)), hS(z, a) is
continuous, (ii) hS(f(0), a) = 0 for any a ∈ (C− (S ∪∂S)), and (iii) 2π ·hS(z,a)
equals θ1 − θ2 for some θ1 ∈ arg(z − a) and some θ2 ∈ arg(f(0) − a). We call
this function hS the continuous argument function of S. It is obvious that the
imaginary part of f1(z−a)− f1(z0−a) is 2π ·hS(z, a), where f1 is an arbitrary
single-valued, analytic branch of log z in the domain S − a and z0 = f(0) is a
fixed point on ∂S.

Lemma 2 (a) The logarithm problem on S is polynomial-time solvable if and
only if hS(z,a) is polynomial-time computable.

(b) The square root problem on S is polynomial-time solvable if and only if
the function (hS(z,a) mod 2) is polynomial-time computable.

Now we consider how to compute hS(z,a) for z ∈ S and a ∈ C − S. For a
point z = f(t) on ∂S, we can compute hS(z,a) by computing the integration
of 1/(z − a) over the curve f([0, t]), which is a generalization of Theorem 6.4
in Chou and Ko [3]. In fact, the integration method can be applied to any
closed curve Γ represented by a polynomial-time computable function f ; more
precisely, by the integration method, we can compute a continuous function
gf : [0, 1] × (C − Γ)→R that satisfies two conditions: (1) gf (0,a) = 0 for all
a ∈ C− Γ , and (2) gf (t, a) · 2π ∈ {θ1 − θ0 : θ1 ∈ arg(f(t), a), θ0 ∈ arg(f(0),a)}
for all t ∈ [0, 1] and a ∈ C − Γ . Note that gf(1,a) is just the winding number
of a with respect to Γ , and gf (t, a) = hS(f(t),a) when f represents the Jordan
curve ∂S.

For points z ∈ S, the situation is more complicated. Intuitively we can com-
pute hS(z,a) as follows (see Figure 1):

(a) Let L be the half line starting from z going in the direction from a to z.
Then, find a real number t0 ∈ [0, 1] such that f(t0) lies on L, and the line
segment zf(t0) lies entirely in S.

(b) Compute hS(f(t0),a) by integration; and let hS(z, a) = hS(f(t0),a) =
gf (t0,a).

However, we observe that, in general, Step (a) is hard to implement, since,
in general, the inverse function f−1(z) might be incomputable (cf. Corollary 4.3
of Ko [9]), or, even if it is computable, might have arbitrarily high complexity
(cf. Theorem 4.4 of Ko [9]). Therefore, we cannot follow Step (a) directly. On
the other hand, what we really need is just the value of hS(f(t0), a) instead of
the value of t0. Our algorithm will explore the curve ∂S to find some candidates
t for t0, and find the correct value of hS(f(t0),a) among them.

Our basic idea of computing hS(z,a) is as follows. Let L be the half line
starting from z going in the direction from a to z. We say L and ∂S intersect
non-degenerately if (1)L∩ ∂S contains only finitely many points, and (2) if f(t)
is in L ∩ ∂S, then ∂S actually crosses L at f(t). It is easy to see that, if L and
∂S intersect non-degenerately, then L ∩ ∂S contains an odd number of points
f(t0), f(t1), . . . , f(t2m) (see Figure 1). Furthermore, the values gf (ti, a) can be
canceled out in the following sense.

354 Ker-I Ko and Fuxiang Yu

()t ()t ()t

()t ()t

fza

S

ff 0 2 4

f 1 3f

Fig. 1. L and ∂S have an odd number of intersections.

Proposition 3 Let f(t0), f(t1), · · ·, f(t2m), where m ≥ 0, be all points in
L ∩ ∂S in the order of their distances away from z, with f(t0) being the closest
one to z. Then, they satisfy the following properties:

(1) For any 1 ≤ i ≤ m, f(t2i−1)f(t2i) lies entirely in S, and gf (t2i−1, a) =
gf (t2i,a).

(2) For any 1 ≤ i ≤ m, f crosses L from opposite directions at points f(t2i−1)
and f(t2i).

(3) hS(z,a) = gf (t0,a).

Assume that L and ∂S intersect non-degenerately. Then, we can get values
gf (ti,a), for all 0 ≤ i ≤ 2m, by applying the integration algorithm over the
curve to compute gf(t, a) over all points f(t) at which f crosses L. Note that,
in the above computation, we will get all values of t0, t1, . . . , t2m, but cannot tell
which one is t0 (because the distance between f(t0) and f(t1) could be too small
for us to tell which one is closer to z). However, we can still obtain the value of
hS(z,a) as follows:

(1) Let Δ be an integer such that gf (ti,a) +Δ ≥ 0 for all 0 ≤ i ≤ 2m.
(2) For each 0 ≤ i ≤ 2m, let sgni be 1 or −1 according to the direction in which

f crosses L at f(ti).
(3) Let hS(z,a) =

∣∣∣∑2m
i=0(sgni · (gf (ti,a) +Δ))

∣∣∣−Δ.

That is, we use the factor sgni to cancel out the values of gf(t2i−1, a) + Δ and
gf (t2i,a)+Δ in the summation of (3), and the only one left is gf (t0,a)+Δ. Yet
we do not know what the value t0 is. We use the extra term Δ so that gf (t0, a)
can be extracted from the absolute value of sgn0 · (gf (t0, a) +Δ).

There are some technical problems with these ideas. First, since we can only
approximate ∂S, we may not be able to compute the intersections of L and ∂S
correctly. Second, L and ∂S may not intersect non-degenerately. That is, one of
the following situations may occur:

On the Complexity of Computing the Logarithm and Square Root Functions 355

(1) L ∩ ∂S contains infinitely many points (e.g., the curve ∂S may cross L
infinitely many times); or

(2) f(t) is in L ∩ ∂S for some t ∈ [0, 1], but f does not cross L at f(t).

In the following, we describe a method to approximate intersections of ∂S
and L that will solve the above problems. The main idea is to use a piecewise
linear curve fn that approximates f and apply the integration method on fn.
By a careful analysis, we can show that this computation is still correct.

First, without loss of generality, we assume that z and a are dyadic points.
(Thus, we can tell whether a dyadic point lies on L or not.) Next, let M be
an oracle Turing machine that computes f in time p for some polynomial p.
It follows that p is a modulus function of f . Let n be an integer such that
δ(z, ∂S) > 2−n and δ(a, ∂S) > 2−n. For each 0 ≤ i ≤ 2p(2n), let si = i · 2−p(2n)

and zi = M bsi (2n), where bx is the standard Cauchy function of x such that
x − 2−n < bx(n) ≤ x for all n. Then, for any 0 ≤ i ≤ 2p(2n) − 1 and any
t ∈ [si, si+1], we have |f(t)− zi| ≤ 2−2n. Let fn be the piecewise linear function
with breakpoints fn(si) = zi, for i = 0, . . . , 2p(2n), and Γn be the image of fn on
[0, 1]. Then, Γn is an approximation of ∂S within an error 2−2n. Note that Γn

is not necessarily simple.
We now define a function sgnfn which assigns value +1, −1 or 0 to each

directed line segment of Γn according to whether it crosses L counter-clockwisely,
or crosses L clockwisely, or does not cross L, respectively1. When sgnfn(i) is not
zero, there is a unique intersection z′i := fn(s′i) of fn([si−1, si]) and L.

Lemma 4 Assume that ∂S is polynomial-time computable. Then, the functions
φ1(n, i) = sgnfn(i), φ2(n, i) = s′i and φ3(n, i) = z′i (if they exist) are polynomial-
time computable.

For simplicity, we may assume that fn(0) = f(0) (this can be achieved by,
for example, transforming the whole plane so that f(0) becomes the origin).

Theorem 5 Assume hereafter s′i = si if sgnfn(i) = 0. We have
∣∣∣hs(z, a)

∣∣∣ =∣∣∣∑2p(2n)

i=1 sgnfn(i) · gfn(s′i,a)
∣∣∣.

To prove Theorem 5, we need to show that

(1) In the right hand of the formula in Theorem 5, all values but one of gfn(s′i, a)
are canceled out. (Since the curve Γn is only an approximation to Γ , it
is not necessarily a simple curve and hence this fact does not follow from
Proposition 3 immediately.)

(2) The remaining term is ±hS(z,a).

1 Note that the line that contains L divides the plane into two half planes. We arbi-
trarily include L in one of the half planes. By a line segment Λ crossing L, we mean
that Λ ∩ L �= ∅ and the two endpoints of Λ are in two different half planes.

356 Ker-I Ko and Fuxiang Yu

b

c

b c

b

c

 1

 2 2

 1

 3

 3

w

w

z

 1

 2

L

L

L

 1

 2

Fig. 2. Curve Γ on three different types of intervals.

To do this, we divide the interval [0, 1] into a finite number of subintervals,
and examine each subinterval separately. First, define w1 ∈ S1, w2 ∈ S2 to be
the two points which have distance 2−(2n−1) from z and the line segment w1w2

is perpendicular to L (see Figure 2). For each i = 1, 2, define a half line Li that
starts at wi and runs parallel to L. Call the domain between the two half lines
L1 and L2 and the line segment w1w2 (including the boundary) the crossing
zone. We let Z denote the crossing zone.

Without loss of generality, assume that z0 = f(0) is not in the crossing zone.
We call an interval [b, c] ⊆ [0, 1] a crossing interval if [b, c] is a maximal interval
with the following properties: (i) f(b) ∈ Li and f(c) ∈ L3−i for i = 1 or 2, and
(ii) f([b, c]) lies entirely in the crossing zone Z. (By “maximal” we mean that all
intervals [b′, c′] that properly contain [b, c] do not satisfy both (i) and (ii).) We call
an interval [a, b] a non-crossing interval if (i) f(b) ∈ Li and f(c) ∈ L3−i for i = 1
or 2 (or if b = 0 and f(c) ∈ L1∪L2, or c = 1 and f(b) ∈ L1∪L2), and (ii) f((b, c))
lies entirely outside the crossing zone Z. If we remove all crossing intervals and
non-crossing intervals from [0, 1], the remainder is the union of finite intervals.
We call each such interval a semi-crossing interval. A semi-crossing interval [b, c]
satisfies the following conditions: (i) both f(a) and f(b) are in Li for i = 1 or
2, and (ii) if f(a) ∈ Li for i = 1 or 2, then f([a, b]) ∩ L3−i = ∅. Figure 2 shows
the curve Γ on these intervals, where [b1, c1] is a non-crossing interval, [b2, c2] is
a semi-crossing interval, and [b3, c3] is a crossing interval.

Lemma 6 Let z1, z2 be two points in S ∩L. Assume that there is a path π from
z1 to z2 that lies in S ∩ Z. Then, hS(z1,a) = hS(z2, a).

Lemma 7 Let [b, c] be a non-crossing interval. Then, sgnfn(i) = 0 for all si ∈
[b, c], and so

∑
si∈[b,c] sgnfn(i) · gfn(s′i,a) = 0.

Lemma 8 Let [b, c] be a semi-crossing interval. Then, there are an even number
of intersection points fn(r1), fn(r2), · · · , fn(r2m) in fn([b, c])∩L, and gfn has the
same value gfn(r1,a) at all ri’s. These values all cancel out after considering the
crossing directions; that is,

∑
si∈[b,c] sgnfn(i) · gfn(s′i, a) = 0.

On the Complexity of Computing the Logarithm and Square Root Functions 357

For each crossing interval [b, c], define sgn[b,c] = +1 if f(b) ∈ L2 and f(c) ∈
L1; and sgn[b,c] = −1 otherwise.

Lemma 9 Let [b, c] be a crossing interval.
(1) There exists at least one point t ∈ [b, c] such that f(t) ∈ L. For any two

such numbers t1, t2 ∈ [b, c] with f(t1), f(t2) ∈ L, gf (t1, a) = gf(t2, a).
(2) There are an odd number of intersection points fn(r0), fn(r1), . . . , fn(r2m)

in fn([b, c]) ∩ L, and they all have the same value gfn(ri, a) as gf (t, a). All but
one of these values cancel out after considering the crossing directions; that is,∑

si∈[b,c] sgnfn(i) · gfn(si,a) = sgn[b,c]gf(t, a).

Theorem 5 follows Lemmas 6-9. Based on Theorem 5, we can design an
algorithm to compute hS(z,a), which, due to the space limit, is omitted.

Theorem 10 Let S be a bounded, simply connected domain whose boundary
∂S is a polynomial-time computable Jordan curve. Then there exists an oracle
Turing machine that computes hS(z,a) in polynomial time using a function G
in #P as an oracle.

Corollary 11 If FP = #P , then the continuous argument function problem
and the logarithm problem are polynomial-time solvable.

When we apply this algorithm to the square root problem, we only need a
constant number of bits from the oracle function G of Theorem 10. Therefore,we
get the following corollary.

Corollary 12 If P = MP , then the square root problem is polynomial-time
solvable.

4 Lower Bounds for the Logarithm
and Square Root Problems

We have shown, in the last section, that P#P is an upper bound for the complex-
ity of computing the continuous argument functions, and hence the logarithm
problem. On the other hand, we can obtain a lower bound of P#P with a con-
struction similar to that for the lower bound of the winding number problem of
Chou and Ko [3].

Theorem 13 If FP �= #P , then there exists a bounded, simply connected do-
main S whose boundary ∂S is a polynomial-time computable Jordan curve, such
that the logarithm problem on S is not polynomial-time computable.

For the square root problem, we are only able to show a lower bound of P⊕P ,
which is weaker than the upper bound PMP of Corollary 12.

Theorem 14 If P �= ⊕P , then there exists a bounded, simply connected domain
S whose boundary ∂S is a polynomial-time computable Jordan curve such that
the square root problem on S is not polynomial-time solvable.

358 Ker-I Ko and Fuxiang Yu

References

1. M. Braverman. Hyperbolic Julia sets are poly-time computable. In Proceedings of
the 6th Workshop on Computability and Complexity in Analysis ’2004, Electronic
Notes in Theoretical Computer Science, 120:17–30, Elsevier, Amsterdam, 2005.

2. M. Braverman and M. Yampolsky. Non-computable julia sets. CoRR,
math.DS/0406416, 2004.

3. A. W. Chou and K.-I. Ko. Computational complexity of two-dimensional regions.
In SIAM.J.COMPUT., 24:923–947, October 1995.

4. A. W. Chou and K.-I. Ko. On the complexity of finding paths in a two-dimensional
domain I: Shortest paths. Mathematical Logic Quarterly, 50(6):551–572, 2004.

5. A. W. Chou and K.-I. Ko. On the complexity of finding paths in a two-dimensional
domain II: Picewise straight-line paths. Proceedings of the 6th Workshop on Com-
putability and Complexity in Analysis ’2004, Electronic Notes in Theoretical Com-
puter Science, 120:45–57, Elsevier, Amsterdam, 2005.

6. D.-Z. Du and K.-I. Ko. Theory of Computational Complexity. John Wiley & Sons,
New York, 2000.

7. F. Green, J. Köbler, K. Regan, T. Schwentick, and J. Torán. The power of the
middle bit of a #P function. Journal of Computer and System Sciences, 50:456–
467, 1995.

8. P. Herici. Applied and Computational Complex Analysis, volumes 1-3. John Wiley
& Sons, New York, 1974.

9. K.-I. Ko. Complexity Theory of Real Functions. Birkhäuser, Boston, 1991.
10. K.-I. Ko. Computational complexity of fractals. Proceedings of the 7th and 8th

Asian Logic Conferences, 252–269, World Scientific, Singapore, 2003.
11. K.-I. Ko and H. Friedman. Computational Complexity of Real Functions. Theoretic

Computer Science, 20:323–352, 1982.
12. M. B. Pour-El and J. I. Richards. Computability in Analysis and Physics. Perspec-

tives in Mathematical Logic, Springer, Berlin, 1989.
13. R. Rettinger. A fast algorithm for Julia sets of hyperbolic rational functions. Pro-

ceedings of the 6th Workshop on Computability and Complexity in Analysis ’2004,
Electronic Notes in Theoretical Computer Science, 120:145–157, Elsevier, Amster-
dam, 2005.

14. R. Rettinger and K. Weihrauch. The computational complexity of some julia sets.
the Thirty-Fifth Annual ACM Symposium on Theory of Computing (STOC), 177–
185, 2003.

15. K. Weihrauch. Computable Analysis. Springer, Berlin, 2000.

Solovay Reducibility on D-c.e Real Numbers�

Robert Rettinger1 and Xizhong Zheng2,3,��

1 Theoretische Informatik II, FernUniversität Hagen, D-58084 Hagen, Germany
2 Department of Computer Science, Jiangsu University, Zhenjiang 212013, China

3 Theoretische Informatik, BTU Cottbus, D-03044 Cottbus, Germany
zheng@informatik.tu-cottbus.de

Abstract. A c.e. real x is Solovay reducible to another c.e. real y if
x can be approximated at least as efficiently as y by means of increas-
ing computable sequences of rational numbers. The Solovay reducibility
classifies elegantly the relative randomness of c.e. reals. Especially, the
c.e. random reals are complete unter the Solovay reducibility for c.e. re-
als. In this paper we investigate an extension of the Solovay reducibility
to the Δ0

2-reals and show that the c.e. random reals are complete un-
der (extended) Solovay reducibility for d-c.e. reals too. Actually we show
that only the d-c.e. reals can be Solovay reducible to an c.e. random real.
Furthermore, we show that this fails for the class of divergence bounded
computable reals which extends the class of d-c.e. reals properly. In ad-
dition, we show also that any d-c.e. random reals are either c.e. or co-c.e.

1 Introduction

Randomness is a very important property in mathematics and computer science
beside the computability. While a computable object has a very simple structure
and can be effectively characterized, a random object should have the maximal
irregularity. One of the most popular description of randomness is the definition
of Martin-Löf [10]: an infinite binary sequence α is called (Martin-Löf) random if
α passes all Martin-Löf tests {Un : n ∈ N}, i.e., α �∈

⋂
n∈N

Un. Here a Martin-Löf
test is a computable collection {Un : n ∈ N} of computably enumerable open
sets of the Cantor-space {0, 1}ω such that μ(Un) ≤ 2−n. The class

⋂
n∈N

Un

has Lebesgue measure zero if {Un : n ∈ N} is a Martin-Löf test and it is a
“small class”. Thus, a random sequence is “typical” because it does not belong
to such kind of small (and hence special) groups. In other words, the Martin-Löf
randomness reflects the typicalness of random objects.

Another characterization of random objects is their “incompressibility” or
“chaoticness”. That is, a random object should have the most complex structure.
Thus, a sequence is random if there is no better way to describe it than to write
it down literally. More precisely, let a prefix machine be a Turing machine with
a prefix-free domain and define the prefix-free complexity of a binary string σ
as K(σ) := min{|τ | : U(τ) = σ}, where U is a universal prefix-free machine.
� This work is supported by DFG (446 CHV 113/240/0-1) and NSFC (10420130638).

�� Corresponding author

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 359–368, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

360 Robert Rettinger and Xizhong Zheng

A binary sequence α is called Kolmogorov-Levin-Chaitin random, if there is a
constant c such that K(α � n) ≥ n− c for all n (see, e.g., [3, 9]). Thus, random
sequences have the highest prefix-free complexity.

The Martin-Löf randomness and Kolmogorov-Levin-Chaitin randomness are
equivalent (see [3]). However, the latter leads naturally to the investigation of
relative randomness as follows. For any binary sequences α and β, if there is a
constant c such that K(α � n) ≤ K(β � n) + c for all n, then β is at least as
random as α and we say that α is K-reducible to β (denoted by α ≤K β). In
general, if we consider a reducibility ≤ as a measure of relative randomness, then
it should at least have the following Solovay property:

α ≤ β =⇒ (∃c)(∀n)(K(α � n) ≤ K(β � n) + c). (1)

For the real numbers, their randomness can be regarded as the randomness
of their binary expansions. Several reducibilities on real numbers with Solovay
property have been proposed ([6, 12, 14]). Especially, for the c.e. reals (the limits
of increasing computable sequences of rational numbers) there is a very elegant
reducibility – the Solovay reducibility – defined as follows ([12]): a c.e. real x is
Solovay reducible to another c.e. real y (denoted by x ≤S y) if there are increasing
computable sequences (xs) and (ys) of rational numbers which converges to x
and y, respectively, such that

(∃c)(∀n)(x − xn ≤ c · (y − yn)). (2)

That is, x can be approximated at least as efficiently as y by increasing com-
putable sequences of rational numbers. Obviously, ≤S is reflexive and transitive
and the deduced equivalent classes are called Solovay degrees or simply S-degrees.
Solovay [12] shows that ≤S has the Solovay property and hence classifies c.e. reals
into different levels according to their relative randomness. Downey, Hirschfeldt
and Nies [7] have shown that the S-degrees of c.e. reals form a dense distributive
uppersemilattice.

One of the most interesting results about Solovay reducibility are the equiv-
alent descriptions of Solovay complete c.e. reals. A c.e. real x is called Solovay
complete or S-complete1 for c.e. reals if it is complete under Solovay reducibility,
i.e., y ≤S x for all c.e. reals y. The S-complete reals relate very closely to the
c.e. random reals and Ω-numbers. First, Chaitin [3] called the halting probability
x of a universal prefix machine U an Ω-number, i.e., x = ΩU :=

∑
U(σ)↓ 2−|σ| and

showed that Ω-numbers are c.e. and random. Then, Solovay [12] observed that
any Ω-number is S-complete. The other direction, i.e., S-complete reals are just
the Ω-numbers, were proven by Calude, Hertling, Khoussainov and Wang [2].
Finally, Kuçera and Slaman [8] closed this circle by showing that any c.e. random
real is S-complete. That is, we have the following result.

Theorem 1.1 (Chaitin, Solovay, Kuçera, Slaman and Calude et al).
A c.e. real x is random iff it is S-complete iff it is an Ω-number.

1 Originally Solovay [12] calls it Ω-like.

Solovay Reducibility on D-c.e Real Numbers 361

In order to extend the Solovay reducibility to larger classes of reals Downey,
Hirschfeldt and LaForte [6] have introduced two new reducibilities,≤sw (strongly
weak truth-table reducibility) and ≤rH (relative H reducibility). Both reducibil-
ities are defined on all reals and have the Solovay property and some other
nice properties. However, none of them coincide with the Solovay reducibility
on c.e. reals and hence are not really extensions of ≤S . In [14], the authors
suggested another reducibility, the extended Solovay reducibility, by consider-
ing general instead of increasing computable sequences of rational numbers and
replacing condition (2) by the following weaker condition

(∃c)(∀n)(|x − xn| ≤ c · (|y − yn|+ 2−n)). (3)

Thus, the extended Solovay reducibility is defined on all computably approximable
reals (c.a. reals for short, i.e., the limits of computable sequences of rational
numbers, see [1]). Since the extended and original Solovay reducibility coincide
on c.e. reals, it is simply called Solovay reducibility and denoted by ≤S too. In
this paper we investigate mainly the properties of S-reducibility on d-c.e. reals
(the differences of c.e. reals) and show that a similar result like Theorem 1.1
holds for the class of d-c.e. reals too. That is, a d-c.e. real is Solovay complete
for the class of d-c.e. reals if and only if it is c.e. random if and only if it is an
Ω-number. For a larger class of divergence bounded computable reals however,
this fails.

2 D-c.e. Real Numbers

We begin with the discussion of the class of d-c.e. reals in this section. By
definition, a real x is d-c.e. (difference of c.e.) if there are c.e. reals y and z such
that x = y − z. The class of all d-c.e. reals is denoted by DCE. This class has
another very interesting equivalent characterization.

Theorem 2.1 (Ambos-Spies, Weihrauch and Zheng [1]). A real x is d-
c.e. iff there is a computable sequence (xs) of rational numbers which converges
to x weakly effectively in the sense that

∑
s∈N

|xs − xs+1| ≤ c for a constant c.

Since the computable reals are limits of computable sequences of rational
numbers which converge effectively in the sense that |xs − xs+1| ≤ 2−s for all
s, d-c.e. reals are also called weakly computable because of Theorem 2.1. The
class of weakly computable reals is denoted also by WC. In addition, by means
of Theorem 2.1 it is easy to show that the class of d-c.e. reals is closed under
arithmetical operations +,−,× and ÷ and hence it is a field2. Thus, the class
WC is the arithmetical closure of c.e. reals.

While the effective convergence condition |xs − xs+1| ≤ 2−s can be replaced
by |x− xs| ≤ 2−s and we still get the same class of computable reals, the weak
convergence condition

∑
s∈N

|xs − xs+1| ≤ c cannot be equivalently replaced by,
say,

∑
s∈N

|x− xs| ≤ c for a constant c. In fact, if x is the limit of a computable

2 It is actually a real closed field as shown recently by Raichev [11].

362 Robert Rettinger and Xizhong Zheng

sequence (xs) of rational numbers such that
∑

s∈N
|x−xs| ≤ c for some constant

c, then x is computable! Besides, the condition |x − xs| ≤ cs for a computable
sequence (cs) converging to 0 implies also the computability of x. However, if we
consider a computable sequence (cs) of c.e. reals converging to 0, we get another
equivalent characterization of the class of d-c.e. reals.

Definition 2.2. A sequence (xs) of reals converges to x computably enumerably
bounded (c.e. bounded) if there is a computable sequence (δs) of positive rational
numbers such that

∑
s∈N

δs is finite and

|x− xs| ≤
∑
i≥s

δi (4)

for all s ∈ N.

Notice that, if a sequence (xs) converges effectively to x, then |x− xs| ≤ 2−s

hold for all s. Therefore, it is natural to say that the sequence (xs) converges
computably bounded if (xs) converges effectively. For a c.e. bounded convergent
sequence (xs), a to zero convergent computable bound for |x−xs| is not available
in general. The bounds

∑
i≥s δi in (4) are only c.e. reals and they converge to 0

monotonically when s increases. The c.e. bounded convergence supplies another
characterization of the class of d-c.e. reals as follows.

Theorem 2.3. A real number x is d-c.e. if and only if there is a computable
sequence (xs) of rational numbers converging to x c.e. bounded.

Proof. Suppose that x is d-c.e., i.e., x = y− z for c.e. reals y and z. Let (ys) and
(zs) be increasing computable sequences of rational numbers which converge to
y and z, respectively. Define xs := ys − zs for all s. Then (xs) is a computable
sequence of rational numbers which satisfies

|x− xs| = |(y − z)− (ys − zs)| ≤ (y − ys) + (z − zs)

=
∑

i≥s
((ys+1 − ys) + (zs+1 − zs))

for all s. Thus, the sequence (xs) converges c.e. bounded with respect to the
sequence (δs) defined by δs := (ys+1 − ys) + (zs+1 − zs) for all s.

On the other hand, let (xs) and (δs) (for δs > 0) be computable sequences
of rational numbers which satisfy condition (4). We show that x is d-c.e. By
Theorem 2.1, it suffices to construct a computable sequence (x′s) of rational
numbers which converges to x weakly effectively. The sequence (x′s) is defined
inductively by x′0 := x0 and

x′s+1 :=

⎧⎨⎩
xs+1 if |x′s − xs+1| ≤ δs+1;
x′s + δs+1 if |x′s − xs+1| > δs+1 and x′s < xs+1;
x′s − δs+1 if |x′s − xs+1| > δs+1 and x′s > xs+1,

(5)

for all s. Obviously, (x′s) is a computable sequence of rational numbers. Now we
prove by induction on s that the sequence (x′s) satisfies the following condition:

(∀s ∈ N)
(
|x′s − x′s+1| ≤ δs+1 & |x− x′s+1| ≤

∑
i>s

δi

)
. (6)

Solovay Reducibility on D-c.e Real Numbers 363

Assume by induction hypothesis that (6) holds for all s < n. For s = n, the
inequality |x′n−x′n+1| ≤ δn+1 follows directly from definition (5). For the second
inequality of (6), we consider the intervals

It :=
[
x−

∑
i≥t

δi; x+
∑

i≥t
δi

]
for t := n and t := n + 1. Then condition (4) says that xt ∈ It for all t. By
induction hypothesis for s = n − 1, we have |x − x′n| ≤

∑
i>n−1 δi =

∑
i≥n δi.

That is, x′n ∈ In. It suffices now to show that x′n+1 ∈ In+1.
If x′n ∈ In+1, i.e., both x′n and xn+1 belong the interval In+1, then the

definition (5) implies that x′n+1 ∈ In+1. Suppose now that x′s ∈ In \ In+1. If
|x′n − xn+1| ≤ δn+1, then we have x′n+1 = xn+1 ∈ In+1. Otherwise, if |x′n −
xn+1| > δn+1 and x′n < xn+1, then we have x′n+1 = x′n + δn+1 ∈ In+1 too,
because the distance between the left endpoints of the intervals In and In+1 is
just δn+1. Similarly, we have x′n+1 ∈ In+1 too, if x′n > xn+1. This implies that
|x− x′n+1| ≤

∑
i>n δi, and hence (6) holds for all s.

The second inequality of (6) implies that the sequence (x′s) converges to x.
The first inequality of (6) implies furthermore that this convergence is weakly
effective, i.e.

∑
s∈N

|x′s−x′s+1| ≤
∑

s∈N
δs. Thus, x is a d-c.e. real by the Theorem

2.1.

As shown in [1], the class WC is the arithmetical closure of the class CE
of c.e. reals and CE � WC. However we will show that any d-c.e. random real
is either c.e. or co-c.e, where co-c.e. reals are limits of decreasing computable
sequences of rational numbers. To this end, we need another characterization of
random reals by Solovay. We call a set U ⊆ R of reals c.e. open if there is a com-
putable sequence (as, bs) of rational open intervals such that U =

⋃
s∈N

(as, bs).

Theorem 2.4 (Solovay [12]). A real x is Martin-Löf random iff x is in only
finitely many Ui for any computable collection {Un : n ∈ N} of c.e. open sets
such that

∑
n∈N

μ(Un) <∞, where μ(U) is the Lebesgue measure of U .

Theorem 2.5. Any random d-c.e. real is either c.e. or co-c.e.

Proof. Let x be a d-c.e. random real. By Theorem 2.1, there is a computable
sequence (xs) of rational numbers which converges to x weakly effectively, i.e.,∑

s∈N
|xs+1 − xs| < c for a constant c.

Assume by contradiction that x is neither c.e. nor co-c.e. Then there are
infinitely many s such that xs < x. Otherwise, x is co-c.e. if xs ≥ x for almost
all s. Analogously, there are infinitely many s such that xs > x too. Thus, if
xs < x for some s ∈ N, then there is a t ≥ s such that xt < x < xt+1 and if xs > x
then there is a t ≥ s such that xt > x > xt+1. This implies further that there are
infinitely many s such that xs < x < xs+1. Let Us := (xs, xs+1) if xs < xs+1 and
Us := ∅ otherwise. Then {Un : n ∈ N} is a computable collection of c.e. open
sets such that

∑
n∈N

μ(Un) =
∑

s∈N
(xs+1

·− xs) ≤
∑

s∈N
|xs+1 − xs| ≤ c, where

x ·− y := x− y if x ≥ y and x ·− y := 0 otherwise. Since x belongs to infinitely
many Un, x is not random by Theorem 2.4. This contradicts our assumption.

Corollary 2.6. A d-c.e. real is random if and only if it is an Ω-number.

364 Robert Rettinger and Xizhong Zheng

3 Solovay Completeness for D-c.e. Reals

The original Solovay reducibility is defined only on the c.e. reals by comparing
approximation rates of c.e. reals by increasing computable sequences of rational
numbers. Its straightforward extension to computably approximable reals is not
a proper reducibility, because it is not even transitive (see [14]). However, by
a minimal modification, the Solovay reducibility can be reasonably extended to
c.a. reals as follows.

Definition 3.1. A c.a. real x is Solovay reducible to another c.a. real y (denoted
by x ≤S y) if there are two computable sequences (xs) and (ys) of rational
numbers which converge to x and y, respectively, and a constant c such that

(∀s)
(
|x− xs| ≤ c(|y − ys|+ 2−s)

)
. (7)

As shown in [14], this extended Solovay reducibility is reflexive, transitive and
hence is a reasonable reducibility. It has the Solovay property (1) and coincides
with the original Solovay reducibility on c.e. reals. It is not very difficult to see
that the (extended) Solovay reducibility can be defined equivalently in another
way described in the next lemma.

Lemma 3.2. A real x is Solovay reducible to y iff for any computable sequence
(ys) of rational numbers converging to y, there exist a computable sequence (xs)
of rational numbers converging to x and a constant c which satisfy condition (7).

The computable sequences of rational numbers used in the Definition 3.1 can
also be equivalently replaced by computable sequences of reals as shown in the
next lemma. Here a sequence (xs) of real numbers is computable if there is a
computable double sequence (rst) of rational numbers such that |xs− rst| ≤ 2−t

for all s and t. Obviously, any computable sequence of rational numbers is a
computable sequence of real numbers too.

Lemma 3.3. A real x is Solovay reducible to y iff there are two computable
sequences (xs) and (ys) of real numbers which converge to x and y, respectively,
and a constant c which satisfy condition (7).

Proof. Let (xs) and (ys) be computable sequences of real numbers converging
to x and y, respectively, and satisfy condition (7) for a constant c. By definition
there are computable double sequences (ust) and (vst) of rational numbers such
that |xs − ust| ≤ 2−t and |ys − vst| ≤ 2−t for all s, t ∈ N. Let as := uss and
bs := vss for all s. Then (as) and (bs) are computable sequences of rational
numbers which converge to x and y, respectively such that

|x− as| ≤ |x− xs|+ |xs − as| ≤ c(|y − ys|+ 2−s) + 2−s

≤ c|y − bs|+ c|bs − ys|+ (c+ 1)2−s ≤ (2c+ 1)(|y − bs|+ 2−s)

for all s ∈ N. According to Definition 3.1, x is Solovay reducible to y.

Solovay Reducibility on D-c.e Real Numbers 365

Now we are going to show that, the Ω-numbers are Solovay complete for the
class WC. Since WC is the smallest field containing all c.e. reals, it suffices to
show that the class of reals which are Solovay reducible to an Ω-number is a
field too. For any real number x, let S(≤ x) denote the class of all reals which
are Solovay reducible to x, i.e., S(≤ x) := {y ∈ R : y ≤S x}. We show first a
general result that S(≤ x) is a field for any c.a. real x. To this end, we prove
that it is closed unter some class of computable real functions.

Definition 3.4. A real function f : Rn → R is called locally Lipschitz if for
each x ∈ dom(f) there is a neighborhood U of x and a Lipschitz-constant L
such that

(∀u,v ∈ U)(|f(u)− f(v)| ≤ L · |u− v|), (8)

where |u− v| :=
∑n

i=1 |ui − vi| for u = (u1, . . . , un) and v = (v1, . . . , vn).

Theorem 3.5. Let f : Rn → R be a locally Lipschitz computable function and
let d be a computably approximable real number. The class S(≤ d) is closed under
the function f .

Proof. We prove only the case for n = 2. The proofs for other n are similar.
Let d be a c.a. real and let (ds) be a computable sequence of rational numbers

which converges to d. For any reals x, y such that x ≤S d and y ≤S d, by Lemma
3.2, there are computable sequences (xs) and (ys) of rational numbers which
converges to x and y, respectively, and a common constant c such that

|x− xs| ≤ c(|d− ds|+ 2−s) and |y − ys| ≤ c(|d− ds|+ 2−s)

for all s ∈ N.
Let L be a Lipschitz-constant which satisfies condition (8). By the sequential

computability of the computable function f , the sequence (zs) defined by zs :=
f(xs, ys) for all s is a computable computable sequence of real numbers. This
sequence satisfies furthermore the following condition.

|f(x, y)− zs| = |f(x, y)− f(xs, ys)| ≤ L(|x− xs|+ |y − ys|)
≤ 2cL(|d− ds|+ 2−s)

for all s ∈ N. By Lemma 3.3 we have f(x, y) ≤S d and hence f(x, y) ∈ S(≤ d).
That is, the class S(≤ d) is closed under the function f .

As an immediate corollary we have

Corollary 3.6. The class S(≤ y) is a field for any c.a. real y.

Proof. The functions addition, subtraction, multiplication and division are ob-
viously locally Lipschitz computable functions. Therefore, the class S(≤ y) is
closed under arithmetical operations and is a field.

Now we can prove our main result.

366 Robert Rettinger and Xizhong Zheng

Theorem 3.7. If y is an Ω-number, then S(≤ y) = WC.

Proof. Let y be an Ω-number. By Theorem 1.1, y is Solovay complete for the
class of c.e. reals. That is, the class S(≤ y) contains all c.e. reals. Because S(≤ y)
is a field (Corollary 3.6) and WC is the smallest field containing all c.e. reals,
we have WC ⊆ S(≤ y).

On the other hand, if x ∈ S(≤ y), we show that x is d-c.e. Let (xs) and
(ys) be computable sequences of rational numbers which converge to x and y,
respectively and witness the reduction x ≤S y. That is, |x−xs| ≤ c(|y−ys|+2−s)
hold for all s and some constant c. By Lemma 3.2, we can assume that (ys) is
increasing. Thus we have

|x− xs| ≤ c(y − ys + 2−s) = c
(∑

i≥s
(ys+1 − ys) + 2−s

)
=
∑

i≥s
c
(
ys+1 − ys + 2−(i+1)

)
for all s ∈ N. That is, the computable sequence (δs) of rational numbers defined
by δs :=

∑
i≥s c(ys+1 − ys + 2−(i+1)) satisfies condition (4). By Theorem 2.3, x

is a d-c.e. real. Therefore, we have S(≤ y) ⊆WC.

Analogously to Theorem 1.1 we have

Corollary 3.8. A d-c.e. real is random iff it is Solovay complete for WC iff it
is an Ω-number.

4 Solovay Reducibility on the Class DBC

We have shown that the class of d-c.e. reals has a Solovay-complete element.
It is natural to ask, how about the larger classes? In this section, we consider
the class DBC (divergence bounded computable) reals which is introduced by
the authors in [13] and extends the class of d-c.e. reals properly. We show that
DBC does not have a Solovay-complete element. Actually, we prove that DBC
does not have a complete element even for the more weaker reducibility ≤rH of
Downey, Hirschfeldt and LaForte [6].

Let’s begin with the precise definitions of the notions mentioned above.

Definition 4.1 (Zheng, Rettinger and Gengler [13]). A real x is called
divergence bounded computable (dbc for short) if there is a computable function
h : N → N and a computable sequence (xs) of rational numbers which converges
to x h-bounded effectively (h-b.e.) in the sense that there are at most h(n) non-
overlapping index-pairs (i, j) such that |xi − xj | ≥ 2−n for any n.

It is shown in [13] that the class DBC of all dbc reals is the closure of WC
under the total computable real functions and it extends the class WC properly.

Definition 4.2 (Downey, Hirschfeldt and LaForte [6]). A real x is relative
H reducible to y (x ≤rH y) if there is a constant j and a partial computable
function f :⊆ {0, 1}∗ × N → {0, 1}∗ such that

(∀n ∈ N)(∃k ≤ j)(f(y � n, k) = x � n). (9)

Solovay Reducibility on D-c.e Real Numbers 367

The authors have shown in [14] that x ≤S y implies x ≤rH y for any c.a. reals
x and y and there does not exist rH-complete element for the class of c.a. reals.
The next theorem shows that DBC does not have rH-complete elements.

Theorem 4.3. For any dbc real y there exists a dbc real x such that x �≤rH y.

Proof. For any divergence bounded computable real y, let h be a computable
function and let (ys) be a computable sequence of rational numbers which con-
verges to y h-bounded effectively. We construct a computable sequence (xs) of
rational numbers which converges to x f -bounded effectively for a computable
function f such that x �≤rH y. That is, x satisfies, for all i, j ∈ N, the following
requirements:

R〈i,j〉 : (∃n)(∀k ≤ j)(ϕi(y � n, k) �= x � n),

where (ϕi) is a computable enumeration of all partial computable functions
ϕi :⊆ {0, 1}∗ × N → {0, 1}∗.

Let (ne) be an increasing computable sequence of natural numbers defined
inductively by n−1 := 0 and ne := ne−1 +2π2(e)+2, where π2 is the computable
second inverse function of the paring function 〈·, ·〉, i.e., π2(〈i, j〉) = j for all
i, j ∈ N. To satisfy the requirement Re for e := 〈i, j〉, we preserve the interval
[ne−1, ne) exclusively for Re and define the rational number xs in such a way
that xs[ne−1 + 2k] �= ϕi,s(ys � ne, k)[ne−1 + 2k], whenever ϕi,s(ys � ne, k) is
defined for some k ≤ j, where x[k] denotes the k-th symbol of the binary word
x and ϕi,s denotes the computable approximation of ϕi up to stage s (e.g., the
portion of ϕi computed by a Turing machine in s stages). Since (ys) converges,
ys � ne changes only finitely often and the constructed sequence (xs) converges
too. Obviously, the limit x := lims→∞ xs satisfies all requirements Re.

Unfortunately, the real x constructed in this way is not necessarily diver-
gence bounded computable, because the number of changes of ys � ne is not
computably bounded in general and each change of ys � ne forces a change of
xs � ne. However, since (ys) converges h-bounded effectively, the number of its
jumps larger than 2−ne is bounded above by h(ne). In other words, what we do
not computably bound is the number of relatively small jumps, i.e., the jumps
(s, t) such that |ys − yt| < 2−ne . But for such kind of small jumps, we have
either ys � ne = w011 · · · 1 and yt � ne = w100 · · ·0 or ys � ne = w100 · · · 0 and
yt � ne = w011 · · · 1. If such small jumps occur successively, ys � ne takes the
values w011 · · · 1 and w100 · · · 0 in turn. Thus, it suffices to define xs in such
a way that xs � ne differs from both ϕi(w100 · · · 0, k) and ϕi(w011 · · · 1, k) (for
k ≤ j) to avoid unnecessary changes of xs. This leads to the following revised
construction.

At any stage s, if ys makes a jump of a size at least 2−ne , then we define
xs in the way mentioned above, i.e., xs[ne−1 + 2k] �= ϕi,s(ys � ne, k)[ne−1 +
2k] whenever ϕi,s(ys � ne, k) is defined for some k ≤ j. Otherwise, suppose
that |ys − yt| < 2−ne for the last stage t before s at which yt � ne changes.
Then we define xs in such a way that the two bits xs[ne−1 + 2k, ne−1 + 2k + 1]
does not equal to ϕi,s(yv � ne, k)[ne−1 + 2k, ne−1 + 2k + 1] for v = s, t, where

368 Robert Rettinger and Xizhong Zheng

x[i, j] := x[i]x[i + 1] · · ·x[j] for any i ≤ j. Thus, if ys makes jumps less than
2−ne successively, xs has to be changed only once. Now, for the maximal index-
chain t0 < s0 ≤ t1 < s1 ≤ · · · ≤ tm < sm such that |ytv − ysv | ≥ 2−ne for all
v ≤ m, the segment xs[ne−1, ne] may change for s = s0, s1, . . . , sm. Between tv
and sv or between sv and tv+1 or after sm, xs[ne−1, ne] can change at most once
for each. That is, xs[ne−1, ne] can change at most 3h(ne) times totaly because
m ≤ h(ne). This implies that the sequence (xs) converges f -bounded effectively
for a computable function f and hence the limit x is dbc.

Corollary 4.4. The class DBC does not have Solovay-complete elements.

References

1. K. Ambos-Spies, K. Weihrauch, and X. Zheng. Weakly computable real numbers.
Journal of Complexity, 16(4):676–690, 2000.

2. C. S. Calude, P. H. Hertling, B. Khoussainov, and Y. Wang. Recursively enumer-
able reals and Chaitin Ω numbers. Theoretical Computer Science, 255:125–149,
2001.

3. G. Chaitin. A theory of program size formally identical to information theory. J.
of ACM., 22:329–340, 1975.

4. R. G. Downey. Some recent progress in algorithmic randomness. In MFCS’04,
pages 42–83, 2004.

5. R. G. Downey and D. R. Hirschfeldt. Algorithmic Randomness and Complexity.
Springer-Verlag, 200? monograph to be published.

6. R. G. Downey, D. R. Hirschfeldt, and G. LaForte. Randomness and reducibility. In
J. Sgall, A. Pultr, and P. Kolman, editors, MFCS 2001, Mariánské Lázně, Czech
Republic, August 27-31, 2001, volume 2136 of LNCS, pages 316–327. Springer,
2001.

7. R. G. Downey, D. R. Hirschfeldt, and A. Nies. Randomness, computability, and
density. SIAM J. Comput., 31(4):1169–1183 (electronic), 2002.

8. A. Kuçera and T. A. Slaman. Randomness and recursive enumerability. SIAM J.
Comput., 31(1):199–211, 2001.

9. L. A. Levin. The concept of a random sequence. Dokl. Akad. Nauk SSSR, 212:548–
550, 1973. (English translation: Soviet Math. Dokl. 212 (1973), 1413–1416 (1974)).

10. P. Martin-Löf. The definition of random sequences. Information and Control,
9:602–619, 1966.

11. A. Raichev. D.c.e. reals, relative randomness, and real closed fields. In CCA 2004,
August 16-20, 2004, Lutherstadt Wittenberg, Germany, 2004.

12. R. M. Solovay. Draft of a paper (or a series of papers) on chaitin’s work
manuscript, IBM Thomas J. Watson Research Center, Yorktown Heights, NY, p.
215, 1975.

13. X. Zheng, R. Rettinger, and R. Gengler. Closure properties of real number classes
under CBV functions. Theory of Computing Systems, 2005. (to appear).

14. X. Zheng and R. Rettingre. On the extensions of solovay reducibility. In COOCON
2004, August 17-20, Jeju Island, Korea, volume 3106 of LNCS. Springer-Verlage,
2004.

Algorithms for Terminal Steiner Trees�

Fábio Viduani Martinez1, José Coelho de Pina2, and José Soares2

1 Universidade Federal de Mato Grosso do Sul, Brazil
fhvm@dct.ufms.br

2 Universidade de São Paulo, Brazil
{coelho,jose}@ime.usp.br

Abstract. The terminal Steiner tree problem (TST) consists of finding a mini-
mum cost Steiner tree where each terminal is a leaf. We describe a factor 2ρ −
ρ/(3ρ − 2) approximation algorithm for the TST, where ρ is the approximation
factor of a given algorithm for the Steiner tree problem. Considering the current
best value of ρ, this improves a previous 3.10 factor to 2.52. For the TST restricted
to instances where all edge costs are either 1 or 2, we improve the approximation
factor from 1.60 to 1.42.

1 Introduction

Consider a graph G and a function c from its edge set into Q≥. By VG and EG we denote
the vertex and edge sets of G, respectively. For any subset F of EG let c(F) :=

∑
e∈F c(e)

and for any subgraph H of G let c(H) := c(EH) be its cost.
Given a graph and a subset of vertices called terminals, a Steiner tree is a connected

subgraph that contains all terminals. A vertex which is not a terminal is called a Steiner
vertex. The Steiner tree problem (ST) is the following.

Problem ST(G, c,R): given a complete graph G, a cost function c: EG → Q≥
satisfying the triangle inequality, and a set R ⊆ VG of terminals, find a minimum
cost Steiner tree.

We shall denote by ρ the approximation factor of a given approximation algorithm for
the ST. Currently the best value for ρ is slightly smaller than 1.55 [8].

A Steiner tree is a terminal Steiner tree if its set of leaves is precisely the set of
terminal vertices. Terminal Steiner trees have an important role in applications such
as construction of phylogenetic trees in biology [7], global and local routing in VLSI-
design [3, 4, 6], transportation and telecommunications [4, 6]. The terminal Steiner tree
problem (TST) is as follows.

Problem TST(G, c,R): given a complete graph G, a cost function c: EG → Q≥
satisfying the triangle inequality, and a set R ⊆ VG of terminals, find a minimum
cost terminal Steiner tree.

The first result for the TST was obtained by Lin and Xue [6]. They proposed a
factor 2+ ρ approximation algorithm. Fuchs [4], Chen, Lu and Tang [2], and Drake and

� This work was supported by FAPESP/CNPq (ProNEx project 2003/09925-5).

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 369–379, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

370 Fábio Viduani Martinez, José Coelho de Pina, and José Soares

Hougardy [3], obtained independently a factor 2ρ approximation algorithm for the TST.
We present an approximation algorithm for the TST, which improves the 2ρ factor.

Theorem 1 There is a factor α approximation algorithm for the TST, where

α = 2ρ − ρ/(3ρ − 2)

and ρ is the approximation factor of a given algorithm for the ST.

Since the best currently value for ρ is about 1.55, Theorem 1 implies the following
corollary.

Corollary 2 There is a factor 2.52 approximation algorithm for the TST.

Let ST1,2 denote the ST restricted to instances where all edge costs are either 1 or 2.
Bern and Plassmann [1] showed the Max-SNP-hardness of the ST1,2 and proposed a
factor 4/3 approximation algorithm. Robins and Zelikovsky [8] improved this factor
to 1.28. Let TST1,2 denote the TST restricted to instances where all edge costs are
either 1 or 2. Lu, Tang and Lee [7] proposed an 8/5 factor approximation algorithm for
the TST1,2 and showed that the problem is Max-SNP-hard. We are able to show the
following result.

Theorem 3 There is a factor 17/12 approximation algorithm for the TST1,2.

2 Factor α Algorithm for the TST

Let G, c, and R be an instance for the TST. For each r in R we denote by er a minimum
cost edge connecting r to VG \ R and we denote by FR the set {er : r ∈ R}. We describe
an approximation algorithm that receives G, c, and R and constructs terminal Steiner
trees T1 and T2 such if c(FR) is ‘small’ compared to opt(TST(G, c,R)) then

c(T1) ≤ α opt(TST(G, c,R)) , otherwise c(T2) ≤ α opt(TST(G, c,R)) .

The algorithm returns the cheapest tree constructed.
Throughout this section we make a few assumptions without loss of generality. As

the TST is trivial for |R| ≤ 2, we assume |R| ≥ 3. For |R| ≥ 3 a TST contains no edge
connecting terminals, so we may assume that for each pair r, s of vertices in R the cost
on the edge rs is minv∈VG\R(c(rv)+ c(vs)). In particular, this last assumption implies that
we may also assume that any Steiner tree for ST(G, c,R) contains no edge connecting
terminals.

The lemma below presents a situation where opt(TST(G, c,R)) = opt(ST(G, c,R)).

Lemma 1. Let G, c, and R be an instance for the TST. Suppose that for each edge
er = ru, r in R, and for each vertex w in VG \ {r} we have that c(uw) ≤ c(rw) − c(ru)/2.
Then, given a Steiner tree S we can find in polynomial time a terminal Steiner tree T
such that c(T) ≤ c(S).

Algorithms for Terminal Steiner Trees 371

Proof. If each vertex in R is a leaf in S , then we take T := S and we are done. So, we
may assume that there exists a vertex r in R such that its set W of neighbors in S has
more than 1 vertex. Let u be the vertex such that er = ru, let X := {rw : w ∈ W}, and let
Y := {uw : w ∈ W} (Figure 1). Finally, let S ′ be the Steiner tree induced by the edges in
(ES \ X) ∪ Y ∪ {ru}. We have that

c(S ′) = c(ES) − c(X) + c(Y) + c(ru)

≤ c(ES) − c(X) + c(X) − |W |c(ru)/2 + c(ru) (1)

= c(ES) + (1 − |W |/2)c(ru)

≤ c(ES) = c(S),

where (1) holds because c(uw) ≤ c(rw) − c(ru)/2 for each w in W. In this process we
obtained a Steiner tree where r is a leaf and all terminal that are leaves in S remain
leaves in S ′. Thus, by repeating this process we eventually end up with a terminal
Steiner tree satisfying the lemma. �

w1 w2 wp

r

u

W

X

Y
VG \ {r}

Fig. 1. Illustration for Lemma 1. Dashed edges are removed and solid edges are included. Vertex
u may belong to W.

Lemma 2. Let G, c, and R be an instance for the TST and let FR := {er : r ∈ R}.
Given a Steiner tree S we can find in polynomial time a terminal Steiner tree T such
that c(T) = 2c(S) − c(FR).

Proof. If each vertex in R is a leaf in S , then we take T := S and we are done. So, we
may assume that there exists a vertex r in R such that its set W of neighbors in S has
more than 1 vertex. Let u be the vertex such that er = ru, let X := {rw : w ∈ W}, let rx
and ry be the two most costly edges in X and let Y be the edge set of a xy-path in the
subgraph induced by the vertices of W (Figure 2). By the triangle inequality,

c(Y) ≤ 2c(X) − c(rx) − c(ry). (2)

Finally, let S ′ be the Steiner tree induced by the edges in (ES \ X) ∪ Y ∪ {rz}, where rz
is the cheapest edge in X. We have that

372 Fábio Viduani Martinez, José Coelho de Pina, and José Soares

c(S ′) = c(ES) − c(X) + c(Y) + c(rz)

≤ c(ES) − c(X) + 2c(X) − c(rx) − c(ry) + c(rz) (3)

≤ c(ES) + c(X) − c(rx)

≤ c(ES) + c(X) − c(ru) = c(S) + c(X) − c(ru)

where (3) follows from (2). S ′ is a tree where r is a leaf and all terminal that are leaves
in S remain leaves. By repeating this process we eventually obtain a terminal Steiner
tree satisfying the lemma. �

x z y

r

u

W

X

Y

VG \ {r}

Fig. 2. Illustration for Lemma 2. Dashed edges are removed and solid edges are included. Vertex
u may belong to W.

ALGORITHM TERMINAL: receives a complete graph G, a cost function c: EG → Q≥ satisfying
the triangle inequality, and a set R ⊆ VG of terminals, and returns a terminal Steiner tree T such
that c(T) ≤ α opt(TST(G, c,R)).

1: Let c′ : EG → Q≥ defined by

c′(e) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
c(e) + 3c(er) + 3c(es) , if e ∩ R = {r, s}
c(e) + 3c(er) , if e ∩ R = {r}
c(e) , if e ∩ R = ∅.

2: Let S 1 be a Steiner tree returned by a factor ρ approximation algorithm for ST(G, c′,R).
3: Construct a terminal Steiner tree T1 from S 1 using Lemma 1.
4: Let S 2 be the Steiner tree returned by a factor ρ approximation algorithm for ST(G, c,R).
5: Construct a terminal Steiner tree T2 from S 2 using Lemma 2.
6: Let T the minimum cost tree between T1 and T2.
7: Return T and stop.

Proof of Theorem 1. Let c′, S 1, S 2, T1 and T2 be the cost function, Steiner trees and
terminal Steiner trees produced by the ALGORITHM TERMINAL to an instance G, c
and R. Suppose firstly that c(FR) ≤ (ρ/(3ρ − 2)) opt(TST(G, c,R)). As c′ fulfills the
hypothesis of Lemma 1, then c′(T1) ≤ c′(S 1). Moreover, for each r in R the edge
incident to r in T1 is er. Hence,

Algorithms for Terminal Steiner Trees 373

c(T1) = c′(T1) − 3c(FR)

≤ c′(S 1) − 3c(FR)

≤ ρ opt(ST(G, c′,R)) − 3c(FR)

≤ ρ (opt(TST(G, c,R)) + 3c(FR)) − 3c(FR) (4)

= ρ opt(TST(G, c,R)) + 3(ρ − 1)c(FR)

≤ α opt(TST(G, c,R)) ,

where (4) holds because if T ∗ is a terminal Steiner such that c(T ∗) = opt(TST(G, c,R)),
then

opt(ST(G, c′,R)) ≤ c′(T ∗) = c(T ∗) + 3c(FR) = opt(TST(G, c,R)) + 3c(FR) .

Now, suppose that c(FR) ≥ (ρ/(3ρ − 2)) opt(TST(G, c,R)). Let S 2 be the Steiner
tree constructed by the algorithm. We have that

c(T2) ≤ 2c(S 2) − c(FR) (5)

≤ 2ρ opt(ST(G, c,R)) − c(FR)

≤ 2ρ opt(TST(G, c,R) − c(FR)

≤ α opt(TST(G, c,R)) ,

where (5) holds because of Lemma 2.
Finally, as the ALGORITHM TERMINAL returns the cheapest tree T between T1 and

T2, we conclude that c(T) ≤ α opt(TST(G, c,R)). �

3 Factor 17/12 Algorithm for TST1,2

We describe an approximation algorithm that receives G, c and R, an instance for TST1,2

such that c: EG → {1, 2}, and constructs a terminal Steiner tree T such that c(T) ≤
(17/12) opt(TST1,2(G, c,R)).

Throughout this section we assume that the given instance is feasible and that |R| ≥
3. The algorithm constructs a tree Tv for each v ∈ VG \ R. Each Tv is such that c(Tv)
is at most 17/12 times the cost of any terminal Steiner tree using v as a Steiner vertex.
The minimum cost tree over all Tv is returned by the algorithm. Since a minimum cost
terminal Steiner tree must use at least one Steiner vertex, the tree returned is a 17/12
approximation for TST1,2.
Proof of Theorem 3. We claim that ALGORITHM TERMINAL1,2 constructs a terminal
Steiner with the desired approximation.

The algorithm constructs, for each v ∈ VG \R, a terminal Steiner tree Tv containing v
as a Steiner vertex. As a straightforward consequence of Lemmas 6, 4, and 3 presented
below, c(Tv) is at most 17/12 times the cost of a minimum cost terminal Steiner tree
containing v.

If the instance (G, c,R) is feasible and |R| ≥ 3, any terminal Steiner tree contains
at least one Steiner vertex v. Therefore, Tv is the desired approximation for the given
instance of TST1,2. �

374 Fábio Viduani Martinez, José Coelho de Pina, and José Soares

ALGORITHM TERMINAL1,2: receives a complete graph G, a cost function c: EG → {1, 2}, and a
set R ⊆ VG of terminals, and returns a terminal Steiner tree.

1: For each v ∈ VG \ R
2: Construct a set R1 using REDUCTION 1 on (G, c,R, v).
3: Construct sets R2 and S using REDUCTION 2 on (G, c,R \ R1).
4: Construct a terminal tree T ′′v using ALGORITHM CENTRAL on (G, c,R \ (R1 ∪ R2), v).
5: Construct a terminal tree T ′v for (G, c,R \ R1) using tree T ′′v , set S and Lemma 3.
6: Construct a terminal tree Tv for (G, c,R, v) using tree T ′v and Lemma 4.
7: Let T be a minimum cost tree among the trees constructed in Step 1.
8: Return T and stop.

Reductions

The core of ALGORITHM TERMINAL1,2 is ALGORITHM CENTRAL. But, before using
ALGORITHM CENTRAL, we use two reductions to remove some vertices from R. Here
we describe these reductions. The lemmas below show how to obtain, afterwards, the
terminal Steiner tree for the whole R keeping the approximation achieved by ALGO-
RITHM CENTRAL.

The idea of REDUCTION 1 is that if we assume that a Steiner vertex v is part of
the terminal Steiner tree, then every cost 1 edge connecting v to a terminal vertex can
be part of a minimum cost terminal Steiner tree. The fraction 17/12 appearing in the
statement of Lemma 3 can be replaced by any value greater or equal to 1.

REDUCTION 1: receives a complete graph G, a cost function c: EG → {1, 2}, a set R ⊆ VG of
terminals, and a vertex v ∈ VG \ R, and returns a set R′ ⊆ R.

1: Let R′ be the set R′ := {r : r ∈ R and c(rv) = 1}.
2: Return R′ and stop.

Let G, c and R be an instance of TST1,2, and let v be a vertex in VG \ R. We denote
by opt(G, c,R, v) the cost of a minimum cost terminal Steiner tree containing v.

Lemma 3. Given the set R′ constructed by REDUCTION 1 and a terminal Steiner tree
T1 for (G, c,R \ R′) containing v such that

c(T1) ≤ (17/12) opt(G, c,R \ R′, v) (6)

we can find in polynomial time a terminal Steiner tree T2 for (G, c,R) such that

c(T2) ≤ (17/12) opt(G, c,R, v).

Proof. Omitted (see appendix A). �

The idea behind REDUCTION 2 is that a Steiner vertex connected to several terminal
vertices by cost 1 edges is a good vertex to be part of a terminal Steiner tree. Here,
several means at least 5. The fraction 17/12 appearing in the statement of Lemma 4 can
be replaced by any value greater or equal to 7/5. A set S is constructed to remember
which Steiner vertices were considered during the reduction.

Algorithms for Terminal Steiner Trees 375

The work done by ALGORITHM CENTRAL would be made easier if we replace 5 by
4 in the reduction. However, it is easy to check that doing so the reduction will achieve
approximation factor of 3/2 instead of 7/5. Since 3/2 > 17/12, the main result of this
section would not hold.

REDUCTION 2: receives a complete graph G, a cost function c: EG → {1, 2}, a set R ⊆ VG of
terminals, and returns sets R′ ⊆ R and S ∈ VG \ R.

1: R′ := ∅
2: S := ∅
3: For each s ∈ VG \ R let N(s) := {r : r ∈ R and c(rs) = 1}.
4: If there exists s ∈ VG \ R such that |N(s)| ≥ 5, then let R′ := R′ ∪ N(s), S = S ∪ {s},

R := R \ N(s), and return to Step 3.
5: Return (R′, S) and stop.

Lemma 4. Given the sets R′ and S constructed by REDUCTION 2 and a terminal
Steiner tree T1 for (G, c,R \ R′) containing a Steiner vertex v such that

c(T1) ≤ (17/12) opt(G, c,R \ R′, v) (7)

we can find in polynomial time a terminal Steiner tree T2 for (G, c,R) such that

c(T2) ≤ (17/12) opt(G, c,R, v).

Proof. Omitted (see appendix A). �

Algorithm Central

Similarly to REDUCTION 2, this algorithm tries to use Steiner vertices connected by
cost 1 edges to several terminal vertices. Here, several means 4 or 3. We compare the
number of such Steiner vertices that we can find to the number that the minimum cost
terminal Steiner tree can use. This leads us to a weighted set packing problem, as de-
scribed below. Let C be a collection of sets. We remember that a set packing is a collec-
tion of mutually disjoint sets in C.

ALGORITHM CENTRAL: receives a complete graph G, a cost function c: EG → {1, 2}, a set
R ⊆ VG of terminals, and a vertex v ∈ VG \ R. The algorithm returns a terminal Steiner tree.

1: For each s ∈ VG \ R let N(s) be the set N(s) := {r : r ∈ R and c(rs) = 1}.
2: Let C be the collection of sets C := {N(s) : s ∈ VG \R} ∪ {C : C ⊆ N(s) for some s, and |C| =

3}
3: Construct a set packing A of C using Lemma 5.
4: For each A ∈ A, choose a unique v(A) ∈ VG \ R such that A ⊂ N(v(A)).
5: Let VT be the set of vertices VT := {v} ∪ {R} ∪ {v(A) : A ∈ A}
6: Let ET be the set of edges ET := {rs : r is covered byA and s = v(A) for some A ∈ A}∪{sv :

s = v(A) for some A ∈ A} ∪ {rv : r is not covered byA}.
7: Return T = (VT , ET) and stop.

Lemma 5. Let C be a collection of sets such that each set C ∈ C has 3 or 4 elements
and such that if C has 4 elements, then each 3-subset of C is also in C. We can find

376 Fábio Viduani Martinez, José Coelho de Pina, and José Soares

in polynomial time a set packing A of C with a4 sets of cardinality 4 and a3 sets of
cardinality 3, such that

(8b4 + 6b3 − 2a4 − a3)/(5b4 + 4b3) ≤ 17/12.

where b4 and b3 are the sets of cardinality 4 and 3, respectively, in an arbitrary non-
empty set packing B of C.

Proof. We begin packing sets of size 4. Here we use an algorithm due to Hurkens and
Schrijver [5]. Their algorithm guarantees that, for any fixed ε, we can find in polynomial
time a packing with at least b4/(2 + ε) sets. We just need a packing with a4 sets of size
4, where

a4 ≥ 3b4/8. (8)

Besides these a4 sets, we greedily add toA as many sets with 3 elements as possible.
Let B4 and B3 be the collection of sets of size 4 and 3, respectively, in B.
As a consequence of the greedy choice of sets of size 3 inA, we notice that each set

in B ∈ B4 has at least 2 elements covered byA, since, otherwise, a 3-subset of B would
be added to A. Also, each set in B ∈ B3 has at least 1 element covered by A, since,
otherwise, B would be added toA. So, since each element is covered at most once, the
total number of elements covered byA is at least 2b4 + b3.

On the other hand,A can cover at most 4a4 + 3a3 elements. Therefore, it holds that

4a4 + 3a3 ≥ 2b4 + b3. (9)

Using inequality (9) and the hypothesis that B is non-empty, we obtain that

(8b4 + 6b3 − 2a4 − a3)/(5b4 + 4b3) = (24b4 + 18b3 − 6a4 − 3a3)/(15b4 + 12b3)

≤ (24b4 + 18b3 − 2a4 − 2b4 − b3)/(15b4 + 12b3)

= (22b4 + 17b3 − 2a4)/(15b4 + 12b3).

Now, using inequality (8) we obtain that

(22b4 + 17b3 − 2a4)/(15b4 + 12b3) ≤ (22b4 + 17b3 − 3b4/4)/(15b4 + 12b3)

= (85b4/4 + 17b3)/(15b4 + 12b3) = 17/12.

�

Lemma 6. For every instance (G, c,R, v) such that no further reduction in R is possible
using Reductions 1 and 2, ALGORITHM CENTRAL produces a terminal Steiner tree T
such that

c(T) ≤ (17/12) opt(G, c,R, v).

Proof. Let T ∗ be a minimum cost terminal Steiner tree containing vertex v. Let B4 be
the set of Steiner vertices connected in T ∗ to exactly 4 terminal vertices using cost 1
edges. Let B3 and B2 be defined in a similar way. Let b4, b3, and b2 be the cardinality

Algorithms for Terminal Steiner Trees 377

of B4, B3, and B2, respectively. In what follows, we consider T ∗ as a rooted tree with v
as a root.

Let s be a vertex in B4. We can associate cost 5 for s: there are at least 4 edges con-
necting s to a terminal vertex and 1 edge connecting s to its ancestral in T ∗. Similarly,
we can associate cost 4 and 3 for vertices in B3 and B2, respectively. Notice that the
edges mentioned above are disjoint.

We have considered the cost of connecting exactly 4b4+3b3 +2b2 terminal vertices
in T ∗. Consider a remaining terminal vertex r. We argue now that we can account cost
2 for each one of such vertex. Either (i) r is connected in T ∗ by a cost 2 edge or (ii)
r is connected to a Steiner vertex s by a cost 1 edge. If (i) happens, then we account
cost 2 due to the edge connecting r to the tree. Suppose that (ii) happens. Notice that,
since REDUCTION 1 was performed, s � v. Therefore, s has an ancestral in T ∗. Also,
since REDUCTION 2 was performed, s connects at most 4 terminal vertices by cost 1
edges. But, since r is not one of the 4b4 + 3b3 + 2b2 terminal vertices, we infer that r is
the unique terminal vertex connected to s by cost 1 edges. So, we can account 1 for the
edge rs and 1 for the edge connecting s to its ancestral in T ∗.

So, we have that

c(T ∗) ≥ 5b4 + 4b3 + 3b2 + 2b1, (10)

where b1 = |R| − (4b4 + 3b3 + 2b2).
Now, we consider the cost of the tree constructed by ALGORITHM CENTRAL. The

construction is based on a set packingA, where for each A ∈ A corresponds a Steiner
vertex v(A).

The set ET defined in the algorithm can be partitioned into E1, E2, and E3, where
E1 := {rs : r is covered byA and s = v(A) for some A ∈ A}, E2 := {sv : s =
v(A) for some A ∈ A}, and E3 := {rv : r is not covered byA}. Let a4 and a3 be the
number of sets in A with 4 and 3 elements, respectively. The cost of E1 is c(E1) =
|E1| = 4a4 + 3a3. The cost of E2 is c(E2) ≤ 2|E2| = 2(a4 + a3). The cost of E3 is
c(E3) ≤ 2|E3| = 2(|R| − (4a4 + 3a3)). Summarizing, we have that

c(T) ≤ 6a4 + 5a3 + 2a2, (11)

where a2 = |R| − (4a4 + 3a3).
Notice also that the number of terminals in R can be expressed by

4b4 + 3b3 + 2b2 + b1 = 4a4 + 3a3 + a2. (12)

In the following, we assume that all the denominators are non zero, since, otherwise,
the analysis becomes easier. Hence, we have that

c(T)
c(T ∗)

≤ 6a4 + 5a3 + 2a2

5b4 + 4b3 + 3b2 + 2b1
(13)

=
6a4 + 5a3 + 2(4b4 + 3b3 + 2b2 + b1 − 4a4 − 3a3)

5b4 + 4b3 + 3b2 + 2b1
(14)

=
8b4 + 6b3 + 4b2 + 2b1 − 2a4 − a3

5b4 + 4b3 + 3b2 + 2b1

≤ max

{
8b4 + 6b3 − 2a4 − a3

5b4 + 4b3
,

4b2 + 2b1

3b2 + 2b1

}
≤ 17

12
(15)

378 Fábio Viduani Martinez, José Coelho de Pina, and José Soares

where inequality (13) follows from inequalities (11) and (10), equality (14) follows
from equality (12), and the last inequality follows from Lemma 5. �

Remark

One can slightly improve the 17/12 = 1.416 . . . bound of Lemma 5 to a value asymp-
totically close to 38/27 = 1.407 . . . To achieve this bound,

1. apply Hurkens and Schrijver [5] algorithm to obtain a packingA′ with

a′4 ≥ b4/(2 + ε)

sets of size 4, which is greedily extended to a packing of C by adding sets of size 3;
2. apply Hurkens and Schrijver algorithm to C restricted to sets of size 3 to obtain a

packingA′′ with
a′′3 ≥ 2(b4 + b3)/(3 + ε′)

sets of size 3;
3. choose as result the packing which maximizes 2a4 + a3, where a4 and a3 are the

numbers of sets with 4 and 3 elements, respectively.

This, in turn, improves the factor of Theorem 3 to a value asymptotically close to
38/27.

Acknowledgement

We would like to thank an anonymous referee for helpful comments in a preliminary
version of this work.

References

1. M. Bern and P. Plassmann. The Steiner problem with edge lengths 1 and 2. Information Pro-
cessing Letters, 32:171–176, 1989.

2. Y. H. Chen, C. L. Lu, and C. Y. Tang. On the full and bottleneck full Steiner tree problems.
In The Ninth International Computing and Combinatorics Conference – COCOON, pages
122–129, Big Sky, MT, USA, July 2003.

3. D. E. Drake and S. Hougardy. On approximation algorithms for the terminal Steiner tree
problem. Information Processing Letters, 89(1):15–18, 2004.

4. B. Fuchs. A note on the terminal Steiner tree problem. Information Processing Letters,
87:219–220, 2003.

5. C. A. J. Hurkens and A. Schrijver. On the size of systems of sets every t of which have an
SDR, with an application to the worst-case ratio of heuristics for packing problems. SIAM
Journal of Discrete Mathematics, 2(1):68–72, 1989.

6. G. Lin and G. Xue. On the terminal Steiner tree problem. Information Processing Letters,
84:103–107, 2002.

7. C. L. Lu, C. Y. Tang, and R. C.-T. Lee. The full Steiner tree problem. Theoretical Computer
Science, 306:55–67, 2003.

8. G. Robins and A. Zelikovsky. Improved Steiner tree approximation in graphs. In Proceedings
of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 770–779,
San Francisco, California, USA, January 2000.

Algorithms for Terminal Steiner Trees 379

A Omitted Proofs

Proof of Lemma 3. Notice that, since the removal of any terminal vertex from R de-
creases the cost of the minimum terminal Steiner tree by at least 1, we have that

opt(G, c,R \ R′, v) ≤ opt(G, c,R, v)− |R′|. (16)

We construct T2 from T1 adding to T1 some vertices and edges. We add to T1 the
vertices in R′ to T2 and the edges connecting vertices in R′ to v. Since each one of these
edges has cost 1, we have that

c(T2) = c(T1) + |R′|. (17)

Using the hypothesis (6) and combining inequalities (16) and (17), we obtain that

c(T2) = c(T1) + |R′|
≤ (17/12) opt(G, c,R \ R′, v) + |R′|
≤ (17/12) (opt(G, c,R, v) − |R′|) + |R′|
≤ (17/12) opt(G, c,R, v).

�

Proof of Lemma 4. Notice that, since the removal of any terminal vertex from R de-
creases the cost of the minimum terminal Steiner tree by at least 1, we have that

opt(G, c,R \ R′, v) ≤ opt(G, c,R, v)− |R′|. (18)

We construct T2 from T1 adding to T1 some vertices and edges. We add to T1 the
vertices in R′ ∪ S . We add cost 1 edges connecting vertices in S to vertices in R′. If
necessary, we add for each s ∈ S the edge connecting s to v. It is easy to verify that T2

is a terminal Steiner tree for (G, c,R). The cost of T2 is

c(T2) ≤ c(T1) + |R′| + 2|S |.
By construction, for each vertex in S there are at least 5 vertices in R′. Thus, we

have that
5|S | ≤ |R′|.

Combining the last two inequalities, we obtain that

c(T2) ≤ c(T1) + 7|R′|/5. (19)

Using the hypothesis (7) and inequalities (18) and (19), we obtain that

c(T2) = c(T1) + 7|R′|/5
≤ (17/12) opt(G, c,R \ R′, v) + 7|R′|/5
≤ (17/12) (opt(G, c,R, v) − |R′|) + 7|R′|/5
≤ (17/12) opt(G, c,R, v).

�

Simple Distributed Algorithms
for Approximating Minimum Steiner Trees

Parinya Chalermsook1,2,� and Jittat Fakcharoenphol3,��

1 Asian Institute of Technology, Pathumthanim, Thailand
2 Kasetsart University, Bangkok, Thailand

fengpycs@ku.ac.th
3 Department of Computer Engineering
Kasetsart University, Bangkok, Thailand

jtf@ku.ac.th

Abstract. Given a network G = (V, E), edge weights w(·), and a set of
terminals S ⊆ V , the minimum-weight Steiner tree problem is to find a
tree in G that spans S with minimum weight. Most provable heuristics
treat the network G is a metric; This assumption, in a distributed setting,
cannot be easily achieved without a subtle overhead.
We give a simple distributed algorithm based on a minimum spanning
tree heuristic that returns a solution whose cost is within a factor of
two of the optimal. The algorithm runs in time O(|V | log |V |) on a syn-
chronous network. We also show that another heuristic based on iter-
atively finding shortest paths gives a Θ(log |V |)-approximation using a
novel charging scheme based on low-congestion routing on trees. Both
algorithms work for unit-cost and general cost cases. The algorithms also
have applications in finding multicast trees in wireless ad hoc networks.

1 Introduction

Given a network G = (V,E), edge weights w(·), and a set of terminals S ⊆ V ,
the minimum-weight Steiner tree problem is to find a tree in G that spans S with
minimum weight. The tree must contain all terminals; it might also contain other
nodes, called Steiner nodes. This problem appears in various network design
problems. We investigate the problem in a distributed setting.

Usually the network is treated as a distance metric over the nodes, i.e., the
graph G is assumed to be a complete graph. A simple heuristic that computes a
minimum spanning tree on terminals, ignoring all other nodes, gives a solution
of cost within a factor of two of the optimal [1]. We call an algorithm that
always returns a solution of cost within α factor of the cost of the optimal,
an α-approximation algorithm. Thus, the minimum spanning tree heuristic is
a 2-approximation algorithm for the Steiner tree problem. Using a centralized
computation, given a network G, it is straight-forward to compute the distance
� Supported by AIT graduate fellowship.

�� Research supported by Kasetsart University Research and Development Institute
(KURDI).

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 380–389, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Simple Distributed Algorithms for Approximating Minimum Steiner Trees 381

metric and apply the heuristic. However, in distributed computation, quadratic
time is required for sending information on the edges to a single node, and
computing the whole metric requires also quadratic time.

In this paper, we present two algorithms for the problem. Both algorithms
work for both unit-cost and general cost cases and on both synchronous and
asynchronous communication network.

First, we give a simple distributed algorithm that returns a solution whose
cost is within a factor of two of the optimal. The algorithm constructs the de-
composition of the graph and use it to find a minimum spanning tree on the set
of terminals efficiently. The algorithm runs in time O(|V | log |S|) on synchronous
networks and O(|V | log |V |) on asynchronous networks.

We also show that another simple heuristic based on iteratively finding short-
est paths connecting nodes to the “connected set” in any arbitrary order gives a
Θ(log |V |)-approximation1. This iterative procedure is very similar to that used
in a swarm-intelligence-based construction of mobile ad hoc multicast trees of
Shen and Jaikaeo [2], if one sees the swarm agents as trying to find shortest
paths. To prove the performance, we introduce a novel charging scheme based
on low-congestion routing on trees. For this algorithm we concerns mainly on the
performance guarantee, not the running time, because it shows that an algorithm
used in practice actually does the right thing.

Although both algorithms find multicast trees for wired network, our algo-
rithms have applications in the wireless broadcasting network as well, through
the work of Wan, Călinescu, and Yi [3]. We discuss this further in Sect. 1.3.

1.1 The Model

In this paper, we consider distributed algorithms in both asynchronous and
synchronous communication networks. The network can be described as a com-
munication graph, where processors reside at the nodes and edges represent
communication links. The messages sent between nodes are assumed to have
bounded lengths. In asynchronous network, messages sent along the link arrive
at an unpredictable time. In a synchronous network, there is a notion of rounds,
that every node communicates, and the messages sent on round i are guaranteed
to be delivered before round i+1 starts. We refer to a more complete description
of the model in Lynch’s book [4].

In this paper, when we discuss the time complexity of the algorithm, we mean
the number of rounds in the synchronous network model. For the asynchronous
network, the time complexity is the worst-case number of time units from the
start and the completion of the algorithm, assuming the propagation delay and
the inter-message delay of each link is at most one unit. This assumption is
only for the performance evaluation; the algorithm must work correctly with
arbitrary delays. We also consider the communication complexity, which is the
total number of messages the algorithm sends.

1 Every logarithm in the paper is on base 2.

382 Parinya Chalermsook and Jittat Fakcharoenphol

Through out the paper, we denote by n the number of nodes, m the number
of edges, and k the number of terminals.

1.2 Related Work

Many algorithms exist for multicast routing in wired networks. Usually the tree
construction is done heuristically based on shortest paths as in CBT [5] or PIM-
SM [6]. Some architecture [7] uses the provably-good heuristic such as a minimum
spanning tree to approximate a cheap multicast tree. But usually the computa-
tion of the minimum spanning tree is done in a designated centralized node.

There is a long line of study on polynomial-time approximation algorithms of
metric Steiner trees. The best known algorithm is by Robins and Zelikovsky [8]
whose performance approaches 1.55. When the terminals are in Euclidean space
and any points on the space can be used as Steiner nodes, Arora [9] gives a
polynomial-time approximation scheme.

1.3 Applications to Wireless Ad Hoc Networking

Various heuristics are developed to find energy-efficient broadcast amd multi-
cast trees in wireless network [3, 10, 11]. For example, Wieselthier, Nguyen,
and Ephremides [10] give many algorithm for finding broadcast trees based on
shortest paths, minimum spanning trees, and the minimum incremental power
heuristic. To get a multicast tree, they prune the broadcasting tree obtained
from the previous heuristics. Wan, Călinescu, and Yi [3] analyze the theoretical
performance of the proposed algorithms. They give examples showing that prun-
ing does not help, i.e., the approximation factor can be as bad as Ω(n). They
also show that any trees that approximate the minimum Steiner trees within a
factor of ρ, also approximate the minimum asymmetric multicast tree up to a
factor of cρ where 6 ≤ c ≤ 12. If the communication is bidirectional (or sym-
metric), the ratio is reduced to 2ρ. Wan et al. use the minimum spanning trees
over the terminals to approximate the Steiner tree. They outline the algorithm
which runs in time O(nk) on a synchronous network. This paper improves the
running time to O(n log k).

1.4 Organization

Sect. 2 describes a 2-approximation distributed algorithm for the Steiner tree
problem and proves its correctness and running time. In Sect. 3, we prove that
a simple intuitive heuristic has a performance guarantee of Θ(log n) for a graph
with n nodes. The proof relies on the result in Sect. 4 where the approximation
algorithm for a certain on-line routing on trees is presented.

2 A 2-Approximation Algorithm

We first review a centralized algorithm that 2-approximates the Steiner trees.
We are given a graph G = (V,E) with edge weights w(·) and a set of terminals S.

Simple Distributed Algorithms for Approximating Minimum Steiner Trees 383

Denote by OPT the optimal Steiner tree and opt its cost2. The graph together
with the weights induces a shortest path distance metric d, where d(u, v) is
the shortest path distance from u to v in G. From metric d, we can obtain
complete graph H whose nodes are terminals with d as edge weights. Takahashi
and Matsuyama[1] show that the cost of the minimum spanning tree T in H is
at most twice opt. Taking any spanning tree of union of the set of shortest paths
that makes up T , we get a tree T ′ in G whose cost is at most the cost of T ; thus,
T ′ approximates OPT no worse than a factor of two.

We now focus on finding the minimum spanning tree on the set of terminals.
Instead of finding the metric d directly, we decompose a graph and obtain another
metric d′ on S. The metric d′ might not be the same as d, but we show that
a minimum spanning tree on metric d′ is also a minimum spanning tree of the
terminals on the original metric d.

We define the graph decomposition in Sect. 2.1. Then, in Sect. 2.2 we describe
the algorithm and proves its correctness and its running time.

2.1 Graph Decomposition

We decompose the graph into clusters, each associated with a terminal. We
denote by Ct ⊆ V the cluster containing terminal t. A cluster Ct contains nodes
whose closest terminal are t, i.e., Ct = {u ∈ V |t = arg minw d(u,w)}. If ties
occur, the node belongs to the cluster whose center has the lowest id. We call
t the center of Ct. For each node v, let C(v) be the center of the cluster that
contains v. An inter-cluster edge is an edge e = (u, v) such that C(u) �= C(v).
The construction of this decomposition is described later in this section.

A weighted graph G′ on clusters can be defined as follows. The nodes of G′

are clusters. For simplicity, we refer to a cluster Ct by its center t. For each
inter-cluster edge e = (u, v), we have an edge (C(u), C(v)) in G′. The weight of
(C(u), C(v)) is d(C(u), u)+w(u, v)+d(v, C(v)), i.e., the shortest path from C(u)
to C(v) which go through e. The graph G′ induces a shortest path metric d′ on
the set of terminals. The metric d′ can be different from the original shortest
path metric d (See, for example, Fig. 1).

(a) (b)
t1

t2 5

5
5

t1

t2

Fig. 1. (a) A decomposition of a graph G: rectangles are terminals and other circle
are nodes. (b) A weighted graph G′. Note that the distance between t1 and t2, which
is 9 in G, becomes 15 in G′.

2 We will use the term ‘weight’ and ‘cost’ interchangably in this paper.

384 Parinya Chalermsook and Jittat Fakcharoenphol

However, the following lemma shows that the minimum spanning trees in
both metrics are the same. In the proof, we use a well-known fact (see, e.g., [12])
that for any cycle C in the graph, edge e ∈ C having the strictly largest weight,
later called a heavy edge, cannot be in any minimum spanning tree.

Lemma 1. The minimum spanning tree T in G′ remains a minimum spanning
tree on the set of terminals in the original metric d.

Proof. (sketch) We denote by H a weighted complete graph on the terminals
with the original metric d. W.l.o.g., we assume that edge weights of H are all
distinct.

First, note that from d to d′, the distances only increase. Therefore, it suffices
to show that if the distance for a pair (a, b) increases, i.e., d′(a, b) > d(a, b), edge
(a, b) cannot be in any minimum spanning tree in H , because this means that
any minimum spanning trees in H have the same cost in G′.

Assume that d′(a, b) > d(a, b). Consider the shortest path P in G from a
to b. This path must intersect with some cluster Ci �∈ {Ca, Cb}, for otherwise
the distance must remain unchanged. Let Ca = C0, C1, C2, . . . , Ck = Cb be a
sequence of clusters that P intersects, listed in the same order as P goes from
a to b. This sequence forms a path Q = t0, t1, t2, . . . , tk in H from a to b, where
ti is the center of Ci. We claim that d(a, b) > d(ti, ti+1) for 0 ≤ i ≤ k − 1.
The lemma follows from the claim because the edge (a, b) must be a heavy edge
which cannot belong to any minimum spanning tree.

It is left to prove the claim. Let u be the node through which P enters Ci, i.e.,
u is the first node in Ci that intersects P . Also, let v be the node through which
P leaves Ci+1, i.e., v is the last node in Ci+1 that intersects P . Break P into
three paths Pau, Puv, and Pvb which are are subpaths of P from a to u, from u to
v, and from v to b, respectively. Clearly, d(a, b) = d(a, u)+d(u, v)+d(v, b). Since
u belongs to Cti , we have3 d(ti, u) < d(a, u). Similarly, d(v, ti+1) < d(v, b). Thus,
d(a, b) = d(a, u) + d(u, v) + d(v, b) > d(ti, u) + d(u, v) + d(v, ti+1) ≥ d(ti, ti+1),
as required. ��

It remains to show how to find the decomposition. If all edges have unit
cost, i.e., w(e) = 1 for all e ∈ E, one can start doing parallel breadth-first
search from all the terminal synchronously. Each process carries with it the id
of the source terminal. Although there are many BFS processes running simul-
taneously, a node is visited once by the processes originated from the closest
terminal. If there are ties, break ties using the terminals’ id. When edges have
general costs, we change from the BFS process to the Dijkstra’s growing process.
Both construction can be modified to work in asynchronous networks using the
technique by Awerbuch [13]. The algorithm runs in asynchronous networks in
time O(|V | logk |V |) for both unit weights and general weights, using O(k · |V |2)
messages. Awerbuch also gives a faster algorithm for distributed shortest path
computation [14]; we have not verified if this works in our case.

3 It can be shown that the way we break ties works. We leave out the details for the
simplicity of the presentation.

Simple Distributed Algorithms for Approximating Minimum Steiner Trees 385

2.2 The Algorithm and Its Running Time

In this section, we combine the decomposition with a minimum spanning tree
algorithm for asynchronous networks of Gallager, Humblet, and Spira [15] which
runs in time O(n log n). This algorithm is not the best one available (for exam-
ple, see [16–19]), however, we have not verified if one of these works with our
decomposition.

The algorithm of Gallager et al. can be viewed as a parallel implementation
of Boruvka’s algorithm [20]. The algorithm maintains a set of connected com-
ponents, initially containing every single node. For each round, each connected
component finds the shortest edge connecting itself with the other component
and merge. Each round takes linear time and messages, and decreases the num-
ber of components by a factor of two. Thus, the algorithm terminates in O(log n)
rounds.

We follows the same steps. However, we start with clusters instead of single
nodes. Also, we let the cost of the inter-cluster edges e = (u, v) be d(C(u), u) +
w(u, v) + d(v, C(v)) as in the construction of the metric d′, while other edges
have zero cost. Since we start with k components, the algorithm terminates in
O(log k) rounds.

The running time of the approximation algorithm is the time for constructing
the decomposition and the time for constructing an MST. Thus, the algorithm
runs in time O(n log n).

3 A Heuristic Based on
Iteratively Finding Shortest Paths

In this section we consider the following heuristic for computing Steiner trees.
We index the terminals as t1, t2, . . . tk and process the terminal in this order.
We maintain a tree T which is initially empty. First, we connect t1 and t2 by
the shortest path. Then for each i > 2, we find a shortest path from ti to any
nodes in T , and add such path which connects ti to all terminal tj for j < i. The
algorithm returns T , which clearly connects all terminals. Later on, we call this
heuristic a sequence shortest-path-based heuristic. We note that this heuristic is
different from the shortest incremental path heuristic which guarantees to give a
minimum spanning tree over the set of the terminals, as it is an implementation
of Prim’s algorithm.

To prove the performance guarantee for this algorithm, we consider the fol-
lowing on-line problem on trees. Given a tree T = (V,E), we want to connect
a set of terminals S ⊆ V by a flow path. At each time step i, a new terminal
ti ∈ V is revealed and we must route one unit of flow from previously connected
terminals tj , where j < i, to ti along the path on the tree. We state Theorem 1,
which will be proved in Sect. 4, in the form that is easy for us to use here.

Theorem 1. For any tree T with n nodes and any sequence of nodes t1, t2, . . . tk
in T , we can find a set of paths q1, q2, . . . , qk−1 such that (1) qi connects ti+1

386 Parinya Chalermsook and Jittat Fakcharoenphol

to some tj, such that j ≤ i, and (2) each edge in T belongs to at most O(log n)
paths.

Using this theorem, the next theorem establishes the bound on the approxi-
mation ratio of the shortest-path-based heuristic.

Theorem 2. The sequence shortest-path-based heuristic gives a tree that spans
the terminals with cost within an O(log n) factor of the optimal Steiner tree.

Proof. (sketch) Let OPT be the optimal Steiner tree. Applying Theorem 1 on
OPT with the sequence of opening nodes being t1, t2, . . . , tk, we get a set of
k − 1 paths q1, q2, . . . , qk−1 such that qi connects ti+1 to some tj where j ≤ i.
Theorem 1 guarantees that the sum of the cost of all paths is O(log n) of the
cost of OPT , when the cost of the path qi be the sum of the cost of its edges.

Let pi be the path added to T in the shortest-path-based heuristic at the
time the algorithm connects ti+1. Clearly pi must be no longer than any paths
that connects ti+1 to some tj for j ≤ i. Thus, its cost is at most the cost of qi,
and the cost of the tree returned by the heuristic must be at most O(log n) times
the optimal cost. ��

We note that there is an example showing that the O(log n) approximation
ratio is best possible.

4 Connecting Supplies on Trees, On-Line

Given a tree T = (V,E), we want to connect a set of terminals S ⊆ V by a
flow path. At each time step i, a new terminal ti ∈ V is revealed and we must
route one unit of flow from terminals tj , where 1 ≤ j < i, to ti along the path
on the tree. At this time step i, we refer to terminals tj , where 1 ≤ j < i
as previously connected terminals. Clearly, an optimal off-line algorithm would
return a subtree that spans all the terminals and only route flow along these tree
edges so that each edge belongs to at most one flow path. In this section, we
give an on-line algorithm with the competitive ratio of O(log n) for a tree with
n nodes.

The output of the algorithm for each time step i is a flow path fi from some
previously connected terminal tj to ti. The amount of flow on each edge e is
the number of flow paths that use e. To prove the performance guarantee of the
algorithm, it suffices to show a bound of O(log n) for the flow on any edge e.

To illustrate the idea, we first consider the case where T is a line.

4.1 Algorithm for Line Graphs

The algorithm is simple. When terminal ti is revealed, we route the flow to the
closest previously connected terminals. We assume that ti itself is not previously
connected.

For analysis simplicity, we root the graph by choose one 1-degree node to be
the root. This induces the parent-child relation between nodes. We rather use

Simple Distributed Algorithms for Approximating Minimum Steiner Trees 387

the relations to-the-left and to-the-right. We say that u is to the left of v when
u is a predecessor of v. The to-the-right relationship can be defined analogously.
We are ready to analyze the algorithm.

We call a pair of terminals ta and tb, ta is to the left of tb, consecutive
terminals, if there is no other terminal tc lying between them, i.e., there is no
tc �= ta �= tb such that ta is to the left of tc and tc is to the left of tb.

The following lemma stating that each edge will be used by at most O(log n)
flow paths by induction on the number of the steps. Due to space limitation, we
leave out the proof.

Lemma 2. The algorithm preserves the following property. For a pair of consec-
utive terminals ta and tb, if the distance on the line graph between them is l, the
amount of flows on every edge on the path from ta to tb is at most �1+ log(n/l)�.

4.2 General Case for Trees

We want to deal with a tree as a set of paths, so that we can apply the previous
result on the lines. We first introduce some more definitions and notations.

Note that at any time i the set of edge with non-zero flows forms a single
subtree of T ; denote this subtree by T i. To analyze the performance of the
algorithm, we decompose T i into a set of paths P1, P2, . . . , Pi defined recursively
as Pi = T i−T i−1 and P1 = ∅. Intuitively, Pi is the path that has been added at
time step i. We will use the algorithm for line graphs in the previous section to
route flows on these paths. Pi might be empty, because ti is already in T i−1. In
this case we let Pi contains only ti. We remind the reader that in the case that
ti is already in T i−1, we still need to route a flow fi.

We sometimes abuse the notation when we treat a subgraph as a subset of
nodes. The path Pj with the smallest index j such that j < i and Pj ∩Pi �= ∅ is
called a parent path of Pi, denoted by par(Pi). If Pi is not an empty path we say
that terminal ti is on the path Pi, otherwise we say that ti is on par(Pi). The
intersection node of Pi and par(Pi) is called a branching node for Pi.

The sequence of paths {Pi} described above can be determined solely based
on the sequence of the requesting terminals. Hence, it is independent of the flow
paths returned by the algorithm. Our proof analyzes the amount of flows on
edge e in a fixed path Pi.

To help the routing, the algorithm maintains a set of temporary terminals
U initially empty. A node in this set behaves like a terminal, i.e., it can send
a flow to a new terminal. Each node v ∈ U is associated with some previously
connected terminal tj . Thus, when a flow is routed from v, it actually gets routed
from tj .

We are ready to describe the algorithm. The algorithm does nothing when
receiving the first terminal. When the i-th terminal is revealed it proceeds as
follows. Consider the path Pi connecting ti to T i−1. If Pi is empty, i.e., ti is
already in T i−1, ti must be on some path Pj . We route the flow to ti using the
algorithm for line graphs. If Pi is not empty, consider the branching node v for
Pi. If v is a terminal, we simply route the flow from v to ti. Otherwise, we set v

388 Parinya Chalermsook and Jittat Fakcharoenphol

to be a temporary terminal and use the line graph algorithm to route one unit
of flow from terminals in par(Pi) to v. We then route that flow to ti through v.
We associate with v the terminal ti. Fig. 2 illustrates this situation.

There are two more special cases. When a temporary terminal ti becomes a
real terminals, i.e., the revealed terminal ti ∈ U , we remove ti from U and route
one unit of flow from its associated previously connected terminal tj . The second
case is when we want to set a branching node v to be a temporary terminal for
ti but v is already a temporary terminal. In this case we route one flow from v’s
currently associated terminal tj to ti, and change the terminal associated with
v to be ti.

par(Pi)

ti

Pi

par(Pi)

ti

Pi

(a) (b)

Fig. 2. (a) When ti is revealed, one unit of flow is routed from some terminal in
par(Pi) through the branching node v. Then, v becomes a temporary terminal. (b)
Later when some node in par(Pi) is revealed and v is its closest (temporary) terminal,
a flow is routed to such terminal from ti through v.

We now prove the main result of this section.
Theorem 3. The algorithm routes the flow paths so that no edge contains more
than O(log n) amount of flows.

Proof. On any path Pi, the amount of flows routed between terminals and tem-
porary terminals on Pi for each edge is at most O(log n) units, from the proof for
line graphs. It remains to show that the amount of flow from other path going
through the branching node v of Pi is also O(log n).

We route one unit of flow when the first node ti in Pi is revealed. After that,
v acts as a temporary terminal on par(Pi) and we might need to route some
flow from ti to other nodes on par(Pi). However, this can happen for at most
O(log n) times. To see this, note that these flows are those which go between
terminals and temporary terminals on par(Pi). Among these flows, there are at
most O(log n) units of flow going from ti through v, because we know that two
edges adjacent to v contain at most O(log n) flows of these kind.

Finally, when v becomes real terminal or when v associates itself with the
other terminal, we need to route one unit of flow from ti, and we no longer need
to route any flow from ti through v. Thus, the total amount of flows along any
edge is at most O(log n). ��

Acknowledgments

We thank Chaiporn Jaikaeo for many discussions that inspire this work. We also
thanks anonymous referees for their helpful comments.

Simple Distributed Algorithms for Approximating Minimum Steiner Trees 389

References

1. Takahashi, H., Matsuyama, A.: An approximate solution for the steiner problem
in graphs. Math. Jap. 24 (1980) 573–577

2. Shen, C.C., Jaikaeo, C.: Ad hoc multicast routing algorithm with swarm intelli-
gence. Mob. Netw. Appl. 10 (2005) 47–59

3. Wan, P.J., Călinescu, G., Yi, C.W.: Minimum-power multicast routing in static ad
hoc wireless networks. IEEE/ACM Trans. Netw. 12 (2004) 507–514

4. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann Publishers, Inc (1996)
5. Ballardie, T., Francis, P., Crowcroft, J.: Core based trees (CBT). In: Conference

proceedings on Communications architectures, protocols and applications, ACM
Press (1993) 85–95

6. Wei, L., Estrin, D.: Multicast routing in dense and sparse modes: simulation study
of tradeoffs and dynamics. In: Proceedings of the 4th International Conference on
Computer Communications and Networks (ICCCN ’95), IEEE Computer Society
(1995) 150

7. Pendarakis, D., Shi, S., Verma, D., Waldvogel, M.: ALMI: An application level
multicast infrastructure. In: 3rd USNIX Symposium on Internet Technologies and
Systems (USITS ’01), San Francisco, CA, USA (2001) 49–60

8. Robins, G., Zelikovsky, A.: Improved steiner tree approximation in graphs. In:
Proceedings of the eleventh annual ACM-SIAM symposium on Discrete algorithms,
Society for Industrial and Applied Mathematics (2000) 770–779

9. Arora, S.: Polynomial time approximation schemes for euclidean traveling salesman
and other geometric problems. J. ACM 45 (1998) 753–782

10. Wieselthier, J.E., Nguyen, G.D., Ephremides, A.: Energy-efficient broadcast and
multicast trees in wireless networks. Mob. Netw. Appl. 7 (2002) 481–492

11. Wan, P.J., Călinescu, G., Li, X.Y., Frieder, O.: Minimum-energy broadcasting in
static ad hoc wireless networks. Wirel. Netw. 8 (2002) 607–617

12. Tarjan, R.E.: Data structures and network algorithms. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA (1983)

13. Awerbuch, B.: Complexity of network synchronization. J. ACM 32 (1985) 804–823
14. Awerbuch, B.: Randomized distributed shortest paths algorithms. In: Proceedings

of the twenty-first annual ACM symposium on Theory of computing, ACM Press
(1989) 490–500

15. Gallager, R.G., Humblet, P.A., Spira, P.M.: A distributed algorithm for minimum-
weight spanning trees. ACM Trans. Program. Lang. Syst. 5 (1983) 66–77

16. Elkin, M.: A faster distributed protocol for constructing a minimum spanning
tree. In: Proceedings of the fifteenth annual ACM-SIAM symposium on Discrete
algorithms, Society for Industrial and Applied Mathematics (2004) 359–368

17. Awerbuch, B.: Optimal distributed algorithms for minimum weight spanning tree,
counting, leader election, and related problems. In: Proceedings of the nineteenth
annual ACM conference on Theory of computing, ACM Press (1987) 230–240

18. Kutten, S., Peleg, D.: Fast distributed construction of k-dominating sets and appli-
cations. In: Proceedings of the fourteenth annual ACM symposium on Principles
of distributed computing, ACM Press (1995) 238–251

19. Gafni, E.: Improvements in the time complexity of two message-optimal election
algorithms. In: Proceedings of the fourth annual ACM symposium on Principles
of distributed computing, ACM Press (1985) 175–185

20. Boruvka, O.: O jistém problému minimálńım. Práca Morauské Pr̆irodovědecké
Spolec̆nosi 3 (1926) 37–58

A Truthful (2 − 2/k)-Approximation Mechanism
for the Steiner Tree Problem with k Terminals�

Luciano Gualà1 and Guido Proietti1,2

1 Dipartimento di Informatica, Università di L’Aquila, Italy
2 Istituto di Analisi dei Sistemi ed Informatica, CNR, Roma, Italy

{guala,proietti}@di.univaq.it

Abstract. Let a communication network be modelled by an undirected
graph G = (V, E) of n nodes and m edges, and assume that each edge
is owned by a selfish agent, which establishes the cost of using her edge
by pursuing only her personal utility. In such a non-cooperative setting,
we aim at designing a truthful mechanism for the problem of finding a
minimum Steiner tree of G. Since no poly-time computable exact truth-
ful mechanism can exist for such a problem (unless P=NP), we provide a
truthful (2 − 2/k)-approximation mechanism which can be computed in
O((n+k2)m log α(m, n)) time, where k is the number of terminal nodes,
and α(·, ·) is the classic inverse of the Ackermann’s function. This com-
pares favorably with the previous known O(kn(m + n log n)) time and
2-approximate truthful mechanism for solving the problem.

Keywords: Steiner Tree Problem, Selfish Agents, Algorithmic Mecha-
nism Design, Approximate Truthful Mechanisms.

1 Introduction

In any large network which contains heterogeneous components, each of the
network components may be owned by different owners. Quite naturally, the
incentive for an owner of a component in performing some task (e.g., forward-
ing a message) is to get some reward. From the network management point of
view, this reward represents the price of the service of forwarding the message.
Therefore, it is economically desirable that each owner declares the true price for
the service that her component offers, so as to allocate the overall resources in a
best possible way. Hence, it turns out that in several network applications one
needs to compute efficiently a solution of a given optimization problem, with the
additional constraint of enlivening the agents (through suitable payments) to
cooperate with the solving algorithm. This combination of output computation
and definition of payments is usually referred to as a mechanism.

This interplay between game theory and computational complexity is well-
known by today as algorithmic mechanism design for selfish agents [5, 14].
Among others, in their seminal paper [14], Nisan and Ronen addressed the classic
� Work partially supported by the Research Project GRID.IT, funded by the Italian

Ministry of Education, University and Research.

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 390–400, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Truthful (2 − 2/k)-Approximation Mechanism 391

shortest path problem. This problem enjoys the fundamental property of belong-
ing to the class of utilitarian problems, for which the well-known class of Vickrey-
Clarke-Groves (VCG) mechanisms [4, 8, 19] provides an easy-to-implement cor-
responding truthful mechanism. Therefore, the shortest path problem can be
solved efficiently. Indeed, the time complexity needed to compute the output
specification and the payments to the agents, is O(mn + n2 logn) for directed
graphs, while for undirected graphs it is O(m + n logn) on a pointer machine
(PM) [10, 11], and O(mα(m,n)) on a word RAM [12], respectively, where α(·, ·)
is the classic inverse of the Ackermann’s function defined in [18].

For another popular network topology, that is the minimum spanning tree
(MST), the situation evolved similarly. Indeed, this problem naturally defines
itself as utilitarian. Therefore, once again we can use a VCG-mechanism, and, as
pointed out in [14], the O(mα(m,n)) time and linear space sensitivity analysis
algorithm in [18] can be used to solve the problem. Notice that the same time
complexity holds even when each agent owns a set of edges incident to a given
node [13].

Concerning another widespread network topology, that is the single-source
shortest paths tree (SPT), it naturally admits both utilitarian and non-utilitarian
formulations [9]. For the utilitarian case, in [9] the authors provide a VCG-
mechanism which can be implemented in O(mn logα(m,n)) time on a RAM,
and in O(mnα(m,n)) time on a PM, while, for the non-utilitarian case, they
provide a truthful mechanism (not in the VCG class) which can be implemented
in O(m+ n logn) time.

In this paper, we focus on another classic network design problem, that is the
Steiner Tree (ST) problem. Let N ⊆ V be a set of terminal nodes, with |N | = k.
The ST problem asks for connecting all the nodes in N through a minimum
weighted tree in G, possibly by making use of nodes in V \N (the so-called
Steiner nodes). The only known truthful mechanism for the ST problem that
we have seen to date is given in [20], where the authors provide a 2-approximate
truthful mechanism, and show how to compute it in O(kn(m+ n logn)) time.

Here, we improve the approximation ratio to (2 − 2/k), and we show that
our mechanism can be efficiently computed in O((n+ k2)m logα(m,n)) time on
a RAM, and in O((n + k2)mα(m,n)) time on a PM, by using O(n2) space in
both cases. Notice that our mechanism, even on a PM, is never slower than the
mechanism defined in [20], while for some value of k and m it is significantly
faster. In particular, our best improvement is by a factor of

√
n log n

α(n,n) , which is
obtained for k = Θ(

√
n) and m = Θ(n).

2 Basic Definitions

Let G = (V,E) be an undirected graph, with |V | = n nodes and |E| = m edges,
and with a positive real weight be associated with each edge e ∈ E. For a given
graph H other than G, we will denote its node set and its edge set by V (H)
and E(H), respectively. Given a subgraph H of G, the weight of H is defined as
b(H) =

∑
e∈E(H) be. Let T be a spanning tree of G, and let e ∈ E(T). Let T − e

392 Luciano Gualà and Guido Proietti

be the graph obtained by removing e from T , consisting of two trees with node
sets V1 and V2, respectively. The set of edges crossing the cut in G induced by
V1 and V2 is defined as

E(G|T−e) = {(x, y) ∈ E\{e} | (x ∈ V1) ∧ (y ∈ V2)}.

Let π be a path in G which passes through a pair of nodes x and y. Then, we
denote by π[x, y] the subpath of π joining x and y. A shortest path in G between
two nodes r and s will be denoted by PG(r, s), while dG(r, s) will indicate the
weight of such a path, also known as the distance in G between r and s. Finally,
given a source node r ∈ V , we denote by S(r) an SPT of G rooted in r.

Let a communication network be modelled by an undirected graph G, and
assume that each edge is owned by a selfish agent Ae, which holds a private
information te. We call this value the input type of the agent Ae. This value
depends on various factors (e.g., bandwidth, reliability, etc.), and we assume that
te represents the true cost for the agent Ae for forwarding a message through
the link e. Only agent Ae knows te, while everything else is public knowledge.
Each agent has to declare a public bid be to the mechanism. We will denote by
t the vector of input types, and by b the vector of bids.

For a given optimization problem defined on G, there exists some set of
feasible solutions F that the mechanism is allowed to choose. For each feasible
solution x ∈ F , some measure function μ(x, t) is defined, which depends on the
true types. The mechanism tries to optimize μ(x, t), but of course it does not
know t directly.

Whenever an agent Ae participates to a solution x, she incurs some cost, say
ce(te, x), depending on her private type. While te is known only by the agent
Ae, the cost function is public. In order to offset these costs, the mechanism
provides some reward to agents participating to the computed solution, i.e., the
mechanism makes a payment pe(b) to the agent Ae for the service provided in a
solution which is computed as a function of the bid vector b.

A mechanism is a pair M = 〈g(b), p(b)〉, where g(b) is an algorithm that,
given agents’ bids, computes a feasible solution in F , and p(b) is a scheme which
describes the payments provided to the agents. A mechanism is exact if the
returned solution is optimal.

For each agent Ae and for each solution g(b) computed by the mechanism,
the utility function of Ae is defined as ue(te, b) = pe(b)− ce(te, g(b)). We assume
that each agent is selfish, i.e., she always attempts to maximize her utility. Let
b−e denote the vector of all bids besides be; the pair (b−e, be) will denote the
vector b. We say that truth-telling is a dominant strategy for agent Ae if bidding
te always maximizes her utility, regardless of what the other agents bid, i.e.,
ue(te, (b−e, te)) ≥ ue(te, (b−e, be)), for all b−e and be. A mechanism is said to be
truthful if, for every agent, truth-telling is a dominant strategy. Moreover, let ε(σ)
denote a positive real function of the input size σ. Then, an ε(σ)-approximation
mechanism is a mechanism which returns a solution g(b) which comes within a
factor ε(σ) from the optimum, i.e., μ(g(b), t) ≤ ε(σ) · μ(x∗, t), where x∗ is an

A Truthful (2 − 2/k)-Approximation Mechanism 393

optimal solution with respect to the vector t. Finally, we say that a mechanism
is poly-time computable if g(·) and p(·) are computable in polynomial time.

3 The Problem

For a graph G = (V,E) in which there exists a bijection between the edges
and the selfish agents, let N ⊆ V be a set of terminal nodes which want to
establish a communication. Suppose that we aim to design a routing protocol in
which the terminal nodes exchange messages through a minimum-cost network.
In other words, we want to design a mechanism for the ST problem. By using the
notation introduced in the previous section, the problem can be formalized as
follows. The set of feasible solutions F is the set of all the trees in G spanning N ,
and the measure of a solution T ∈ F (which the mechanism tries to minimize)
is μ(T, t) =

∑
e∈E(T) te. Such a measure function has a particular nice form, i.e.,

μ(T, t) is exactly the sum of the true costs of the agents participating to the
solution T . This makes the problem utilitarian, and therefore solvable through
a VCG-mechanism. However, for our problem such a mechanism is not poly-
time computable, since it requires finding optimal solutions for the ST problem,
which is known to be NP-hard even in the Euclidean or the rectilinear metric
[6]. Moreover, for utilitarian problems, in [7] it is proved that VCG-mechanisms
are the only exact mechanisms. In an effort to find approximate solutions, one
could try to use a fast heuristic to compute a good solution, and then applying
a VCG payment scheme. Unfortunately, in [15] it is exhibited a broad class
of problems for which no mechanism that uses VCG payments is truthful, if
its output algorithm is suboptimal, and it easy to verify that the ST problem
belongs to such class. Thus, a mechanism other than VCG must be developed to
guarantee truthfulness. To this aim, in this paper we provide a truthful (2−2/k)-
approximation mechanism inspired by the results of Archer and Tardos [1].

In the rest of the paper, we call the tree selected by the mechanism winning
tree, and we say that each edge in such a tree wins, while all the other edges lose.
In [1] it is shown that in a truthful mechanism the payment scheme is entirely
determined by the rule used to select the winning tree, since the payment to
edge e should depend only on b−e and on whether e wins or loses. Thus, for
fixed b−e, there must be a threshold βe such that if Ae bids not more than βe,
then she will win, while if Ae bids above βe she will lose. A subgraph selection
rule is said monotone if a losing edge can never cause itself to win by raising
her bid. Moreover, the truthful mechanisms that pay zero to losing edges, and
pay βe to each winning edge, correspond exactly to the monotone subgraph
selection rules in which each edge can bid high enough to lose. For this reason, we
restrict ourself to 2-edge connected graphs (i.e., connected graphs which cannot
be disconnected by removing a single edge), for which a bounded threshold for
each edge is guaranteed.

Theorem 1 ([1]). Let M = 〈g(b), p(b)〉 be a mechanism. If g(b) implements a
monotone selection rule and the payment pe(b) is defined as the threshold βe for
each winning edge e, and 0 for the losing edges, then M is a truthful mechanism.

��

394 Luciano Gualà and Guido Proietti

4 An Approximate Truthful Mechanism

4.1 Definition of g(·)
In this subsection we define the algorithm of the mechanism. This is obtained by
modifying the heuristic provided in [17] in order to guarantee both the mono-
tonicity of the selection rule and the efficiency with respect to the computation
of the threshold values.

Let D be the graph whose node set is N and such that for every pair of
nodes a, b ∈ N , the edge (a, b) is present and has weight w(a, b) = dG(a, b).
The pseudo-code of g(·) is given below. The algorithm computes a tree T by
expanding a particular MST of D, say M , i.e., by replacing each edge of M with
a respective shortest path in G. Note that in general the subgraph obtained may
contain cycles, and so the algorithm needs to select an MST whose expansion in
G is acyclic.

Let r be any terminal node. The algorithm starts with the tree T made
up only by the node r, and with M as an arbitrary MST of D. Let N(T) ⊆ N
denote the set of terminal nodes which are currently part of T . At any step, a new
terminal node b is reached, and T is correspondingly updated. More precisely,
the algorithm chooses an edge (a, b) ∈ E(M) such that a ∈ N(T) and b �∈ N(T),
and it tries to expand it with its corresponding shortest path PG(a, b) without
forming cycles in T . If this is not possible, it modifies M by swapping the edge
(a, b) with another edge (ã, b) of equal weight which admits an acyclic expansion
in T , and such that ã still belongs to T . As we will see, such an alternative edge
always exists. Then, it expands (ã, b) and adds the corresponding path to T . Note
that since ã has already been reached, both (a, b) and (ã, b) are edges crossing
the cut induced in D by N(T) and N\N(T). Thus, since w(a, b) = w(ã, b), it
follows that the new tree M which is obtained by swapping these edges is again
an MST of D. The main idea of the algorithm is that an edge (a, b) admits an
acyclic expansion if there exists a shortest path π joining a and b such that: (i)
π[a, x] is already in the current T , and (ii) π[x, b] passes through no node of T
(except x).

In the pseudo-code we use the following notation. Let e′ = (a′, b′) ∈ E(M)
be an edge of M . Then, removing e′ splits M into two subtrees. We denote
by N(a′) the node set of the subtree of M containing a′, and by N(b′) the
remaining nodes. In particular, if a′ = b′, then N(a′) coincides with the entire
node set N . Moreover, for each node x of T , the algorithm stores two terminal
nodes a′ = endpoint1(x) and b′ = endpoint2(x), which satisfy the following
properties: (i) (a′, b′) belongs to M , and (ii) PT (a′, b′) passes through x.

Lemma 1. The subgraph T returned by the above algorithm is an acyclic ex-
pansion of M , and M is an MST of D.

Proof. T is built in an incremental way by adding at any step a path π[x, b]
joining a node x and a terminal node b (Line 8). Note that x is always a node
of T and that by construction π[x, b] passes through no nodes of T (other than
x). It follows that T is necessarily acyclic.

A Truthful (2 − 2/k)-Approximation Mechanism 395

Algorithm 1 Computation of g(·)
Input: G (as weighted w.r.t. the declared bids), N ;
Output: T , M ;
1: compute D; M = MST(D);
2: choose any terminal node r ∈ N ;
3: T := ({r}, ∅); N(T) := {r}; endpoint1(r) := r; endpoint2(r) := r;
4: while N(T) �= N do
5: let (a, b) ∈ E(M) be an edge such that a ∈ N(T) and b /∈ N(T);
6: π := PG(a, b);
7: let x be the first node of T encountered along π (if we traverse π from b to a);
8: T := T ∪ π[x, b];
9: N(T) := N(T) ∪ {b};
10: a′ := endpoint1(x); b′ := endpoint2(x); e′ := (a′, b′) ∈ M ;
11: if a ∈ N(a′) then ã := a′; else ã := b′;
12: ∀ node w on the path π[x, b], set endpoint1(w) := ã and endpoint2(w) := b;
13: if ã �= a then M := M ∪ {(ã, b)}\{(a, b)};
14: end while
15: return T , M .

To prove the minimality of M and that T is an expansion of M , we observe
that at any step, given the node x of T , the algorithm locates an edge (a′, b′)
(Line 10). It easy to see that the following properties hold: (i) (a′, b′) is an edge
of the current M , and (ii) π′ = PT (a′, b′) passes through node x. Then, the
algorithm selects a node ã out of a′ and b′ such that a ∈ N(ã). Since initially M
is an MST of D, we will show that M remains minimum during the execution
of the algorithm by proving that each swap operation performed in Line 18 does
not change its total weight. There are two cases: ã = a and ã �= a.

In the first case, it is easy to see that π[a, x] possibly represents an alternative
shortest path from a to x (other than the path PT (a, x) which is a shortest path
too, since it is a subpath of some shortest path). Then, the algorithm expands
(a, b) with the shortest path PT (a, x)∪π[x, b] by adding π[x, b] to T , and M does
not change.

In the second case (ã �= a), let b̃ ∈ {a′, b′} be the terminal node such that
(ã, b̃) = (a′, b′). We claim that x has the same distance from both a and ã. Indeed,
suppose that dG(a, x) < dG(ã, x); then, the path π[a, x] ∪ π′[x, b̃] is strictly
shorter than π′, and thus w(a, b̃) < w(ã, b̃), which contradicts the minimality
of M since (a, b̃) /∈ E(M) and both (a, b̃) and (ã, b̃) are edges crossing the cut
in D individuated by N(ã) and N\N(ã). Similarly, by supposing dG(ã, x) <
dG(a, x), we obtain that w(ã, b) < w(a, b), which is again a contradiction for
the minimality of M (both (ã, b) and (a, b) are edges crossing the cut in D
individuated by N\{b} and {b}). Then, the two edges (a, b) and (ã, b) have the
same weight in D, and the algorithm replaces in M the edge (a, b) by the edge
(ã, b), and it expands (ã, b) with the path PT (ã, x) ∪ π[x, b] by adding π[x, b] to
T . Clearly, the new M remains an MST, since it is obtained from the old M by
swapping edges of equal weight. ��

Lemma 2 ([17]). The above algorithm is a (2− 2/k)-approximation algorithm
for the centralized ST problem. ��

Lemma 3. The above algorithm yields a monotone selection rule.

396 Luciano Gualà and Guido Proietti

Proof. Let M and T be the trees returned by the algorithm, and let e /∈ E(T)
be a losing edge. Then, e does not belong to any shortest path selected in M
and thus, if Ae raises her bid, the only edges in D which increase their weight
are edges in E(D)\E(M). Hence, the solution computed by the algorithm will
be again T . ��

Notice that from Lemmas 2 and 3 and from Theorem 1, we have that the
above definition of g(·) leads to a truthful (2− 2/k)-approximation mechanism
for the ST problem, once that the payment pe(b) for each winning edge e is
suitably defined as the threshold value with respect to the selection rule defined
by g(·).

4.2 Computing the Payments

We have shown that the selection rule of our mechanism is monotone. Now, we
have to compute the payments for the winning edges. We said above that the
payment for a winning edge e must be equal to the threshold βe above which
the edge e loses. Thus, we have to (efficiently) compute all the threshold values.

Let e ∈ E(T) be a winning edge. We define the image of e on M as

Im(e) = {(a, b) ∈ E(M)|e ∈ PT (a, b)}.

Suppose that Im(e) consists of a single edge of M , say (a, b). Then, as soon as
be increases, e can exit from T for either of the following two reasons:

(i) PT (a, b) becomes longer than PG−e(a, b);
(ii) PT (a, b) is still a shortest path, but (a, b) is swapped with a lighter edge

(a′, b′) in E′ = E(D|M−(a,b)) such that there exists some shortest path
PG(a′, b′) which does not contain e.

Formally, the threshold β
(a,b)
e for e with respect to an edge (a, b) ∈ Im(e) is

defined as follows: let swap(a,b)(e) = min(a′,b′)∈E′{dG−e(a′, b′)}; then

β(a,b)
e = be + min

{
(dG−e(a, b)− dG(a, b)), (swap(a,b)(e)− dG(a, b))

}
.

If Im(e) consists of several edges, say Im(e) = {(a1, b1), . . . , (ah, bh)}, clearly
the threshold is

βe = max
i=1,...,h

{
β(ai,bi)

e

}
.

4.3 Time Complexity

Before proving our main theorem concerning the time complexity of the mech-
anism, we give the following lemma.

Lemma 4. Let a, b be terminal nodes, and let PG(a, b) be a shortest path joining
them. If for each x ∈ V we are given all the distances dG(a, x) and dG(b, x),
then we have that all the distances dG−e(a, b), for each e ∈ PG(a, b), can be
computed in O(m logα(m,n)) time on a RAM, and in O(mα(m,n)) time on a
PM, respectively.

A Truthful (2 − 2/k)-Approximation Mechanism 397

Proof. Let PG−e(a, b) be a replacement shortest path for the edge e, i.e., a path
from a to b in G− e of (minimum) length dG−e(a, b). The problem of finding all
the replacement shortest paths, one for each edge of PG(a, b), has been efficiently
solved in O(m+n logn) time on a PM [11], and in O(mα(m,n)) time on a word
RAM [12], respectively. Both algorithms are based on a pre-computation of the
SPTs S(a) and S(b). We now show how to improve these bounds, by using a
powerful structure called Split-Findmin (SF) [16].

Let e = (u, v) be an edge on PG(a, b), with u closer to a than v. Since a
replacement shortest path PG−e(a, b) joining a and b must contain an edge in
E′ = E(G|S(a)−e), it follows that it corresponds to a path of length

dG−e(a, b) = min
f=(x,y)∈E′

{
k(f) := dG−e(a, x) + bf + dG−e(y, b)

}
,

which can be shown [11] to be equivalent to

dG−e(a, b) = min
f∈E′

{
dS(a)(a, x) + bf + dS(b)(y, b)

}
= min

f∈E′

{
dG(a, x) + bf + dG(y, b)

}
. (1)

Hence, since we know all the distances dG(a, x) and dG(y, b) for each x, y ∈ V ,
k(f) is available in O(1) time for fixed f . It then remains to select the minimum
over E′. To do this efficiently, we use an SF structure. This is a structure operat-
ing on a collection of disjoint sequences of n elements. Initially, there is only one
sequence containing all the elements, and each element u has a key k(u) := +∞.
Then, the structure supports the following operations:

split(u): Split the sequence containing u into two sequences of elements: one
up to and including u, the other sequence containing the rest;

findmin(u): Return the element (and the associated key) in u’s sequence with
minimum key;

decrease-key(u, k′): Set k(u) := min{k(u), k′}.

We find all the distances dG−e(a, b) as follows. First, we label each non-tree
edge f with the value (1). Then, we initialize an SF structure, where the initial
n-elements sequence consists of the vertices of S(a) as sorted in any arbitrary
post-order. We maintain two invariants: (1) every sequence in the SF structure
corresponds to some rooted subtree of S(a), and (2) k(u) corresponds to the
label of a min-label edge connecting u to a vertex outside the u’s sequence (i.e.,
outside the subtree of S(a) currently containing u).

Let now e = (u, v) ∈ PG(a, b). By invariants (1) and (2), if Σ is a sequence
in the SF structure and v is the root of the subtree corresponding to Σ, then
findmin(v) will return a key k(fe), where fe is an edge in E′ belonging to
PG−e(a, b), and k(fe) is exactly the distance dG−e(a, b). Once fe is determined,
we proceed to solve the problem for the child of v along the path PG(a, b), say w.
Because of the post-order arrangement of the nodes, v is the rightmost element
in its sequence. Then, we perform one split centered at the element preceding
v in the sequence (this will sever v), and one additional split (in any arbitrary

398 Luciano Gualà and Guido Proietti

order) for each of the children of v in S(a), to reestablish invariant (1). After,
we focus on the sequence associated with w, and we restore invariant (2) by
performing a number of decrease-key operations. More precisely, for each edge
f = (w′, y) such that the least common ancestor (LCA) of w′ and y is v, and w′

is a descendant of w in S(a), we issue the operation decrease-key(w′, k(f)).
Concerning the time complexity, since all the distances dG(a, x) and dG(y, b)

for each v ∈ V are given, we can compute S(a) and S(b) in O(m) time. Moreover,
since k(f) is available in O(1) time for a fixed non-tree edge f , it follows that
labelling all the non-tree edges takes O(m) time. Concerning the SF structure
operations, in total there are O(m) operations: O(n) splits (one for each subtree
whose root is adjacent to some node of PG(a, b)), O(n) findmins (one for each
node of PG(a, b)), and O(m) decrease-keys (at most one for each non-tree edge).
This takes O(m logα(m,n)) time on a RAM and O(mα(m,n)) time on a PM,
respectively [16]. Other costs, such as the post-order traversal and finding LCAs,
are linear in both computational models [2]. ��

Theorem 2. Let M be the mechanism defined above. The running time to
compute the winning tree T and the corresponding payments is O((n + k2)m
× logα(m,n)) on a RAM, and O((n+k2)mα(m,n)) on a PM, respectively. The
space used is O(n2) in both cases.

Proof. To build D it suffices computing all the distances dG(a, b) for each pair
a, b ∈ N . This can be done by solving in G the all-to-all distances problem
in O(mn logα(m,n)) time on a RAM, and O(mnα(m,n)) time on a PM [16].
Computing M = MST(D) takes O(k2α(k2, k)) time [3], which is equal to O(k2),
since O(α(k2, k)) = O(1). Moreover, building the solution T and the relating M
takes O(k(m+ n)) time, since g(·) is composed of k − 1 phases, and each phase
can clearly be completed in O(m + n) time.

Concerning the payment scheme, we have to compute the thresholds βe for
each winning edge e ∈ E(T). We start by pre-computing all the distances
dG−e(a, b), for each (a, b) ∈ E(D) and each e ∈ PG(a, b). Since we have pre-
computed the all-pairs distances in G, by Lemma 4 this takes O(k2m logα(m,n))
time on a RAM, and O(k2mα(m,n)) time on a PM.

Let e be a winning edge, and let Im(e) = {(a1, b1), . . . , (ah, bh)}. Then, to
compute the threshold βe, we have to find for every j = 1, . . . , h: (i) the distances
dG−e(aj , bj), and (ii) the values swap(aj ,bj)(e). By the previous pre-computation,
each of the former values is available in O(1) time. Concerning the latter ones,
we recall that the definition of this value is:

swap(aj ,bj)(e) = min
(a′,b′)∈E(D|M−(aj,bj))

{dG−e(a′, b′)}.

Once again, by the previous pre-computation, the distances dG−e(a′, b′) are
known in constant time (since dG−e(a′, b′) = dG(a′, b′) if e /∈ PG(a′, b′)). Thus,
for each j we have to find a minimum over O(k2) values. Since h = O(k),
computing all the swap values could take O(k3) time by using a brute-force ap-
proach. However, we now show how to find all the swap(aj ,bj)(e) values, for a

A Truthful (2 − 2/k)-Approximation Mechanism 399

fixed winning edge e, in O(k2) time. We label each (a′, b′) ∈ E(D)\E(M) with
the value dG−e(a′, b′). Then, for every edge (aj , bj) of M , we find a lightest non-
tree edge which forms a cycle with (aj , bj), with the usual sensitivity analysis
technique [18]. In this way, it is clear that each (aj , bj) will receive its corre-
sponding swap(aj ,bj)(e) value. Once again, this takes O(k2α(k2, k)) = O(k2)
time on a PM. Since the number of winning edges is O(n), finding all the
swap values takes O(k2n) time. Thus, the overall time complexity is bounded
by O((n+ k2)m logα(m,n)) on a RAM, and by O((n+ k2)mα(m,n)) on a PM.

Concerning the space complexity, we need to store the all-pairs distance
matrix and the set of distances dG−e(a′, b′), for each (a′, b′) ∈ E(D) and each
winning edge e. Thus, the space used is bounded by O(n2 + k2n). However, we
can improve it to O(n2) as follows. We process the non-tree edges in E(D)\E(M)
in groups of O(k) edges, by obtaining O(k) groups, and then we proceed in the
following way: For each edge (a′, b′) in the current group and for each winning
edge e, we compute the distances dG−e(a′, b′); then, for each winning edge, we
compute the swap values (with respect to the edges in the group). Thus, each
winning edge e receives O(k) swap values for each edge (ai, bi) ∈ Im(e), out
of which the minimum is the correct one, and therefore we need to store only
O(nk) = O(n2) distances. In this way, processing each group, in order to compute
the swap values, takes O(nk logα(k, k)) time on a RAM, and O(nk α(k, k)) time
on a PM, respectively. This leads to an overall time complexity bounded by
O(nk2 logα(k, k)) on a RAM, and by O(nk2α(k, k)) on a PM, respectively. Since
O(n logα(k, k)) = O(m logα(m,n)) and O(nα(k, k)) = O(mα(m,n)), it follows
that both on the RAM and on the PM we get the same time complexity as when
we do not group edges, and the claim follows. ��

References

1. A. Archer and É. Tardos, Frugal path mechanisms, Proc. of the 13th Annual ACM-
SIAM Symp. on Discrete Algorithms (SODA’02), 991–999, 2002.

2. A.L. Buchsbaum, H. Kaplan, A. Rogers, and J. Westbrook, Linear-time pointer-
machine algorithms for least common ancestors, MST verification, and dominators,
Proc. of the 30th Annual ACM Symposium on Theory of Computing (STOC’98),
279–288, 1998.

3. B. Chazelle, A minimum spanning tree algorithm with inverse-Ackermann type
complexity, J. of the ACM, 47:1028–1047, 2000.

4. E. Clarke, Multipart pricing of public goods, Public Choice, 8:17–33, 1971.
5. J. Feigenbaum and S. Shenker, Incentives and Internet computation, ACM

SIGACT News, 33(4):37–54, 2002.
6. M.R. Garey and D.S. Johnson, The rectilinear Steiner tree problem is NP-complete,

SIAM J. Appl. Math., 32:826–834, 1977.
7. J. Green and J.-J. Laffont, Characterization of satisfactory mechanisms for the

revelation of preferences for public goods, Econometrica, 45(2):427–438, 1977.
8. T. Groves, Incentives in teams, Econometrica, 41(4):617–631, 1973.
9. L. Gualà and G. Proietti, Efficient truthful mechanisms for the single-source short-

est paths tree problem, accepted for presentation at the 11th International Euro-
Par Conference (EURO-PAR’05), Lisboa, Portugal, 2005.

400 Luciano Gualà and Guido Proietti

10. J. Hershberger and S. Suri, Vickrey prices and shortest paths: what is an edge
worth?, Proc. of the 42nd Annual Symposium on Foundations of Computer Science
(FOCS’01), 252–259.

11. K. Malik, A.K. Mittal, and S.K. Gupta, The k most vital arcs in the shortest path
problem, Oper. Res. Letters, 8:223–227, 1989.

12. E. Nardelli, G. Proietti, and P. Widmayer, A faster computation of the most vital
edge of a shortest path, Info. Proc. Letters, 79(2):81–85, 2001.

13. E. Nardelli, G. Proietti, and P. Widmayer, Nearly linear time minimum spanning
tree maintenance for transient node failures, Algorithmica, 40(2):119–132, 2004.

14. N. Nisan and A. Ronen, Algorithmic mechanism design, Games and Economic
Behaviour, 35:166–196, 2001.

15. N. Nisan and A. Ronen, Computationally feasible VCG mechanisms, Proc. of the
2nd ACM Conf. on Electronic Commerce (EC 2000), 242–252, 2000.

16. S. Pettie and V. Ramachandran, Computing shortest paths with comparisons
and additions, Proc. 13th Annual ACM-SIAM Symp. on Discrete Algorithms
(SODA’02), 267–276, 2002.

17. H. Takahashi and A. Matsuyama, An approximate solution for the Steiner problem
in graphs, Math. Jap., 24:573–577, 1980.

18. R.E. Tarjan, Sensitivity analysis of minimum spanning trees and shortest path
problems, Inform. Proc. Lett., 14:30–33, 1982.

19. W. Vickrey, Counterspeculation, auctions and competitive sealed tenders, J. of
Finance, 16:8–37, 1961.

20. W. Wang, X.-Y. Li, and Y. Wang, Truthful multicast routing in selfish wireless
networks, in Proc. of the 10th Annual Int. Conf. on Mobile Computing and Net-
working (INFOCOM’04), 245–259, 2004.

Radial Coordinate Assignment for Level Graphs�

Christian Bachmaier1, Florian Fischer2, and Michael Forster3

1 University of Konstanz, 78457 Konstanz, Germany
christian.bachmaier@uni-konstanz.de

2 Projective Software GmbH, 81543 Munich, Germany
florian.fischer@projective.de

3 National ICT Australia, Eveleigh NSW 1430, Australia
michael.forster@nicta.com.au

Abstract. We present a simple linear time algorithm for drawing level
graphs with a given ordering of the vertices within each level. The al-
gorithm draws in a radial fashion without changing the vertex ordering,
and therefore without introducing new edge crossings. Edges are drawn
as sequences of spiral segments with at most two bends.

1 Introduction

In hierarchical graph layout, vertices are usually placed on parallel horizontal
lines, and edges are drawn as polylines, which may bend when they intersect
a level line. The standard drawing algorithm [9] consists of four phases: cycle
removal (reverses appropriate edges to eliminate cycles), level assignment (as-
signs vertices to levels and introduces dummy vertices to represent edge bends),
crossing reduction (permutes vertices on the levels), and coordinate assignment
(assigns x-coordinates to vertices, y-coordinates are implicit through the levels).

We are especially interested in coordinate assignment. This phase is usually
constrained not to change the vertex orderings computed previously. Further, it
should support commonly accepted aesthetic criteria, like small area, good sepa-
ration of (dummy) vertices within a level, length and slope of edges, straightness
of long edges, and balancing of edges incident to the same vertex. The novelty
of this paper is to draw the level lines not as parallel horizontal lines, but as
concentric circles, see Fig. 1. The apparent advantage is that level graphs can be
drawn with fewer edge crossings. More level graphs can be drawn without any
crossing at all, i. e., planar. Radial level drawings are common, e. g., in the study
of social networks [2]. There vertices model actors and edges represent relations
between them. The importance (centrality) of an actor is expressed by closeness
to the concentric center, i. e., by a low level.

2 Preliminaries

A k-level graph G = (V,E, φ) with k ≤ |V | is a graph with a level assignment
φ : V → {1, 2, . . . , k} that partitions the vertex set into k pairwise disjoint subsets
� Part of this work was done at the University of Passau.

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 401–410, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

402 Christian Bachmaier, Florian Fischer, and Michael Forster

1

3

2

4

5

1

2 3 4

5 6 7 8

9 10 11 12 13 14 15 16 18

19 20 21 22 23

17

−→
2

3

4

5

2

1

23

22

21

20

19

18

1716

15

14

13

12

11

10

9

8

7

6

5

4

3

Fig. 1. Drawings of a level graph

V = V1

.
∪ · · ·

.
∪ Vk, Vi = φ−1(i), 1 ≤ i ≤ k, such that φ(u) �= φ(v) for each edge

(u, v) ∈ E. Regardless whether G is directed or undirected, an edge incident to
u, v ∈ V is denoted by (u, v) if φ(u) < φ(v). An edge (u, v) is short if φ(v) −
φ(u) = 1, otherwise it is long and spans the levels φ(u)+1, . . . , φ(v)− 1. A level
graph without long edges is proper. Any level graph can be made proper by
subdividing each long edge (u, v) ∈ E by the introduction of new dummy vertices
vi ∈ Bi, i = φ(u) + 1, . . . , φ(v)− 1, φ(vi) = i. We draw dummy vertices as small
black circles, Fig. 2(a), or edge bends, Fig. 1. The edges of a proper level graph
are also called (edge) segments. If both end vertices of a segment are dummy
vertices, it is an inner segment. Let N = |V ∪ B| + |E| denote the size of the
proper level graph G = (V ∪B,E, φ) where V contains the original vertices and
B = B1

.
∪ . . .

.
∪ Bk contains the dummy vertices with |B| ≤ k|E| ≤ |V ||E|. For

drawing level graphs it is necessary to know where long edges should be routed,
i. e., between which two vertices on a spanned level. Thus we only consider proper
level graphs G = (V ∪B,E, φ) in the following.

An ordering of a level graph is a partial order ≺ of V ∪ B such that u ≺ v
or v ≺ u iff φ(u) = φ(v). Define the (not necessarily consecutive) positions of
the vertices as a function π : V ∪B → Z with u ≺ v ⇔ π(u) < π(v) for any two
vertices u, v ∈ Vi ∪ Bi on the same level i. In case that an ordering ≺ admits a
level drawing of a level graph without edge crossings, ≺ is also called level planar
embedding. We call an ordering of a level graph also level embedding.

3 Related Work

There are several algorithms for horizontal coordinate assignment using differ-
ent approaches for the optimization of various objective functions or iterative
improvement techniques, see [7] for an overview. Most interesting is the Bran-
des/Köpf algorithm [3], which generates at most two bends per edge and draws
every inner segment vertically if no two inner segments cross. Further it mini-
mizes the horizontal stretch of segments and also gives good results for the other
aesthetic criteria. The algorithm has Ø(N) running time and is fast in practice.
For level planar embeddings Eades et al. [5] presented an algorithm that does
not generate bends at all. However, it may need exponential area.

Radial Coordinate Assignment for Level Graphs 403

3.1 Horizontal Coordinate Assignment

Since the horizontal drawing algorithm of Brandes/Köpf [3] is the basis of our
algorithm, we give an extended overview. Its first two steps are carried out four
times and the third step combines the results.

Vertical Alignment. The objective is to align each vertex with its left upper,
right upper, left lower, and right lower median neighbor. We only describe the
alignment to the left upper median, the other three passes are analogous. First,
all segments are removed that do not lead to an upper median neighbor, see
Fig. 2(b). Then two alignments are conflicting if their edge segments cross or
share a vertex. Type 2 conflicts, two crossing inner segments, are assumed to have
been avoided by the crossing reduction phase and not to occur, e. g., using the
barycenter method [7]. Type 1 conflicts, a non-inner segment crossing an inner
segment, are resolved in favor of the inner segment, i. e., the non-inner segment
is removed from the graph. Type 0 conflicts, two crossing non-inner segments,
are resolved greedily in a leftmost fashion, i. e., the right segment is removed
from the graph. At this point there are no crossings left, see Fig. 2(c).

Horizontal Compaction. Each maximum set of aligned vertices, i. e., each
connected component, is combined into a block, see Fig. 2(d). Consider the block
graph obtained by introducing directed edges between each vertex and its suc-
cessor (if any) on its level, see Fig. 2(e). A “horizontal” longest path layering1

determines the x-coordinate of each block and thus of each contained vertex.
Thereby the given minimum vertex separation δ is preserved. The block graph
with expanded blocks is partitioned into classes, see Fig. 2(f). The first class is
defined as the set of vertices which are reachable from the top left vertex. Then
the class is removed from the block graph. This is repeated, until every vertex
is in a class. Within the classes the graph is already compact. Now the algo-
rithm places the classes as close as possible. In Fig. 2(f) this already happened.
Fig. 2(g) shows the complete left upper layout.

Balancing. Now each vertex has four x-coordinates. The two left (right) aligned
assignments are shifted horizontally so that their minimum (maximum) coordi-
nate agrees with the minimum (maximum) coordinate of the smallest width
layout. The resulting coordinate is the average median2 of the four intermediate
coordinates. Fig. 2(h) shows the resulting drawing.

3.2 Radial Drawings

As we have already seen in Fig. 1, radial level lines help to reduce crossings. A
further property of radial level lines is that they get longer with ascending level
1 In a longest path layering vertices are assigned to levels: Each source of the graph

is assigned to level 1. After removing all outgoing edges from this vertices, all (new)
sources are assigned to level 2, and so on.

2 The average median is defined as the average of the possible median values.

404 Christian Bachmaier, Florian Fischer, and Michael Forster

1

3

2

4

5

1 2

3 4 6 9 10

11 12 16

18

24

22

26

17

25

(a) Level embedding

1

3

2

4

5

1 2

3 4 6 9 10

11 12 16

18

24

2217

25 26

(b) Candidates

1

3

2

4

5

1 2

3 4 6 9 10

11 12 16

18

24

2217

25 26

(c) Alignment

1

3

2

4

5

1 2

3 4 6 9 10

11 12 16

18

24

2217

25 26

(d) Blocks

1

3

2

4

5

(e) Block graph

1

3

2

4

5

1 2

3 4 6 9 10

11 12 16

18

24

2217

25 26

(f) Classes

1

3

2

4

5

1 2

3 4 6 9 10

11 12 16

18

24

2217

25 26

(g) Left upper layout

1

3

2

4

5

1 2

3 4 6 9 10

11 12 16

18

24

2217

25 26

(h) Final balanced layout

Fig. 2. Stages of the Brandes/Köpf algorithm

number, which is especially useful if the sizes of the levels of the graph, i. e., the
number of vertices, grow with the level number. The radial level idea originates
from the ring diagrams of Reggiani and Marchetti [8] and from the radial tree
drawings of Eades [4], which are common for free trees. There is an algorithm
to compute a radial level planar embedding if one exists [1]. Thus, to maintain
planarity, we require the preservation of the vertex ordering of the embedding
in any case. However, our algorithm can draw arbitrary level embeddings.

Radial Coordinate Assignment for Level Graphs 405

1

3

24
1+

1-

(a) (1, 3) drawn counter clockwise
and clockwise (dotted)

1 2

3+

(b) offset
(
(1, 2)

)
= +3

Fig. 3. Offsets of edges

4 Radial Coordinate Assignment

In radial level drawings we draw the edge segments as segments of a spiral, unless
they are radially aligned, in which case they are drawn as straight lines. This
results in strictly monotone curves from inner to outer levels and ensures that
segments do not cross inner level lines or unnecessarily each other.

For radial level embeddings it is not only necessary to know the vertex or-
dering, but also where the ordering starts and ends on each level. Therefore we
introduce a ray (the dashed arrow in Fig. 1) which tags this border between
the vertices. The ray is a straight halfline from the concentric center to infinity.
Since the embedding maintains the position π(v) for every vertex v ∈ V ∪ B,
the position of the ray is implicitly evident. We call all edges intersecting the
ray cut segments. For a radial level embedding it is not only important to know
whether an edge is a cut segment, it is also necessary to know the direction of
a cut segment, clockwise or counterclockwise from inner to outer level. Other-
wise the drawing is not unique, see Fig. 3(a). Further, for uniqueness it is also
important to know how many times a cut segment is wound around the concen-
tric center, i. e., how many times it crosses the ray. Since the crossing reduction
phase resp. the level planar embedding algorithm mentioned in Sect. 3.2 is aware
of all this information, we assume it to be given as a function offset : E → Z
with the embedding. Thereby | offset(e)| counts the crossings of e with the ray.
If offset(e) < 0 (offset(e) > 0), e is a clockwise (counter clockwise) cut seg-
ment, i. e., the sign of offset(e) reflects the mathematical direction of rotation,
see Fig. 3(b). If offset(e) = 0, e is not a cut segment and thus needs no direc-
tion information. Observe that a cut segment cannot cross the ray clockwise and
counter clockwise simultaneously.

In our opinion edge bends in radial level drawings tend to be even more dis-
turbing than in horizontal level drawings. Thus we base our algorithm on the
approach of Brandes/Köpf [3] which guarantees at most two bends per edge.
Further it prioritizes vertical alignment, which helps us to obtain radial align-
ment. The criterion of small area in horizontal coordinate assignment, i. e., to
obtain small width, turns to uniform distribution of the vertices on the radial
levels. As a consequence, a user parameter δ like in Sect. 3.1 is not needed.

4.1 Preprocessing

If an inner segment is a cut segment, a radial alignment of the corresponding
dummy vertices cannot be guaranteed, since each inner cut segment raises the

406 Christian Bachmaier, Florian Fischer, and Michael Forster

1

6

Fig. 4. Type 3 conflict

number of bends by two, see Fig. 4. We call this situation a type 3 conflict. A
simple solution is to demand the absence of inner cut segments in the input
embedding, similar to the type 2 conflicts. A different, more constructive and
always doable approach described in the following, is to eliminate the conflicts
by changing the position of the ray. This strategy changes the offset of some
edges and thus changes the embedding. But this does not affect a later drawing.

Before we continue with the description of the elimination algorithm, we
discuss an important property of radial level embeddings:

Lemma 1. Let E′
i = { (u, v) | u ∈ Bi−1, v ∈ Bi } ⊆ E be the set of all inner

segments between levels i − 1 and i with 2 < i < k. Then for any two edges
e1, e2 ∈ E′

i : | offset(e1)− offset(e2)| ≤ 1.

Proof. In the extreme case let e1, e2 ∈ E′
i for 2 < i < k be inner segments with

offset(e1) = max{offset(e) | e ∈ E′
i} and offset(e2) = min{offset(e) | e ∈ E′

i}.
Now assume offset(e1) > offset(e2)+1. As a consequence e1 and e2 cross. This is
a type 2 conflict and contradicts the absence of type 2 conflicts in the input. ��

In a first step to eliminate type 3 conflicts we consecutively unwind the levels
in ascending order from 3 to k−1 with Algorithm 1. Between levels 1 and 2 resp.
k− 1 and k there are no inner segments. Clearly, level i is unwound by rotating
the whole outer graph, i. e., all levels ≥ i are rotated by multiples of 360◦. Note
that UNWIND-LEVEL updates only offsets of edges between levels i− 1 and i.
The position of the ray, i. e., the ordering of the vertices, stays the same.

Algorithm 1: UNWIND-LEVEL
Input: Embedding of G = (V ∪ B, E, φ) and level i with 2 < i < k

Output: Updated offsets of inner segments entering level i

m ← min{offset(e) | e = (u, v) ∈ E, u ∈ Bi−1, v ∈ Bi}
foreach segment e = (u, v) ∈ E with v ∈ Vi ∪ Bi do offset(e) ← offset(e) − m

Lemma 2. After unwinding for each inner segment e ∈ E : offset(e) ∈ {0,+1}.

Proof. Lemma 1 implies for each inner segment e = (u, v) with φ(v) = i that
offset(e) ≤ 1. Additionally offset(e) cannot be negative since we have subtracted

Radial Coordinate Assignment for Level Graphs 407

the minimum over all inner segments entering level i. Since this argument holds
for every level 2 < i < k, the claim follows. ��

Lemma 3. After unwinding there are no two dummy vertices v, v′ ∈ Bi on the
same level i with offset

(
(u, v)

)
= 0, offset

(
(u′, v′)

)
= +1, and v ≺ v′ for any

u, u′ ∈ Bi−1.

Proof. This follows directly from the absence of type 2 conflicts. ��

Contrary to horizontal layouts we have another freedom in radial layouts
without changing the crossing number: rotation of a single level i. A clockwise
rotation, cf. Algorithm 2, is moving the vertex v with the minimum position on
the ordered level φ(v) = i over the ray by setting π(v) to a new maximum on i.
A counter clockwise rotation is symmetric. Rotations do not modify the “cyclic
order”, i. e., the neighborhood of every vertex on its radial level line is preserved.
However, the offsets of the segments incident to v must be changed. If rotating
clockwise, the offsets of incoming segments of v are reduced by 1 and the offsets
of outgoing segments are increased by 1. The offset updates for rotating counter
clockwise are symmetric. Please note that rotation of a single level i is different
to rotating levels within unwinding mentioned earlier. Here we do not rotate by
(multiples of) 360◦ in general and do not rotate all levels ≥ i simultaneously.

Algorithm 2: ROTATE-CLOCKWISE
Input: Embedding of G = (V ∪ B, E, φ) and level i with 1 ≤ i ≤ k

Output: Updated offsets of segments entering or leaving level i

let v = argmin{π(v) | v ∈ Vi ∪ Bi}
π(v) ← max{π(v′) | v′ ∈ Vi ∪ Bi} + 1
foreach segment e = (u, v) ∈ E do offset(e) ← offset(e) − 1
foreach segment e = (v, w) ∈ E do offset(e) ← offset(e) + 1

Rotation allows us to eliminate the remaining crossings of inner segments
with the ray: Let B′

i ⊆ Bi be the set of dummy vertices incident to an incoming
inner segment e = (u, v) with offset(e) = +1. Let v = argmax{π(v) | v ∈ B′

i}.
We rotate level i clockwise until the ray enters the position after v, i. e., until
v is the last vertex on i and thus v = argmax{π(v) | v ∈ Vi ∪ Bi}. We use the
clockwise direction, because according to Lemma 3 we do not generate new type
3 conflicts this way. Finally, all inner segments have an offset of 0. The overall
running time is Ø(N).

4.2 Intermediate Horizontal Layout

In the next step we generate a horizontal layout of the radial level embedding
with the Brandes/Köpf algorithm. Therefore we ignore all cut segments. Since
the embedding is type 3 conflict free, all inner segments are aligned vertically.

408 Christian Bachmaier, Florian Fischer, and Michael Forster

The resulting layout will later be transformed into a concentric layout by concen-
trically connecting the ends of the horizontal level lines with their beginnings.
Therefore, we must take into account that circumferences of radial level lines
grow with ascending level numbers. Thus we use a minimum vertex separation
distance δi ← 1

i for each horizontal level i, which is in each case indirect pro-
portional to i. In this way we achieve a uniform minimum arc length between
two neighbor vertices on every radial level line with the radial transformation
described in the next section , since we use the level numbers 1, 2, . . . , k as radii.

4.3 Radial Layout

At this stage every vertex v ∈ V has Cartesian coordinates
(
x(v), y(v) = φ(v)

)
∈

R×R. For the transformation into a radial drawing we interpret these coordinates
as polar coordinates and transform them with (1) into Cartesian coordinates(
xr(v), yr(v)

)
∈ R× R. The position of the ray denotes 0◦.(

xr(v), yr(v)
)
←

(
y(v) · cos

(
2π
z · x(v)

)
, y(v) · sin

(
2π
z · x(v)

))
(1)

The factor 2π
z normalizes the length of the horizontal level lines to the

circumferences of the radial level lines. We set z ← max
{

max{x(v′) | v′ ∈
Vi ∪ Bi} − min{x(v′) | v′ ∈ Vi ∪ Bi} + δi | 1 ≤ i ≤ k

}
, i. e., z is the largest

horizontal distance between two vertices on the same level i plus δi. The addend
δi is necessary to maintain the minimum distance between the first and the last
vertex, since they become neighbors on the radial level line. Let iz be the level
which defines z. The normalization automatically realizes the necessary overlap
between the left and the right contour of the layout when drawn radially, see
Fig. 5. Level iz is the widest level and thus iz defines the maximum overlap.

−→

Fig. 5. Overlap of the left and right contour

After drawing the vertices, we draw the edges as segments of a spiral. Each
point p of a straight line segment e = (u, v) is defined by (2) for 0 ≤ t ≤ 1.(

x(p), y(p)
)

= (1 − t)
(
x(u), y(u)

)
+ t

(
x(v), y(v)

)
(2)

The coordinates of p can be transformed with (1). But e can be a cut segment,
which winds multiple times clockwise or counter clockwise around the center.
Therefore we rather use (3) which simulates this behavior horizontally. Imagine

Radial Coordinate Assignment for Level Graphs 409

| offset(e)|+1 copies of the layout placed in a row. If offset(e) ≥ 0, then imagine e
drawn as straight line from u in the leftmost layout to v in the rightmost layout.
Otherwise, draw e from u in the rightmost layout to v in the leftmost one. Any
two neighboring layouts of the row are separated by δiz .

(
x(p), y(p)

)
= (1− t)

(
x(u), y(u)

)
+ t

(
x(v) + offset(e) · z, y(v)

)
(3)

For all edges with offset 0 there is only one possible direction without crossing
the ray, i. e., there is only one copy in the row. Equation (3) inserted in (1) for
drawing a spiral segment between u and v results in the following equation:

(
xr(p), yr(p)

)
←

(
(1− t)y(u) + t · y(v)

)
·(

cos
(

2π
z ·

(
(1− t)x(u) + t · (x(v) + offset(e) · z)

))
,

sin
(

2π
z ·

(
(1− t)x(u) + t · (x(v) + offset(e) · z)

))) (4)

If t = 0.5, then p lies on a concentric circle with radius φ(u)+φ(v)
2 , because

the radius of the spiral segment grows proportional to the concentric distance
between p and φ(u). To get smooth edges, the number of needed supporting
points s : E → N for drawing edges e = (u, v) with an approximating polyline or
spline depends on the edge length and a quality factor q ≥ 1.

s(e) ∼ φ(v) ·
(∣∣ 2π

z · x(v)− 2π
z · x(u) + offset(e) · 2π

∣∣) · q
∼ φ(v) ·

(∣∣x(v)−x(u)
z + offset(e)

∣∣) · q (5)

In the special case of |V1| = 1 it is more aesthetical to place v ∈ V1 into the
concentric center, cf. Fig. 1. Thus we renumber the levels by φ′(w) ← φ(w) − 1
for all w ∈ V ∪B − {v}, set xr(v) ← yr(v) ← 0, layout G′ = (V ∪B − {v}, E −
{ (v, w) | w ∈ V }, φ′), and draw each edge (v, w) as straight line. In order to get
a harmonic picture in the case |V1| > 1, Eades [4] suggests to set the diameter of
the first level to the radial distance between the radial level lines. To achieve this
with our algorithm, we use 0.5, 1.5, 2.5, . . . , k−1.5, k−0.5 as level numbers/radii.

Usually we draw on a canvas which has dimensions a× b and has the origin
in the upper left corner. Thus for each vertex or supporting point p we do the
following: With the translation

(
xr(p), yr(p)

)
←

(
xr(p) + a

2 , yr(p) + b
2

)
we move

the origin to the center. In order to use the entire drawing space, we scale the
layout by

(
x(p), y(p)

)
←

(
x(p), y(p)

)
· min{a,b}

2k .
Since the elimination of type 3 conflicts generates no new crossings and (1)

and (4) are bijective we do not change the crossing number given by the embed-
ding. A radial level planar embedding is drawn planar. If we adopt the common
assumption that drawing a line (here an edge as a spiral segment with its sup-
porting points) needs Ø(1) time, then we obtain an Ø(N) running time.

410 Christian Bachmaier, Florian Fischer, and Michael Forster

5 Conclusion

We have presented a new linear time algorithm for drawing level graphs in a
radial fashion. To check its performance and to visually confirm the good quality
of the resulting drawings we realized a prototype as a plug-in for the Gravisto
project [6] in Java. The coordinates of a graph with N = 50, 000 can be computed
in less than 50 seconds on a 1.8 GHz PC with 768 MB RAM using Java2 1.4.

Further investigations are required for radial crossing reduction algorithms
that avoid type 3 conflicts already at this stage, since our elimination approach
may create many crossings of non inner segments with the ray. The crossing
reduction should also minimize the absolute values of the edge offsets, since this
reduces crossings in general. It may be reasonable to reduce the angles spanned
by the edges at the expense of a slightly increasing crossing number.

References

1. C. Bachmaier, F. J. Brandenburg, and M. Forster. Radial level planarity testing
and embedding in linear time. Journal of Graph Algorithms and Applications, 2005.
To appear. Preprint under http://www.infosun.fmi.uni-passau.de/∼chris/.

2. U. Brandes, P. Kenis, and D. Wagner. Communicating centrality in policy network
drawings. IEEE Transact. Vis. Comput. Graph., 9(2):241–253, 2003.

3. U. Brandes and B. Köpf. Fast and simple horizontal coordinate assignment. In
P. Mutzel, M. Jünger, and S. Leipert, editors, Proc. Graph Drawing, GD 2001,
volume 2265 of LNCS, pages 31–44. Springer, 2001.

4. P. Eades. Drawing free trees. Bulletin of the Institute of Combinatorics and its
Applications, 5:10–36, 1992.

5. P. Eades, Q.-W. Feng, and X. Lin. Straight-line drawing algorithms for hierarchical
graphs and clustered graphs. In S. C. North, editor, Proc. Graph Drawing, GD 1996,
volume 1190 of LNCS, pages 113–128. Springer, 1997.

6. Gravisto. Graph Visualization Toolkit. http://www.gravisto.org/. University of
Passau.

7. M. Kaufmann and D. Wagner. Drawing Graphs, volume 2025 of LNCS. Springer,
2001.

8. M. G. Reggiani and F. E. Marchetti. A proposed method for representing hierarchies.
IEEE Transact. Systems, Man, and Cyb., 18(1):2–8, 1988.

9. K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding of hier-
archical system structures. IEEE Trans. Systems, Man, and Cyb., 11(2):109–125,
1981.

A Theoretical Upper Bound for IP-Based Floorplanning

Guowu Yang1, Xiaoyu Song1, Hannah H. Yang2, and Fei Xie3

1 Dept. of ECE, Portland State University, Oregon, USA
{guowu,song}@ece.pdx.edu

2 CAD Strategic Research Lab, Intel Corporation, Oregon, USA
hyang@ichips.intel.com

3 Dept. Computer Science, Portland State University, Oregon, USA
xie@cs.pdx.edu

Abstract. Floorplan is a crucial estimation task in the modern layout design of
systems on chips. The paper presents a novel theoretical upper bound for slicing
floorplans with soft modules. We show that, given a set of soft modules of total
area Atotal, maximum area Amax, and shape flexibility r≥ 2.25, there exists a slic-
ing floorplan F of these modules such that Area(F)≤min{1.131,(1+β)}Atotal ,

where β =
√

Amax
2rAtotal

. Our results ameliorate the existing best results.

1 Introduction

With the new design paradigm of system-on-chip, systems are assembled integrating
blocks of intellectual property (IP), including cores, embedded software, and bus stan-
dards as elements of systems on silicon. Due to multiple sources of components, floor-
planning is an important estimation task in the modern layout design in the development
of giga-transistor chips.

A floorplan dissects a rectangle into a set of non-intersecting modules, called rooms,
and assigns the macro blocks into the rooms (In this paper, we only study rectangular
modules, so modules are considered as rectangles). The topological relationship among
the blocks is specified by the dissection. One crucial factor of most floorplanners is the
representation structure which affects the effectiveness and efficiency of the optimiza-
tion process directly. There are two categories of floorplans: slicing and non-slicing
structures [7]. If a floorplan can be obtained by recursively cutting a rectangle into two
parts by either a vertical or a horizontal line, the floorplan has a slicing structure. Oth-
erwise, the floorplan has a non-slicing structure.

Slicing structure provides a simple way for optimizing the block orientations, defin-
ing reasonable channels in global routing and appropriately ordering the channels dur-
ing detailed routing. Due to its nice properties, such as slicing tree [3], Polish expression
[2], polynomial algorithms for special cases [4, 5], etc., it is easier to design efficient
strategies to search for optimal slicing floorplans [2]. And some fast algorithms were
given [10, 11]. Even if the general floorplan is not sliceable, at the initial design stage,
the floorplan can be adjusted to have a slicing one by increasing space to have a fast
estimation [6]. The only possible disadvantage of slicing floorplans is that even the op-
timal one may not pack the modules tightly [1]. Although, there are empirical evidences
showing that slicing floorplans are quite good in packing modules tightly, it is important
to have assurance of their performance by mathematical analysis [1].

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 411–419, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

412 Guowu Yang et al.

Floorplan is a challenging problem in VLSI layout design. Pan [13] proved the
nonslicing floorplan is NP-complete. In the early stage of the VLSI physical design,
most of the modules are not designed and so are flexible in shape, i.e., soft modules.
Therefore the early reliable estimation for the areas with soft modules is helpful for
the design [1, 8, 9]. In recent years, IP soft modules have been widely used in ASIC
design industry [14]. In the early planning stage, not all block information is available.
Some blocks are not yet designed, thus being flexible in shape. The dimension of a soft
block is based on several previous implementations of the block in a library. As such,
the internal logic and layout structure of a building block may have a set of alternative
choices. The shape of a soft module can be changed as long as the area remains a
constant and the aspect ratio is within a given range.

Recently, some excellent theoretical study [1, 8] has been performed. Young and
Wong [1] proved that, given a set of modules with flexibility in shape, there exists

a slicing floorplan F such that area(F) ≤ min{
(

1 + 1
%√r&

)
, 5

4 , (1 + α)}Atotal, where

α =
√

2Amax
rAtotal

,Atotal is the total area of all the modules, Amax is the maximum module

area, and r ≥2 is the shape flexibility of each module. Note that if we do not consider
the ratio of the maximum module area to the total area, the result is area(F) ≤ (1 +

1
%√r&)Atotal with r ≥16, or area(F) ≤ 1.25Atotal with 2 ≤ r ≤ 16. Otherwise, the result

is area(F) ≤ (1 + α)Atotal. Peixoto et al. [8] gave a more delicate upper bound based
the same packing strategy but detailed analysis, area(F) ≤ (1 + 1

%√r& γ−1)Atotal where γ
is the smallest j≥ 2 such that group j (The grouping in [8] is different from ours) is not
empty. When γ =1, the upper bound in [8] is the same as in [1], and this upper bound is
usable only when r ≥4.

In this paper, we show that, given a set of soft rectangles of total area Atotal, maxi-
mum area Amax and shape flexibility r ≥2.25, there exists a slicing floorplan F of these
rectangles such that Area(F)≤ 1.131Atotal. The worst relative dead space of the results
of [1] is 25% for 2≤ r ≤ 16. Our result reduces their result to about 13% for r ≥ 2.25.
Moreover, our second result is stronger than the first and the third inequalities in [1]
with a slightly stronger condition of r ≥ 2.1213. Although the parameter r is slightly
bigger than that in [1], it does not affect the significance of the results in practice.

2 Main Results and Related Work

We refer to the basic definitions in [1]. Let R be a rectangle. Let height(R),width(R) and
area(R) be the height, the width and the area of R, respectively. The ratio
height(R)/width(R) is called as aspect ratio of R. A soft rectangle can have differ-
ent shapes as long as the area remains the same. The shape flexibility of a soft rectangle
specifies the range of its aspect ratio. A soft rectangle of area A is said to have a shape
flexibility r if and only if R can be represented by any rectangle of area provided that:

1
r
≤ height(R)

width(R)
≤ r (1)

Given n soft rectangles of area Ai(i = 1,2, ...,n) and a shape flexibility r, the problem
is to obtain an upper bound on the area of the optimal slicing floorplan. Given a set

A Theoretical Upper Bound for IP-Based Floorplanning 413

of soft rectangles Π = {R1, . . . ,Rn}, letAi be the area of Ri, i = 1, ...,n. The total area
Atotal = ∑Ai,Atotal = 1, and the maximum area Amax = max{A1, . . . ,An}.
Theorem 1.1 [1]. Given a set of soft rectangles of total area Atotal, maximum area Amax

and shape flexibility r ≥2,

(i) there exists a slicing floorplan F of the rectangles such that

area(F)≤min

{(
1 +

1
%
√

r&

)
,

5
4
,(1 + α)

}
Atotal where α =

√
2Amax

rAtotal

(ii) there exists the following relation:

1≤ height(F)
width(F)

≤

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
1 + 1

%
√

r&

)
area(F)≤

(
1 + 1

%
√

r&

)
Atotal

5
4 area(F)≤ 5

4 Atotal

1+α
(1− rα

2)2 area(F)≤ (1 + α)Atotal

Theorem 1.2 [8]. Given a set of soft rectangles of total area Atotal, and shape flex-
ibility r ≥2, there exists a slicing floorplan F of the rectangles such that area(F) ≤
(1 + 1

%√r&γ−1)Atotal where γ is the smallest j ≥2 such that group j (Where group j =

Ai|Atotal
r j ≤ Ai <

Atotal
r j−1) is not empty. (The grouping in [1, 8] is different from ours).

We establish the following results.

Theorem 2. Given shape flexibility r≥2.25, there exists a slicing floorplan F of Π such
that Area(F) ≤ 1.131Atotal, and width(F) =

√
Atotal,

√
Atotal ≤ height(F) ≤

1.131
√

Atotal. Namely, the relative dead space is 13.1% .

Note that if we set width(F) =
√

Atotal and r = 2.25, the optimal upper bound of the
relative dead space of a floorplan is no less than 1/9 =11.1% . For example, if there are
only two modules A1 = 8/9,A2 = 1/9, the optimal relative dead space is 1/9 =11.1% .

Theorem 3. Given shape flexibility r ≥ 3
√

2/2 = 2.1213

(i) there exists a slicing floorplan F of Π such that area(F) ≤ (1 + β)Atotal where

β =
√

Amax
2rAtotal

.

(ii) 1≤ height(F)
width(F) ≤ (1+β)Atotal

X2 ,X = [
√

Atotal
W]×W (≤

√
Atotal),W =

√
rAmax

2 , where X is
the width of the floorplan F .

Our result improves the results in [1] with a slightly stronger condition. Theorem
2 shows the relative dead space is 13.1% with r ≥ 2.25, while the relative dead space
in [1] is 25% with 2 ≤ r ≤ 16. Theorem 3 shows the relative dead space β is as half

as that in the third inequality in [1], namely, β = 0.5α, and β ≤
√

Amax
2Atotal

· 1
%√r& , with

r ≥ 2.1213. Note that α and 1
%
√

r& are the relative dead space in [1] with r ≥ 2 and
r ≥ 16, respectively.

414 Guowu Yang et al.

Remark 1: When the flexibility r is small (2.25 ≤ r < 4), the upper bound can be
chosen as the minimum of the results in Theorem 2, 3. When r is big (r < 4), the upper
bound can be chosen as the minimum of the results in Theorem 1.2, 2, and 3.

We construct a slicing floorplan F of rectangles such that every rectangle satisfies
the aspect ratio constraint (1) and the area of F is as small as possible. We will prove the
main result in Section 3. Section 4 gives the conclusion. It is obvious that the amount
of dead space will decrease with the flexibility and it becomes infinitely small when
the rectangles have very large flexibility. We attempt to make full use of flexibility by
shaping modules. Theorem 2 will be proven in Sections 3.1, 3.2, and 3.3. We prove
theorem 3 in Section 3.4.

3 A Tighter Upper Bound

3.1 Classifying Modules into Groups

Given a set Π of soft rectangles, we classify rectangles into groups: G1, G2, ,
Gn.W.l.o.g, we assume that Atotal =1. An area A is in Gi if and only if 1

2i ≤ A < 1
2i−1

for i =1, 2, 3, . . . , n. The widths of the rectangles are halved every two groups. For any
module ∀X ∈G2i and ∀Y ∈ G2i+1, we have width(X) = width(Y), and for ∀X ∈ G2i−1

and ∀Y ∈ G2i, we have width(X)/2 = width(Y).
We construct a slicing floorplan Fas follows. Table 1 tabulates the areas, the heights

and the widths of different groups. We pack the groups in the following order: group 1,
groups 2 and 3, groups 4 and 5, group 6, and group n (n≥7). At each packing step, we
place the rectangles from the largest to the smallest, and on the lowest possible level.
When packing groups 2 and 3, groups 4 and 5, respectively, we always compress and
align a pair of modules of the same group with the same height and the same total width
(Lemma 1 and Figure 1), and then place the pairs. If the number of rectangles in group i
(i= 2, 3, 4, 5) is odd, then place the single rectangle. If the number of rectangles is even
in both groups 2 and 3, they can be compressed evenly in terms of lemma 1 and can be
considered as group 1. Thus, we only need to consider the case where there is at most
one rectangle in both groups 2 and 3, respectively. In the process of packing groups 2i
and 2i+1, (i= 1, 2), if the tops of the modules do not surpass the unit height over 0.125,
we do not need a special shaping (just using Lemma 1). In Section 3.2, we deal with the
cases that the tops of the modules surpass the unit height over 0.125. If the tops of a pair
of modules (compressed evenly in terms of lemma 1) surpass the unit height over 0.125,
we decompress them first and then shape them respectively. Group 6 may need shaping
discussed in Section 3.3. Group n (n≥7) does not need any shaping. From the packing
procedure, it is not difficult to see that the final packing gives a slicing floorplan.

There are three important aspects in our packing strategy that are different from [1].
First, we classify the module areas in a finer way: partition every group after the second
group in [1] into two parts with the same width. Second, we can always compress a pair
of modules of the same group aligned with the same height and the same total width
(Lemma 1 and Figure 1), thus compressing modules tighter. Third, in cases 2, 3 and 4
in Section 3.2, we set the width of the left empty part as a new unit to deal with the
remaining rectangles.

Let H be the height of a module, H the height of a shaped module and w the width
of a shaped module.

A Theoretical Upper Bound for IP-Based Floorplanning 415

Table 1. Classification of areas

Group Area A Width w Height H
1 1/2≤ A≤ 1 w = 1 1/2 ≤ H ≤ 1
2 1/4 ≤ A < 1/2 w = 1/2 1/2 ≤ H < 1
3 1/8 ≤ A < 1/4 w = 1/2 1/4 ≤H < 1/2
4 1/16 ≤ A < 1/8 w = 1/4 1/4 ≤H < 1/2
5 1/32 ≤ A < 1/16 w = 1/4 1/8 ≤H < 1/4
6 1/64 ≤ A < 1/32 w = 1/8 1/8 ≤H < 1/4
7 1/128 ≤ A < 1/64 w = 1/8 1/16 ≤ H < 1/8

. .

H

1 ww 2 1w 2w

A2A1H2A2A1H1

Fig. 1. Shaping in Lemma 1

Lemma 1. Any two rectangles of the same group can be aligned with the same height
and the same total width.

Proof: Let H1(w1) and H2(w2) be the heights (widths) of the two modules, respectively
(see Fig. 1). Initially, w1 = w2 = w.
(1) 1

2 ≤
H1
w < 1, 1

2 ≤
H2
w < 1. Consider the extreme case: H1 = w, H2 = 1

2 w. Set H =
1
2 (H1 + H2) = 3

4 w, so we have w1 = 4
3 w,w2 = 2

3 w. We have Hw1 = w2 = H1w, Hw2 =
1
2 w2 = H2w, w1 + w2 = 2w. This means that the area of the modules remains the same,

and the total width keeps the same. And we obtain H
w1

= 9
16 ∈ [4

9 ,
9
4], H

w2
= 9

8 ∈ [4
9 ,

9
4].

Thus, the lemma holds.

(2) 1≤ H1
w < 2,1≤ H2

w < 2. The proof is similar to (1). �

3.2 Packing Groups 2 to 5

We only need to consider the case where there is at most one rectangle in both groups
2 and 3, respectively. The reason is discussed in 3.1. Groups n (n ≥ 6) are discussed in
Section 3.3. In Section 3.2, we consider the following cases.

Case 1: No rectangle in either group 2 and or group 3.
Case 1.1: Even number of rectangles in both groups 4 and 5.
Case 1.2: Even number of rectangles in group 4 and odd number of rectangles in group 5.
Case 1.3: Odd number of rectangles in group 4 and even number of rectangles in group 5.
Case 1.4: Odd number of rectangle(s) in both groups 4 and 5.
Case 2: One rectangle in group 2 and no rectangle in group 3.
Case 3: No rectangle in group 2 and one rectangle A in group 3.
Case 4: One rectangle A1 in group 2 and one rectangle A2 in group 3.

416 Guowu Yang et al.

Due to the space limitation, we only show case 1.1. The detailed algorithm can be
found in [15].

Case 1: No Rectangle in Either Group 2 and or Group 3

For the rectangles in group 4 with area from 1/9 to 1/8, set w = 1/2,2/9 ≤ h < 1/4,
and pack them first. Assume the height in group 4 is from 1/4 to 4/9. For the remaining
rectangles, if the number is over one, each pair of them can be compressed evenly in
terms of lemma 1 and packed together.

Case 1.1: Even Number of Rectangles in Both Groups 4 and 5

If there are a pair (A1,A2) of rectangles whose height surpasses the unit height over
1/8, they must be in group 4 such that A1 : w = 1/4,H1 = h1 + ho

1, ho
1 > 1/8; A2 : w =

1/4,H2 = h1 + ho
2, ho

2 ≤ ho
1; and 1/4 ≤ H2 ≤ H1 < 4/9, h1 ≥ h2 ≥ 0.5(ho

1 + ho
2) > 1/8

(See Figure 2).

Placement: Place A1on the right and A2 on the left.
Shaping: Consider A1 first
(1) If h1 + ho

1 > 2h2, the area of rectangle A1 is bigger than the area of the empty part

in the right, set: w1 = 3
4

√
H1 <

3
4

√
4
9 = 1

2 , H1 = 4
9 w1 = 1

3

√
H1 <

1
3

√
4
9 = 2

9 (We set the
width of as big as possible, so lower the height). The remaining rectangles are packed
on the left, so we do not need to make the width of empty part on the right that is integer
times of 1/8.

Remark 2: In this case, the shadow area in Fig. 2 does not need to be used to place the
remaining rectangles.

Accounting: As h2 > 1/8, so we have: H1−h2 < 2/9−1/8< 1/8.
(2) If h1 + ho

1 ≤ 2h2, set w1 = 3/8, H1 = (2/3) ·H1.

h h

2H 1H

w

 A1 A2 h2
 A2 A1

o

2

1w
2

o

1

h1

Fig. 2. Shaping in case 1.1

A Theoretical Upper Bound for IP-Based Floorplanning 417

Remark 3: In this case, the shadow area can be used to pack the remained rectangles.
The idea in the Remark 2 and 3 is used in the later cases.

Accounting: H1
w1

= 16
9 H1 ≥ 16

9 ·
1
4 = 4

9 , and H1− h2 ≤ 2
3 H1− 1

2 H1 = 1
6 H1 <

2
27 <

1
8 .

A2 is shaped with w2 = 3
8 , H2 = 2

3 H2.

Accounting: H2
w2

= 16
9 H2 ≥ 16

9 ·
1
4 = 4

9 , and H2−h1 ≤ 2
3 H2− 1

2 H2 = 1
6 H2 <

2
27 <

1
8 .

3.3 Packing Group 6 and Groups n (n ≥ 7)

Group 6 : w = 1/8,1/8≤H < 1/4. We first pack group 6 without shaping. The columns
with the same bottom can be exchanged freely. Since (1/2) ·H < 1/8, there are at most
three columns whose tops surpass the unit height over 1/8 (totally eight columns). If
there are three columns whose tops surpass the unit height over 1/8, then there are at
least four columns whose tops below the unit height. First, remove the three rectangles
which make the tops of the three columns surpass the unit height over 1/8. Then there
are seven columns whose tops below the unit height. Therefore, there always exist three
pairs of adjacent columns whose tops are below the unit height. Second, place these
three rectangles on the three pairs of columns, and shape them as:

w =

⎧⎪⎪⎨⎪⎪⎩
3
2

√
A, 1

64 ≤ A≤ 1
36

1
4 ,

1
36 ≤ A≤ 1

32

,H = A
w ≤

1
8 (Only in cases 1.2.1(b) and 1.4.1(a), we need

additional height 1/8+0.006 = 13.1%).
Consider the groups n(n ≥ 7) with height less than 1/8. For each packing step,

we leave enough space and proper width to pack the remaining rectangles. Therefore,
packing the groups n(n≥ 7) without any shaping can not make the tops surpass the unit
height over 12.5% or 13.1% .

From the above discussion, we can draw the conclusion that, given a set of soft
rectangles of total area Atotal, maximum area Amax, and shape flexibility r ≥2.25, there
exists a slicing floorplan F of these rectangles such that Area(F)≤ 1.131Atotal.

3.4 An Upper Bounds with Large Flexibility r or Small Maximum Area Amax

In the above analysis, we do not take into account the relative sizes of the rectangles. It
should be reasonable to predict a better packing if all the rectangles are small comparing
with Atotal. We consider the following strategy.

The floorplan F is initially divided into columns of width W =
√

rAmax
2 . We classify

the areas into groups such that area A is in group i when W 2

4i−1r
≤ A < W 2

4i−2r
for i =

1,2,3, ... (See Table 2). An area A from group i is represented as a rectangle R of width
W

2i−1 and height 2i−1A
W . We first pack group 1, then group 2, and so on, finally group

n (n > 2) without any shaping. We pack the rectangles one at a time from the largest
to the smallest and on the lowest possible level. The width of floorplan F is given by
X = [

√
Atotal
W]×W , which makes the width less than or equal to the height and makes the

ratio of the height to the width small. We set H = Atotal/X .

418 Guowu Yang et al.

Table 2. Classification of Areas in Theorem 3

We first pack the group 1: w = W,W/r ≤ H ≤ 2W/r. We use a similar packing
technique as case 3.3. We first pack group 1 without shaping. The columns can be
exchanged freely. The number of the columns whose tops surpass the height H over W /
r is smaller than the total number of the columns whose tops are below the height H.
By exchanging the columns, we can make the top of the adjacent column of the column
whose top surpasses the height H over W / r below the height H. Shaping the rectangle
as: w =

√
rA < 2W , H = w/r =

√
A/r <W/r. The remaining rectangles are packed on

the other columns.
We now pack the group 2. The Lemma 1 holds with the flexibility r ≥ 3

√
2/2 =

2.1213. In terms of Lemma 1, we can always compress a pair of modules of group 2
every time, aligned with the same height and the same total width. If the height of the
pair is over the height H by W / r, we pack the two modules on two columns respectively,
and the shaping as we use for group 1.

Finally, we pack the remaining modules without any shaping. The height of the
remaining is less than W / r. Through the above packing, we have:

Area(F)
Atotal

≤ H +W/r
H

= 1 +
W
rH
≤ 1 + β, where β =

√
Amax

2rAtotal
.

And we have

1≤ height(F)
width(F)

≤ H +W/r
X

≤ (1 + β)
Atotal

X2 ,

where

W =

√
rAmax

2
,X =

[√
Atotal

W

]
×W

(
≤
√

Atotal

)
, and H =

Atotal

X
.

4 Conclusion

We presented a theoretical upper bound for slicing floorplans with soft rectangles. We
proved that, given a set of soft rectangles of total area Atotal, maximum area Amax, and
shape flexibility r ≥2.25, there exists a slicing floorplan F of these rectangles such that

Area(F)≤min{1.131,(1 + β)}Atotal, where β =
√

Amax
2rAtotal

.

A Theoretical Upper Bound for IP-Based Floorplanning 419

References

1. F.Y. Young and D.F. Wong: How good are slicing floorplans.
Integration, the VLSI Journal, vol. 23 (1997) 61–73.

2. D.F. Wong and C. L. Liu: A new algorithm for floorplan designs. Proceedings of the
23rdACM/IEEE Design Automation Conference (1986) 101–107.

3. R.H. J.M. Otten: Automatic floorplan design. Proceedings of the 19th ACM/IEEE Design
Automation Conference (1982) 261–267.

4. G.K.H. Yeap and M. Sarrafzadeh: Sliceable floorplaning by graph dualizationn. Siam J. Dis-
crete Math., 8(2) (1995) 258–280.

5. L. Stockmeyer: Optimal orientation of cells in slicing floorplan designs. Information and
Control, 57 (1983) 91–101.

6. M. Sarrafzadeh: Transforming an arbitrary floorplan into a sliceable one. Proceedings ofthe
International Conference on Computer-Aided Design (1993) 386–389.

7. N. Sherwani: Algorithms for VLSI physical design automation. Kluwer Publishers (1995).
8. Helvio P. Peixoto, Margarida F. Jacome and Ander Royo: A tight area upper bound for slicing

floorplans. Proceedings of13thInternational conference on VLSI Design (2000) 280–285.
9. F.Y. Young, D.F. Wong and Hannah H. Yang: Slicing Floorplans with boundary constraints.

IEEE Transactions on CADs, vol.18, no.9 (1999) 1385–1389.
10. Weiping Shi: A fast algorithm for area minimization of slicing floorplans. IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, 15(12) (1996) 1525–1532.
11. Parthasarthi Dasgupta and Susmita Sur-kolay: Slicing rectangular graphs and their optimal

floorplans. ACM Transactions on Design Automation of Electronic Systems, vol.6, no.4,
(2001) 447–470.

12. Jin Xu, Pei-Ning Giuo, and Chung-Kuan Cheng: Sequence-pair Approach for rectilinear
module placement. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol.18, no.4, (1999) 484–493.

13. P. Pan, W. Shi, and C.L. Liu: Area minimization for hierarchical floorplans. Algorithmica,
vol.15, no.6, (1996) 550–571.

14. http://www.eetimes.com/story/OEG20030110S0042.
15. Guowu Yang etc: A Theoretical Upper Bound for Slicing Floorplan with Soft Modules. Tech-

nical report, Portland State University, 2004. www.ece.pdx.edu/∼song

Quantum Noisy Rational
Function Reconstruction

Sean Hallgren1, Alexander Russell2, and Igor E. Shparlinski3

1 NEC Laboratories America, Inc.
4 Independence Way Princeton, NJ 08540, USA

hallgren@nec-labs.com
2 Department of Computer Science and Engineering
University of Connecticut, Storrs, CT 06269, USA

acr@cse.uconn.edu
3 Department of Computing

Macquarie University, NSW 2109, Australia
igor@ics.mq.edu.au

Abstract. We consider the problem of determining a rational function
f over a finite field Fp of p elements given a noisy black box B, which
for each t ∈ Fp returns several most significant bits of the residue of f(t)
modulo the prime p.

1 Introduction

Let p be a prime number and let Fp be a field of p elements. We always assume
that Fp is represented by the elements {0, . . . , p − 1}. Given t ∈ Fp, for a real
η ≥ 0 we denote by MSBη(t) any u ∈ Fp such that

|t− u| ≤ p/2η+1. (1)

Roughly speaking, MSBη(t) gives η most significant bits of t; however, this defi-
nition is somewhat more flexible and better suited to our purposes. In particular
we remark that η in the inequality (1) need not be an integer. One can however
see a close link between MSBη(t) and the standard notion of most significant
bits.

We consider the problem of recovering a rational function f(X) ∈ Fp(X),
given by a noisy black box Bη which, for each t ∈ Fp, returns MSBη(f(t)) if t is
not a pole of f and an arbitrary element of Fp if t is a pole.

It is clear that, for example, f(X) and f(X)+1 cannot be distinguished from
this kind of information, so we always assume that f(0) = 0.

Thus we focus on the case when f belongs to a certain class F of rational
functions of degree at most d over Fp and such that for any distinct functions
f1, f2 ∈ F , f1 − f2 is not a constant function. In this case we say that F is
shift-free.

For simplicity we assume that F is a parametric family of rational functions,
although the result can be extended to more general situations.

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 420–429, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Quantum Noisy Rational Function Reconstruction 421

Classical algorithms for some variants of the above problem have been given
in [1] and [18, 19].

Throughout the paper we use log z to denote the binary logarithm of z > 0.
In particular, in [1] the reconstruction problem has been considered for the

family of rational functions F = {1/(X + s) : s ∈ Fp}. It is shown in [1]
that for any fixed ε > 0, if η > (2/3 + ε) log p then one can recover a with
overwhelming probability from the values of MSBη,p(1/(t+ a)) at polynomially
many randomly chosen points t ∈ Fp. More involved heuristic arguments have
also been given in [1] which suggest that one can also recover a in a similar,
but “noisier” scenario with η > (1/3 + ε) log p. In Section 3.3 of [1] one can
also find a conjecture that for η < (1/3 − ε) log p the reconstruction problem
is infeasible for classical algorithms. This led the authors of [1] to suggest use
of the map t → (t,MSBη,p(1/(t+ a)) for generating cryptographically strong
pseudorandom numbers.

In [18, 19] the reconstruction problem has been considered for the family of
polynomials F = {sdX

d + . . . + s1X ∈ Fp[X] : s1, . . . , sd ∈ Fp}. It is shown
that in this case η can be chosen much smaller that in the case of [1], namely
η ≥ ((d + ε) log p)1/2 is already sufficient for a unique reconstruction f ∈ F
from the values of MSBη,p(f(t)) at polynomially many randomly chosen points
t ∈ Fp.

We recall that using bit strings derived from polynomial evaluations in Fp

has been proposed as a pseudorandom generator in [13].
Here we show strong upper bounds on the quantum query complexity of

reconstructing f ∈ F for any parametric shift-free class F and for any η >
log 6 = 2.5849 In particular, the suggested pseudorandom number generator
of [1] may be weak against a quantum attack.

Moreover, we show that for a quantum algorithm even the value of p is not
needed and in fact we design a polynomial time quantum algorithm which for
any fixed η > 1 finds p from the values of MSBη,p(f(t)) for any (unknown)
nonconstant rational function f of degree deg f ≤ p1/2−ε.

We remark that the problem studied here does not belong to the class
of hidden subgroup problems or similar problems related to underlying group
structure, whose study dates back to the celebrated Shor algorithm [16], see
also [8, 12, 14, 17, 20]. Several other quantum algorithms for problems which are
not explicitly associated with any underlying group structure have recently been
designed in [3–5, 7, 15]. In particular, as the problem which we consider in this
paper, the papers [3, 4, 15] are concerned with reconstructing a polynomial over
a finite field from some partial information about its values, namely from the
values χ(f(t)) for a multiplicative character χ. Although here the nature of the
information provided about f(t) is very different, we observe that the natural
amplification approach adopted in [15] yields appropriate distinction between
correlated and uncorrelated states.

For a complex U and real positive V , we write U = O(V) if there is an abso-
lute constant C > 0 such that |U | ≤ CV (it is more convenient for us to follow
this more traditional convention rather than the one, more recently appeared

422 Sean Hallgren, Alexander Russell, and Igor E. Shparlinski

in the computer science literature, where O(V) always means a nonnegative
quantity).

2 Preparation

2.1 Exponential Sums

As in [15], we borrow some tools from analytic number theory, applying the
Weil bound for exponential sums which we present in the convenient form given
in [11]; see also [9, 10, 21] for more general results. Let us define

ep(z) = exp(2πiz/p).

Then for any polynomials F (X), G(X) ∈ Fp[X] such that the rational function
f(X) = F (X)/G(X) is not constant on Fp, the bound∣∣∣∣∣∣∣∣

∑
t∈Fp

G(t) �=0

ep (f(t))

∣∣∣∣∣∣∣∣ ≤ (max{degF, degG}+ r − 2) p1/2 + δ

holds, where

(r, δ) =
{

(s, 1), if degF ≤ degG,
(s+ 1, 0), if degF > degG,

and s is the number of distinct zeros of G(X). In particular∣∣∣∣∣∣∣∣
∑
t∈Fp

G(t) �=0

ep (f(t))

∣∣∣∣∣∣∣∣ ≤ 2dp1/2 (2)

where d = deg f = max (degF, degG).
Using the standard technique, see [2] we immediately derive from (2) that

the values of rational functions are uniformly distributed in the following sense.

Lemma 1. For any given nonconstant rational function f ∈ Fp(X) of degree d
and any integer h the number of solutions to the congruence

f(t) ≡ y (mod p), t ∈ Fp, |y| ≤ h,

is 2h+O(dp1/2 log p).

2.2 Quantum Algorithms

We refer the reader to accounts by Nielson and Chuang [14] and Kitaev, Shen and
Vyalyi [8] for a discussion of quantum computation and quantum algorithms. In

Quantum Noisy Rational Function Reconstruction 423

particular, we use the notion of positive operator valued measurement (POVM);
for example, see [17] for a discussion which matches our notation below.

We recall that a POVM P on Hilbert space H is a set A and a family
{ϑa | a ∈ A} of positive semidefinite operators on H with the property that∑

a∈A
ϑa = I,

where I denotes the identity operator. The result of the measurement P on the
state Ψ ∈ H is the probability distribution on A where a ∈ A is observed with
probability 〈ϑaΨ, Ψ〉. Note that 〈ϑaΨ, Ψ〉 ≥ 0, as ϑα is positive semidefinite, and
that ∑

a∈A
〈ϑaΨ, Ψ〉 =

〈∑
a∈A

ϑaΨ, Ψ

〉
= 〈IΨ, Ψ〉 = ‖Ψ‖2 = 1.

Note, also, that in the special case when ϑa = γπ for a projection π and a scalar
γ ∈ [0, 1], 〈ϑaΨ, Ψ〉 = γ ‖πΨ‖2.

We remark that although MSBη,p(x) is not uniquely defined we assume
that the black box Bη is consistent and every time outputs the same value
of MSBη,p(x) for all integers x in the same residue class modulo p.

Hence, for any rational function f ∈ Fp(X), the sequence MSBη,p(f(t)),
t = 1, 2, . . ., is periodic with period p. Thus, it is natural to try to use a quantum
period finding algorithm in order to recover p. As we have remarked the Shor
algorithm [16] is not strong enough for our purposes (because the map t →
MSBη,p(f(t)) is not bijective). We however show that the result of [6], which we
formulate below, is quite adequate for our purpose.

Given two functions Ψ and ψ which are periodic with periods L and �, re-
spectively, we denote by D(Ψ, ψ) the number of integers k ∈ [0, L� − 1] with
Ψ(k) �= ψ(k). The following result is a version of Theorem 2 of [6].

Lemma 2. For any given function Ψ of period L such that

D(Ψ, ψ) ≥ L�

(logL)c

for some constant c > 0 and any periodic function ψ of period � < L, there is
a quantum algorithm which computes L in polynomial time with probability at
least 3/4.

3 Noisy Rational Function Reconstruction

3.1 Quantum Computational Complexity
of the Field Reconstruction

In this section we concentrate on finding the unknown field size p rather than
the (also unknown) function f .

424 Sean Hallgren, Alexander Russell, and Igor E. Shparlinski

Theorem 1. Let f ∈ Fp(X) be any nonlinear rational functions of degree d ≤
p1/2−ε for some fixed ε, 1/2 > ε > 0. Assume that we are given a consistent black
box Bη which for every integer t outputs MSBη,p(f(t)) with some fixed η ≥ 1+ε.
Then there exists a quantum algorithm which in polynomial time computes p
with exponentially small probability of failure.

Proof. We show that the conditions of Lemma 2 are satisfied for the function
Ψ(t) = MSBη,p(f(t)). Thus repeating the algorithm of Lemma 2, say, �log p�
times we find p with probability exponentially close to 1. Let ψ(t) be an arbi-
trary function of period � < p. Let K be the set of k ∈ [0, p� − 1] for which
simultaneously

Ψ(k) = ψ(k) and Ψ(k + �) = ψ(k + �).

Because each condition fails for at most D(Ψ, ψ) values of k we obtain that

#K ≥ p�− 2D(Ψ, ψ). (3)

For each k ∈ K we have

Ψ(k) = ψ(k) = ψ(k + �) = Ψ(k + �),

thus
f(k) ≡ f(k + �) + y (mod p)

for some integer y with |y| ≤ %p2−η&. Since the function f(t) is nonlinear and
� < p we see that f(t)− f(t+ �) is a nonconstant function. Therefore Lemma 1
applies which leads to the estimate

#K ≤ �
(
p2−η+1 +O(dp1/2 log p)

)
. (4)

Comparing (3) and (4), and recalling the conditions on η and d, we derive

D(Ψ, ψ) ≥ 1
2
p�
(
1− 2−η+1 +O(dp−1/2 log p)

)
≥ p�

(
1− 2−ε

2
+O(p−ε log p)

)
.

Therefore Lemma 2 applies, which finishes the proof. ��

3.2 Quantum Query Complexity of the Function Reconstruction

Here we assume that the field size p is known (for example, found by the algo-
rithm of Section 3.1).

Theorem 2. Let F = {fs : s ∈ Fn
p} be a shift-free parametric family of

pn rational functions of degree d ≤ p1/2−ε for some fixed ε, 1/2 > ε > 0.
Assume that for some a ∈ Fn

p we are given a black box Bη which for every t ∈ Fp

outputs MSBη,p(fa(t)) with some fixed η ≥ log 6+ε. Then there exists a quantum
algorithm which, after O(ε−1(n+log p)) quantum queries to Bη, produces a state
for which there is a POVM that determines a with probability at least 1+O(p−1).

Quantum Noisy Rational Function Reconstruction 425

Proof. Let us fix some k to be chosen later. For a prime p, let G denote a p-
dimensional Hilbert space with an orthonormal basis {|z〉 | z ∈ Zp}. Initially,
by applying the Fourier transform to a δ-state, we arrive at the uniform super-
position

Υ =
1
√
p

∑
t∈Fp

|t〉 ∈ G

which is used to query the black-box Bη. The result of the query may be com-
puted into the phases by controlled phase shift yielding the state

Ψa =
1
√
p

∑
t∈Fp

ep (MSBη,p(fa(t))) |t〉 ;

see, for example, [8] for a discussion of quantum computation with oracles. Re-
peating the process independently k ≥ 1 times yields the tensor product state

Ψa,k =
1

pk/2

∑
t∈Fk

p

ep

(
k∑

i=1

MSBη,p(fa(ti))

)
|t〉 ∈ G⊗k

where t = (t1, . . . , tk),
G⊗k = G ⊗ · · · ⊗ G︸ ︷︷ ︸

k

,

and |t〉 = |t1〉 ⊗ · · · ⊗ |tk〉.
In general, we let Ψs,k denote the state that would have arisen at this point

had we started with the rational function g ∈ F .
For any s, r ∈ Fn

p , we have

|〈Ψs,k, Ψr,k〉| =
1
pk

∣∣∣∣∣∣
∑
t∈Fk

p

ep

(
k∑

i=1

(MSBη,p(fs(ti))−MSBη,p(fr(ti)))

)∣∣∣∣∣∣
=

1
pk

k∏
i=1

∣∣∣∣∣∣
∑
t∈Fp

ep (MSBη,p (fs(t)) −MSBη,p (fr(t)))

∣∣∣∣∣∣ .
Observe that for s ∈ Fn

p , we have 〈Ψs,k, Ψs,k〉 = 1. We now bound |〈Ψs,k, Ψr,k〉|
for distinct s, r ∈ Fn

p .
From the equation |1− ep(α)| = 2| sin(πα/p)| we see that

| ep (MSBη,p (fs(t))−MSBη,p (fr(t)))− ep (fs(t)− fr(t))|
≤ 2 sin

(
π2−η

)
≤ 2 sin(2−επ/6).

Elementary calculus shows that 2 sin(2−επ/6) ≤ 1− ε. Therefore, recalling that
F is shift-free, we derive from (2) that∣∣∣∣∣∣

∑
t∈Fp

ep (MSBη,p(fs(t)) −MSBη,p(fr(t)))

∣∣∣∣∣∣ ≤ 1− ε+ 2dp1/2

≤ 1− ε+ 2p1−ε.

426 Sean Hallgren, Alexander Russell, and Igor E. Shparlinski

Hence for distinct s, r ∈ Fn
p , we have

|〈Ψs,k, Ψr,k〉| ≤ λk, (5)

where λ = 1− 0.5ε, provided that p is large enough.
Now we show that there is a POVM that identifies the vector a with proba-

bility 1 + O(p−1). For each s ∈ Fn
p , let πs,k be the projection operator onto the

subspace spanned by Ψs,k. As each πs,k is a projection operator, it is positive
semidefinite, and we now show that for some 0 < α < 1 with α = 1 + O(p−1),
there is a decomposition of the identity operator I of the form

I = ρ+
∑
s∈Fn

p

απs,k

where ρ and all πs,k are positive semidefinite operators on G⊗k. Note that if Ψa,k

is measured according to this POVM, the “correct” index (a, k) is observed with
probability α.

So define
ρ = I −

∑
s∈Fn

p

απs,k.

We wish to select α = 1 + O(p−1) to insure that ρ is positive semidefinite. It
suffices to see that for our choice of α∥∥∥∥∥∥

∑
s∈Fn

p

απs,k

∥∥∥∥∥∥ < 1, (6)

where ‖M‖ denotes the operator norm of M , given by

‖M‖ = sup
Φ �=0

‖MΦ‖
‖Φ‖ ,

this supremum taken over all nonzero vectors Φ. Note that for a unit vector
Φ ∈ G⊗k, ∑

s∈Fn
p

απs,kΦ =
∑
s∈Fn

p

〈Φ, Ψs,k〉Ψs,k.

Let En be a Hilbert space of dimension pn with orthonormal basis {Bs | s ∈
Fn

p} and let τ : G⊗k → En be the linear operator

τ =
∑
s∈Fn

p

ΨsB∗
s ;

here B∗
s : En → C is the linear functional B∗

s : Φ .→ 〈Φ,Bs〉. Then

ττ∗(Φ) =
∑

s,r∈Fn
p

ΨsB∗
s (BrΨr∗(Φ)) =

∑
s∈Fn

p

ΨsΨ
∗
s (Φ) =

∑
s∈Fn

p

πs,kΦ,

Quantum Noisy Rational Function Reconstruction 427

so that
∑

s πs,k = ττ∗; recalling that ‖τ∗‖2 = ‖ττ∗‖, it suffices to suitably upper
bound ‖τ∗‖. So let Φ ∈ G⊗k be an element in the span of {Ψs,k | s ∈ Fn

p} and let
Γ =

∑
s γsBs ∈ En satisfy τ(Γ) = Φ, which is to say that

Φ =
∑
s∈Fn

p

γsΨs,k.

Observe that

‖Φ‖2 =

∥∥∥∥∥∥
∑
s∈Fn

p

γsΨs,k

∥∥∥∥∥∥
2

=
∑

s,r∈Fn
p

γsγ
∗
r 〈Ψs,k, Ψr,k〉

=
∑
s∈Fn

p

|γs|2 +O

⎛⎜⎝λk

pk

⎛⎝∑
s∈Fn

p

|γs|

⎞⎠2
⎞⎟⎠

= ‖Γ‖2 +O

(
λk

pk

(
pn ‖Γ‖2

))
=
(
1 +O

(
pnλk

))
‖Γ‖2 ,

(7)

by the Cauchy-Schwarz inequality. With Φ expressed in this way, we expand
‖τ∗Φ‖ as follows:

‖τ∗Φ‖2 =
∑
s∈Fn

p

|〈Φ, Ψs,k〉|2 =
∑
s∈Fn

p

∣∣∣∣∣∣
〈∑

r∈Fn
p

γrΨr,k, Ψs,k

〉∣∣∣∣∣∣
2

=
∑
s∈Fn

p

∣∣∣∣∣∣γs +
∑
h �=g

γr〈Ψr,k, Ψs,k〉

∣∣∣∣∣∣
2

.

(8)

Recalling the inner product bounds of (5), for any s ∈ Fn
p we must have∣∣∣∣∣∣∣∣

∑
r∈F

n
p

s �=r

γr〈Ψr,k, Ψs,k〉

∣∣∣∣∣∣∣∣ ≤ λkp−k
∑
r∈Fn

p

|γr| ≤ λkp−k√pn ‖Γ‖ , (9)

again by the Cauchy-Schwarz inequality. Finally, considering that ‖α+ β‖ ≤
‖α‖+ ‖β‖, we conclude from (8) and (9) that

‖τ∗Φ‖ ≤ ‖Γ‖+ pnλk ‖Γ‖ =
(
1 + pnλk

)
‖Γ‖

and, from (7), that
‖τ∗Φ‖ ≤

(
1 +O

(
pnλk

))
‖Φ‖ .

Hence ∥∥∥∥∥∥
∑
s∈Fn

p

πs,k

∥∥∥∥∥∥ ≤ 1 +O
(
pnλk

)
.

428 Sean Hallgren, Alexander Russell, and Igor E. Shparlinski

Then taking k =
⌈
2(n+ 1)ε−1 log p

⌉
we obtain

pnλk ≤ pn(1− 0.5ε)k ≤ pn exp(−0.5εk) ≤ p−1.

Hence, we obtain ∥∥∥∥∥∥
∑
s∈Fn

p

πs,k

∥∥∥∥∥∥ ≤ 1 +O
(
p−1

)
,

and are guaranteed that (6) holds (provided that p is large enough) for some
α = 1 + O(p−1) (recall that (1 + δ)−1 = 1 + O(δ)). Thus the above POVM
determines s with probability α = 1 +O(p−1). ��

4 Remarks and Open Questions

Simlar results can be obtained for the truncated exponential map

t→
(
t,MSBη,p(aϑt)

)
(if the order of ϑ modulo p is large enough) and for several more similar maps.

One can also extend our results to composite moduli. There are several ad-
ditional complications in this case and, although there is little doubt that the
same approach works, the final results can be weaker than those of this paper.

Probably the most important (and apparently hard) open question is to
design analogues of our algorithms for a weaker black-box B̃η and let it accept
only the integer values t of the same bits length as the unknown modulus.

References

1. D. Boneh, S. Halevi and N. A. Howgrave-Graham, ‘The modular inversion hidden
number problem’, Proc. Asiacrypt 2001 Queensland, Australia, Lect. Notes in
Comp. Sci. Vol. 2248, Springer-Verlag, Berlin, 2001, 36–51.

2. J. H. H. Chalk, ‘Polynomial congruences over incomplete residue systems modulo
k’, Proc. Kon. Ned. Acad. Wetensch., A92 (1989), 49–62.

3. W. van Dam, ‘Quantum algorithms for weighing matrices and quadratic residues’,
Algorithmica, 34 (2002), 413–428.

4. W. van Dam, S. Hallgren and L. Ip, ‘Quantum algorithms for hidden coset prob-
lems’, Proc. 14th ACM-SIAM Symp. on Discr. Algorithms, SIAM, 2003, 489–498.

5. D. Grigoriev, ‘Testing shift-equivalence of polynomials by deterministic, probabilis-
tic and quantum machines’, Theor. Comp. Sci., 180 (1997), 217–228.

6. L. Hales and S. Hallgren, ‘An improved quantum Fourier transform algorithm and
applications’, Proc 41th IEEE Symp. on Found. of Comp. Sci., IEEE, 2000, 515–
525.

7. S. Hallgren, ‘Polynomial-time quantum algorithms for Pell’s equation and the prin-
cipal ideal problem’, Proc. 34th ACM Symp. on Theory of Comp., ACM, 2002,
653–658.

8. A. Yu. Kitaev, A. H. Shen and M. N. Vyalyi, Classical and quantum computation,
Graduate Studies in Mathematics, Vol.47, Amer. Math. Soc., 2002.

Quantum Noisy Rational Function Reconstruction 429

9. W.-C. W. Li, Number theory with qpplications, World Scientific, Singapore, 1996.
10. R. Lidl and H. Niederreiter, Finite Fields, Cambridge University Press, Cambridge,

1997.
11. C. J. Moreno and O. Moreno, ‘Exponential sums and Goppa codes, 1’, Proc. Amer.

Math. Soc., 111 (1991), 523–531.
12. M. Mosca and A. Ekert, ‘The hidden subgroup problem and eigenvalue estimation

on a quantum computer’, Proc. 1st NASA Intern. Conf. on Quantum Computing
and Quantum Communication, Palm Springs, USA, Lect. Notes in Comp. Sci. Vol.
1509, Springer-Verlag, Berlin, 1999, 174–188.

13. H. Niederreiter and C. P. Schnorr, ‘Local randomness in polynomial random num-
ber and random function generators’, SIAM J. Comp., 13 (1993), 684–694.

14. M. Nielsen and I. Chuang, Quantum computation and quantum information, Cam-
bridge University Press, Cambridge, 2002.

15. A. C. Russell and I. E. Shparlinski, ‘Classical and quantum algorithms for function
reconstruction via character evaluation’, J. Compl., 20 (2004), 404–422.

16. P. Shor, ‘Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer’, SIAM J. Comp., 26 (1997), 1484–1509.

17. P. Shor, ‘Quantum information theory: Results and open problems’, Geometric
and Functional Analysis, 2 (2000), 816–838.

18. I. E. Shparlinski, ‘Sparse polynomial approximation in finite fields’, Proc. 33rd
ACM Symp. on Theory of Comput., Crete, Greece, July 6-8, (2001), 209–215.

19. I. E. Shparlinski and A. Winterhof, ‘Noisy interpolation of sparse polynomials in
finite fields’, Appl. Algebra in Engin., Commun. and Computing, (to appear).

20. D. R. Simon, ‘On the power of quantum computation’, SIAM J. Comp., 26 (1997),
1474–1483.

21. A. Weil, Basic number theory , Springer-Verlag, New York, 1974.

Promised and Distributed Quantum Search�

Shengyu Zhang

Computer Science Department, Princeton University, NJ 08544, USA
szhang@cs.princeton.edu

Abstract. This paper gives a quantum algorithm to search in an set
S for a k-tuple satisfying some predefined relation, with the promise
that some components of a desired k-tuple are in some subsets of S. In
particular when k = 2, we show a tight bound of the quantum query
complexity for the Claw Finding problem, improving previous upper
and lower bounds by Buhrman, Durr, Heiligman, Hoyer, Magniez, Santha
and de Wolf [7].
We also consider the distributed scenario, where two parties each holds
an n-element set, and they want to decide whether the two sets share
a common element. We show a family of protocols s.t. q(P)3/2 · c(P) =
O(n2 log n), where q(P) and c(P) are the number of quantum queries
and the number of communication qubits that the protocol P makes,
respectively. This implies that we can pay more for quantum queries to
save on quantum communication, and vice versa. To our knowledge, it
is the first result about the tradeoff between the two resources.

1 Introduction

Recently Ambainis [5] proposed a novel algorithm for k-Element Distinct-
ness, which is to decide whether there are k equal elements in a given set A
of size N . As later pointed out by Magniez, Santha and Szegedy in [13] and by
Childs and Eisenberg in [9], Ambainis’s algorithm actually gives an O(Nk/k+1)
algorithm for the general k-Subset Finding problem, defined as follows.

k-Subset Finding: Given N elements x1, ...xN ∈ [M], and a k-ary relation
R ⊆ [M]k, decide whether there is a k-size set {i1, ..., ik} s.t. (xi1 , ..., xik

) ∈ R.
If yes, output a solution; otherwise reject.

This generalizes Grover’s search [11], which can be viewed as the special case
of k = 1. We can also define the Unique k-Subset Finding problem, which
is the same as k-Subset Finding except that it is promised that there is at
most one solution set {i1, ..., ik}. As pointed out in [13], by a standard random
reduction, we can solve k-Subset Finding with the same complexity as the
Unique k-Subset Finding. Therefore, in what follows we mostly study the
unique version of the problems.

A lot of recent research in quantum computing is focused on the query mod-
els, where the input is accessed by querying an oracle, and the goal is to minimize
� This research was supported in part by NSF grant CCR-0310466.

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 430–439, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Promised and Distributed Quantum Search 431

the number of the queries made to compute the function. There are mainly two
variants of query models. A commonly used one, sometimes called function-
evaluation query model, is as follows. A query for the input x = x1...xN is
represented as

|i, b, z〉 → |i, (b+ xi) mod M, z〉 (1)

where i is the index of the variable that we are currently interested in, b is the
value (before the query) in the place where the answer is held, and z is a work
state not involved in the current query processing. The other query model is the
comparison model, where a query is

|i, j, b, z〉 → |i, j, b⊕ λxi≤xj , z〉 (2)

with b ∈ {0, 1} and λφ being the truth-value of the formula φ (throughout the pa-
per). A quantum query computation is a series of operations U1, O, U2, O, ..., UT ,
where each Ui is a unitary operator independent of the input x and O is a query
as specified above. We use QF

2 (f) and QC
2 (f) to denote the double side bounded

error quantum query complexity of f in the function-evaluation model and the
comparison model, respectively. For further details on quantum query model, we
refer readers to [4, 8] as two surveys.

Ambainis [5] showed that QF
2 (f)=O(Nk/k+1) and QC

2 (f)=O(Nk/k+1 logN)
for k-Subset Finding. In this paper, we consider two related problems. The
first one is to consider what if we know some information about the solution in
advance. For example, when k = 2, suppose that the unique solution is (i1, i2)
and we know in advance that i1 is in some subset of [N]. Does this information
help our search? To be more precise, consider the following problems.

Unique (m,n) 2-Subset Finding: We are given x1, ..., xN ∈ [M], two sets
of indices J1, J2 ⊆ [N] with |J1| = m, |J2| = n, and a relation R ⊆ [M] × [M],
with the promise that there exists at most one pair of (xj1 , xj2) ∈ R s.t. j1 ∈ J1,
j2 ∈ J2 and j1 �= j2. Output the unique pair if it exists, and reject otherwise.

Claw Finding: The above problem with the restrictions that R is the Equal-
ity relation and J1 ∩ J2 = ∅.

The best previous result for the Claw Finding is given by Buhrman, Durr,
Heiligman, Hoyer, Magniez, Santha and de Wolf [7]:

Ω(m1/2) ≤ QC
2 (Claw-Finding) ≤ O((n1/2m1/4 +m1/2) logn) (3)

where without loss of generality, they assume m ≥ n. In this paper, we improve
it to the following (almost) tight bounds.

Theorem 1. For both Unique (m,n) 2-Subset Finding and Claw Find-
ing, we have

QF
2 (f) = Θ((mn)1/3 +

√
n+

√
m) (4)

Ω((mn)1/3+
√
n+
√
m) ≤ QC

2 (f) ≤ O(((mn)1/3+
√
n+
√
m)(logm+logn)) (5)

432 Shengyu Zhang

The proof for the upper bound uses a generalization of Ambainis’ quantum
walk algorithm [5]. The main difference is that we maintain two sets of regis-
ters instead of just one set. The lower bound is shown by a reduction to the
Ω((n/r)1/3) lower bound for r-Collision by Shi [2].

We also consider the promised version of the k-Subset Finding problem for
general k, and a similar upper bound is given.

The second problem we study is another natural scenario for k-Subset Find-
ing: distributed search. Suppose that Alice has input x1, ..., xn and Bob has
y1, ..., yn. Alice can access her input x1, ..., xn only by quantum queries as in
(1), and she cannot access Bob’s input y1, ..., yn. Symmetric rules apply to Bob.
They want to search for the unique pair of (xi, yj) in some given relation R, by
come communications1. In other words, the model is the same as the one used to
study quantum communication complexity (see [10]) except that the two parties
access their respective inputs by quantum queries (1). So there are two natural
resources to consider. One is the number of queries, and the other is the number
of qubits in the communication. The former is about quantum query complexity
as studied above, and the latter is about quantum communication complexity,
introduced by Yao[16] and extensively studied since then (see [10] for a survey).
As far as we know, all previous work considers one of these two problems2. For
example, Ambainis [5] and the first part of this paper consider the quantum
query complexity; Buhrman, Cleve and Wigderson [6] show an O(

√
n logn) up-

per bound of quantum communication complexity of Disj, later improved by
Hoyer and de Wolf to O(

√
nclog

∗ n) [12] and finally to O(
√
n) by Aaronson and

Ambainis [1], matching the Ω(
√
n) lower bound shown by Razborov [15]. Since

query and communication are both well-studied resources, it is natural to study
both of them simultaneously, and see how they interact with each other.

We can use a protocol similar to the one shown by Buhrman, Cleve and
Wigderson [6], but it makes Θ(n) queries, which is higher than the optimal
Θ(n2/3) value. We can also have a protocol achieving the optimal quantum
query complexity, but the number of communication qubits is asymptotically
more than the optimal Θ̃(

√
n) value. So it seems to exist a tradeoff between the

quantum query computation and the quantum communication. This paper gives
one tradeoff result as follows. For a protocol P computing function f , denote by
q(P) the number of quantum queries and by c(P) the number of communication
qubits.

Theorem 2. Let f = Unique 2-Subset Finding. For any given q0∈(n2/3, n),
there exists a protocol P with q(P) = q0 and c(P) = O(n2 log n

q
3/2
0

).

1 If the R is the Equality relation, then the problem is related to Disj, a well-studied
function. But we should note that Disj is to decide whether two subsets of an n-
element set intersect, while here the distributed search problem is to decide whether
two n-element sets intersect.

2 Some papers study yet other resources. For example, paper [14] gives a lower bound
of the tradeoff between communication complexity and round complexity.

Promised and Distributed Quantum Search 433

In other words, we have a family of protocols with q(P)3/2 · c(P) = O(n2 logn).
This implies that we can pay more for quantum queries to save on quantum
communication, and vice versa.

2 The Quantum Query Complexity
of Promised Subset Finding

2.1 Review of Ambainis’ Search and the Generic Algorithm

We first review Ambainis’ search algorithm for Unique k-Element Distinct-
ness [5]. The working state is a superposition of basis in the form of |S, xS , i〉.
Here S is a r-size subset of [N], xS contains the variable values xj ’s for all j ∈ S,
and i is an index not in S. An basic tool used in the algorithm is a subroutine
called Quantum Walk as follows.

Algorithm 1: Quantum Walk on S in A
Input: State |S, xS, i〉 and A with S ⊆ A, and i ∈ A − S. Suppose that |S| =
r, |A| = N .

1. |S, xS, i〉 → |S, xS〉
(
(−1 + 2

N−r
)|i〉 + 2

N−r

∑
j∈A−S−{i} |j〉

)
2. |S, xS, i〉 → |S ∪ {i}, xS∪{i}, i〉 by one query.

3. |S, xS, i〉 → |S, xS〉
(
(−1 + 2

r+1
)|i〉 + 2

r+1

∑
j∈S−{i} |j〉

)
4. |S, xS, i〉 → |S − {i}, xS−{i}, i〉 by one query.

An key fact shown by Ambainis [5] is the following. Let I = {i1, ..., ik} where
(i1, ..., ik) is the unique k-tuple of equal elements. Define a (2k+ 1)-dimentional
subspace

H̃ = span{|ψj,l〉 : j = 0, ..., k; l = 0, 1; (j, l) �= (k, 1)} (6)

where |ψj,l〉 is the uniform superposition of states {|S, xS , i〉 : |S| = r, i ∈
A− S, j = |S ∩ I|, l = λi∈I} (with λφ = 1 if φ is true, and 0 otherwise). Then
first, one step of Quantum Walk maps H̃ to H̃ itself. Second, the operation of
Quantum Walk, when restricted on H̃ , has 2k + 1 eigenvalues, one of which
is 1 and the corresponding eigenvalue is the starting state |ψstart〉. The other
2k eigenvalues are in the form of e±θ1i, ..., e±θki, where θj = (2

√
j + o(1))/

√
r.

Though the original k is supposed to be at least 2, we observe that the above
fact also holds for case k = 1. This will be used in our proof of Theorem 1. Using
the following key lemma, Ambainis gave Algorithm 2 for Unique k-Element
Distinctness.

Lemma 1 (Ambainis [5]). Let H be a finite dimensional Hilbert space and
|ψ1〉, . . ., |ψm〉 be an orthonormal basis for H. Let |ψgood〉, |ψstart〉 be two
states in H which are superpositions of |ψ1〉, . . ., |ψm〉 with real amplitudes and
〈ψgood|ψstart〉 = α. Let U1, U2 be unitary transformations on H satisfying:

434 Shengyu Zhang

1. U1 is the transformation that flips the phase on |ψgood〉 (i.e. U1|ψgood〉 =
−|ψgood〉) and leaves any state orthogonal to |ψgood〉 unchanged.

2. U2 is a transformation which is described by a real-valued m ∗ m matrix
in the basis |ψ1〉, . . ., |ψm〉. Moreover, U2|ψstart〉 = |ψstart〉 and, if |ψ〉 is
an eigenvector of U2 perpendicular to |ψstart〉, then U2|ψ〉 = eiθ|ψ〉 for θ ∈
[ε, 2π − ε].

Then, there exists t = O(1
α) such that 〈ψgood|(U2U1)t|ψstart〉 = Ω(1).

Algorithm 2: for Unique k-Element Distinctness
Input: x1, ..., xN ∈ [M], with the promise that there exists at most one k-size set
I = {i1, ..., ik} ⊆ [N] s.t. xi1 = ... = xik .
Output: I and xI = {xi1 , ..., xik} if they exist; otherwise reject.

1. Set up the initial state |ψstart〉 = 1√
(N

r)(N−r)

∑
S⊆[N],|S|=r,i∈[N]−S |S, xS, i〉.

2. Do Θ((N
r

)k/2) times

(a) Check whether I ⊆ S. If yes, do the phase flip: |S, xS, i〉 → −|S, xS, i〉.
(b) Do Quantum Walk on S in [N] for Θ(

√
r) times.

3. Measure the resulting state and give the corresponding answer.

By Lemma 1, if the (unique) k-size subset I exists, then after Step 2, the
state is close to |ψgood〉 = 1√

(N−k
r−k)(N−r)

∑
|S|=r, I⊆S, i∈[N]−S |S, xS , i〉, thus the

algorithm can output I = {i1, ..., ik} and xI = {xi1 , ..., xik
} in Step 3 (with high

probability). If such I does not exist, the state after Step 2 is still |ψstart〉, and
thus the algorithm rejects in Step 3.

By letting r = Nk/k+1, we have an algorithm using O(Nk/k+1) queries in
the function-evaluation model. In comparison model, the upper bound can be
achieved with a log factor added [5]. Basically, we keep the set |S〉 sorted during
the computation. So both in the set up phase (Step 1) and in the update phase
(Step 2(b)), adding a log factor is enough.

2.2 Proof of Theorem 1

We prove Theorem 1 in this section. For the upper bounds, we give Algorithm
3, which refines Ambainis’ Algorithm 2 by maintaining two sets of registers
instead of one set.

The following theorem actually shows the upper bound of Theorem 1 in the
function-evaluation model.

Theorem 3. Algorithm 3 outputs the desired results correctly in the function-
evaluation model, and we can pick r1, r2 to make number of queries be⎧⎪⎨⎪⎩

O((mn)1/3) if
√
n ≤ m ≤ n2 (by letting r1 = r2 = (mn)1/3)

O(
√
n) if m <

√
n (by letting r1 = m, r2 ∈ [m, (mn)1/3])

O(
√
m) if m > n2 (by letting r1 ∈ [n, (mn)1/3], r2 = n)

Promised and Distributed Quantum Search 435

Algorithm 3: for Unique (m,n) 2-Subset Finding
Input: x1, ..., xN ∈ [M]. J1, J2 ⊆ [N], |J1| = m, |J2| = n. R ⊆ [M]× [M] s.t. there
is at most one (xj1 , xj2) ∈ R with j1 ∈ J1, j2 ∈ J2 and j1 �= j2.
Output: The unique pair (j1, j2) if it exists; otherwise reject.

1. Set up the initial state
|ψstart〉 = 1√

T

∑
Sb⊆Jb,|Sb|=rb,ib∈Jb−Sb

|S1, xS1 , i1, S2, xS2 , i2〉,
where T =

(
m
r1

)(
n
r2

)
(m − r1)(n − r2) and b = 1, 2.

2. Do Θ(
√

mn
r1r2

) times

(a) Check whether the unique (j1, j2) is in S1 × S2. If yes, do the following
phase flip: |S1, xS1 , i1, S2, xS2 , i2〉 → −|S1, xS1 , i1, S2, xS2 , i2〉.

(b) Do Quantum Walk on S1 in J1 for t1 = �π
4

√
r1� times.

Do Quantum Walk on S2 in J2 for t2 = �π
8

√
r2� times.

3. Measure the resulting state and give the corresponding answer.

Proof. Correctness: First, if there is no desired pair, then the algorithm actually
does nothing, so the state after Step 2 is still |ψstart〉. Thus in Step 3, we cannot
find the desired pair after the measurement, and we will reject.

On the other side, if there is the pair, we shall use Lemma 1 to show that
we can find it. Suppose (j1, j2) ∈ J1 × J2 is the desired pair. First, define H̃1 as
in (6), with |ψj,l〉 being the uniform superposition of states {|S1, xS1 , i1〉 : S1 ⊆
J1, |S1| = r1, i1 ∈ J1 − S1, j = λj1∈S1 , l = λi1=j1}. Note that it is exactly the
“k = 1” case of (6), soW1, the operator of Quantum Walk on S1 in J1, when re-
stricted on H̃1, has 3 eigenvalues. One of the eigenvalues is 1, and the correspond-
ing eigenvector is |ψstart,1〉 = 1√

(m
r1

)(m−r1)

∑
S1⊆J1,|S1|=r1,i1∈J1−S1

|S1, xS1 , i1〉.

The other two eigenvalues are e±iθ1 , and θ1 = (2+o(1))/
√
r1. Therefore, W t1

1 has
3 eigenvalues: 1 (with the eigenvector |ψstart,1〉) and e±iθ′

1 where θ′1 = π
2 + o(1).

H̃2 is defined symmetrically, as well as W2, |ψstart,2〉 and θ2. As a result,
W t2

2 has 3 eigenvalues: 1 (with the eigenvector |ψstart,2〉) and e±iθ′
2 where θ′2 =

π
4 + o(1). The whole step 2(b) restricted on H̃1 ⊗ H̃2 is the operation W =
(I1 ⊗W2)(W1 ⊗ I2). Now note that the eigenvalues of W are given by

{λ · μ : λ is an eigenvalue of W1 on H̃1, and μ is an eigenvalue of W2 on H̃2}.

Therefore, W has 9 eigenvalues {ei(b1θ′
1+b2θ′

2) : b1, b2 ∈ {−1, 0, 1}}. It is easy to
check that one of eigenvalues is 1, and the corresponding eigenvector is |ψstart,1〉⊗
|ψstart,2〉, which is exactly the |ψstart〉 in Algorithm 3. All the other 8 eigenvalues
are in the form of e±iθ, for some θ ∈ [π/4 − o(1), 2π − π/4 + o(1)]. Finally,
we calculate α = 〈ψstart|ψgood〉: α =

√
Pr|S1|=r1,|S2|=r2 [(j1, j2) ∈ S1 × S2] =

Θ(
√

r1r2
mn). So the number of iterations in Step 2 is 1/α = Θ(

√
mn
r1r2

) and the
correctness holds by Lemma 1.

It is easy to verify that the number of queries used is O(r1+r2+
√

mn
r1r2

(
√
r1+

√
r2)) = O(r1 + r2 +

√
mn√
r1

+
√

mn√
r2

). Now we need minimize it, with restrictions

436 Shengyu Zhang

r1 ≤ m (because S1 is a subset of J1) and r2 ≤ n. For the (r1 +
√

mn√
r1

) part,

it is not hard to see that if m ≥
√
n then minr1≤m(r1 +

√
mn√
r1

) = (mn)1/3 and

the minimum is achieved when r1 = (mn)1/3; otherwise minr1≤m(r1 +
√

mn√
r1

) =
m+

√
n and the minimum is obtained when r1 = m. Analyze the r2 +

√
mn/

√
r2

part similarly, and we can get the conclusion as in the statement of the theorem.
��

Next we prove the lower bound part in Theorem 1. Note that since Claw-
Finding is a special case of (m,n) 2-Subset Finding, it is enough to show the
lower bound for Q2(Claw-Finding).

Proof. It is sufficient to prove the lower bound of Ω((mn)1/3). We will show it
by a reduction to the 2-Collision problem, which is to distinguish whether a
function f : [N] → [N] is one-to-one or two-to-one. This problem is shown by
Aaronson, Shi [2] and Ambainis [3] to have Ω(N1/3) lower bound of quantum
query complexity. Assume that we can solve (m,n) 2-Subset Finding with
o((mn)1/3) queries, then we can have an o(N1/3) algorithm for the 2-Collision
problem as follows. Let f : [N] → [N] be a function, where N = mn, and we
are to decide whether it is one-to-one or two-to-one. First pick a random set
S1 ⊆ [N] of size m and then pick another random set S2 ⊆ [N]− S1 of size n. If
f is one-to-one, then f(i1) �= f(i2) for any i1 ∈ S1 and i2 ∈ S2, since S1∩S2 = ∅.
On the other hand, if f is two-to-one, then by a standard probability calculation
we know that with constant probability there will be i1 ∈ S1 and i2 ∈ S2 such
that f(i1) = f(i2). Therefore, whether f is two-to-one or one-to-one is, up to a
constant probability, equivalent to whether there are i1 ∈ S1 and i2 ∈ S2 such
that f(i1) = f(i2), which can be decided with o((mn)1/3) = o(N1/3) queries, by
our assumption. This contradicts to the Ω(N1/3) lower bound of 2-Collision
[2, 3], so QF

2 (Unique (m,n) 2-Subset Finding) = Ω((mn)1/3). ��

We make a few remarks about Claw-Finding problem in the comparison
model in Theorem 1 to end the subsection. The upper bound of QC

2 (Claw-
Finding) is got in the same way we described at the end of Section 2.1, with
only a logn factor added. As to the lower bound, since we can use 2 queries in
the function-evaluation model to simulate 1 query in comparison model, we have
always QF

2 (f) ≤ 2QC
2 (f). So a lower bound for QF

2 (f) is also a lower bound for
QC

2 (f) up to a factor of 2.

2.3 The General Case

We can use the same technique to give a generic algorithm for a general promised
subset finding problem.

Unique (ni, ki)i=1,...,l k-Subset Finding: We are given x1, ..., xN ∈ [M],
l sets of indices J1, ..., Jl ⊆ [N] with |Ji| = ni (i = 1, ..., l), and a relation
R ⊆ [M]k, where k =

∑l
i=1 ki is constant, with the promise that there is at most

one k-size set {j11, ..., j1k1 , ..., jl1, ..., jlkl
} s.t. (xj11 , ..., xj1k1

, ..., xjl1 , ..., xjlkl
) ∈ R

Promised and Distributed Quantum Search 437

and jip ∈ Ji (i = 1, ..., l; p = 1, ..., ki). Output the unique k-set if it exists;
otherwise reject.

If R is Equality relation, we call the problem Unique (ni, ki)i=1,...,l k-
Element Distinctness. An generic algorithm for Unique (ni, ki)i=1,...,l k-
Subset Finding is as follows. As in [13], we use three kinds of registers: set
registers S, data registers D(s) and coin register c.

Algorithm 4: for Unique (ni, ki)i=1,...,l k-Subset Finding
Input: x1, ..., xN ∈ [M], J1, ..., Jl ⊆ [N] with |Ji| = ni (i = 1, ..., l), R ⊆ [M]k,
where k =

∑l
i=1 ki is constant, with the promise that there is at most one k-size

set J = {j11, ..., j1k1 , ..., jl1, ..., jlkl
} s.t. (xj11 , ..., xj1k1

, ..., xjl1 , ..., xjlkl
) ∈ R and

jip ∈ Ji (i = 1, ..., l; p = 1, ..., ki).
Output: Output the unique k-set J if it exists; reject otherwise.

1. Create the state
∑

Si⊆Ji,|Si|=ri,ci∈Ji−Si
|S1, c1〉...|Sl, cl〉.

2. Get the data D(Si) for each Si. Then the state is∑
Si⊆Ji,|Si|=ri,ci∈Ji−Si

|S1, D(S1), c1〉...|Sl, D(Sl), cl〉.

3. Do Θ(
∏ l

i=1 n
ki/2
i∏

l
i=1 r

ki/2
i

) times

(a) If j ∈ Sk1
1 × ... × Skl

l , then do phase flip; else do nothing.
(b) For i = 1, ..., l: do Quantum Walk on Si in Ji for �√riπ/2i+1� times .

4. Measure the resulting state and give the corresponding answer.

Suppose the setup step (Step 2) takes s(r1, ..., rl) queries, check step (Step
3(a)) takes c(r1, ..., rl) queries, and each Quantum Walk on |Si, D(Si), ci〉 in Ji

takes u(ri) to update the data D(Si). Using the similar analysis as in the proof
for Theorem 1, we can show the following upper bound for Unique (ni, ki)i=1,...,l

k-Subset Finding and Unique (ni, ki)i=1,...,l k-Element Distinctness. The
only thing needed to note is that the operator of Step 3(b) has eigenvalue {eiθ :
θ = b1

π
2 + b2

π
4 + ...+ bl

π
2l+1 + o(1), b1, ..., bl ∈ {−1, 0, 1}}. But it is easy to check

that for any b1, ..., bl ∈ {−1, 0, 1} such that bi’s are not all zeros, it holds that
π

2l+1 ≤ |b1 π
2 + b2

π
4 + ...+ bl

π
2l+1 | < π, so we can use the Lemma 1 and the proof

passes through.

Theorem 4. Algorithm 4 has quantum query complexity

O(s(r1, ..., rl) +
∏l

i=1 n
ki/2
i∏l

i=1 r
ki/2
i

(c(r1, ..., rl) +
√
r1u(r1) + ...+

√
rlu(rl)).

In particular, if s(r1, ..., rl) =
∑

i ri, c(r1, ..., rl) = 0 and u(ri) = 1 as in Unique
(ni, ki)i=1,...,l k-Element Distinctness problem, then the complexity is

O(
∑

i

ri +
∏l

i=1 n
ki/2
i∏l

i=1 r
ki/2
i

(
∑

i

√
ri)).

438 Shengyu Zhang

When (
∏l

i=1 n
ki

i)
1

k+1 ≤ ni is satisfied (i = 1, ..., l), we can pick ri =
(
∏l

i=1 n
ki

i)
1

k+1 , and the query complexity is O((
∏l

i=1 n
ki

i)
1

k+1).

3 Tradeoff Between Quantum Query and Communication

In this section we prove Theorem 3 by giving a family of protocols achieving
the tradeoff result. Note that in Algorithm 3, both the preparation of the
initial state |ψstart〉 in Step 1 and the Quantum Walks in Step 2(b) can be done
distributively. So it naturally induces a communication protocol as follows.

Protocol 1: for distributed Unique 2-Subset Finding
Input: x1, ..., xN ∈ [M]. J1, J2 ⊆ [N], |J1| = m, |J2| = n. R ⊆ [M]× [M] s.t. there
is at most one (xj1 , xj2) ∈ R with j1 ∈ J1, j2 ∈ J2 and j1 �= j2.
Output: The unique pair (j1, j2) if it exists; otherwise reject.

1. Alice sets up her initial state
|ψa〉 = 1√

(n
r1

)(n−r1)

∑
S1⊆J1,|S1|=r1,i1∈J1−S1

|S1, xS1 , i1〉 in her register Ra

Bob sets up his initial state
|ψb〉 = 1√

(n
r2

)(n−r2)

∑
S2⊆J2,|S2|=r2,i2∈J2−S2

|S2, xS2 , i2〉 in his register Rb

2. Do Θ(n√
r1r2

) times

(a) Bob sends Rb (i.e. all his qubits) to Alice.
(b) Alice checks whether (j1, j2) ∈ S1 ×S2. If yes, do the following phase flip:

|S1, xS1 , i1, S2, xS2 , i2〉 → −|S1, xS1 , i1, S2, xS2 , i2〉.
(c) Alice sends Rb back to Bob.
(d) Alice does �π

4

√
r1� times Quantum Walk on S1 in J1.

Bob does �π
8

√
r2� times Quantum Walk on S2 in J2.

3. Bob does the measurement and outputs the corresponding result.

The correctness of the protocol is obvious because it is essentially the same
as Algorithm 3. We now analyze the complexity. The number of queries is the
same as that of Algorithm 3, i.e. q(P) = Θ(r1 + r2 + n√

r1r2
(
√
r1 +

√
r2)) =

Θ(r1 + r2 + n(1/
√
r1 + 1/

√
r2)). The number of communication qubits of this

protocol is c(P) = Θ(n√
r1r2

r2 logn) = Θ(
√

r2
r1
n logn). If t = r1/r2 ≥ 1, then

q(P) = Θ(r1 + n/
√
r2) = Θ(tr2 + n/

√
r2) ≥ Θ(t1/3n2/3), and the equality is

achieved when r2 = (n/t)2/3. So for any given q0 ∈ (n2/3, n), let r1 = q0 and
r2 = n2/q20, then q(P) = Θ(q0) and c(P) = Θ(n2 log n

q
3/2
0

).

4 Conclusion

We show a generalization of the recent quantum search algorithms [5, 9, 13]
by using more sets of registers. We hope that it can serve as a building block

Promised and Distributed Quantum Search 439

for other problems. It will be especially interesting if the algorithm can attack
problems which are not given as a promised ones. For example, can the ideas of
this paper be used to improve the O(n1.3) upper bound [13] for Triangle?

References

1. S. Aaronson and A. Ambainis. Quantum search of spatial regions. Proceedings
of the 44th Annual IEEE Symposium on Foundations of Computer Science, pp.
200-209, 2003. Earlier version at quant-ph/0303041

2. S. Aaronson, Y. Shi. Quantum lower bounds for the collision and the element dis-
tinctness problems. Journal of the ACM, 51(4), pp. 595-605, 2004. Earlier version
at STOC 2002 and FOCS 2002, also at quant-ph/0111102 and quant-ph/0112086.

3. A. Ambainis. Quantum lower bounds for collision and element distinctness with
small range. Theory of Computing, 1(3), 2005. Earlier version at quant-ph/0305179

4. A. Ambainis. Quantum query algorithms and lower bounds, Proceedings of FOTFS
III, to appear

5. A. Ambainis. Quantum walk algorithm for element distinctness. Proceedings of the
45th Annual IEEE Symposium on Foundations of Computer Science, pp. 22-31,
2004. Earlier version at quant-ph/0311001

6. H. Buhrman, R. Cleve, A. Wigderson. Quantum vs. classical communication and
computation. Proceedings of the 30th Annual ACM Symposium on Theory of
Computing, pp. 63-68, 1998

7. H. Buhrman, C. Durr, M. Heiligman, P. Hoyer, F. Magniez, M. Santha, R. de Wolf.
Quantum algorithms for Element Distinctness. Proceedings of Sixteenth IEEE con-
ference on Computational Complexity, pp. 131-137, 2001. Journal version to appear
in SIAM Journal of Computing.

8. H. Buhrman, R. de Wolf. Complexity measures and decision tree complexity: a
survey. Theoretical Computer Science, 288(1), pp. 21-43, 2002

9. A. Childs and J. Eisenberg. Quantum algorithms for subset finding. quant-
ph/0311038

10. R. de Wolf. Quantum communication and complexity. Theoretical Computer Sci-
ence, 287(1), pp. 337-353, 2002.

11. L. Grover. A fast quantum mechanical algorithm for database search. Proceedings
of the 28th Annual ACM Symposium on Theory of Computing, pp. 212-219, 1996

12. P. Hoyer and R. de Wolf. Improved quantum communication complexity bounds for
disjointness and equality. Proceedings of the 19th Symposium on Theoretical As-
pects of Computer Science, pp. 299-310, 2002. Earlier version at quant-ph/0109068.

13. F. Magniez, M. Santha, M. Szegedy. Quantum algorithms for the Triangle problem.
Proceedings of the 16th ACM-SIAM Symposium on Discrete Algorithms, pp. 1109-
1117, 2005. Earlier versions at quant-ph/0310107 and quant-ph/0310134

14. R. Jain. J. Radhakrishnan, P. Sen. A lower bound for bounded round quantum
communication complexity of set disjointness. Proceedings of the 44th Annual
IEEE Symposium on Foundations of Computer Science, pp. 220 - 229, 2003

15. A. Razborov. Quantum communication complexity of symmetric predicates.
Izvestiya: Mathematics, 67(1), pp. 145-159, 2003

16. A. Yao, Quantum circuit complexity, Proceedings of the 34th IEEE Symposium
on Foundations of Computer Science, pp. 352-361, 1993

Efficient and Simple Generation
of Random Simple Connected Graphs

with Prescribed Degree Sequence

Fabien Viger1,2 and Matthieu Latapy2

1 LIP6, University Pierre and Marie Curie, 4 place Jussieu, 75005 Paris
2 LIAFA, University Denis Diderot, 2 place Jussieu, 75005 Paris

{fabien,latapy}@liafa.jussieu.fr

Abstract. We address here the problem of generating random graphs
uniformly from the set of simple connected graphs having a prescribed de-
gree sequence. Our goal is to provide an algorithm designed for practical
use both because of its ability to generate very large graphs (efficiency)
and because it is easy to implement (simplicity).
We focus on a family of heuristics for which we prove optimality con-
ditions, and show how this optimality can be reached in practice. We
then propose a different approach, specifically designed for typical real-
world degree distributions, which outperforms the first one. Assuming a
conjecture, we finally obtain an O(n log n) algorithm, which, in spite of
being very simple, improves the best known complexity.

1 Introduction

Recently, it appeared that the degree distribution of most real-world complex
networks is well approximated by a power law, and that this unexpected feature
has a crucial impact on many phenomena of interest [5]. Since then, many models
have been introduced to capture this feature. In particular, the Molloy and Reed
model [13], on which we will focus, generates a random graph with prescribed
degree sequence in linear time. However, this model produces graphs that are
neither simple1 nor connected. To bypass this problem, one generally simply
removes multiple edges and loops, and then keeps only the largest connected
component. Apart from the expected size of this component [2, 14], very little
is known about the impact of these removals on the obtained graphs, on their
degree distribution and on the simulations processed using them.

The problem we address here is the following: given a degree sequence, we
want to generate a random simple connected graph having exactly this degree
sequence. Moreover, we want to be able to generate very large such graphs,
typically with more than one million vertices, as often needed in simulations.

Although it has been widely investigated, it is still an open problem to di-
rectly generate such a random graph, or even to enumerate them in polynomial
time, even without the connectivity requirement [11, 12].
1 A simple graph has neither multiple edges, i.e. several edges binding the same pair

of vertices, nor loops, i.e. edges binding a vertex to itself.

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 440–449, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Efficient and Simple Generation of Random Simple Connected Graphs 441

In this paper, we will first present the best solution proposed so far [6, 12],
discussing both theoretical and practical considerations. We will then deepen
the study of this algorithm, which will lead us to an improvement that makes it
optimal among its family. Furthermore, we will propose a new approach solving
the problem in O(n log n) time, and being very simple to implement.

2 Context

The Markov Chain Monte-Carlo Algorithm

Several techniques have been proposed to solve the problem we address. We will
focus here on the Markov chain Monte-Carlo algorithm [6], pointed out recently
by an extensive study [12] as the most efficient one.

The generation process is composed of three main steps:

1. Realize the sequence: generate a simple graph that matches the degree
sequence,

2. Connect this graph, without changing its degrees, and
3. Shuffle the edges to make it random, while keeping it connected and simple.

The Havel-Hakimi algorithm [7, 8] solves the first step in linear time and
space. A result of Erdös and Gallai [4] shows that this algorithm succeeds if and
only if the degree sequence is realizable.

The second step is achieved by swapping edges to merge separated connected
components into a single connected component, following a well-known graph
theory algorithm [3, 15]. Its time and space complexities are also linear.

A

B C C

D

B

AD

Fig. 1. Edge swap

The third step is achieved by randomly swapping edges of the graph, checking
at each step that we keep the graph simple and connected. Given the graph Gt

at some step t, we pick two edges at random, and then we swap them as shown in
Figure 1, obtaining another graph G′ with the same degrees. If G′ is still simple
and connected, we consider the swap as valid : Gt+1 = G′. Otherwise, we reject
the swap: Gt+1 = Gt

This algorithm is a Markov chain where the space S is the set of all simple
connected graphs with the given degree sequence, the initial state G0 is the
graph obtained by the first two steps, and the transition Gi → Gj has prob-
ability 1

m(m−1) if there exists an edge swap that transforms Gi in Gj . If there
are no such swap, this transition has probability 0 (note that the probability of

442 Fabien Viger and Matthieu Latapy

the transition Gi → Gi is given by the number of invalid swaps on Gi divided
by m(m− 1)).

We will use the following known results:

Theorem 1 This Markov chain is irreducible [15], symmetric [6], and aperiodic
[6].

Corollary 2 The Markov chain converges to the uniform distribution on every
states of its space, i.e. all graphs having the wanted properties.

These results show that, in order to generate a random graph, it is sufficient
to do enough transitions. No formal result is known about the convergence speed
of the Markov chain, i.e. the required number of transitions. However, massive
experiments [6, 12] applied the shuffle process with an extremely biased G0 and
showed clearly that O(m) edge swaps are sufficient, by comparing a large set of
non-trivial metrics (such as the diameter, the flow, and so on) over the sampled
graphs and random graphs. Moreover, we proved2 that for any non-ill shaped4

degree distribution, the ratio of valid edge swaps is greater than some positive
constant, so that O(m) transitions are sufficient to ensure Ω(m) swaps to be
done. Therefore, we will assume the following:

Empirical Result 1 [6, 12] The Markov chain converges after O(m) transi-
tions.

Complexity

The first two steps of the random generation (realization of the degree sequence
and connection of the graph) are done in O(m) time and space. Using hash tables
for the adjacency lists, each transition may be done in O(1) time, to which we
must add the connectivity tests that take O(m) time per transition. Thus, the
total time complexity for the shuffle is quadratic:

Cnaive = O(m2) (1)

Using the structures described in [9, 10, 17] to maintain connectivity in dy-
namic graphs, one may reduce this complexity to the much smaller:

Cdynamic = O
(
m logn(log logn)3

)
(2)

Notice however that these structures are quite intricate, and that the con-
stants are large for both time and space complexities. The naive algorithm, de-
spite the fact that it runs in O(m2) time, is therefore generally used in practice
since it has the advantage of being extremely easy to implement. Our contri-
bution in this paper will be to show how it can be significantly improved while
keeping it very simple, and that it can even outperform the dynamical algorithm.

2 All the proofs, and more details may be found in the full version [18].

Efficient and Simple Generation of Random Simple Connected Graphs 443

Speed-Up and the Gkantsidis et al. Heuristics

Gkantsidis et al. proposed a simple way to speed-up the naive implementation
[6]: instead of running a connectivity test for each transition, they do it every
T transitions, for some integer T ≥ 1 called the speed-up window. If the graph
obtained after these T transitions is not connected anymore, the T transitions
are cancelled.

They proved that this process still converges to the uniform distribution,
although it is no longer composed of a single Markov chain but of a concatenation
of Markov chains [6]. The global time complexity of connectivity tests Cconn is
reduced by a factor T , but at the same time the swaps are more likely to get
cancelled: with T swaps in a row, the graph has more chances to get disconnected
than with a single one. Let us introduce the following quantity:

Definition 1 (Success rate) The success rate r(T) of the speed-up at a given
step is the probability that the graph obtained after T swaps is still connected.

The shuffle process now requires O(m/r(T)) transitions. The time complexity
therefore becomes:

CGkan = O

(
r(T)−1

(
m+

m2

T

))
(3)

Notice that there is a trade-off between the idea of reducing the connectivity test
complexity and the increase of the required number of transitions. To bypass this
problem, Gkantsidis et al. used the following heuristics:

Heuristics 1 (Gkantsidis et al. heuristics) IF the graph got disconnected
after T swaps THEN T ← T/2 ELSE T ← T + 1

3 More from the Gkantsidis et al. Heuristics

The problem we address now is to estimate the efficiency of the Gkantsidis
heuristics. First, we introduce a framework to evaluate the ideal value for the
window T . Then, we analyze the behavior of the Gkantsidis et al. heuristics,
and get an estimation of the difference between the speed-up factor they obtain
and the optimal speed-up factor. We finally propose an improvement of this
heuristics which reaches the optimal. We also provide experimental evidences
for the obtained performance.

The Optimal Window Problem

We introduce the following quantity:

Definition 2 (Disconnection probability) Given some graph G, the discon-
nection probability p is the probability that the graph becomes disconnected after
a random edge swap.

444 Fabien Viger and Matthieu Latapy

Hypothesis 1 The disconnection probability p is constant during T consecutive
swaps

Hypothesis 2 The probability that a disconnected graph gets connected with a
random edge swap, called the reconnection probability, is equal to zero.

These hypothesis are reasonable approximations in our context and will actually
be confirmed in the following. Thanks to them, we get the following expression
for the success rate r(T), which is the probability that the graph stays connected
after T swaps:

r(T) = (1− p)T (4)

Definition 3 (Speed-up factor) The speed-up factor θ(T) = T · r(T) is the
expectation of the number of swaps actually performed (not counting cancelled
swaps) between two connectivity tests.

The speed-up factor θ(T) represents the actual gain induced by the speed-up for
the total complexity of the connectivity tests Cconn.

Now, given a graph G with disconnection probability p, the best window T is
the window that maximizes the speed-up factor θ(T). We find an optimal value
T = −1/ ln(1 − p), which corresponds to a success rate r(T) = 1/e. Finally, we
obtain the following theorem:

Theorem 3 The speed-up factor θmax is reached if and only if one of the equiv-
alent conditions is satisfied:

(i) T = (− ln(1 − p))−1 (ii) r(T) = e−1

The value of θmax depends only on p and is given by

θmax = (− ln(1 − p) · e)−1 ∼p→0 (p · e)−1

Analysis of the Heuristics

Knowing the optimality condition, we tried to estimate the performance of the
Gkantsidis et al. heuristics. Considering p as asymptotically small, we obtained4

the following:

Theorem 4 The speed-up factor θGkan(p) obtained with the Gkantsidis heuris-
tics verifies:

∀ε > 0, θGkan = o
(
(θmax)1/2+ε

)
when p→ 0

More intuitively, this comes from the fact that the Gkantsidis et al. heuristics
is too pessimistic: when the graph gets disconnected, the decrease of T is too
strong; conversely, when the graph stays connected, T grows too slowly. By doing
so, one obtains a very high success rate (very close to 1), which is not the optimal
(see Theorem 3).

Efficient and Simple Generation of Random Simple Connected Graphs 445

An Optimal Dynamics

To improve the Gkantsidis et al. heuristics we propose the following one (with
two parameters q− and q+) :

Heuristics 2 IF the graph got disconnected after T swaps THEN T ← T · (1−
q−) ELSE T ← T · (1 + q+)

The main idea was to avoid the linear increase in T , which is too slow, and
to allow more flexibility between the two factors 1− q− and 1 + q+. We proved4

the following:

Theorem 5 With this heuristics, a constant p, and for q+, q− close enough to
0, the window T converges to the optimal value and stays arbitrarily close to it
with arbitrarily high probability if and only if

q+/q− = e− 1 (5)

Experimental Evaluation of the New Heuristics

To evaluate the relevance of these results, based on Hypothesis 1 and 2, we will
now compare empirically the speed-up factors θGkan, θnew and θbest respectively
obtained with the three following heuristics:

1. The Gkantsidis et al. heuristics (Heuristics 1)
2. Our new heuristics (Heuristics 2)
3. The optimal heuristics: at every step, we compute the window T giving the

maximal speed-up factor θbest
3.

We generated random graphs with various heavy tailed4 degree sequences,
using a wide set of parameters, and all the results were consistent with our
analysis: θGkan behaved asymptotycally like

√
θbest, and our average speed-up

factor θnew always reached at least 90% of the optimal θbest. Some typical results
are shown below.

These experiments show that our new heuristics is very close to the optimal.
Thus, despite the fact that p actually varies during the shuffle, our heuristics
react fast enough (in regard to the variations of p) to get a good, if not optimal,
window T . We therefore obtain a success rate r(T) in a close range around e−1.

These empirical evidences confirm the validity of our formal approach. We
obtained a total complexity Cnew = O(m + p · m2), instead of the already
improved CGkan = O(m+

√
p·m2). Despite the fact that it is asymptotically still

outperformed by the complexity of the dynamic connectivity algorithm Cdynamic

(see Eq. 2), Cnew may be smaller in practice if p is small enough. For many graph
topologies corresponding to real-world networks, especially the dense ones (like
social relations, word co-occurences, WWW), and therefore a low disconnection
probability, our algorithm represents an alternative that may behave faster, and
which implementation is much easier.
3 The heavy cost of this prohibits its use, as a heuristics. It only serves as a reference.
4 We used power-law like distributions: P (X = k) = (k + μ)−α, where α represents

the “heavy tail” behavior, while μ can be tuned to obtain the desired average z.

446 Fabien Viger and Matthieu Latapy

Table 1. Average speed-up factors for various values of the average degree z, and for
graphs of size n = 104

α = 2.5

z θGkan θnew θbest

2.1 0.79 0.88 0.90
3 3.00 5.00 5.19
6 20.9 112 117
12 341 35800 37000

α = 3

z θGkan θnew θbest

2.1 1.03 1.20 1.26
3 5.94 12.3 12.4
6 32.1 216 234
12 578 89800 91000

4 A Log-Linear Algorithm?

We will now show that in the particular case of heavy-tailed degree distributions
like the ones met in practice [5], one may reduce the disconnection probability
p at logarithmic cost, thus reducing dramatically the complexity of the connec-
tivity tests.

Guiding Principle

In a graph with a heavy-tailed degree distribution, most vertices have a low
degree. This means in particular that, by swapping random edges, one may
quite easily create very small isolated component. Conversely, the non-negligible
number of vertex of high degree form a robust core, so that it is very unlikely
that a random swap creates two large disjoint components.

Definition 4 (Isolation test) An isolation test of width K on vertex v tests
wether this vertex belongs to a connected component of size lower than or equal
to K.

To avoid the disconnection, we will now perform an isolation test after every
transition. If this isolation test returns true, we cancel the swap rightaway. This
way, we detect, at low cost O(K), a significant part of the disconnections.

The disconnection probability p is now the probability that after T swaps
which passed the isolation test, the graph gets disconnected. It is straightforward
to see that p is decreasing with K; more precisely, strong empirical evidences
and formal arguments4 led us to the following conjecture:

Conjecture 1 The disconnection probability p for random connected graphs
with heavy-tailed degree distributions decreases exponentially with K: p(K) =
O(e−λK) for some positive constant λ depending on the distribution, and not on
the size of the graph.

The Final Algorithm

Let us introduce the following quantity:

Efficient and Simple Generation of Random Simple Connected Graphs 447

Definition 5 (Characteristic isolation width) The characteristic
isolation width KG of a graph G having m edges is the minimal isolation test
width K such that the disconnection probability p(K) verifies p(K) < 1/m.

K

0K
0T = m/10

graph G
Save the

>

<
?
<

connected ?
is G

edge swapsdo T

test width K
with isolation

Restore G to
its old state

NO

YES

C connCswaps

T

K

= 2

Fig. 2. Our final heuristics used to adjust K and T

Now, we can apply the shuffle process, as seen before, but with a window
T = Θ(m), and an isolation test width K equal to KG. From Conjecture 1
and the definition of KG, we deduce that this process will perform Ω(m) swaps
in O(m log n) time. The difficulty might be to guess KG. We showed4 that the
heuristics shown in Figure 2 solves this: it aims at equilibrating Cswaps and Cconn

by dynamically adjusting K and T , looking for a high success rate r(K,T) and
keeping a large window T = Ω(m).

We compare in Table 2 typical running times with the naive algorithm, the
Gkantsidis et al. heuristics, our improved version of this heuristics, and our final
algorithm. Implementations are provided at [18].

Table 2. Average time for the generation of graphs of various sizes with the same
heavy-tailed degree distribution (α = 2.5, z = 6.7) on a Centrino 1.5GHz with 512MB
RAM

m Naive Gkan. heur. Heuristics 2 Final algo.

103 0.51s 0.02s 0.02s 0.02s
104 26.9s 1.15s 0.47s 0.08s
105 3200s 142s 48s 1.1s
106 ≈ 4 · 105s ≈ 3 · 104s 10600s 25.9s
107 ≈ 4 · 107s ≈ 3 · 106s ≈ 106s 420s

Towards a O(m log log n) Algorithm?

The isolation tests are typically breadth- or depth-first searches that stop when
they have visited K+1 vertices, or when then have explored a component of size
S lower than K. In the latter case, Conjecture 1 ensures4 that the expectation
of S is < S >= O(1), so that the average complexity of the isolation test was
also O(1). Taking advantage of the heavy-tailed degree distribution, we may be

448 Fabien Viger and Matthieu Latapy

able to reduce as well the complexity of the isolation tests that do not detect a
disconnection.

The idea is simple: if the search meets a vertex of degree greater than K,
it can stop, because it means that the component’s size is also greater than K.
Several recent results indicate that searching a vertex of degree at least K in an
heavy-tailed network takes O(logK) steps in average [1, 16], if the search is a
depth-first search that always goes to the unvisited neighbour of highest degree.
Thus, running an isolation test would be done in O(logK) average time instead
of O(K). Finally, the global complexity would become O(m log logn) time.

5 Conclusion

Focusing on the speed-up method introduced by Gkantsidis et al. for the Markov
chain Monte Carlo algorithm, we introduced a formal background allowing us
to show that this heuristics is not optimal in its own family. We improved it in
order to reach the optimal, and empirically confirmed the results.

Going further, we then took advantage of the characteristics of real-world
networks to introduce an original method allowing the generation of random
simple connected graphs with heavy-tailed degree distributions in O(m log n)
time and O(m) space. It outperforms the previous best known methods, and
has the advantage of being extremly easy to implement. We also have pointed
directions for further enhancements to reach a complexity of O(m log logn) time.
The empirical measurement of the performances of our methods show that it
yields significant progress. We provide an implementation of this last algorithm
[18].

Notice however that the last results rely on a conjecture, for which we have
several arguments and strong empirical evidences, but were unable to prove.

References

1. Adamic, Lukose, Puniyani, and Huberman. Search in power-law networks. Phys.
Rev. E, 64(046135), 2001.

2. Aiello, Chung, and Lu. A random graph model for massive graphs. Proc. of the
32nd ACM STOC, pages 171–180, 2000.

3. C. Berge. Graphs and Hypergraphs. North-Holland, 1973.

4. Erdos and Gallai. Graphs with prescribed degree of vertices. Mat. Lapok, 11:264–
274, 1960.

5. Faloutsos, Faloutsos, and Faloutsos. On power-law relationships of the internet
topology. Proc. ACM SIGCOMM, 29:251–262, 1999.

6. Gkantsidis, Mihail, and Zegura. The markov chain simulation method for generat-
ing connected power law random graphs. in proc. ALENEX, 2003.

7. S. L. Hakimi. On the realizability of a set of integers as degrees of the vertices of
a linear graph. SIAM Journal, 10(3):496–506, 1962.

8. V. Havel. A remark on the existence of finite graphs. Caposis Pest. Mat., 80:496–
506, 1955.

Efficient and Simple Generation of Random Simple Connected Graphs 449

9. Henzinger and King. Randomized fully dynamic graph algorithms with polyloga-
rithmic time per operation. J. of ACM, 46(4), 1999.

10. Holm, de Lichtenberg, and Thorup. Poly-logarithmic deterministic fully-dynamic
algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity.
STOC’98, pages 79–89, 1998.

11. J. M. Roberts Jr. Simple methods for simulating sociomatrices with given marginal
totals. Social Networks, 22:273–283, 2000.

12. Milo, Kashtan, Itzkovitz, Newman, and Alon. Uniform generation of random
graphs with arbitrary degree seq. sub. Phys. Rev. E, 2001.

13. Molloy and Reed. A critical point for random graphs with a given degree sequence.
Random Struct. and Algo., pages 161–179, 1995.

14. Molloy and Reed. The size of the giant component of a random graph with a given
degree sequence. Comb., Prob. and Comp., 7:295, 1998.

15. R.Taylor. Constrained switchings in graphs. Comb. Mat. 8, 1980.
16. Sarshar, Boykin, and Roychowdhury. Scalable percolation search in power law net-

works. P2P’04, pages 2–9.
17. M. Thorup. Near-optimal fully-dynamic graph connectivity. Proc. of the 32nd ACM

STOC, pages 343–350, 2000.
18. www.liafa.jussieu.fr/∼fabien/generation.

Randomized Quicksort and the Entropy
of the Random Source�

Beatrice List, Markus Maucher, Uwe Schöning, and Rainer Schuler

Abt. Theoretische Informatik, Universität Ulm, 89069 Ulm, Germany

Abstract. The worst-case complexity of an implementation of Quick-
sort depends on the random source that is used to select the pivot ele-
ments. In this paper we estimate the expected number of comparisons
of Quicksort as a function of the entropy of the random source. We give
upper and lower bounds and show that the expected number of compar-
isons increases from n log n to n2, if the entropy of the random source
is bounded. As examples we show explicit bounds for distributions with
bounded min-entropy and the geometrical distribution, as well as an
upper bound when using a δ-random source.

Keywords: QuickSort, Randomized Algorithms, Entropy.

1 Introduction

Randomized QuickSort is the well known version of QuickSort [4] where the split-
ting element (the “pivot”) is selected at random. It is known that the expected
number of comparisons (for every input permutation of the array elements) is
(2 ln 2) · n log2 n−Θ(n). Here, the expectation is taken over the random choices
done in the algorithm. This analysis assumes random numbers which are inde-
pendent and uniformly distributed.

We analyze randomized QuickSort without assuming such a “high entropy”
of the underlying random source. Using a random number generator with a low
entropy can result in a worst-case behavior that can go up to Θ(n2).

Related work has been done by Karloff and Raghavan [5] (see also [12]) where
the special case of a linear congruence generator is considered and a worst-case
behavior of Ω(n2) is shown.

Recursion for Expected Number of Comparisons

Let Tπ(n) be the expected number of comparisons done by randomized Quick-
Sort, when operating on an input array (a[1], . . . , a[n]) whose elements are per-
muted according to π ∈ Sn, that is,

a[π(1)] < a[π(2)] < · · · < a[π(n)],

where Sn is the set of all permutations on {1, . . . , n}.
� Work supported by DFG research grant Scho 302/6-1

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 450–460, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Randomized Quicksort and the Entropy of the Random Source 451

Let X be a random variable taking values between 1 and n (not necessarily
under uniform distribution) which models the random number generator that is
used to pick out a pivot element a[X].

We obtain the following recursion for the expected complexity (i.e. number
of comparisons) T (n) = maxπ∈Sn Tπ(n). We have T (n) = 0 for n ≤ 1; and for
n > 1 we get

T (n) = (n− 1) +
n∑

i=1

pi · (T (i− 1) + T (n− i)) .

That is, there are n− 1 comparisons with the selected splitting element, and
depending on the rank i of the pivot element within the array, there are T (i−1)
and T (n − i) additional comparisons. Here pi is the probability that the pivot
element has rank i within the ordering of the array, that is, pi = Pr(π(X) = i).
If the rank is not uniformly distributed among the numbers 1 to n, a worst
case input permutation can be constructed such that the middle ranks receive
relatively low probability and the extreme ranks (close to 1 or close to n) get
relatively high probability, resulting in a large expected number of comparisons.

We give upper and lower bounds on the expected number T (n) of compar-
isons. Lower bounds are given with respect to a fixed worst case input sequence
(the already sorted list of elements).

We can show (see Theorem 1) that T (n) ≤ g(n) · n · log2 n for any function
g(n) greater than 1/ (minπ

∑n
i=1 piH (i/n)), where H (i/n) is the binary entropy

function. Note that minπ

∑n
i=1 piH (i/n) is independent of the permutation of

the elements, i.e. is identical for all distributions p and q such that pi = qπ(i) for
all i and some permutation π.

The lower bound (see Theorem 2) is derived for a fixed permutation (the
sorted list of elements), where we can assume that the order is preserved in all
recursive calls of QuickSort. Therefore the lower bound T (n) ≥ cng(n) (Theorem
2) is w.r.t. any function g(n) less than 1/

∑n
i=1 piH (i/(n+ 1)), where pi is the

probability of selecting a[i] as a pivot element.

2 Upper Bound on the Number of Expected Comparisons

Let (Pn) denote a sequence of probability distributions where Pn = (p1,n, . . . ,
pn,n) is a distribution on (1, . . . , n). In the following we use pi to denote pi,n,
since n is determined by the size of the array.

Theorem 1. We have T (n) ≤ g(n)n log2 n for any monotone increasing func-
tion g with the property

g(n) ≥
(

min
π∈Sn

n∑
i=1

pi ·H
(
i

n

))−1

,

where H(x) = −x log2 x− (1− x) log2(1 − x) is the binary entropy function.

452 Beatrice List et al.

Proof. By induction on n. Using the above recursion for T (n) we obtain

T (n) = (n− 1) + max
π∈Sn

n∑
i=1

pi · (T (i− 1) + T (n− i))

≤ n+ max
π

n∑
i=1

pi · (g(i− 1)(i− 1) log2(i− 1) + g(n− i)(n− i) log2(n− i))

≤ n+ ng(n) max
π∈Sn

n∑
i=1

pi ·
(
i

n
log2 i+

(
1− i

n

)
log2(n− i)

)

= n+ g(n)n log2 n− g(n)n min
π∈Sn

n∑
i=1

pi ·H
(
i

n

)
.

To finish the induction proof, this last expression should be at most g(n)n log2 n.

This holds if and only if g(n) ≥
(

min
π∈Sn

n∑
i=1

pi ·H
(
i

n

))−1

as claimed. ��

Example: In the standard case of a uniform distribution pi = 1
n we obtain

g(n) ≥
(

1
n ·

∑n
i=1 H

(
i
n

))−1
. This is asymptotically

(∫ 1

0
H(x)dx

)−1

≈ 1.38 .

Another Example: In the median-of-three version of QuickSort (cf. [6, 10]), three
different elements are picked uniformly at random and the median of the three
is used as the pivot element. In this case pi = 6(i−1)(n−i)

n(n−1)(n−2) . Here the constant
factor of the n logn-term can be asymptotically estimated by(

6
∫ 1

0

x(1− x)H(x)dx
)−1

=
12 ln 2

7
≈ 1.18 .

Sorting the Probabilities

Using the symmetry of the function H around 1
2 and its monotonicity, we get:

min
π∈Sn

n∑
i=1

pi ·H
(
i

n

)
≥ min

π∈Sn

n−1∑
j=0

qj ·H
(
j

2n

)
.

Here, the qj are a reordering of the pi in the following way (assuming n is even):

q0 = pn, q2 = pn−1, . . . qn−2 = pn/2+1

q1 = p1, q3 = p2, . . . qn−1 = pn/2

This new representation has the advantage that the H-values in the sum are
in increasing order, and we can determine which permutation π ∈ Sn actually
achieves the minimum. Namely, the minimum is achieved if the qj are ordered
in decreasing order.

Randomized Quicksort and the Entropy of the Random Source 453

Lemma 1. Given a sum of the form
n∑

j=1

ajbπ(j), aj , bj ≥ 0, where the aj are

sorted in strictly increasing order and a permutation π, the minimum value of the
sum occurs when the permutation π is such that the bπ(j) are sorted in decreasing
order.

Proof. Suppose that two elements b, b′ are in the “wrong” order, i.e. b < b′. We
compare the situation before and after exchanging b and b′:

(aib+ ajb
′)− (aib

′ + ajb) = (ai − aj)(b − b′) < 0 .

��

3 A Lower Bound

To estimate a lower bound for the worst-case running time of QuickSort, we
consider as input the already sorted array of numbers. Further we assume that
the partitioning step of QuickSort leaves the elements of the two sub-arrays in
the same relative order as in the input array.

Recall that pivot-elements are chosen according to a sequence of probability
distributions (Pi), where distribution Pi defines the probabilities on arrays of size
i, i.e. Pi = (pi,1, . . . , pi,i). Note that if the pi,j are sorted in decreasing order,
then a worst-case input is the already sorted sequence of numbers. In fact, if
the sequence of probability distributions (Pi) is sufficiently uniform, it should
be possible to construct a worst-case input by sorting probabilities as described
in Section 2.

Theorem 2. (i) For any sequence of probability distributions (Pi) it holds that
T (n) ≥ c · g(n) · n − n, for some constants c > 0 and n0, if for all n > n0, g
satisfies the two conditions

g(n) ≤
(

n∑
i=1

pi,n

(
1− (i− 1)2

n2
− (n− i)2

n2

))−1

and
g(i)
g(n)

≥ i

n
for all 0 ≤ i ≤ n.

(ii) Furthermore, Part (i) still holds if we replace the two conditions by

g(n) ≤
(∑n

i=1 pi,nH
(

i
n+1

))−1

and g(i)
g(n) ≥

i
n for 0 ≤ i ≤ n.

Proof. We prove (i) first, by induction. For n ≤ n0, just set the constant c ≤ 1
small enough.

Now we look at the case n > n0. Let P = (p1, . . . , pn) be a distribution where
pi is the probability that we choose as a pivot element the element with rank i.
Using the induction hypothesis, it holds that

454 Beatrice List et al.

T (i− 1) + T (n− i) ≥ c · (i− 1) · g(i− 1) + c · (n− i) · g(n− i)− (n− 1)

≥ c · n · g(n) ·
(

(i− 1)2

n2
+

(n− i)2

n2

)
− (n− 1)

= c · n · g(n)− c · n · g(n) ·
(

1− (i− 1)2

n2
− (n− i)2

n2

)
− (n− 1) .

Therefore, T (n) = n− 1 +
n∑

i=1

pi(T (i− 1) + T (n− i))

≥ c · n · g(n)− c · n · g(n) ·
n∑

i=1

pi

(
1− (i− 1)2

n2
− (n− i)2

n2

)
.

As c ≤ 1, we can finish the induction if g(n)≤
(∑n

i=1 pi

(
1− (i−1)2

n2 − (n−i)2

n2

))−1

.

The proof of part (ii) is quite similar: For n ≥ n0,

T (i− 1) + T (n− i) ≥ cng(n) ·
(

(i− 1)2

n2
+

(n− i)2

n2

)
− (n− 1)

= cng(n) ·
(

(i− 1)2

n2
+

(n− i)2

n2
+H

(
i

n+ 1

))
− ng(n) ·H

(
i

n+ 1

)
− (n− 1)

≥ cng(n)− cng(n) ·H
(

i

n+ 1

)
− (n− 1).

The last inequality uses the fact that for integers n ≥ 1 and i with 0 ≤ i ≤ n,
(i−1)2

n2 + (n−i)2

n2 +H
(

i
n+1

)
≥ 1 (which can be shown quite easily). Now

T (n) = n−1+c ·
n∑

i=1

pi(T (i−1)+T (n−i))≥ cng(n)−cng(n)·
n∑

i=1

piH

(
i

n + 1

)
.

Again using c ≤ 1, we can finish the induction if g(n) ≤
(∑n

i=1 piH
(

i
n+1

))−1

.

��

In the second part of Theorem 2 the lower bound is given using the entropy
function, similar to the upper bound in Theorem 1. This shows that up to a
logarithmic factor we yield matching upper and lower bounds.

4 Distributions with Bounded Entropy

The uniform distribution on [1, n] = {1, . . . , n} has maximal entropy. In this
section we consider distributions which have bounded entropy.

Uniform Distributions on a Subset of {1, . . . , n}
First we consider distributions with positive probability on subsets of [1, n]. Let
t(n) = o(n) be a time constructible monotone (increasing) function. Define a
distribution P = (p1, . . . , pn) such that

Randomized Quicksort and the Entropy of the Random Source 455

pi =

{
1/t(n), if rank ai ≤ t(n)/2 or rank ai > n− t(n)/2
0, otherwise

That is, we choose the pivot element randomly using a uniform distribution
among only the worst t(n) array elements.
Now

∑n
i=1 piH (i/(n+ 1)) resp.

∑n
i=1 pi ·H(i/n) are bounded as follows:

n∑
i=1

piH

(
i

n+ 1

)
≤ t(n)

2n
log (n + 1) ,

n∑
i=1

piH

(
i

n

)
≥ t(n)

4n
log

(
2n
t(n)

)
.

This gives T (n) ≤ n log(n) · 4n
t(n) as an upper bound and T (n) ≥ cn2

t(n) log n − n as
a lower bound, for some constant c.

Proof. An upper bound T (n) ≤ g(n) · n log2 n can be estimated as follows.

n∑
i=1

pi ·H
(
i

n

)
= 2

t(n)/2∑
i=1

1
t(n)

·H
(
i

n

)
=

2
t(n)

t(n)/2∑
i=1

H

(
i

n

)

=
2

t(n)

t(n)/2∑
i=1

−
(
i

n
log

(
i

n

)
+
n− i

n
log

(
n− i

n

))

≥ 2
t(n)

t(n)/2∑
i=1

i

n
log

(n
i

)
≥ 2
n · t(n)

log
(

2n
t(n)

) t(n)/2∑
i=1

i

≥ 2
n · t(n)

log
(

2n
t(n)

)
(t(n)/2) · (t(n)/2 + 1)

2
≥ t(n)

4n
log

(
2n
t(n)

)
.

With g(n) =
4n

t(n) log(2n/t(n))
, it follows that T (n) ≤ 4n2

t(n)
· log2 n

log2(2n/t(n))
(see

Theorem 1). In the same way the lower bound can be calculated:

n∑
i=1

pi ·H
(

i

n+ 1

)
= 2

t(n)/2∑
i=1

1
t(n)

·H
(

i

n + 1

)
≤ . . . ≤

≤ t(n) + 1
2(n+ 1)

(log (n + 1)− log t(n) + 2)) ≤ t(n) + 2
2(n + 1)

log
(

4(n+ 1)
t(n)

)
where we use that

∑t(n)/2
i=1 i log i ≤

∑t(n)/2
i=1 i(log(t(n)/2) − 1) (which can be

shown by induction).

With the function g(n) =
2(n+ 1)

(t(n) + 1) log
(

4(n+1)
t(n)

) , we receive a lower bound of

T (n) ≥ 2cn(n+ 1)

(t(n) + 1) log
(

4(n+1)
t(n)

) − n = Ω

⎛⎝ n2

t(n) log
(

4n
t(n)

) − n

⎞⎠ . ��

456 Beatrice List et al.

Min-entropy

Uniform distributions on subsets of [1, . . . , n] are just a special case of distribu-
tions with bounded min-entropy.

Definition 1. A distribution (p1, . . . , pn) has min-entropy k if maxi pi = 2−k

(cf. [8]).

Let P = (p1, . . . , pn) be a distribution with min-entropy k. Then we get an upper
bound of T (n) ≤ 4n2

2k and a lower bound of T (n) ≥ cn2

2k log n
− n, for c > 0.

Proof.
n∑

i=1

pi ·H(i/n) ≥ 2
2k/2∑
i=1

1
2k
·H(i/n) ≥ 2k

4n
log

(
2n
2k

)
, and

n∑
i=1

pi ·H
(

i

n + 1

)
≤ 2

2k/2∑
i=1

1
2k
·H

(
i

n+ 1

)
≤ 2k + 1

2(n+ 1)
log

(
2(n+ 1)

2k

)
,

and thus T (n) ≤ 4n2

2k
· log2 n

log2(2n/2k)
and T (n) ≥ 2cn(n+ 1)

(2k + 1) log
(

2(n+1)
2k

) − n. ��

So, for min-entropy 0 (this includes the deterministic case) we get

T (n) ≤ 4n2

1
· log2 n

log2(2n)
= 4n2 log2 n

log2 n+ 1
≤ 4n2 and

T (n) ≥ cn(n+ 1)
log (2(n+ 1))

− n ≥ cn2

log (n + 1) + 1
− n = θ

(
n2

log n

)
,

and for min-entropy log2 n (all pivot elements are equally distributed), we have

T (n) ≤ 4n2

n
· log2 n

log2 2
= 4n log2 n .

Bounds for Geometric Distributions

We consider the case that pivot elements are selected using a geometric distri-
bution. The probability of picking an element with rank i as pivot is given by
pi = qi−1(1− q). More generally, we allow the geometric distribution to depend
on the size n of the array, i.e., we define (Pi) using q := 1− 1

f(i) for some (time
constructible monotone) function f = o(n). An additional probability of qn is
assigned to the best resp. worst pivot element (depending on if we consider a
lower or upper bound), so that all pi sum up to 1.

To estimate a lower bound on the number of comparisons, we use Theorem 2

and estimate
n∑

i=1

pi

(
1− (i−1)2

n2 − (n−i)2

n2

)
≤ cf(n)

n , for a constant c.

Randomized Quicksort and the Entropy of the Random Source 457

Proof. Using the fact that qi =
(

1− 1
f(n)

)i

=
(

1− 1
f(n)

)f(n)· i
f(n)

≤ e−
i

f(n) ,

it follows that
n∑

i=1

pi

(
1− (i− 1)2

n2
− (n− i)2

n2

)

≤ qn

(
1−

(n
2 − 1)2

n2
−

(n
2)2

n2

)
+

1
q

n∑
i=1

qi(1 − q)
(

1− (i− 1)2

n2
− (n− i)2

n2

)

≤ qn +
1
qn2

n∑
i=1

qi(1− q) (2ni+ 2i)

=
(

1− 1
f(n)

)n

+
(2n+ 2)f(n)
(f(n)− 1)n2

n∑
i=1

(
1− 1

f(n)

)i
i

f(n)
.

We split the sum and see that for k = 0, 1, 2, . . .

(k+1)f(n)∑
i=kf(n)+1

(
1− 1

f(n)

)i
i

f(n)

(k+1)f(n)∑
i=kf(n)+1

e−
i

f(n) +ln i
f(n) =

f(n)∑
j=1

e−
kf(n)+j

f(n) +ln kf(n)+j
f(n)

≤
f(n)∑
j=1

e−k− j
f(n) +ln(k+1) = e−k+ln(k+1)

f(n)∑
j=1

e−
j

f(n) ≤ e−k+ln(k+1) · f(n) .

Then we get(
1− 1

f(n)

)n

+
(2n+ 2)f(n)
n2(f(n)− 1)

n∑
i=1

(
1− 1

f(n)

)i
i

f(n)

=
(

1− 1
f(n)

)n

+
(2n+ 2)f(n)
n2(f(n)− 1)

n/f(n)�∑
k=0

(k+1)f(n)∑
i=kf(n)+1

(
1 +

1
f(n)

)i

· i

f(n)

≤ e−
n

f(n) +
(2n+ 2)f(n)2

n2(f(n)− 1)

∞∑
k=0

k + 1
ek

≤ cf(n)
n

for a constant c.

For the last inequality, note that f(n) = o(n), so that e−
n

f(n) = o
(

f(n)
n

)
.

Using Theorem 2, we get a lower bound of c′n2/f(n) for the running time of
the QuickSort algorithm, for some constant c′. ��

To get an upper bound for geometric distributions we estimate similarly

n∑
i=1

piH

(
i

n

)
≥ f(n)

n

(
1− e−

n
2f(n) · n

f(n)

)
,

which gives T (n) ≤ cn2 log n
f(n) as upper bound, for some c > 0. (Proof omitted)

458 Beatrice List et al.

5 The δ-Random Source

A general model of a random bit source is the δ-random-source. Since the bias
of each bit is a function of the previous output, it can be applied as an adversary
argument and is particularly suited for worst-case analysis. See also [1, 9, 11].

Definition 2 (See [1]). A δ-random-source is a random bit generator. Its bias
may depend on the bits it has previously output, but the probability to output “1”
must be in the range [δ, 1 − δ]. Therefore, it has an internal state ω ∈ {0, 1}∗,
denoting its previously output bits.

To obtain a random number X in the range 1, . . . , n from the δ-random-
source, we output �logn� bits and interpret them as a number Y . Then, we set
X := (Y mod n) + 1.

Lemma 2 (See [2]). For each p with 0 < p < 1
2 , there exists a constant c, such

that for all n ∈ IN: c(p) · 2H(p)·n
√
n

≤
�np�∑
j=0

(
n

j

)
≤ 2H(p)·n .

Theorem 3. For each δ-random-source, 0 < δ < 1
2 , there exists n0 ∈ IN, such

that for each n > n0, and each permutation π, Theorem 1 can be applied with

g(n) = c(δ)· 1√
logn

·n1−H(δ), where the random bits are produced by a δ-random-

source and c(δ) is a constant that depends on δ.

Proof. From the symmetry and monotony of the entropy function it follows that
for each s

n∑
i=1

pi ·H
(
i

n

)
≥

⎛⎝1− sup
π,ω̃

s−1∑
j=1

pj

⎞⎠ ·H (s

2n

)
, (1)

where pj depends on π and on the internal state ω̃ of the random source.
Now we examine the two factors on the righthand side of (1) separately. We

set k := �logn� and s := 1
2

∑�δk�
j=0

(
k
j

)
. Since

pj =
{
Pr[Y = π(j)], n + π(j) ≥ 2k

Pr[Y = π(j)] + Pr[Y = π(j) + n] otherwise ,

we get for the first factor of (1)

sup
π,ω̃

s−1∑
j=1

pj ≤ sup
ω̃

max
M⊆{0,1}k,|M|=2s

Pr[Y ∈M] ≤
�δk�∑
j=0

(
k

j

)
δj(1 − δ)k−j .

Here we use the result from [1], that the maximum probability of hitting a set
of a certain size can be achieved by an “extreme” δ-random-source that always
outputs “0” with probability δ.

Randomized Quicksort and the Entropy of the Random Source 459

Since lim
k→∞

�δk�∑
j=0

(
k

j

)
δj(1−δ)k−j =

1
2
, (which follows from the DeMoivre-Laplace

Limit Theorem,) there exists a constant c′(δ), so that sup
π,ω̃

s−1∑
j=1

pj ≤ c′(δ).

Now we consider the second factor of (1). We use the monotony of H(x) on
the intervall [0, 1

2] and Lemma 2:

H
(s

2n

)
≥ H

(s

2k+1

)
≥ H

(
c1(δ) ·

2(H(δ)−1)k

4
√
k

)
.

We consider δ < 1
2 (so that H(δ) < 1) and use that H(x) ≥ −x logx to get

H
(s

2n

)
≥ c1(δ) ·

2(H(δ)−1)k

4
√
k

·
[
(1−H(δ))k − log

c1(δ)
4
√
k

]
.

For k big enough (k > k0 corresponds to n > n0), there is a constant c′′(δ)
so that

H
(s

2n

)
≥ c′′(δ) ·

√
k · 2(H(δ)−1)k.

Combining the results, there is a n0 ∈ IN and a c∗(δ), such that for all
n ≥ n0, and all permutations π on {0, . . . , n − i} and all states ω̃ ∈ {0, 1}∗ of
the generator the following holds:

n∑
i=1

pi ·H
(
i

n

)
≥ c∗(δ) ·

√
�logn� · 2(H(δ)−1)
log n� ≥ 1

c(δ)
·
√

logn · nH(δ)−1 ,

which leads to the expected running time of T (n) ≤ c(δ) · n2−H(δ) ·
√

logn. ��

References

1. Alon, N. and Rabin, M. O.: Biased coins and randomized algorithms. In Preparata,
F.P., Micali, S., eds.: Advances in Computing Research 5, JAI Press (1989) 499–507

2. Ash, R.B.: Information Theory. Dover (1965)
3. Devroye, L.: On the probabilistic worst-case time of “FIND”. Algorithmica 31

(2001) 291–303
4. Hoare, C.A.R.: Quicksort. Computer Journal 5(1) (1962) 10–15
5. Karloff, H.J. and Raghavan, P.: Randomized algorithms and pseudorandom num-

bers. Journal of the Association for Computing Machinery 40 (1993) 454–476
6. Knuth, D.: The Art of Computer Programming. Vol 3: Sorting and Searching,

Addison-Wesley (1973)
7. List, B.: Probabilistische Algorithmen und schlechte Zufallszahlen. PhD thesis,

Universität Ulm(1999)
8. Luby, M.: Pseudorandomness and Cryptographic Applications. Princeton Univer-

sity Press (1996)
9. Papadimitriou, C. H.: Computational Complexity. Addison-Wesley (1994)

460 Beatrice List et al.

10. Robert Sedgewick, R., Flajolet, P.: Analysis of Algorithms. Addison-Wesley(1994)
11. Santha, M., Vazirani, U.V.: Generating quasi-random sequences from slightly ran-

dom sources. Proceedings of the 25th IEEE (1984)
12. Tompa, M.: Probabilistic Algorithms and Pseudorandom Generators. Lecture

Notes (1991)

Subquadratic Algorithm
for Dynamic Shortest Distances�

Extended Abstract

Piotr Sankowski

Institute of Informatics, Warsaw University
ul. Banacha 2, 02-097 Warsaw

sank@mimuw.edu.pl

Abstract. In this paper we extend a technique introduced in [14] for dy-
namic matrix functions. We present dynamic algorithms for computing
matrix determinant and matrix adjoint over commutative rings. These
algorithms are then used to construct an algorithm for dynamic short-
est distances in unweighted graph. Our algorithm supports updates in
O(n1.932) randomized time and queries in O(n1.288) randomized time.
These bound improve over the previous results and solve a long-standing
open problem if sub-quadratic dynamic algorithms exist for computing
all pairs shortest distances.

In this paper we consider dynamic evaluation of algebraic functions over commu-
tative rings. We show how to compute determinant and matrix adjoint dynami-
cally. Let R = (R,+, ·, 0, 1) be a commutative ring with elements from set R and
appropriately defined addition + and multiplication ·. Let f : Rn → Rm be an al-
gebraic function over the ring. Given an initial input vector (x1, x2, . . . , xn) ∈ Rn,
a dynamic algorithm is allowed some preprocessing and then must quickly handle
the following requests:

– update(k, x′k) change the k’th input value to x′k,
– query(k) return the k’th output value.

We consider the following two dynamic matrix problems.

– determinant Rn2 → R: The input is interpreted as n× n matrix over the
ring R. The output is its determinant.

– adjoint Rn2 → Rn2
: The input is interpreted as n × n matrix A. The

output is interpreted as n × n adjoint of the input matrix, i.e., adj(A)i,j =
(−1)i+j det(Aj,i), where Aj,i denotes the (n− 1)× (n− 1) matrix resulting
from the deletion of the j’th row and the i’th column of A.

We construct algorithms for the above problems in the case of two types of
updates: row and column updates, i.e., we change i’th row or column of the
matrix to a given vector; simple updates, i.e., changes of only one entry of the
matrix.
� Research supported by KBN grant 4T11C04425

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 461–470, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

462 Piotr Sankowski

The first paper concerning dynamic evaluation of algebraic function over ma-
trices such as matrix determinant and matrix inverse, was written by Rief and
Tate [13]. Two years later Frendsen, Hansen and Miltersen [7] presented the
lower bounds of Ω(n) for algebraic matrix problems. In [14] the first dynamic al-
gorithms were shown for the problem of computing matrix determinant, matrix
adjoint, matrix inverse and solving linear system of equation. These algorithms
assumed that matrices are defined over a field. In this paper we extend these
results to commutative rings. It is also possible to extend these results to Eu-
clidean rings, where due to some notion of divisibility, the obtained algorithms
work faster than in the case of general rings.

The dynamic matrix algorithms were used in [14] as a black box in construc-
tion of dynamic algorithms for transitive closure. The algorithms developed in
this paper will be used to a solve dynamic all pairs shortest path problem.

A dynamic graph algorithm maintains information about a given property P
of a graph subject to dynamic changes. We maintain a directed graphG = (V,E)
under an intermixed sequence of edge updates, i.e., operations insert(e) that
insert e into edge set E and operations delete(e) that delete e from edge set E.

The first fully dynamic algorithm for general graphs with integer weights was
presented by King [11]. The running time of the algorithm is O(n2.5

√
C logn)

per update. Later similar results, but in the case of real edge weights, were
obtained by Demetrescu and Italiano in [4, 5]. They assumed that there are at
most S different real edge weights and obtained an algorithm supporting updates
in O(n2.5

√
S log3 n) time and queries in constant time. They also presented two

families of trade-off algorithms that have smaller update time but at a cost of
bigger query time. The final step in obtaining Õ(n2) 1 update time was made
by Demetrescu and Italiano in [6].

In this paper we show an algorithm for maintaining dynamically the lengths
of the shortest paths in unweighted digraphs. Notice, that if the algorithm an-
swers queries in O(1) time it has to maintain the distance matrix explicitly. Since
an update may change Ω(n2) entries of the matrix, the bound of Θ(n2) worst-
case time seems to be the best we can hope for. Thus it is interesting to know if
allowing greater query time, one can reduce the update time below O(n2). Till
now no such algorithm has been known.

The applications of the matrix algorithms to graphs are based on a con-
struction of a appropriate adjacency matrix of the graph, then the edge updates
are then translated into simple updates of the matrix. Using an algorithm for
dynamic matrix inverse over formal power series we develop an algorithm for
computing lengths of the shortest paths that use at most k edges. This algo-
rithm combined with the standard technique of path decomposition gives an
algorithm supporting updates in O(n1.932) and queries in O(n1.288) time. This
result resolves the open question (see e.g. [4–6]) whether algorithms with sub-
quadratic update and query time exist. The problem of dynamic single source
shortest distances seems inherently simpler than dynamic all pair shortest dis-
tances, but till now the best solution for this problem was evaluating everything

1 Throughout the paper, we use Õ(f(n)) to to denote O(f(n)polylog(n)).

Subquadratic Algorithm for Dynamic Shortest Distances 463

from the scratch, and this takes O(n2) time. Thus our result also resolves the
question if more efficient algorithms for this problem exists. However, our re-
sult is only of a theoretical importance, the Õ(n2) algorithm from [6] is surely
practically more efficient.

1 Fast Multiplication of Rectangular Matrices

Let us denote by ω(1, ε, 1) the exponent of multiplication of an n×nε matrix by
an nε×n matrix. For ε = 1 we get the exponent of square matrix multiplication
ω = ω(1, 1, 1). The best bound on ω is currently ω < 2.376 [3]. Coppersmith
[2] showed that it is possible to multiply an n × n0.294 matrix by an n0.294 × n
matrix in Õ(n2) arithmetic operations. Let α = sup{ε : ω(1, ε, 1) = 2 + o(1)},
so α ≥ 0.294. Combining bounds on α and ω Huang and Pan [10] showed the
following lemma.

Lemma 1 (Huang and Pan [10]). Let ω = ω(1, 1, 1) < 2.376 and let α =
sup{ε : ω(1, ε, 1) = 2 + o(1)} ≥ 0.294. Then

w(1, ε, 1) ≤
{

2 + o(1) if 0 ≤ ε ≤ α,
2 + ω−2

1−α (ε− α) + o(1) if α ≤ ε ≤ 1.

We also use the fact shown by Bunch and Hopcroft [1] that matrix inverse
can be computed in the matrix multiplication time.

2 Dynamic Matrix Problems: Division-Free Algorithms

In order to construct division free versions of the algorithms presented in [14]
we can use the standard technique introduced by Strassen [17]. He showed how
to compute the determinant of a matrix without divisions in Õ(nω+1) ring op-
erations. In our case this construction has the same impact on the complex-
ity, i.e., it adds 1 to the exponent. The idea is to work in R[[u]] — the ring
of formal power series over R. Let A be a matrix over the ring R, we define
A(u) = I + u(A − I). Thus we have A = A(u)|u=1, det(A) = det(A(u))|u=1

and adj(A) = adj(A(u))|u=1. The determinant of the matrix A(u) can be com-
puted with the standard Gaussian Elimination, because during elimination the
elements on the diagonal are always invertible. They are of the form 1−z, where
z ∈ uR[[u]]. We have

1
1− z

= 1 + z + z2 + . . . = (1 + z)(1 + z2)(1 + z4) . . . , (1)

and thus it is possible to compute this quantity without inverting elements of R.
Let Rn[[u]] denote the ring of the formal power series modulo un+1. The result
of the evaluation det(A(u)) – is a polynomial of degree n in u. Notice that terms
in the result of the operations in R[[u]] do not depend on higher degree terms in
the arguments, so the whole computation can be carried in Rn[[u]]. Assuming
that the elements of Rn[[u]] can be multiplied with use of O(n log(n) log(log(n)))
operations in R [12, 15] we obtain a complexity of Õ(nω+1) for computing the
determinant without divisions.

464 Piotr Sankowski

2.1 Dynamic Determinant: Row and Column Updates

In this section we present an algorithm supporting updates in O(n3) ring oper-
ations. We first recall the known fact that the matrix A(u) is non-singular for
all matrices A:

A(u)−1 =
1

I + u(A− I)
=

∞∑
i=0

(−u(A− I))i , (2)

To verify the above equation it is sufficient multiply it by A(u).
In the algorithm we maintain the inverse of the matrix A(u) and recompute

it after the change in A. Let us consider an update of the i’th column of A to
the vector v. After the update we get matrix A′ = A+ (v− (A)i)eT

i , where (A)i

is the i’th column of A and ei is the vector with 1 on the i’th place and 0’s on
the other places. In order to compute the inverse of the matrix after the update
we proceed as follows. First we compute matrix B such that:

A′(u) = I + u
(
A+ (v − (A)i)eT

i − I
)

= A(u) ·B. (3)

In the case of an update of the i’th row to v we proceed similarly as in the case
of the column update but now:

A′(u) = I + u
(
A+ ei(vT − (A)i)− I

)
= B · A(u), (4)

where (A)i is the i’th row of matrix A.
Let us substitute B = I +B′. Then:

I + u
(
A+ (v − (A)i)eT

i − I
)

= A(u) · (I + B′),

A(u) + u(v − (A)i)eT
i = A(u) · (I +B′),

u(v − (A)i)eT
i = A(u) · B′.

As we have shown above A(u) is invertible, so we have:

B′ = A(u)−1u(v − (A)i)eT
i

The matrix (v−(A)i)eT
i has non-zero elements only in the i’th column, so B′ has

non-zero elements only in the i’th column as well and we can write B′ = ubeT
i ,

and finally we get:
b = A(u)−1(v − (A)i), (5)

B = I +B′ = I + ubeT
i = I + uA(u)−1(v − (A)i)eT

i .

Similarly as in (2) we can show that the matrix B is invertible.

B−1 =
1

I + ubeT
i

=
∞∑

k=0

(
−ubeT

i

)k
=

∞∑
k=0

(
−uA(u)−1(v − (A)i)eT

i

)k
. (6)

The vector b can be computed inO(n2) operations inRn[[u]]. Having b we can
compute B−1 also in O(n2) operations. We have A′−1 = B−1A−1. Because the
matrix B−1 has only O(n) non-zero entries, this multiplication can be done with
O(n2) multiplications in Rn[[u]]. Thus for the update we need Õ(n3) operations
in R.

Subquadratic Algorithm for Dynamic Shortest Distances 465

Theorem 1. The problems of dynamic determinant and matrix adjoint over
the commutative ring R, with row and column updates, can be solved with the
following costs:

– initialization Õ(nω+1) ring operations,
– update Õ(n3) ring operations (worst-case),
– query O(1) ring operations (worst-case).

Proof. In the above construction we have shown how to maintain the inverse of
the matrix A(u). Notice that det(A′(u)) = (1 + bi) det(A(u)) and the determi-
nant of A(u) can also be maintained during updates. The adjoint of the matrix
A(u) is given by adj(A(u))ij = det(A(u))(A(u)−1)ij . In order to be able to an-
swer queries in constant number of operations we have to recompute the matrix
adj(A) = adj(A(u))|u=1 after every update. This can be done with use of Õ(n3)
ring operations.

2.2 Dynamic Determinant: Simple Updates

The proof of Theorem 1 is similar to the proof of the theorems presented in
[14]. The only difference is that we perform computations over Rn[[u]] and so we
have to prove that all inversions we need are possible, (2) and (6). The following
theorem is taken from [14].

Theorem 2. [Sankowski [14]] The problems of dynamic determinant and matrix
adjoint over a field, with non-singular simple updates can be solved with the
following costs:

– initialization O(nω) arithmetic operations,
– update O(nω(1,ε,1)−ε + n1+ε) arithmetic operations (worst-case),
– query for adjoint O(nε) arithmetic operations (worst-case),
– query for determinant O(1) arithmetic operations (worst-case).

In order to prove Theorem 2 the author constructed a lazy computations
scheme from similar algorithm as in Theorem 1. This lazy computation schemes
can be also applied in the case of Theorem 1 as a result we get the following.

Theorem 3. The problems of dynamic determinant and matrix adjoint over the
commutative ring R, with simple updates, can be solved with the following costs:

– initialization Õ(nω+1) ring operations,
– update Õ(n1+ω(1,ε,1)−ε + n2+ε) ring operations (worst-case),
– query for the adjoint Õ(n1+ε) ring operations (worst-case),
– query for determinant O(1) ring operations (worst-case).

466 Piotr Sankowski

3 Maintaining a Part of the Inverse

In this section we show how the algorithm from Theorem 2 can be used to
maintain only the part of the inverse of adjoint matrix. We will use this property
in Section 4 in the construction of dynamic algorithms for the distance problem.
It is possible to maintain in subquadratic time a part of the inverse matrix
given by a subset X of the rows and a subset Y of the columns, i.e., when we
are only allowed to query the matrix (A−1)X,Y , where AX,Y is the submatrix
of A corresponding to rows from the set X and columns from the set Y . If
|X | = O(nα) and |Y | = O(nβ), such a dynamic matrix problem is called α, β-
restricted.

Theorem 4. The α, β-restricted problems of dynamic matrix inverse and ma-
trix adjoint over a field, with non-singular simple updates, can be solved with the
following costs:
– initialization O(nω) arithmetic operations,
– update O(nω(1,ε,1)−ε + n1+ε + nα+β) arithmetic operations (worst-case),
– query for inverse and adjoint O(1) arithmetic operations (worst-case).

Proof. We use the algorithm from Theorem 2 to maintain the inverse matrix.
We will now show how to recompute (A−1)X,Y after each update with the use
of this algorithm. The matrix A′−1 is given by

A′−1 = B−1A−1 = (I +B−1 − I)A−1 = A−1 + (B−1 − I)A−1.

Notice that due to a special form of B−1 (B has non-zero elements only on
diagonal and i-th column) only the i-th row of A−1 is used in this multiplication.
In other words, we have

A′−1 = A−1 + ((B−1 − I))i(A−1)i.

This allows to recompute only a part of A−1 in the following way

(A′−1)X,Y = (A−1)X,Y +
(
(B−1 − I)

)
X,{i}A

−1
{i},Y ,

Querying out (A−1){i},Y takes O(n1+ε) arithmetic operations and does not
increase update cost (see Theorem 2). The recomputation of the part of the
inverse requires only a vector-vector multiplication which costs O(|X ||Y |) =
O(nα+β) arithmetic operations.

4 Dynamic Shortest Paths

We are now ready to introduce a dynamic algorithm for computing the shortest
path lengths in unweighted graphs. A symbolic adjacency matrix of the directed
graph G is the n× n matrix Ã such that

Ãi,j =
{
xi,j if (vi, vj) ∈ E,

0 otherwise,

where xi,j are unique variables corresponding to the edges of G.

Subquadratic Algorithm for Dynamic Shortest Distances 467

Theorem 5. Let Ã be the symbolic adjacency matrix of a graph G. Consider
adj(I− Ãu)i,j as the polynomial of u. The length of the shortest path in G from i

to j is equal to the degree of the smallest degree term in adj(I−Ãu)i,j. Moreover,
all non-zero terms in adj(I − Ãu)i,j are also non-zero over a finite field Zp.

Proof. We have adj(I−uÃ)i,j = (−1)i+j det((I−uÃ)j,i). Equivalently, if we take
Z̃ to be the matrix obtained from I − uÃ by zeroing entries of the j’th row and
the i’th column and setting the entry (j, i) to one, then adj(I −uÃ)i,j = det(Z̃),
and

adj(I − uÃ)i,j =
∑

p∈Γn

sgn(p)
n∏

k=1

zk,pk
. (7)

Take a permutation p such that
∏n

k=1 zk,pk
�= 0. The permutation p can be

viewed as a set of cycles. Notice that the above product is non-zero if pj = i for
some j, so there exists a cycle c containing (j, i) in p. The rest of c forms a path
from i to j. There may exist many permutations containing c that give a non-
zero contribution to the sum. However, the smallest degree term is introduced
by the permutation that is identity on vertices v not belonging to c, i.e., pv = v.
The degree of this term is the length of the path from i to j in c. Hence the
smallest degree term in the sum corresponds to the shortest path.

Notice that each monomial in (7) has coefficient 1, so each non-zero term in
adj(I − uÃ)i,j is also non-zero over Zp.

The above theorem gives us the connection between matrix adjoint and short-
est path lengths. However, in order to construct an efficient algorithms we cannot
do computations symbolically. The standard way of solving this problem is to
use following lemma due to Zippel [19] and Schwartz [16].

Lemma 2. If p(x1, . . . , xm) is a non-zero polynomial of degree d with coeffi-
cients in a field and S is a subset of the field, then the probability that p evaluates
to 0 on a random element (s1, s2, . . . , sm) ∈ Sm is at most d/|S|. We call such
event a false zero.

It follows from the lemma that if we evaluate a polynomial of degree n over
random variables modulo prime number p of length (1 + c) logn we get a false
zero with probability at most 1

nc , for any c > 0.
In order to compute distances in G dynamically, we can proceed as follows.

We generate a random adjacency matrix A from the symbolic adjacency matrix
Ã of G by substituting each nonzero entry in Ã with a random number in the
range 1, . . . , p−1. Note that the matrix I−uA has the same form as the matrix
maintained in Theorem 1. Thus we can use the same algorithm in order to
maintain dynamically the adjoint of the matrix I − uA. The queries for the
distances in G can be answered by finding the smallest degree term in adj(I −
uA)i,j . Similarly as in Theorem 1 we do the computation over Rn[[u]]. However,
if the computations are done over Rk[[u]], for any k ≤ n, then the algorithm
computes the shortest distances up to the length k. This truncation is correct
because the terms of the given degree depend only on the terms of degree less
or equal. Thus we get the following theorem.

468 Piotr Sankowski

Theorem 6. There exists an algorithm for maintaining dynamic shortest dis-
tances ≤ k in unweighted graphs with updates in Õ(k(nω(1,ε,1)−ε + n1+ε)) time
and queries in Õ(knε) time. The algorithm is randomized and with small prob-
ability may return wrong, larger distances.

Proof. To obtain the above bound we use the lazy computation schemes from
Theorem 3. The update time and query time follow from the fact that the arith-
metic operations over the formal power series modulo uk+1 can be carried out in
time Õ(k). In the queries we have to compute the degree of the smallest degree
term in an element from Rk[[u]] and this takes O(k) time.

Remark 1. Theorem 6 can be also used to maintain the part of the distance ma-
trix, similarly as it was stated in Theorem 4. The update cost for α, β-restricted
version of this problem is Õ(k(nω(1,ε,1)−ε +n1+ε +nα+β)) whereas the query cost
is Õ(k).

5 Sub-quadratic Algorithm for Shortest Lengths

In our algorithm we use the decomposition technique introduced in [8], and later
used in e.g., [4, 5, 9, 11, 18, 20].

Theorem 7 (Ullman and Yannakakis [18]). Let H ⊆ V be a set of vertices
chosen uniformly at random. Then the probability that a given simple path has a
sequence of more than cn

|H| logn vertices, none of which is from H, for any c > 0,
is , for sufficiently large n, bounded by 2−αc for some positive α.

We are now ready to prove the following theorem.

Theorem 8. There exists an randomized algorithm for the dynamic shortest
distances problem in unweighted graph G = (V,E) supporting edge updates in
O(n1.932) and queries in O(n1.288) time.

Proof. The algorithm is based on the idea used in construction of the F2 family
of algorithms in [5]. In the algorithm we maintain:

– A set H ⊆ V of vertices chosen uniformly at random with |H | = cn
nμ log n =

Õ(n1−μ), for any constant c > 0, where c logn ≤ nμ ≤ n.
– An n× n matrix D such that Di,j is the length of the shortest path from i

to j in G, that uses at most nμ edges.
– An |H |× |H | matrix B obtained from D by choosing only columns and rows

corresponding to H .
– The Kleene closure B∗ of matrix B ,i.e. the distance matrix obtained from
B.

In each update:

– We update the matrix D using the algorithm from Theorem 6. This takes
Õ(nμ(n1+ε + nω(1,ε,1)−ε)) time.

Subquadratic Algorithm for Dynamic Shortest Distances 469

– The cost of maintaining the matrix B is Õ(nμn2−2μ) as stated in Remark 1
and Theorem 4.

– We recompute the matrix B∗ from scratch in O(n3−3μ) time.

The query on the distance from i to j can be answered by computing

min
{
Di,j , min

p,q∈H

{
Di,p +B∗

p,q +Dq,j

}}
,

where we have to query out a row and a column from D, and then compute the
minimum over p, q, what takes O(n1−μ+ε + n2−2μ) operations.

We get the following bound on time for the edge update:

Õ(nμ(n1+ε + nω(1,ε,1)−ε) + n2−2μnμ +O(n3−3μ)).

In order to get the fastest update time, we take ε = 0.575. This balances the
first two terms. By balancing the first and the last term we get

1 + ε+ μ = 3− 3μ,

4μ = 2− ε,

μ = 0.357.

The first term is now equal to O(n1.932), the third term is smaller and equal to
O(n1.644), whereas the query time is O(n1.288).

6 Summary and Conclusions

We have presented for the first time dynamic algorithms for computing: matrix
determinant and matrix adjoint over commutative rings. The algorithm can be
extended to work over Euclidean rings.

Using these algorithms we were able to solve dynamic shortest path problem
in unweighted graphs in o(n2) time per update and per query, thus solving a long
standing open question if such algorithms exist. However, we have only solved
the easy case of unweighted graphs. Notice that the algorithm can be easily
modified for the case of small integer weights, but the question of existence of
such algorithms for graphs with arbitrary weights remains open. It is also not
known if the problem of single source shortest distances can be solved more
efficiently, e.g., update in o(n2) time and query in constant time.

Acknowledgments

I would like to thank my favorite supervisor Krzysztof Diks for his unwavering
support and Marcin Mucha for many helpful discussions. I would also like to
thank Uri Zwick for finding an error in the first version of this paper.

470 Piotr Sankowski

References

1. J. Bunch and J. Hopcroft. Triangular Factorization and Inversion by Fast Matrix
Multiplication. Math. Comp., 28:231–236, 1974.

2. D. Coppersmith. Rectangular Matrix Multiplication Revisited. J. Complex.,
13(1):42–49, 1997.

3. D. Coppersmith and S. Winograd. Matrix Multiplication via Arithmetic Progres-
sions. In Proceedings of the nineteenth annual ACM symposium on Theory of Com-
puting, pages 1–6. ACM Press, 1987.

4. C. Demetrescu and G.F. Italiano. Fully Dynamic All Pairs Shortest Paths with Real
Edge Weights. In Proceedings of 42th annual IEEE Symposium on Foundations of
Computer Science, pages 260–267, 2001.

5. C. Demetrescu and G.F. Italiano. Improved Bounds and New Trade-Offs for Dy-
namic All Pairs Shortest Paths. In Proceedings of the 29th International Colloquium
on Automata, Languages and Programming, pages 633–643. Springer-Verlag, 2002.

6. C. Demetrescu and G.F. Italiano. A new Approach to Dynamic all Pairs Shortest
Paths. In Proceedings of the thirty-fifth annual ACM Symposium on Theory of
Computing, pages 159–166. ACM Press, 2003.

7. G.S. Frandsen, J.P. Hansen, and P.B. Miltersen. Lower Bounds for Dynamic Alge-
braic Problems. Lecture Notes in Computer Science, 1563:362–372, 1999.

8. D.H. Greene and D.E. Knuth. Mathematics for the Analysis of Algorithms.
Birkhäuser, 1982.

9. M.R. Henzinger and V. King. Fully Dynamic Biconnectivity and Transitive Clo-
sure. In Proceedings 36th annual IEEE Symposiumon Foundations of Computer
Science, pages 664–672, 1995.

10. X. Huang and V.Y. Pan. Fast Rectangular Matrix Multiplication and Applications.
Journal of complexity, 14(2):257–299, 1998.

11. V. King. Fully Dynamic Algorithms for Maintaining All-Pairs Shortest Paths and
Transitive Closure in Digraphs. In Proceedings of 40th annual IEEE Symposium
on Foundations of Computer Science, pages 81–91, 1999.

12. H.T. Kung and J.F. Traub. All Algebraic Functions Can Be Computed Fast. J.
ACM, 25(2):245–260, 1978.

13. J.H. Reif and S.R. Tate. On Dynamic Algorithms for Algebraic Problems. J. Al-
gorithms, 22(2):347–371, 1997.

14. P. Sankowski. Dynamic Transitive Closure via Dynamic Matrix Inverse. In Proceed-
ings of the 45th annual IEEE Symposium on Foundations of Computer Science,
pages 509–517, 2004.

15. A. Schonhage and V. Strassen. Schnelle Multiplikation grosser Zahlen. Computing,
7:281–292, 1971.

16. J.T. Schwartz. Fast Probabilistic Algorithms for Verification of Polynomial Iden-
tities. J. Algorithms, 10:701–717, 1980.

17. V. Strassen. Vermeidung von Divisionen. J. reine u. angew. Math., 264:182–202,
1973.

18. J. Ullman and M. Yannakakis. High-probability Parallel Transitive Closure Algo-
rithms. In Proceedings of the 1990 ACM Symposium on Parallel Algorithms and
Architectures, pages 200–209, July 1990.

19. R.E. Zippel. Probabilistic Algorithms for Sparse Polynomials. Proc. EUROSAM
79, Lecture Notes in Computer Science 72, pages 216–226, 1979.

20. U. Zwick. All Pairs Shortest Paths in Weighted Directed Graphs Exact and Al-
most Exact Algorithms. In Proceedings of the 39th annual IEEE Symposium on
Foundations of Computer Science, pages 310–319, 1998.

Randomly Generating Triangulations
of a Simple Polygon

Q. Ding1, J. Qian2, W. Tsang3, and C. Wang2

1 Zhejiang Radio & TV Transmission Center, HangZhou, China
dingqinh@163.net

2 Department of Computer Science, Memorial University of Newfoundland
St. John’s, Newfoundland, Canada A1B 3X5

{jianbo,wang}@garfield.cs.mun.ca
3 Department of Computer Science, The University of Hong Kong

Hong Kong, China
tsang@cs.hku.hk

Abstract. In this paper, we present an O(n2 + |E| 32) time algorithm for
generating triangulations of a simple polygon at random with uniform
distribution, where n and |E| are the number of vertices and diagonal
edges in the given polygon, respectively. The current best algorithm takes
O(n4) time. We also derive algorithms for computing the expected de-
gree of each vertex, the expected number of ears, the expected number
of interior triangles, and the expected height of the corresponding tree
in such a triangulated polygon. These results are not known for sim-

ple polygon. All these algorithms are dominated by the O(n2 + |E| 32)
time triangulation counting algorithm. If the results of the triangulation
counting algorithm are given, then the triangulation generating algo-
rithm takes O(n log n) time only. All these algorithms are simple and
easy to be implemented.

1 Introduction

The triangulation of a simple polygon is a fundamental structure in computa-
tional geometry. The efficiency of many important algorithms is based on tri-
angulated structures. These algorithms are point location, ray-shooting, and
visibility area computing in a simple polygon, just naming a few. While theo-
retical analysis of these algorithms indicated they are correct and efficient, their
implementations may need special care. Some types of input triangulations may
significantly slow down these algorithms or may even cause errors. One needs
to know what these cases are and how often they occur. Randomly-generated
triangulations with uniform distribution are a good choice for such unbiased
tests.

While generating triangulations of a convex polygon at random with uniform
distribution can be done in linear time [DFHNS, Ep] the best algorithm for
generating triangulations of a simple polygon takes O(n4) time, proposed by
Epstein and Sack [ES].

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 471–480, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

472 Q. Ding et al.

In order to find out the average performance of some algorithms based on
triangulations of a simple polygon, researchers also need to know the expected
values of some parameters of these triangulations such as the expected degree of a
vertex and the expected height of the corresponding tree. Devroye [De, DFHNS]
investigated these parameters for convex polygons, but no result is known to the
author’s best knowledge for simple polygons.

In Section 2.1 of this paper, we present an O(n2 + |E| 32) time algorithm for
counting the number of triangulations in a given simple polygon as well as its
subpolygons. If the visibility graph is given, then the counting algorithm takes
O(|E| 32) time. In Section 2.2, we propose an O(n log n) algorithm for generating
triangulations of a simple polygon at random with uniform distribution. In Sec-
tions 2.3 to 2.6, we demonstrate algorithms for computing the expected values
of the following parameters: the degree of a vertex (which takes O(|E|) time),
and the number of ears, the number of internal triangles, and the height of the
corresponding tree (which all take O(|E| 32) time). Section 3 gives our concluding
remarks.

2 Algorithms

We shall first give some definitions and notations.
Let P = (p1, p2, ...pn) be the vertices of a simple polygon P in clockwise

order. We shall assume for the rest of this paper that pi+kn = pi for integer k,
that is, the vertices of the polygon are enumerated modulo n.

A diagonal is a line segment connecting two vertices of P and lying inside
P . The boundary edge set of P is denoted by B.

Let G = (V,E) be the visibility graph of P , where V is the vertex set of P
and E is the diagonal set and boundary edge set of P .

Let P (i, j) stand for the subpolygon of P induced by the chain of vertices
pi, pi+1, .., pj for 1 ≤ i, j ≤ n and pipj ∈ E. Let t(i, j) be the number of triangu-
lations of P (i, j).

Let T (P) be a triangulation of P , and te ∈ T (P) be a triangle. We call te an
ear if two edges of te are boundary edges of P , and an internal triangle if all of
its three edges are diagonals. The degree in T (P) of a vertex p is the number of
diagonals in T (P) incident to p.

Note that if the total number of triangulations and the number of triangu-
lations containing a specific triangle is known, the probability of this triangle
appearing on a triangulation generated at random with uniform distribution
can be easily calculated. If we know this probability for each triangle, we can
randomly generate triangulations with uniform probability. Thus, we shall first
present an algorithm for counting the number of triangulations. Also note that
the size of edge set of the visibility graph determines the number of triangles
and triangulations [BE]. Therefore, the expected values of the above mentioned
parameters depends on the edge set of the visibility graph.

2.1 Counting the Number of Triangulations in Polygon P

Given a simple polygon P with n vertices, we shall first preprocess P in O(n2)
time to obtain the following outputs: (1) the visibility graph of P , G(V,E), (2)

Randomly Generating Triangulations of a Simple Polygon 473

a sorted list E′, consisting of pipj and pjpi for each pair of vertices pi and pj

visible to each other, according to the difference of the two vertex indexes of an
edge in ascending order, and (3) |E′| sets of vertices, in which vertex set V (i, j)
is attached to edge pipj ∈ E such that each vertex pk in V (i, j) together with
edge pipj form a triangle pipkpj in P (i, j). (Note that |E′| = 2|E| since pipj and
pjpi are different in E′. Edge pipj is attached by polygon P (i, j) and vertex set
V (i, j), and edge pjpi is attached by polygon P (j, i) and vertex set V (j, i). For in-
stance in Figure 1, E′ = (p1p2, ..., p7p1, p1p3, p3p5, ..., p7p2, p1p4, ..., p7p3, ..., p2p1,
..., p1p7).))

Pre-Process-Algorithm(P)
Method:
1 Find the visibility graph of P , G(V,E).
2 Find the sorted list E′.
3 Find V (i, j) for each pipj in E′.
(* degG(pi) denotes the degree of vertex pi in G(V,E) *)
For i = 1 To n Do

If degG(pi) ≥
√
|E| Then

For each pjpk ∈ E′ not incident to pi Do
If pjpi, pkpi ∈ E′ And pipjpk in clockwise order Then Add pj to
V (i, k)

End For
Else
For each pair pipj , pipk ∈ E′ incident to pi Do
If pjpk ∈ E′ And pipjpk in clockwise order Then Add pj to V (i, k)

End For
End If

End For

Pre-Process-Algorithm(P) takes O(n2) time. Step 1 can be done in O(n2)
time [We]. Step 2 takes O(n2) time if the output of visibility graph is an ad-
jacency matrix. Step 3 takes O(|E| 32) time since in the If block, there are at
most |E| edges not incident to vertex pi and there are at most O(

√
|E|) such

vertices as pi, and in the Else block, for each edge pipk together with another
edge incident to pi can form at most

√
|E| triangles since degG(pi) <

√
|E|, and

there are at most |E| such edges as pipk. (Remark: the proof of the upper bound
O(|E| 32) for the number of triangles in P can be found in [BE].)

With the output of Pre-Process-Algorithm(P), we design the following
efficient dynamic programming algorithm to calculate t(i, j) for all pipj ∈ E′.
Furthermore, with a constant factor of extra cost, the algorithm can produce |E′|
sequences of probabilities, such that the probability probk(i, j) in Prob(i, j) is
attached to triangle pipkpj in P (i, j). Let probk(i, j) be the probability of triangle
pipkpj appearing in a random triangulation T (P (i, j)) with uniform probability.
For every pipj ∈ E′, we also produce a sequence (Cl(i, j)) of cumulative sum of
probk(i, j).

474 Q. Ding et al.

Algorithm Tri-Count(P)
Input: E′, {V (i, j)}
Output: t(i, j), {Prob(i, j)}, and (Cl(i, j)) attached to edge pipj

for all pipj ∈ E′.
Method:
While E′ �= ∅ Do

e← extract(E′); Let e = pipj

If j = i+ 1 Or j = i+ 2 Then
t(i, j) = 1
Else
t(i, j) = 0; V ′(i, j) ← V (i, j)
While V (i, j) �= ∅ Do

pk ← extract(V (i, j))
t(i, j)← t(i, j) + t(i, k)t(k, j)

End While
l ← 0; cl(i, j)← 0
While V ′(i, j) �= ∅ Do

pk ← extract(V ′(i, j))
Probk(i, j)← t(i, k)t(k, j)/t(i, j)
l ← l + 1
cl(i, j)← cl−1(i, j) + probk(i, j)

End While
End If

End While

1

2

3

4

5

6

7

1
1
2
3
4
5
6
7

2 3 4 5 6 7
0

0
0

0
0

0
0

0
1

0
1

1
10
2
0

3

j iij 1
1
2
3
4
5
6
7

2 3 4 5 6 7

0

1
0

1
0

1

1
1

1

1

1 1 1 1 1
00
0
0 0

0 0
0

11 1 1
1111 1

1
1
11

11
1
111

1 1 1
1
1 1 1 6

9

0
0
0

1

9
9

9
9

9

9
3

3
2 2 15

1
1 1 7
1 1

1 1
0 0 1
2 1

The t(i,j) table, where

triangulations.
the numbers are the

The Visibility graph,

P
0

0−invisible, 1−visible.

Fig. 1. An illustration of t(i, j) values of a simple polygon.

Lemma 1. Algorithm Tri-Count(P) takes O(|E| 32) time to calculate the values
t(i, j) for all pipj ∈ E of a simple polygon P with n vertices and |E| diagonals.

Proof. For the time complexity, the outer-while-loop iterates |E′| times
and inner-while-loops are bounded by |V (i, j)|. Thus, the total time is∑

pipj∈E′ |V (i, j)| = c · |E′| 32 time for some constant c, i.e., the number of trian-

Randomly Generating Triangulations of a Simple Polygon 475

gles in P [BE]. Thus Tri-Count(P) takes O(|E| 32) time. The correctness is due
to the recurrence t(i, j) =

∑
k t(i, k) · t(k, j). ��

2.2 Randomly Generating Triangulations
of P with Uniform Probability

It is not difficult to see that the probability that a triangle pipjpk appears in a
triangulation of P (i, j) generated randomly with uniform distribution is the ratio
of the number of triangulations for subpolygon P (i, k) multiplied by the number
of triangulations for subpolygon P (k, j) over the number of triangulations for
polygon P (i, j).

Lemma 2. Suppose pipj ∈ E, pipk ∈ E and pkpj ∈ E, then triangle pipjpk

appears in a uniformly random triangulation of P (i, j) at the probability of:

probk =
t(i, k)t(k, j)

t(i, j)

Suppose the indexes of vertices in V (i, j) are (k1, k2, ..., k|V (i,j)|) by the order
of appearance. In order to form a tria ngulation T (P (i, j)), at least one trian-
gle, say pipkpj for some k, must exist. Then the summation

∑
k probk of the

probabilities in Prob(i, j) is 1. We can treat Prob(i, j) as a unit interval divided
into |V (i, j)| intervals (Ik1 , Ik2 , ..., Ik|V (i,j)|), where the length of Ikm is probkm .
For example in Figure 1, if V (2, 1) = (p3, p7, p5), then Prob(2, 1) is divided into
I3 = [0, 5/9], I7 = [5/9, 7/9] and I5 = [7/9, 1], where 5/9, 7/9 and 1 are exactly
the cumulative sums c1 = 5/9, c2 = 5/9+2/9 and c3 = 5/9+2/9+2/9 produced
in Tri-Count. The length of an interval Ik in Prob(i, j) represents the probability
probk that Ik being randomly chosen in interval [0, 1] with uniform probability.
Let u be a random number generated in interval [0,1] uniformly. If u matches the
interval Ik, then it implies that pk is randomly picked with uniform probability.

By Lemma 2 and if we know {Prob(i, j)}, we can recursively triangulate
P (i, j) at random with uniform probability. The algorithm triangulates P when
we set j = i− 1.

Algorithm Rand-Tri(P (i, j))
Input: simple polygon P (i, j), E′, and Prob(k,m) for all pk, pm ∈ P (i, j).
Output: a random triangulation of P (i, j) at uniform probability.
Method:
If j = i+ 1 Or j = i+ 2 Then Return (* boundary conditions*)
Else

u← uniform[0, 1];
Binary search of u on {Il}; Suppose u ∈ Ik. Insert pipk and pkpj as
diagonals
(* triangle pipkpj is chosen at the probability of probk*)
Rand-Tri(P (i, k)) (* recursion *)
Rand-Tri(P (k, j))

End If

476 Q. Ding et al.

Lemma 3. Algorithm Rand-Tri(P (i, j)) randomly triangulates a simple polygon
P (i, j) at uniform probability in O(|P (i, j)| logmax{|V (i, j)|}) time.

Proof. For the time complexity, each recurrence produces a triangle which sep-
arated P (i, j) into two subpolygons. There are j − i − 1 triangles in any tri-
angulation. The binary search of u on Prob(i, j) takes logarithmic time. The
correctness is due to Lemma 2. ��

2.3 Calculating the Expected Degrees of Vertices in T (P)

Let d(i) denote the expected degree of vertex pi in P , that is, the average diago-
nals incident to pi for all triangulations of P . Obviously,

∑
pi∈P d(i) = 2 ·(n−3).

The following lemma gives the equation to calculate d(i) in P . That is, the
probability that an edge pipk appeared in all triangulations in P is the ratio of the
number of triangulations in P (i, k) multiplied by the number of triangulations
in P (k, i) divided by the number of triangulations in P = (P (i, i− 1)).

Lemma 4. Let K = {k | i+ 2 ≤ k ≤ i− 2; pipk ∈ E′}. We have that

d(i) =
∑
k∈K

t(i, k)t(k, i)
t(i, i− 1)

.

By Lemma 4, we can calculate d(i) using the output of Algorithm Tri-Count.
This calculation takes O(|E|) time since only diagonal pipk ∈ E needs to be
calculated and there are |E| such diagonals.

9
5

9
16

9
10

9
3

9
22

9
2

9
14

1 2 3 4 5 6 7i
d(i)

Fig. 2. The expected degrees of vertices in the simple polygon in Figure 1.

2.4 Calculating the Expected Number of Ears in T (P)

The expected number of ears in P is defined as the ratio of the number of ears
in all triangulations over the number of all triangulations in P .

To calculate the expected number of ears recursively, we consider a subpoly-
gon P (i, j). Let er(i, j) denote the expected number of ears whose edges do not
include pipj . To recursively calculate the expected ears, consider triangle pipkpj

appears in some triangulations. pipkpj divides P (i, j) into P (i, k) with expected
ears er(i, k) and P (k, j) with expected ears er(k, j). The probability of the above
case appearing in all triangulations of P (i, j) is (t(i, k)t(k, j)/t(i, j)). Therefore,

Randomly Generating Triangulations of a Simple Polygon 477

er(k,j)er(i,k)

p
i

p
j

p
i

p
i+1

p
i

p
i+1

p
i

p
i+1

p
i

p
i−1

p
i+1 p

i−2

p
i−2

p
i−2 p

i−2

p
i−1

p
i−1 p

i−1

p
k

(a)

(b) (c) (d)

Fig. 3. The recurrence for finding the expected ears.

we have recurrence (1) in the lemma. Furthermore, let er′(i, i − 1) denote the
expected number of ears whose edges include pipi−1 (a boundary edge), there
are four cases (Figure 3) to calculate er′(i, i−1). Each case has its probability in
the triangulations of P (i, i− 1) as shown in the part (2) of the following lemma.
The expected number of ears of polygon P) is er(i, i− 1) + er′(i, i− 1).

Lemma 5. Suppose pipj ∈ E′, let K = {k | pk ∈ V (i, j)}. Then,
(1) er(i, j) =

∑
k∈K

t(i,k)t(k,j)
t(i,j) (er(i, k) + er(k, j)).

(2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a)er′(i, i−1) = 0 (pipi−2 �∈ E)&
(pi+1pi−1 �∈ E);

(b)er′(i, i−1) = t(i, i−2)/t(i, i−1) (pipi−2 ∈ E)&
(pi+1pi−1 �∈ E);

(c)er′(i, i−1) = t(i+1, i−1)/t(i, i−1) (pipi−2 �∈ E)&
(pi+1pi−1 ∈ E);

(d)er′(i, i−1) = t(i+1, i−1)/t(i, j)+t(i, i−2)/t(i, i−1) (pipi−2 ∈ E)&
(pi+1pi−1 ∈ E).

By Lemma 5, we can calculate er(i, j) by dynamic programming, using the
output of Algorithm Tri-Count. This algorithm takes O(|E| 32) time.

Algorithm Calc-Expt-Ears.
Input: t(i, j), {V (i, j)} for all pipj ∈ E′.
Output: er(i, j) for all pipj ∈ E′.
Method:
While E′ �= ∅ Do

e← extract(E′) {* Let e = pipj *}
er(i, j) ← 0
While V (i, j) �= ∅ Do
pk ← extract(V (i, j))
er(i, j) ← er(i, j) + t(i,k)t(k,j)

t(i,j) (er(i, k) + er(k, j))
End While

End While

478 Q. Ding et al.

2.5 Finding the Expected Number of Internal Triangles in T (P)

We can define the expected number of internal triangles similar to that of the
expected number of ears in subpolygon P (i, j). Let in(i, j) denote the expected
number of internal triangles in subpolygon P (i, j), that is, the ratio of the number
of internal triangles in all triangulations over the number of triangulations of
P (i, j). Let i′n(i, j) denote the expected number of triangles with pipj and two
other diagonals as edges in subpolygon P (i, j). Note that such a triangle is an
internal triangle of P if pipj is a diagonal in P and it is not an internal triangle
if pipj is a boundary edge.

The following lemma gives the recursive equations to calculate in(i, j) and
i′n(i, j):

Lemma 6. Suppose pipj ∈ E′, let K = {k | pk ∈ V (i, j)}, and let K ′ = {k |
i+ 2 ≤ k ≤ j − 2; pk ∈ V (i, j)}. We have that{

in(i, j) =
∑

k∈K
t(i,k)t(k,j)

t(i,j) (in(i, k) + in(k, j) + i′n(i, k) + i′n(k, j)).

i′n(i, j) =
∑

k∈K′
t(i,k)t(k,j)

t(i,j) .

By Lemma 6, we can calculate all in(i, j) and i′n(i, j) for pipj ∈ E′ by dynamic
programming, using the output of Algorithm Tri-Count (note that in(i, i− 1) is
exactly the expected number of internal triangles in P , for any 1 ≤ i ≤ n.):

Algorithm Calc-Expt-Int-Tri.
Input: t(i, j), {V (i, j)} for all pipj ∈ E′.
Output: in(i, j) and i′n(i, j) for all pipj ∈ E′.
Method:
While E′ �= ∅ Do

e← extract(E′); Let e = pipj

in(i, j)← 0; i′n(i, j)← 0
While V (i, j) �= ∅ Do
pk ← extract(V (i, j))
in(i, j)← in(i, j) + t(i,k)t(k,j)

t(i,j) (in(i, k) + in(k, j) + i′n(i, k)
+i′n(k, j))
If pk �= pi+1 And pk �= pj−1 Then i′n(i, j)← i′n(i, j)+ t(i,k)t(k,j)

t(i,j)

End While
End While

2.6 Calculating the Expected Height of the Rooted Tree of T (P)

For a triangulation T (P (i, j)), let tT ∈ T (P (i, j)) be the triangle containing pipj

as one of its edges. Let RT be the dual graph (rooted tree) of T that has tT as
its root, and let hT (i, j) be its height. Let h(i, j) denote the expected height of
RT for a random triangulation T (P (i, j)) with uniform probability, that is, the
average value of hT (i, j) for all triangulations of P (i, j).

The following lemma gives the recursive equation to calculate h(i, j) (for
convenience, we assume that h(i, i+ 1) = −1).

Randomly Generating Triangulations of a Simple Polygon 479

Lemma 7. Suppose pipj ∈ E′, let K = {k | pk ∈ V (i, j)}. We have that

h(i, j) =
∑
k∈K

t(i, k)t(k, j)
t(i, j)

(Max{h(i, k), h(k, j)}+ 1).

By Lemma 7, we can calculate h(i, j) by dynamic programming, using the
output of Algorithm Tri-Count.

Algorithm Calc-Expt-Height.
Input: t(i, j), {V (i, j)} for all pipj ∈ E′.
Output: h(i, j) for all pipj ∈ E′.
Method:
While E′ �= ∅ Do

e← extract(E′); Let e = pipj

If j = i+ 1 Then
h(i, j) = −1

Else
h(i, j)← 0
While V (i, j) �= ∅ Do
pk ← extract(V (i, j))
h(i, j)← h(i, j) + t(i,k)t(k,j)

t(i,j) (Max{h(i, k), h(k, j)}+ 1)
End While

End If
End While

3 Conclusion Remark

In this paper, we present an O(|E| 32) dynamic programming algorithm for count-
ing the number of triangulations of a simple polygon, given its visibility graph.
This algorithm improves on the O(n3) existing algorithm [ES]. Based on this
algorithm, we devise an O(n log n) random triangulation generation algorithm
with uniform distribution, which improves on the existing O(n4) algorithm. We
also proposed algorithms for computing the expected values of various param-
eters of triangulations of simple polygons. All these algorithms use dynamic
programming.

The idea of our Pre-Process-Algorithm can be used to improve the op-
timal triangulation algorithm proposed by by Bern and Eppstein [BE] from
O(n2 + |E| 32) time to O(|E| 32), given the visibility graph (Theorem 5 in [BE]).
We can use a similar method to randomly generate triangulations of a sim-
ple polygon with binary-tree-search distribution, and for finding the MaxMin /
MinMax of some parameters.

The open problem is how to extend this method to 3D case. Even for 3D
convex polyhedra, the problem is challenging.

Acknowledgement

This work is partially supported by NSERC discovery grant OPG0041629 and
HK RGC grant HKU 7143/04E.

480 Q. Ding et al.

References

1. Atkinson M. and Sack J., ‘Generating Binary Trees at Random’, Information Pro-
cessing Letters, 41 (1992), pp.21-23.

2. Devroye L., ‘A Note on the Height of Binary Search Trees’, Journal on ACM, 33
(1986), pp. 489-498.

3. Devroye L., Flajolet P., Hurtado F., Noy M., and Steiger W., ‘Random Triangula-
tions’, Discrete and Computational Geometry, Vol. 22, pp.105-117, 1999.

4. Epstein P. and Sack J., ‘Generating triangulation at Random’, ACM Trans. On
Modeling and Computer Simulation, Vol.4 (1994), No.3, pp.267-278.

5. Epstein P., ‘Generating geometric objects at random’, Master’s thesis (1992),School
of Computer Science, Carleton university, Canada.

6. Bern M. and Eppstein D., ‘Mesh Generation And Optimal Triangulation’, Com-
puting in Euclidean Geometry, Edited by Ding-Zhu Du and Frank Hwang, World
Scientific, Lecture Notes Series on Computing – Vol.1.

7. Welzl E., ‘Constructing the visibility graph for n line segments in O(n2) time’.
Information Processing Letters, 20:167–171, 1985.

Triangulating a Convex Polygon
with Small Number of Non-standard Bars

Extended Abstract

Yinfeng Xu1, Wenqiang Dai2, Naoki Katoh3, and Makoto Ohsaki3

1 School of Management, Xi’an Jiaotong University, Xi’an,710049, P.R. China
The State Key Lab for Manufacturing Systems Engineering, P.R. China

yfxu@mail.xjtu.edu.cn
2 School of Management, Xi’an Jiaotong University, Xi’an, 710049, P.R. China

wqdai@mail.xjtu.edu.cn
3 Department of Architecture and Architectural Engineering, Kyoto University

Kyotodaigaku-Katsura, Nishikyo, Kyoto 615-8540, Japan
{naoki,ohsaki}@archi.kyoto-u.ac.jp

Abstract. For a given convex polygon with inner angle no less than 2
3
π

and boundary edge bounded by [l, αl] for 1 ≤ α ≤ 1.4, where l is a given
standard bar’s length, we investigate the problem of triangulating the
polygon using some Steiner points such that (i) the length of each edge in
triangulation is bounded by [βl, 2l], where β is a given constant and meets
0 < β < 1

2
, and (ii) the number of non-standard bars in the triangulation

is minimum. This problem is motivated by practical applications and
has not been studied previously. In this paper, we present a heuristic to
solve the above problem, which is based on the heuristic to generate a
triangular mesh with more number of standard bars and shorter maximal
edge length, and a process to make the length of each edge lower bounded.
Our procedure is simple and easily implemented for this problem, and
we prove that it has good performance guaranteed.

1 Introduction

Generating triangular meshes is one of the fundamental problems in computa-
tional geometry, and has been extensively studied; see e.g. the survey article by
Bern and Eppstein[3]. From the view point of applications, it is important to
impose geometric constraints on the shape of triangles in the obtained triangu-
lation. Several measures of triangle quality, along with various algorithms to find
optimal or near-optimal triangular meshes, have been reported [1, 2, 4–6, 10, 11].

For a given length l, we say that an edge is standard bar if its length is l
while an edge is non-standard bar if its length is not. In this paper, we consider
the problem of generating an edge bounded triangular mesh for a given convex
polygon using some Steiner points so that the number of non-standard bars in
the triangulation is minimized. The problem is similar to the one that finds an
edge bounded triangulation where the number of standard bars is maximized,
since a triangulation that achieves one of these objectives also does it well for

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 481–489, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

482 Yinfeng Xu et al.

the other, i.e., if a triangulation has increased the number of standard bars, it
must decrease the number of non-standard bars, and vice versa.

This problem will be formalized as follows: we are given a convex polygon P
with n vertices and a standard bar length l. It is assumed that every inner angle
of P is no less than 2

3π and the length of every boundary edge is in the interval
[l, αl], where 1 ≤ α ≤ 1.4. The objective is to generate a triangulation of P with
every edge length is between βl and 2l, and in a way that the number of non-
standard bars is minimized (where β is a given constant and meets 0 < β < 1

2).
To the knowledge of the authors, the problem dealt with in the present

paper has not been studied in the field of computational geometry. However,
this problem appears in many practical applications. For example, in architecture
design where the material is limited, to triangulate a convex polygon with some
standard bars and less number of non-standard bars is often considered. The
standard bar can be reused for many times, but the non-standard bars can’t.
Furthermore, from the practical point of view, there are also some constraints for
the non-standard bars, for example, the length of the non-standard bar should
be neither too long nor too short compared with the standard bar.

In this paper, we present a heuristic for constructing such a triangular mesh
which is similar in simplicity and efficiency to standard algorithms for triangu-
lar mesh generation. The main idea is based upon the procedure to generate a
triangulation with the number of standard bars as many as possible while the
maximum edge length is short, and then upon the procedure to make every edge
length bounded from below by a certain length. Our heuristic is capable of pro-
ducing a triangulation with each edge bounded by

[
βl,max{l+2βl,

√
219
10 l+βl}

]
,

which is contained in [βl, 2l], and the number of non-standard bars is upper-
bounded by n +

⌈
2√
3
αn

⌉
. Note that the number of interior Steiner points and

triangles can go up to O(n2), so this O(n) non-standard bars introduced by our
heuristic are not large in number.

The rest of this paper is organized as follows. In section 2 we first provide
a heuristic to obtain a triangulation M such that the number of standard bars
in M is as many as possible, and that the maximum edge length in M is short.
We examine the triangulation M in great detail. Especially, we find that the
upper bound of each edge length is

√
219
10 l, which is a tight bound, but the lower

bound is not guaranteed. In section 3 we use an approach to make each edge
length bounded from below by βl. Thus the “new” triangulation will meet the
constraints of the problem. Finally the number of non-standard bars will be
investigated in section 4 and section 5 gives some future works related to this
paper.

2 A Triangulation with More Number of Standard Bars
and Shorter Maximal Edge Length

In this section, we consider the problem of generating a triangulation for P with
the number of standard bars maximized and the length of maximal edge in the

Triangulating a Convex Polygon with Small Number of Non-standard Bars 483

triangulation minimized. We shall give a heuristic for this problem and then
show that the triangulation produced by our heuristic can be modified to give a
good solution for the problem addressed in section 1.

The key idea behind the heuristic is to use the MinMax triangulation for a
polygon. A MinMax edge triangulation stands for the triangulation that mini-
mizes the maximum edge length in a triangulation over all possible triangulations
of the given polygon.

Heuristic A
Step 1: Put P on the plane which is full of equilateral triangle lattice with edge

length l.
Step 2: Let P ′ be the lattice set inside P . Compute B(P ′), whereB(P ′) denotes

the boundary with lattice edges of P ′.
Step 3: Let CH(P) be the boundary of P . Use P and B(P ′) to triangulate the

polygon region between CH(P) and B(P ′) under the MinMax edge criteria.

Let M be the triangulation obtained by the Heuristic A. Our aim is to
present an upper bound of edge length in M. To this end, firstly it is worth
noting that, while using the Step 3 to obtain the MinMax edge triangulation,
we must connect each vertex in P with its nearest vertex in B(P ′) otherwise
the maximal edge length will be longer. Thus, we define a polygon A, which is
a subgraph of M, as follows:

Definition 1. Let e = (p, q) be a boundary edge of P . Let p1 and q1 respectively,
denote the lattice vertices nearest to p and q in B(P ′). As polygon P is convex,
pp1 and qq1 are on the same side of pq. We use the notation A to stand for the
polygon composed of pq, pp1, qq1 and the path of lattice edges on B(P ′) from p1

to q1.

Polygon A may not be convex, we can not use the dynamic programming
[8, 9] to obtain the MinMax edge triangulation of A in theory. However, as we
will prove the number of edges in A is at most 6 in Lemma 4, the MinMax edge
triangulation of A can be easily generated in practice.

From the above discussion, we can obtain the following lemma.

Lemma 1. The maximum of the maximal edge length in the MinMax edge tri-
angulation of all possible A is equal to the length of the maximum edge in M.

According to this lemma, in order to investigate the upper bound of edge
length in M, we only need to consider the maximum of maximal edge length
in MinMax edge triangulation of A. As A is for arbitrary boundary edge of P ,
we turn to find the upper bound of the maximum edge in the MinMax edge
triangulation of arbitrary A.

Throughout this paper, we always use pq to denote the boundary edge in
P , and use p1, q1, respectively, to denote the lattice vertexes in B(P ′) nearest
to p and q. Sometimes we use the notation AB to directly denote the distance
between point A and point B.

We begin with showing some properties of any polygon A.

484 Yinfeng Xu et al.

Lemma 2. For any boundary edge pq of P in A, there exists a vertex v on
B(P ′), such that either 0 ≤ pv ≤ l or l < pv ≤ 2√

3
l. Furthermore, if pv satisfies

l < pv ≤ 2√
3
l then the ∠vpq in A is no more than π

2 .

Lemma 3. Let A denote the polygon corresponding to the boundary edge L,
and LB be the lattice edge path on A, and L∗

B be the length of the line segment
connecting the two endpoints of LB, then we have

L∗
B ≥

√
3

2
l · nL

where nL denotes the number of lattice edges on LB.

Lemma 4. The number of edges in any polygon A is at most six.

The following is a main theorem of this paper.

Theorem 1. The maximum edge length in M is no more than
√

219
10 l, and this

upper bound is tight.

Proof. We first summarize the proof. By Lemma 1, we may only need to investi-
gate the upper bound of the maximum edge length in MinMax edge triangulation
of A. To this end, we show that for any case of A, there exist a triangulation
to make the length of maximum edge no more than

√
219
10 l. Next for proving

the tight upper bound, an actual A and its MinMax edge triangulation will be
presented, whose maximum edge length in the triangulation is exactly

√
219
10 l.

We now proceed with the details. If p1 = q1, that is, A is a triangle, the
upper bound is αl. In the following we only consider the case that the number
of edges in A is more than 3.

Recalling Lemma 4, A has at most six edges. The graph of A and its tri-
angulation are just shown in Fig. 1, where p1A1 = A1A2 = A2q1 = l, and at
the degenerate case, point p1 may be equal to A1, point q1 coincides with A2

and point A1 may be equal to A2. In the following we may only consider the
non-degenerate cases since the degenerate one is a special case of non-degenerate
cases. We draw the lines pA1, pA2 and qA2 if pA2 ≤ qA1 (see the left case of
Fig. 1), or connect the line pA1, qA1 and qA2 if qA1 < pA2 (see the right case of
Fig. 1), to obtain the triangulation of A. Without loss of generality, we assume
pA2 ≤ qA1 and only consider the left case of Fig. 1.

Firstly we have pp1 ≤ pA1 and qq1 ≤ qA2 by the definition of p1 and q1,
so the possible maximal edge of triangulation is pq, pA2, qA2 or pA1. We then
distinguish the four different cases.

Case 1. The maximal edge is pq. For this case, the maximal edge length is αl
and the upper bound is 1.4l as α ≤ 1.4.

Case 2. The maximal edge is pA2. For this case, as pA2 ≤ qA1, the length of
pA2 reaches its maximal length for the MinMax edge triangulation of A , then
the quadrilateral pqA2A1 is an isosceles trapezoid and the two edges pA2 and

Triangulating a Convex Polygon with Small Number of Non-standard Bars 485

p
q

p1 q1A1 A2 q1

p q

p1 A1 A2

Fig. 1. Illustration used for the proof of Theorem 1: possible shapes of A and its
triangulation. The left case is used for pA2 ≤ qA1 and the right case is used for
qA1 < pA2.

p qA

p1 q1A1 A2

0120

Fig. 2. Illustration used for the proof of Theorem 1, case 2.

qA1 are the trapezoidal diagonals. In this case pq and A1A2 are parallel. So the
length of pA2 achieves the upper bound when the distance between pq and A1A2

reaches the maximum. The resulting A and its triangulation is shown in Fig. 2.
According to cosine theorem in �ApA2, the upper bound of pA2is[

(
7
10
l)2 + l2 − 2 · 7

10
l · l · cos(

2
3
π)
] 1

2

=
√

219
10

l

Case 3. The maximal edge is qA2. For this case, the upper bound is also
√

219
10 l.

The proof is done in the same manner as those given in case 2.

Case 4. The maximal edge is pA1. For this case, we have pA1 ≥ pq1 and pA1 ≥
pA2 since pA1 is the maximal edge. In the following we analyze the position of
point “p” to show that this case does not happen.

Since pA1 ≥ pq1, vertex p should belong to the left section of the midper-
pendicular line of p1A1. But vertex p also belongs to the right section of the
midperpedicular line of A1A2 by pA1 ≥ pA2. So vertex p must belong to the
joint set of these two sections, that is, the polygonAmust be like Fig. 3. However,
in Fig. 3, vertex A is the nearest point to p, which contradicts the assumption
that point p1 is the point nearest to p. So pA1 cannot be the maximal edge in A.

Hence we have proved that the upper bound of maximum edge in MinMax
edge triangulation of A is

√
219
10 l, and from the Case 2 of proof, the tightness is

obvious. ��

By Theorem 1, we have obtained that the maximum edge length in triangu-
lation M is no more than

√
219
10 l. However, the lower bound of the edge length

486 Yinfeng Xu et al.

p1

p

A

A1 A2

Fig. 3. Illustration used for the
proof of Theorem 1, case 4.

A B

'A
'B

'f

f

Fig. 4. Illustration used for the
proof of Theorem 2, Case 3c.

has not be guaranteed in the obtained triangulation, i.e., some edges length in
M may be very small. In the following we will consider the method to guarantee
each edge length is no less than βl, where β is a given constant with 0 < β < 1

2 .

3 A Triangulation with Edge Length No Less Than βl

We are now ready to show how triangulation M obtained by Heuristic A can
be modified to give a solution for problem posed in the introduction. Theorem
1 implies the maximum edge length in M is bounded from above. Thus we only
need to consider how to guarantee that edge lengths are bounded from below by
βl. The key idea behind our heuristic is to simply contract those edges. (Note
that we sometimes abuse f to denote the length of edge f .)

Heuristic B
Step 1-3: The same as Heuristic A. Denote the obtained triangulation by M.
Step 4: For each edge f in M, if f < βl then one endpoint of f must be in P

and the other must be in B(P ′). Denote the endpoint of f in P by p and
the endpoint in B(P ′) by v, move v to p.

Note that for guaranteeing the existence of triangulation, we must let the
“move” in Step 4 be “clockwise move” by the order of vertices of P . LetN denote
the triangulation obtained by Heuristic B. The following theorem presents the
length bound of edges in N .

Theorem 2. The edge lengths in triangulation N are in the interval[
βl,max{l + 2βl,

√
219
10

l + βl}
]
.

Proof. Since the lower bound βl is trivial, we need only to prove the upper bound.
For each edge f in triangulation M of the polygon region between CH(P) and
B(P ′), three cases are distinguished, according to the position of endpoints of f .

Triangulating a Convex Polygon with Small Number of Non-standard Bars 487

Case 1. Both of the two endpoints of f belong to P . For this case, edge f is an
edge of CH(P) and does not change by Heuristic B as f ≥ l, thus f ≤ αl ≤ 1.4l.

Case 2. One endpoint of f belongs to P and another endpoint of f belongs to
B(P ′).
Case2a: If the edge f do not change in N , then we have f ≤

√
219
10 l by Theorem

1.
Case2b: Now assume the endpoint of edge f in B(P ′) is moved, as the endpoint
of f in B(P ′) move to an vertex of P , then the length of newly formed edges
are bounded by

√
219
10 l + βl according to Theorem 1 and triangle inequality.

Case 3. Both of the two endpoints of f belong to B(P ′).
Case3a: If edge f does not change in N , then we have f = l.
Case3b: If only one endpoint of f changes in N , the newly formed edges in N
are no more than βl + l according to triangle inequality.
Case3c: If both of the two endpoints of f moves in N . See Fig. 4. Let edge f be
AB, and let us assume vertex A moves to vertex A′, vertex B moves to vertex
B′ and the newly formed edge f ′ is denoted by A′B′. The edges f , f ′, A′A and
B′B formes a quadrangle. We have AA′ < βl, BB′ < βl and f = l, thus triangle
inequality gives f ′ < A′A+AB +BB′ < l + 2βl.

Thus, the edge lengths of N are upper bounded by max{l + 2βl,
√

219
10 l +

βl, βl + l, 1.4l, l} = max{l + 2βl,
√

219
10 l + βl} and the theorem is proved. ��

By Theorem 2 and l + 2βl ≤ 2l,
√

219
10 + βl < 2l, the Heuristic B is actually

capable of generating the triangulation with all edges bounded by [βl, 2l], thus
meet the need of the primal problem.

4 On the Number of Non-standard Bars

To estimate the performance of N , we consider the final procedure shown in
Heuristic B. Since the number of edges in N is no more than the number of
edges in M, the number of non-standard bars is bounded by the number of
edges in the triangulation of the region between P and B(P ′).

Lemma 5. The number of lattice edges on B(P ′) is bounded by
⌈

2√
3
α · n

⌉
.

Lemma 6. The number of edges on CH(B(P ′)) is bounded by
⌈

2√
3
α · n

⌉
.

Theorem 3. The number of edges in a triangulation of the region between P

and B(P ′) is bounded by n +
⌈

2√
3
α · n

⌉
.

Proof. Let S1 denote the point set of P and S2 denote the point set of P ′. The
Eulerian relation [7] for planar graph implies the following equalities:

|T (S1 ∪ S2)| = 3|S1 ∪ S2| − |CH(S1 ∪ S2)| − 3
|T (S2)| = 3|S2| − |CH(S2)| − 3

488 Yinfeng Xu et al.

where |T (S1 ∪ S2)| and |T (S2)| denote the number of edges in triangulation
T (S1 ∪ S2) and triangulation T (S2), respectively, |S1 ∪ S2| and |S2| denote the
number of points in S1 ∪S2 and S2, respectively, and CH(S1 ∪S2) and CH(S2)
are the number of edges in convex hull of S1 ∪ S2 and S2, respectively.

We have
|S1 ∪ S2| = |S1|+ |S2|,
|CH(S1 ∪ S2)| = |P | = n,

|CH(S2)| = |CH(B(P ′)| ≤
⌈

2√
3
α · n

⌉
.

where the first equality uses S1 ∩S2 = ∅ and the final inequality uses Lemma 6.
Then

|T (S1 ∪ S2)| − |T (S2)| = 3|S1 ∪ S2| − |CH(S1 ∪ S2)| − 3|S2|+ |CH(S2)|
=3|S1| − n + |CH(S2)|
=2n+ |CH(S2)|
≤2n+

⌈
2√
3
αn

⌉
.

where the third step uses the fact that the number of points in set S1 is equal
to n.

Thus we finish the proof by investigating that the number of edges in trian-
gulation of the region between P and B(P ′) is just |T (S1 ∪S2)|− |T (S2)| minus
the number of edges of P . ��
Remark 1. If B(P ′) is a convex polygon, then the number of lattice edges on
B(P ′) is bounded by �αn�, and the number of edges in a triangulation of the
region between P and B(P ′) is bounded by n + �αn�.

5 Conclusion and Future Work

In this paper, we have presented heuristics to generate a triangular mesh with
the number of standard bars as many as possible. An interesting open problem
is to investigate whether we can refine this procedure to obtain better results.
What is more, our problem is a simple form of the following general problem:

For given real numbers α ≤ β ≤ γ, and a convex polygon P , how can we find
a Steiner triangulation, T (P), of P such that the length of inner edge in T (P)
is in the interval [α, γ] and the number of edges with edge length different from
β is minimum?

All results given in this paper hold for polygon with boundary edge bounded
by [l, αl] for 1 ≤ α ≤ 1.4, what is the largest value for α to let our results hold
is still an open problem.

Acknowledgements

This research is supported by NSF of China under Grants 10371094 and 70471035.
We also gratefully acknowledge a number of valuable comments and suggestions
given by the anonymous referees.

Triangulating a Convex Polygon with Small Number of Non-standard Bars 489

References

1. F. Aurenhammer, N. Katoh, H. Kojima, M. Ohsaki and Y. F. Xu, Approximating
uniform triangular meshes in polygons, Theoretical Computer Science, 289(2002),
pp 879-895

2. M. Bern, D. Dobkin, D. Eppstein, Triangulating polygons without large angles,
Internat. J. Comput. Geom. Appl. 5(1995) 171-192.

3. M. Bern, D. Eppstein, Mesh generation and optimal triangulation, in: D. -Z. Du
(Ed.), Computing in Euclidean Geometry, World Scientific, Singapore, 1992, 47-
123.

4. M. Bern, D. Eppstein, J. R. Gilbert, Provably good mesh generation, J. Comput.
System Sci. 48 (1994) 384-409.

5. M. Bern, S. Mitchell, J. Ruppert, Linear-size nonobtuse triangulation of polygons,
Proc. 10th Ann. ACM Symp. on Computational Geometry, 1994, 221-230.

6. P. Chew, Guaranteed-quality mesh generation for curved surfaces, Proc. 9th Ann.
ACM Symp. on Computational Geometry, 1993, 274-280.

7. H. Edelsbrunner, Algorithms in Combinatiorial Geometry, EATCS Monographs on
Theoretical Cmputer Science 10, Springer-Verlag, 1987

8. P. D. Gilbert, New results in planar triangulation, report R-850, Coordinated Sci-
ence Laboratory, University of Illinois, 1979.

9. G. T. Klincsek, Minimal triangulations of polygonal domains, Ann. Discrete Math,
9, 127-128, 1980

10. E. Melisseratos, D. Souvaine, Coping with inconsistencies: a new approach to pro-
duce quality triangulations of polygonal domains with holes, Proc. 8th Ann. ACM
Symp. on Computational Geometry, 1992, 202-211.

11. J. Ruppert, A Delaunay refinement algorithm for quality 2-dimensional mesh gen-
eration, J. Algorithms 18 (1995) 548-585.

A PTAS for a Disc Covering Problem
Using Width-Bounded Separators�

Zhixiang Chen1, Bin Fu2,3, Yong Tang4, and Binhai Zhu5

1 Dept. of Computer Science,University of Texas -Pan American, TX 78539, USA
chen@cs.panam.edu

2 Dept. of Computer Science, University of New Orleans, LA 70148, USA
3 Research Institute for Children, 200 Henry Clay Avenue, New Orleans, LA 70118

fu@cs.uno.edu
4 Dept. of Computer Science, Sun Yat-Sen University, Guangzhou 510275, China

issty@zsu.edu.cn
5 Dept. of Computer Science, Montana State University, MT 59717-3880, USA

bhz@cs.montana.edu

Abstract. In this paper, we study the following disc covering problem:
Given a set of discs of various radii on the plane, find a subset of discs to
maximize the area covered by exactly one disc. This problem originates
from the application in digital halftoning, with the best known approx-
imation factor being 5.83 [2]. We show that if the maximum radius is
no more than a constant times the minimum radius, then there exists
a polynomial time approximation scheme. Our techniques are based on
the width-bounded geometric separator recently developed in [5, 6].

1 Introduction

In real life we are always dealing with the problem of mixed technology; for
instance maintaining COBOL and JAVA compilers at the same time. It is also
not uncommon that sometimes we have to print some colored fancy images
onto a black/white tone printer. Digital-halftoning is exactly such a technology,
it converts a continuous, possibly colored image into a binary image [11, 12].
In the cluster-dot halftoning, dots form clusters whose sizes are determined by
their corresponding intensity level. Given a continuous-tone image, one computes
spatial frequency distribution by Laplacian. Each grid point is then assigned a
disc of radius reflecting the Laplacian value at the corresponding position. This
results in a set of discs of different radii. The problem is then to find a subset of
discs to maximize the area that belongs to exactly one disc.

We study the approximation algorithm for the above disc covering problem
with applications in digital halftoning [2, 3, 11, 12, 14]. Given a set of discs of
various radii, find a subset of discs from them to maximize the area covered by
exactly one disc. This seems computationally hard although there is not yet a
proof about NP-hardness. We show that if the maximum radius is no more than

� This research is supported by Louisiana Board of Regents fund under contract num-
ber LEQSF(2004-07)-RD-A-35.

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 490–503, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A PTAS for a Disc Covering Problem Using Width-Bounded Separators 491

a constant times the minimum radius, there exists a polynomial time approxi-
mation scheme. If the centers of the discs are at the grid points and the radii
are between two positive constants, there exists a constant factor approximation
which runs in almost linear time.

In [2], a polynomial time approximation algorithm was designed with ap-
proximation ratio 5.83. In their algorithm, no condition is specified that the
maximum radius is no more than a constant times the minimum radius. How-
ever, the empirical data used in [2] shows that not only such a constant stands,
it is also always relatively small (i.e., 3-5). We believe that this assumption is
practically reasonable since each disc reflects the intensity level of a local point.

Geometric separator has applications in many problems. It plays important
role when we develop divide and conquer algorithm for geometric problems.
Lipton and Tarjan [9] presented the well known geometric separator for planar
graphs. They proved that every n-vertex planar graph has at most

√
8n vertices

whose removal separates the graph into two disconnected parts of size at most
2
3n. Their 2

3 -separator was improved to
√

6n by Djidjev [4],
√

5n by Gazit [7],
and

√
4.5n by Alon, Seymour and Thomas [1]. Spielman and Teng [16] showed

a 3
4 -separator with size 1.82

√
n for planar graph.

Some other forms of the separators were studied in [10, 15]. They let each
input point be covered by a regular geometric object such as circle, rectangle, etc.
If every point on the plane is covered by at most k objects, it is called k-thick.
Some separators of size c·

√
k · n were proved in [10, 15], where c is a constant. Fu

and Wang [6] developed a method for deriving sharper upper bound separator for
grid points via controlling the distance to the separator line. They proved that
for a set of n grid points on the plane, there is a separator that has ≤ 1.129

√
n

points and each side has ≤ 2
3n points. Fu [5] introduced the concept of width-

bounded geometric separator and applied it to a class of NP-complete geometric
problems to improve their computational time from nO(

√
n) to 2O(

√
n). In this

paper we use the width-bounded geometric separator to develop a polynomial
time approximation scheme for the halftoning problem.

2 Separators on the Plane

Definition 1. For two points p1, p2 in the plane R2, dist(p1, p2) is the Euclidean
distance between p1 and p2. For a set A ⊆ R2, dist(p1, A) = minq∈A dist(p1, q).
Let P be a set of points on the plane, and w > 0 be a constant. A w-wide-
separator is determined by a line L, called the center line of the separator, on the
plane. It has two measurements for its quality of separation: (1) balance(L,P) =
max(|P1|,|P2|)

|P | , where P1 and P2 are the two subsets of P on the two sides of L;
and (2)measure(L,P, w

2), which is the number of elements of P with distance
≤ w

2 to L. The w-width separator area is all points with distance ≤ w
2 to L.

For constants 0 < b0 < 1, z0 ≥ 0, w ≥ 0, and a set of n grid points P on
the plane, a (b0, z0)-w-width-separator (for P) is a w-width separator L with
balance(L,P) ≤ b0 and measure(L,P, w

2) ≤ z0w
2

√
n.

From the definition of width-bounded separator, its quality is measured by
two numbers. One measures the balance of the separation. A well balanced sepa-

492 Zhixiang Chen et al.

rator can reduce the problem size efficiently during the application to divide and
conquer algorithm. This brings that the algorithm runs in a polynomial time.
The other number measures the number of points inside the separator area. The
small number of points in the separator area (O(

√
n)) is used to control the

accuracy of our approximation algorithm.

Theorem 1. [5, 6] Let constant w > 0 be a constant and δ > 0 be a small
constant. Let P be a set of n grid points. Then there is an O(n3) time algorithm
that finds a separator line L such that each side of L has ≤ 2

3n points from P ,
and the number of points of P with distance ≤ w to L is ≤ (4√

π
+ δ)w · √n for

all large n.

3 The Approximation Scheme

Definition 2. For constant c > 0, the input is a set of discs D1, · · · , Dn on
the plane with r(Di) ≤ c · r(Dj) for all 1 ≤ i, j ≤ n, where r(Di) is the radius
of Di. The Hc problem P is to find a subset Q ⊆ P with the maximal area
covered by exactly one disc in Q. Define opt(P) to be the subset of discs of P
in an optimal solution. The H ′

c problem P is a special Hc problem such that the
distance between every pair of disc centers in P is at least c′×r(Di) for any Di in
the P , where c′ > 0 is a fixed constant. This problem studied by [2] requires that
every center is a grid point. If the radii are between two positive constants then
it is covered by our definition. For a grid point p = (i, j) (i and j are integers)
on the plane, define grid(p) = {(x, y)|i− 1

2 ≤ x < i+ 1
2 , j−

1
2 < y ≤ j+ 1

2}, which
is a half close and half open 1 × 1 square. The net g(P) for a Hc problem P is
a set of grid points such that (1) for each point p ∈ g(P), grid(p) contains the
center for some disc in P ; and (2) for each disc D of P , center(D) ∈ grid(p) for
some point p in g(P), where center(D) is the center point of disc D. For a set
of discs Q on the plane, define s(Q) to be the size of the area covered by exactly
one disc in Q.

In the theorem below, the function fP (e) controls the number of disc centers
in the area with e grid points. The purpose of the function fP is to unify the algo-
rithms for both Hc and H ′

c problems. For an Hc problem, fP (O(1)) is up to |P |,
but for an H ′

c problem, fP (O(1)) = O(1). Our approximation scheme depends
on the algorithm to find the width-bounded separator for a set of grid points on
the plane. Theorem 1 gives O(n3) time algorithm for finding the width bounded
separator. An O(n(log n)4) time randomized algorithm for finding separator is
presented at section 4. Our Theorem 2 shows how the time of our approximation
algorithm depends on the time for the separator detection. This is why it as-
sumes there exists an O(na(logn)b) time algorithm for finding separator, where
a, b are constants.

Theorem 2. Let 0 < b0 < 1, 0 ≤ z0, and 0 < ε be constants. Let P be an Hc

problem and fP be an non-decreasing function from N to N such that |Q| ≤
fP (|g(Q)|) for every Q ⊆ P . Assume that there exists an O(na(logn)b) time

A PTAS for a Disc Covering Problem Using Width-Bounded Separators 493

algorithm for computing the (b0, z0)-O(1)-width-bounded separator for some con-

stants a ≥ 1 and b ≥ 0. Then there exists an O(fP

(
E1

ε
1

1−α

) E2

ε
1

1−α
na(logn)b+1)

time approximation algorithm to output Q ⊆ P with s(Q) ≥ (1 − ε)s(opt(P)),
where α = 0.6, E1 and E2 are constants.

Proof. We first give an overview about our method. Assume the minimum radius
of the input discs is 1. The radius of every disc of P is ≤ c. For a set of discs
P = {D1, · · · , Dn} on the plane, the net g(P) shows that the optimal solution of
P has Ω(|g(P)|). Apply a separator with width ≥ 2c. The discs on the different
sides of the separator do not intersect each other. The two sub-problems on the
left and right sides of the separator can solved independently. Our separator can
control there are only O(

√
|g(P)|) points from g(P) to stay in the separator area.

The discs on the separator area only affect the overall solution by O(
√
|g(P)|),

which does not affect its total accuracy much. Our algorithm is based on such a
divide and conquer approach by using width-bounded geometric separator.

Let ε > 0 be a constant that determines the accuracy of our approximation
algorithm. Let P be the Hc problem, which consists of a set of discs on the plane.
Select some constants: w0 = c +

√
2

2 , δ = 0.01, b1 = 1 − b0, δ1 = min(0.08, b1
4),

c2 = π(
√

2
2 + c)2 and c3 = 1

π(2
√

2+2c+
√

2
2)2

, α = 0.6, and e1 is a constant that

satisfies the inequalities:
z0w0√
e1
≤ δ1, (1)

ε(c3(b1 − 2δ1)e1) > ((b1 − 2δ1)e1)α, and (2)
c2z0w0

√
e1 ≤ δ1e

α
1 . (3)

We can choose constant E1 big enough and let e1 = E1

ε
1

1−α
. Then e1 satisfies the

conditions (1)-(3).
Algorithm
Input: a set of discs P = {D1, · · · , Dn} on the plane
Output: A subset A(P) ⊆ P with s(A(P)) ≥ (1 − ε)s(opt(P)).

If |g(P)| ≤ e1, then find A(P) = opt(P) using the brute-force method
and return A(P).

Find a 2w0-width separator center line L for g(P) such that
balance(L, g(P)) ≤ b0 and measure(L, g(P), w0) ≤ z0w0

√
|g(P)|

(see Theorem 1).
Let P0 be all the discs D of P with dist(center(D), L) ≤ c.
Let P1 be all the discs D of centers on the one side of the separator

and dist(center(D), L) > c.
Let P2 be all the discs D of centers on the other side of the separator

and dist(center(D), L) > c.
Solve P1 to get the approximate solution A(P1).
Solve P2 to get the approximate solution A(P2).
Merge the solutions for P1 and P2 to output A(P) = A(P1) ∪A(P2).

End of Algorithm

494 Zhixiang Chen et al.

Lemma 1. Every δ × δ-square has ≤ K disc centers from P in the optimal
solution, where K = 20.

Proof. Assume that opt(P) has more than K centers in a δ × δ square. Let
η = c−1

K . All of the K radii are in the range [1, c], which can be partitioned into
the union of K intervals of format [1 + (i − 1)η, 1 + iη] for i = 1, 2, · · · ,K. At
least two discs in opt(P) have radii in an interval [1 + (i− 1)η, 1 + iη] for some
i ∈ {1, 2, · · · ,K}.

Let C1 and C2 be the two discs (in opt(P)) whose centers are in the same
δ× δ-square and radii are in the same interval [1 + (i− 1)η, 1 + iη]. For a region
R, let v(R) be the area size of R. The two centers of discs C1 and C2 are
close. So are their radii. It is easy to verify that v(C1 − C2) ≤ 0.2 · v(C1) and
v(C2 − C1) ≤ 0.2 · v(C1). Let R0 ⊆ C1 be the maximal sub-region of C1 such
that every point in R0 is covered by exactly one disc in opt(P)− {C1, C2}. We
check the following two cases:

Case 1: v(R0) ≥ 0.6 · v(C1). Since C1 and C2 are in opt(P), every point
in C1 ∩ C2 is covered by at least two discs in opt(P). We have that s(opt(P)−
{C1, C2}) ≥ s(opt(P))+v(R0)−v(C1−C2)−v(C2−C1) ≥ s(opt(P))+0.6v(C1)−
0.2v(C1) − 0.2v(C1) > s(opt(P)). This contradicts that opt(P) is the optimal
solution.

Case 2: v(R0) < 0.6 · v(C1). We have that s(opt(P) − {C2}) ≥ s(opt(P)) +
(v(C1) − v(R0)) − v(C2 − C1) ≥ s(opt(P)) + 0.4v(C1) − 0.2v(C1) > s(opt(P)).
This is also a contradiction.

Lemma 2. Let P be a Hc problem. Then (1) s(opt(P)) ≤ c2|g(P)|, and (2)
c3|g(P)| ≤ s(opt(P)).

Proof. (1) For every point q in a disc of P , there is a grid point p ∈ g(P) with
dist(p, q) ≤

√
2

2 + c. Therefore, s(opt(P)) ≤ |g(P)|π(
√

2
2 + c)2. (2) We prove this

by induction. It is clearly true when |g(P)| ≤ 1. Assume it is true for |g(P)| < k.
Let k = |g(P)|. Select a grid point p ∈ g(P). Let M1 be the set of all discs D in
P such that center(D) ∈ grid(p). Let M2 be the set of all discs D′ in P such that
D′∩D �= ∅ for some D ∈M1. Let P ′ = P −M1∪M2. The problem P is adjusted
to the problem P ′. For every point p′ ∈ g(P)−g(P ′), dist(p, p′) ≤ 2(

√
2

2 +c). The
number of grid points with distance ≤ 2(

√
2

2 +c) to p is ≤ π(2
√

2+2c+
√

2
2)2 = 1

c3
.

So, we have |g(P ′)| ≥ |g(P)|− 1
c3

. For D ∈M1, s(opt(P)) ≥ s({D}∪ opt(P ′)) ≥
s(opt(P ′)) + π ≥ c3|g(P ′)|+ π ≥ c3(|g(P)| − 1

c3
) + π ≥ c3|g(P)|.

Lemma 3. The algorithm has solution with s(A(P)) ≥ (1 − ε)s(opt(P)) +
(|g(P)|)α if |g(P)| ≥ (b1 − 2δ1)e1.

Proof. We prove by induction. If (b1−2δ1)e1 ≤ |g(P)| ≤ e1, s(A(P)) = s(opt(P))
≥ (1 − ε)s(opt(P)) + (g(|P |))α by the inequality (2) and part (2) of Lemma 2.
Assume that |g(P)| ≥ e1 and let L be the center line of the 2w0-width separator
for g(P). Let P0, P1 and P2 are the sub-problems derived from P in the algorithm.

It is easy to see that s(opt(P)) ≤ s(opt(P1)) + s(opt(P2)) + s(opt(P0)).
Therefore, s(opt(P1)) + s(opt(P2)) ≥ s(opt(P)) − s(opt(P0)). Clearly, g(P0) is

A PTAS for a Disc Covering Problem Using Width-Bounded Separators 495

the subset of g(P) with distance ≤ (c +
√

2
2) ≤ w0 to L. Therefore, |g(P0)| ≤

z0w0

√
|g(P)|. By Lemma 2, s(opt(P0)) ≤ c2|g(P0)| ≤ c2 · z0w0

√
|g(P)|.

Let G1 (G2) be the set of grid points of g(P) on the left (right resp.) of the
center line L of the separator. Let S be the set of grid points of g(P) inside
the separator area (with distance ≤ w0 to L). Thus, |S| ≤ z0w0

√
|g(P)|. We

have |G1|, |G2| ≤ b0|g(P)| (Notice that b0 is the balance upper bound for the
separator).

For each p ∈ g(P1), there exists a disc D ∈ P1 with dist(p, center(D)) ≤
√

2
2 .

Since center(D) is on one side of L, p can not stay on the other side of L and has
distance more than

√
2

2 (≤ w0) to L. Thus, p ∈ G1∪S. Therefore, g(P1) ⊆ G1∪S.
For a grid point q ∈ G1 − S, there exists D ∈ P such that center(D) ∈ grid(q).
Since q has distance > w0 to L, center(D) has distance > w0−

√
2

2 = c to L. So,
D �∈ P0 ∪ P2, which implies D ∈ P1. We have G1 − S ⊆ g(P1). We have proven
that G1 − S ⊆ g(P1) ⊆ G1 ∪ S. Similarly, G2 − S ⊆ g(P2) ⊆ G2 ∪ S. The set
G1 ∪ G2 contains all of the grid points in g(P) except those in the line L. So,
g(P) ⊆ G1 ∪G2 ∪ S.

Thus, we have the following inequalities: |g(P)| ≤ |G1| + |G2| + |S|; |G1| ≤
b0|g(P)|; |G2| ≤ b0|g(P)|; |G1| − |S| ≤ |g(P1)| ≤ |G1| + |S|; and |G2| − |S| ≤
|g(P2)| ≤ |G2|+ |S|. Since |S|

|g(P)| ≤
z0w0

√
|g(P)|

|g(P)| ≤ z0w0√
|g(P)|

≤ z0w0√
e1
≤ δ1 (by (1)),

we have

|g(P1)| ≥ (b1 − 2δ1)|g(P)| (4)
|g(P2)| ≥ (b1 − 2δ1)|g(P)| (5)

|g(P1)|+ |g(P2)| ≥ (1− 3δ1)|g(P)| (6)

By our inductive assumption, (4) and (5), s(A(P1)) ≥ (1 − ε)s(opt(P1)) +
(|g(P2)|)α, and s(A(P2)) ≥ (1− ε)s(opt(P2))+ (|g(P2)|)α. Let g(P1)| = β1|g(P)|
and |g(P2)| = β2|g(P)|. We have β1 + β2 ≥ 1 − 3δ1 and β1, β2 ≥ b1 − 2δ1. By
the standard method in calculus, βα

1 +βα
2 is minimal when β1 = β2 = 1−3δ1

2 . So,
βα

1 + βα
2 ≥ 2(1−3δ1

2)α = 21−α(1 − 3δ1)α > 21−α(1 − 3δ1α) > 1.12 > 1 + δ1. So,
|g(P1)|α + |g(P2)|α > (1 + δ1)|g(P)|α. Since |g(P)| ≥ e1, |g(P1)|α + |g(P2)|α −
c2z0w0

√
|g(P)| > |g(P)|α by inequality (3). Therefore, s(A(P)) ≥ s(A(P1)) +

s(A(P2)) ≥ (1 − ε)(s(opt(P1)) + s(opt(P2)) + (|g(P1)|)α + (|g(P2)|)α ≥ (1 −
ε)(s(opt(P))− s(opt(P0)) + (|g(P1)|)α + (|g(P2)|)α ≥ (1− ε)s(opt(P))− c2 · z0 ·
w0

√
|g(P)|+ (|g(P1)|)α + (|g(P2)|)α ≥ (1− ε)s(opt(P)) + (|g(P)|)α.

Lemma 4. The optimal solution opt(P) can be computed in O(|P |
2|g(P)|K

δ2) time
by the brute force method.

Proof. For each disc D in P , center(D) ∈ grid(q) for some q ∈ g(P). All centers
of discs in P stay in the area of size ≤ |g(P)|. By Lemma 1, opt(P) has ≤ 2|g(P)|K

δ2

discs. The lemma follows since each disc in the optimal solution has≤ |P | choices.

Lemma 5. The total time of the algorithm is O(M · na(log n)b+1), where M =

fP (e1)
2e1K

δ2 .

496 Zhixiang Chen et al.

Proof. Let m = |g(P)| and T (m) be the time complexity of the algorithm.
Clearly, m ≤ n, where n = |P |. Assume that C4 is a positive constant such
that finding the separator takes ≤ C4m

a(logm)b steps. By Lemma 4 and |P | ≤
f(|g(P)|), T (m) ≤M for m ≤ e1. We have T (m) ≤ C5MT (γ1m)+C5MT (γ2m)
+ C4m

a(logm)b, where 0 ≤ γ1, γ2 ≤ b0, γ1 + γ2 ≤ 1, and C5 is a constant that
is selected big enough so that we have following:

T (m) ≤ C5MT (γ1m) + C5MT (γ2m) + C4m
a(logm)b

≤ C5M(γ1m)a(log γ1m)b+1 + C5M(γ2m)a(log γ2m)b+1 + C4m
a(logm)b

≤ C5Mma(logm)b+1.

Since e1 = E1

ε
1

1−α
, we let E2 = 2E1K

δ2 . The theorem follows from Lemma 5 and

Lemma 3.

Corollary 1. Let 0 < b0 < 1, 0 ≤ z0, and 0 < ε be constants. Let P be an Hc

problem. Assume that there exists an O(na(logn)b) time algorithm for computing
the (b0, z0)-O(1)-width-bounded separator with constants a ≥ 1 and b ≥ 0. Then

there exists an O((n
E2

ε
1

1−α)na(logn)b+1) time approximation algorithm to output
Q ⊆ P with s(Q) ≥ (1− ε)s(opt(P)), where α = 0.6, and E2 is a constant.

Corollary 2. Let 0 < b0 < 1, 0 ≤ z0, and 0 < ε be constants. Let P be an H ′
c

problem. Assume that there exists an O(na(logn)b) time algorithm for computing
the (b0, z0)-O(1)-width-bounded separator with constants a ≥ 1 and b ≥ 0. Then
there exists an O(na(log n)b+1) time approximation algorithm to output Q ⊆ P
with s(Q) ≥ (1 − ε)s(opt(P)).

4 A Randomized Algorithm to Find the Separator

From corollary 1 and corollary 2, the separator algorithm affects the speed of
our approximation. In this section, we will give an O(n(log n)4)-time randomized
algorithm for finding the width-bounded separator on the plane. We will use
the following well known fact that can be easily derived from Helly theorem
(see [8, 13]).

Lemma 6. For an n-element set P in d-dimensional space, there is a point q
with the property that any half-space that does not contain q, covers at most

d
d+1n elements of P . Such a point q is called a centerpoint of P . The point q is
called 2

3 -center at the case d = 2.

Let c ≥ 3 be a constant. For a set of n grid points P , we first sort them
by their x-coordinates. Now let (x1, y1), (x2, y2), · · · , (xn, yn) be all points of P
and their x-coordinates are sorted by increasing order: x1 ≤ x2 ≤ · · · ≤ xn. Let
i1, · · · , ik be the positions such that |xij −xij+1| ≥ nc−1 (i = 1, · · · , k). Partition
P into P1, · · · , Pk, where Pt = {(xj , yj)|it ≤ j < it+1)}(t = 1, 2, · · · , k). Since
|P | = n, |xj1 − xj2 | ≤ n · nc−1 = nc for every two points (xj1 , yj1), (xj2 , yj2)

A PTAS for a Disc Covering Problem Using Width-Bounded Separators 497

in the same set Pt. On the other hand, |xj1 − xj2 | ≥ nc−1 for every two points
(xj1 , yj1), (xj2 , yj2) in the different sets Pt1 and Pt2 , respectively. We act the
same on each Pi by their y-coordinates. Then P is partitioned into ∪i,jPi,j such
that each Pi,j is inside an square of size nc × nc, and the distance between two
points in two different subsets sets Pi1,j1 and Pi2,j2 is at least nc−1. This can be
done in O(n log n) steps. The gap nc−1 between two different Pi1,j1 and Pi2,j2

is sufficient for the divide and conquer application for the disc covering problem
in the last section since each disc radius is between 1 and another constant. We
only design the algorithm a set of n grid points set P in an nc × nc region. It is
not meaningful to consider the width w ≥

√
n as our upper bound w

√
n is even

larger than the total number of points.

Definition 3. Let P be a set of grid points on the plane. A 2
3 -boundary is a

line L such that the number of points of P on one side of L is in the interval
(2
3 |P |,

2
3 |P | + 1]. For a 2

3 -boundary L, if L′ is another 2
3 -boundary for P such

that L and L′ are parallel each other, and there are ≥ 1
3 |P | points between them,

we call L and L′ are a pair of 2
3 -boundaries. For a line L and vector v, if L can

be expressed by the equation p(t) = p0 + t ·v, then we say that the line L is along
direction v. A set of vectors v1, v2, · · · , vm is called a m-star vectors if the angle
between vi and vi+1 is π

m for i = 1, 2, · · · ,m − 1. If L1, L2, · · · , Lm are m lines
through a same point and each Li is along vi, we call L1, L2, · · · , Lm m-star for
the m-star vectors v1, v2, · · · , vm.

It is easy to see that each 2
3 center point is between every pair of 2

3 -boundaries.
Assume that P is a set of n grid points in an nc×nc area S, where c is a constant.
The function f(L, S, P) computes the number of points of P on the two sides of
the line L. For a vector v, if pipj is not parallel to v for any two points pi �= pj

in P , it always exists a pair of 2
3 -boundaries along the direction v. If the angle

between v and pipj is > 1
n100 for any pi �= pj in P , such a pair of boundaries can

be found by binary search via checking the number of points of P on two sides of
each line, which can be done by calling functin f(L, S, P). It only checks O(log n)
lines along the vector v. The idea of our algorithm is to find a m-star such that
each line of the m-star is between a pair of 2

3 -boundaries. Therefore, each of
them gives a balanced partition for the point set P . With high probability, each
line also has angle > 1

n100 with any pipj for every pi �= pj in P . Select one of the
m-lines L that has the least number of points from P to close L.

4.1 Intersection Between a Polygon and a Strip Area

We use a linked list to store the vertices of a convex polygon in counterclockwise
order. A strip area is an area between two parallel lines on the plane. For two
parallel lines L1 and L2 on the plane, we use [L1, L2] to represent the strip region
between L1 and L2. Each node of the linked list holds a vertex of the polygon.
Throughout the algorithm, we often compute the intersection of a strip and a
polygon. If the polygon has m nodes, such an intersection can be computed
in O(m) steps. For each line segment in the polygon, we check if there is a

498 Zhixiang Chen et al.

intersection between it and the strip boundary lines. Record the area of the
polygon inside the strip area.

4.2 Count the Number of Points on the Two Sides of a Line

Assume P is a set of n points in nc×nc square S0. The square S0 is partitioned
into 4 squares S1, S2, S3, S4 of the same size. Each Si is partitioned into smaller
and smaller squares until the square size is less than 1 × 1. We obtain a tree of
squares which has the largest square S0 as root and all the squares in the same
level have the same size. The depth of the tree is O(log n). The squares in this
tree are called simple square. Each simple square S is assigned a counter denoted
by count(S), which counts the number of points in it.

Lemma 7. For a set of grid points P of n points on the plane, there is an
O(n log n)-time algorithm to computer count(S) for all of those simple squares
S that contains at least one point.

Proof. For each square S with at least one point from the set P , set up a counter
for it. For each point p, start from the bottom-most square which contains p ∈ P ,
increase the counter by one for each simple square which contains p. Since each
point only has O(log n) simple squares that contain it, it takes O(n log n) steps
to set up those counters.

Algorithm
Input: a line L, a square S0 of size nc×nc, a set of n grid points P inside S0.
Output: n1 and n2 that are the numbers of points of P on the left side and

the right side of L, respectively.
f(L, S0, P)

n1 = n2 = 0;
for the 4 sub-squares S1, S2, S3, S4 of S0

if (Si ∩ L = ∅) then
if Si is on the left of L, then n1 = count(Si) + n1.
else n2 = count(Si) + n2.

let Si1 , · · · , Sik
(k ≤ 4) be all squares from S1, S2, S3, S4 that

Sij ∩ L �= ∅ and count(Sij) > 0 (j = 1, · · · , k).
(nij ,1, nij ,2) = f(L, Sij) for (j = 1, · · · , k).
n1 = n1 + (nj1,1 + · · ·+ njk,1) and n2 = n2 + (nj1,2 + · · ·+ njk,2)

return (n1, n2).
End of Algorithm

Lemma 8. The running time for f(L, S0, P) is O(t), where t is the number of
simple squares s ∈ S0 that touch L and have count(s) > 0.

Proof. Going through the recursion, we only go to the next level of squares that
touch the line L.

A PTAS for a Disc Covering Problem Using Width-Bounded Separators 499

4.3 The Algorithm and Its Time Complexity

Definition 4. For two lines L1 and L2, share(L1, L2) is the number of simple
squares that intersect both L1 and L2.

Let δ > 0 be a small constant and m = c0
√
n for some constant c0 > 0,

which will be fixed at the end of the proof for Lemma 15. The algorithm below
finds the separator for a set of n grid points in nc × nc region.

Algorithm
select a random 2D m-star vectors v1, v2, · · · , vm

find the pairs of 2
3 -boundaries (L1,1, L1,2) and (L2,1, L2,2) along

the directions v1 and v2 respectively
let S be the intersection of two strips [L1,1, L1,2] and [L2,1, L2,2]
for (i = 3 to m) do

find the pair of 2
3 -boundaries (Li,1, Li,2) along direction vi

let S be the intersection between S and the strip region [Li,1, Li,2]
m0 = ∞
select a point p ∈ S
for i = 1 to m

let Li be a line through p
if (measure(Li, P, a) < m0) then m0 = measure(Li, P, a) and

L = Li

return L
End of Algorithm

Lemma 9. During the first loop, S is an nonempty polygon all the time.

Proof. The intersection between a convex polygon and a strip area is still convex
polygon. By Lemma 6, S is nonempty all the time.

Lemma 10. For two lines L1 and L2 with angle 0 < θ ≤ π
2 between them, they

share at most c1 log n
sin θ simple squares for some constant c1.

Proof. Let p be the intersection point of the two lines L1 and L2. If s1 and s2 are
intersections between L1, L2 and a t× t square respectively, then dist(s1, s2) ≤√

2t. It is easy to see that dist(s1, p) ≤
√

2t
sin θ and dist(s2, p) ≤

√
2t

sin θ . Every point
q in a t × t square that touches both L1 and L2 has distance ≤

√
2t

sin θ +
√

2t
to p. Furthermore, the point q has distance ≤

√
2t to the middle line (through

p) between L1 and L2 . Since those t × t squares do not overlap one other,

the total number of them is ≤ 2(
√

2t
sin θ +

√
2t)2

√
2t

t2 = 4
√

2(
√

2
sin θ +

√
2) ≤ 16

sin θ . For
some constant c3, there are at most c3 logn possible different sizes for the simple
squares. Thus, L1 and L2 can share at most 16c3 log n

sin θ simple squares.

Lemma 11. Let v1, v2, · · · , vm be a m-star vectors. Each vector vi has at most
k lines along it (the line set along direction vi is denoted by L(vi)). Then for
each line Lj in L(vj),

∑m
i=1,i�=j

∑
Li∈L(vi)

share(Lj, Li) ≤ c4k ·m·(logm)·(log n)
for some constant c4 > 0.

500 Zhixiang Chen et al.

Proof. For Li ∈ L(vi), the angle between Li and Lj is π|i−j|
m . By Lemma 10,

share(Lj , Li) ≤ c1 log n

sin
|i−j|π

m

≤ c2m log n
π|i−j| for some constant c2. Therefore,

m∑
i=1,i�=j

∑
Li∈L(vi)

share(Lj , Li) ≤
m∑

i=1,i�=j

∑
Li∈L(vi)

c2m logn
π|i− j| ≤

m∑
i=1,i�=j

kc2m logn
π|i− j|

≤ kc2m logn
π

m∑
i=1,i�=j

1
|i− j| <

2kc2m logn
π

m∑
i=1

1
i
≤ c4 · k ·m · (logm) · (logn),

where c4 is a constant > 2c2
π .

Lemma 12. Let θ ≤ π
4m . Let M1, · · · ,Mt be t fixed line. Let L1, · · · , Lm be the m

lines along the m directions in a random m-star vectors v1, · · · , vm, respectively.
Then with probability ≤ 4θ·m·t

π , one of M1,M2, · · · ,Mt has angle ≤ θ with some
line from L1, · · · , Lm.

Proof. We assume that the vector v1 has an angle between 0 to π
m with x-axis.

Each Mj can have angle ≤ θ with at most one line among L1, · · · , Lm. For a line
Li with angle to x-axis between kπ

m and (k+1)π
m , it has probability ≤ 2θ

π
m

= 2θm
π

to have angle ≤ θ with Mj . Therefore, the probability is ≤ 4θm
π · t to have one

line Mi ∈ {M1, · · · ,Mt} such that that Mi has angle ≤ θ with one of the vectors
L1, L2, · · · , Lm.

Lemma 13. Let v be a vector and P be a set of n grid points in a nc×nc. The
vector v has angle ≥ θ with any line pipj for every pi �= pj in P . It generate
O(log n + log 1

θ) lines L along v (to query f(L, S0, P)) to find out a pair of 2
3

boundaries at direction v.

Proof. We assume that v is along the direction of y-axis. For each point p on the
plane, let p(x) be the x-coordinate of p. Since the angle between y-axis and pipj

is ≥ θ and dist(pi, pj) ≥ 1, we have |p(xi)−p(xj)| ≥ sin θ. Let L1 and L2 be two
vertical lines of distance ≤ nc such that all points of P are between them. Let
L be the middle vertical lines between L1 and L2. Let (n1, n2) = f(L, S0, P).
If n1 < n

3 , then let L1 = L. Otherwise, let L2 = L. Repeat the binary search
until one 2

3 -boundary line is found. After O(log n + log 1
θ) queries the function

f(L, S0, P), the distance between two lines L1 and L2 is < sin θ.

Lemma 14. Let v1, v2, · · · , vm be a random m-star vectors. Let h0 > 2 be a
constant and θ = π

4mh0 . If for every two points pi, pj ∈ P , pipj has angle ≥ θ
with vk(k = 1, · · · ,m). Then the algorithm spends O(n(log n)4) for finding the
separator.

Proof. In order to compute measure(L,P, a), we let L′ and L′′ be two lines on
the left and right sides of L respectively, and both of them are parallel to L.
Furthermore, both L′ and L′′ have distance a to L. Let (n′

1, n
′
2) = f(L′, S0, a)

and (n′′
1 , n

′′
2) = f(L′′, S0, a). Since all points of P with distance ≤ a to L are

between L′ and L′′, measure(L,P, a) = n− n′
1 − n′′

2 .

A PTAS for a Disc Covering Problem Using Width-Bounded Separators 501

Let L(vi) be the set of all lines L along vi that are used to query the function
f(L, S0, P) in the algorithm. The set L(vi) includes the lines (along vi) for
finding the the pair of 2

3 -boundaries along the vi and also the line L′
i and L′′

i

for computing measure(Li, P, a). It is easy to see that the computational time of
the algorithm is propositional to the number times that the lines in ∪m

i=1L(vi)
touch the simple squares s with count(s) > 0.

For a square s, assume s is touched by the lines in U1 ∪ U2 · · ·Um, where
Ui ⊆ L(vi) (i = 1, · · · ,m). If U1 = U2 = · · · = Um = ∅, s is called of type
0. If there exists only one i (1 ≤ i ≤ m) with Ui �= ∅, s is called of type 1.
Otherwise, s is of type 2 (there exist i �= j with Ui �= ∅ and Uj �= ∅). For
each vi, |L(vi)| ≤ c5 logn for some constant c5. This is because that L(vi) is
generated during the binary search for a pair of 2

3 -boundaries and the set L(vi)
has O(log n) lines the along vi (by Lemma 13 with m = O(

√
n) and θ = 1

mO(1)).
Define touch(s) to be the number of lines in ∪m

i=1L(vi) that intersects the simple
square s.

There are only O(n log n) simple squares s that has points in P (count(s) >
0). Since |L(vi)| ≤ c5 logn,

∑
s is of type 1 and count(s) > 0 touch(s)

= O(n(log n)2). For the set of of all type 2 simple squares,∑
s is of type 2 and count(s) > 0

touch(s)

≤ 2
m∑

j=1

∑
Lj∈L(vj)

(
m∑

i=1,i�=j

∑
Li∈L(vi)

share(Lj , Li))

≤ 2
m∑

j=1

∑
Lj∈L(vj)

c5 · logn · c4 ·m · (logm)(logn)(by Lemma 11 with k ≤ c5 logn)

≤ 2| ∪m
j=1 L(vj)| · c5 · logn · c4 ·m · (logm)(logn)

≤ 2m · (c5 logn) · c5 · c4 ·m · (logn)3 = O(n · (log n)4).

Combining the two cases above, we conclude that∑
s is a simple square

touch(s)

=
∑

s is of type 0
touch(s) +

∑
s is of type 1 and count(s) > 0

touch(s) +

∑
s is of type 2 and count(s) > 0

touch(s)

= 0 +O(n log n)2 +O(n(log n)4) = O(n(log n)4).

Lemma 15. Let L1, L2, · · · , Lm be a m-star through the same point o. There is
a line Li such that P has ≤ (4a√

π
) ·
√
n + δ

√
n grid points from P with distance

≤ a to Li.

502 Zhixiang Chen et al.

Proof. For a grid point p, the number of lines that p has≤ a distance to them is≤
2 arcsin a

dist(p,o) ·
m
π +1. The total number of cases is T =

∑n
i=1(2 arcsin a

dist(pi,o) ·
m
π + 1) = 2m

π

∑n
i=1(arcsin a

dist(pi,o)) + n. We present an upper bound for∑n
i=1(arcsin a

dist(pi,o)) by using the method as [6].
Let ε > 0 be a small constant which will be determined later. Select r0 to be

large enough such that for every point p with dist(o, p) ≥ r0, arcsin a
dist(o,p) <

(1 + ε) a
dist(o,p) and 1

dist(o,p′) <
1+ε

dist(o,p) for every point p′ with dist(p′, p) ≤
√

2
2 .

Let P1 be the set of all points p in P such that dist(o, p) < r0. The num-
ber of grid points in P1 is no more than π(r0 +

√
2

2)2. For each point p ∈ P1,
arcsin a

dist(o,p) ≤
π
2 . Let r be the minimum radius of a circle C with center

at o and contains n grid points. Let r′ = r +
√

2
2 . The circle C′ of radius r′

contains all the 1 × 1 unit grid squares with center at points of P . There-
fore,

∑n
i=1 arcsin a

dist(pi,o) =
∑

p∈P1
arcsin a

dist(p,o) +
∑

p∈P−P1
arcsin a

dist(p,o) ≤∑
p∈P1

π
2 +

∑
p∈P−P1

arcsin a
dist(o,p) <

π2

2 (r0 +
√

2
2)2 +

∑
p∈P−P1

(1+ε)a
dist(o,p)

≤ π2

2 (r0+
√

2
2)2+a(1 + ε)2

∫ ∫
C′

1
dist(o,p)dxdy = a(1 + ε)2

∫ 2π

0

∫ r′

0
ρ
ρdρdθ + π2

2 (r0+
√

2
2)2 = 2aπ(1 + ε)2r′ + π2

2 (r0 +
√

2
2)2.

It is easy to verify that r ≤ 1√
π

√
n + 4

√
2 (see Lemma 9 in [6]). Therefore,

there is a line Li that has ≤ T
m ≤

2m
π (2aπ(1+ε)2r′+ π2

2 (r0+
√

2
2)2)+n

m ≤ (4a√
π
) ·
√
n +

δ
√
n grid points from P with distance ≤ a if ε is selected small enough and c0

is big enough.

Theorem 3. For constant a > 0 and small constant δ > 0, there is an
O(n(log n)4)-time randomized algorithm for finding a-width separator for a set of
n grid points set P in a nO(1) × nO(1) region such that each side has ≤ 2

3 |P |+ 1
points of P , and the number of points with distance to the center line of the
separator is ≤ (4a√

π
) ·
√
n+ δ

√
n.

Proof. Let θ = π
4mh0 for constant h0 > 2. By Lemma 12, it has probability

≥ 1− 1
mh0−1 that for every two points pi, pj ∈ P , the line pipj has angle ≥ θ with

any vk among the random m-star v1, · · · , vm. By Lemma 14, the computational
time is O(n(log n)4). By Lemma 15, we can find a line Li that satisfies the
requirements of the theorem.

This theorem implies the corollary below by combining with corollary 2.

Corollary 3. Let ε > 0 be a constant and P be a H ′
c problem. There exists an

O(n(log n)5) time randomized approximation algorithm to output Q ⊆ P with
s(Q) ≥ (1− ε)s(opt(P)).

Acknowledgement

We would like to thank the anonymous referees from COCOON’05 for their
helpful comments.

A PTAS for a Disc Covering Problem Using Width-Bounded Separators 503

References

1. N. Alon, P. Seymour, and R. Thomas, Planar Separator, SIAM J. Discr. Math.,
7(2), (1990) 184-193.

2. T. Asano, P. Brass, and S. Sasahara, Disc covering problem with application to
digital halftoning, International Conference on Computational Science and Appli-
cations, Assisi, Italy, May 14-17, 2004, Proceedings, Part III. Lecture Notes in
Computer Science 3045, Springer 2004, pp. 11-21.

3. T. Asano, T. Matsui, and T. Tokuyama, Optimal roundings of sequences and
matrices, 3(7), Nordic Journal of Computing, 2000, pp. 241-256.

4. H.N. Djidjev, On the problem of partitioning planar graphs, SIAM Journal on
Discrete Mathematics, 3(2) June, 1982, pp. 229-240.

5. B. Fu, Theory and Application of Width Bounded Geometric Separator, Electronic
Colloquium on Computational Complexity 2005, TR05-13.

6. B. Fu and W. Wang, A 2O(n1−1/d log n)-time algorithm for d-dimensional protein
folding in the HP-model, In proceedings of 31st International Colloquium on Au-
tomata, Languages and Programming, July 12-26, 2004, pp.630-644.

7. H. Gazit, An improved algorithm for separating a planar graph, manuscript, USC,
1986.

8. R. Graham, M. Grötschel, and L. Lovász, Handbook of combinatorics (volume I),
MIT Press, 1996

9. R. J. Lipton and R. Tarjan, A separator theorem for planar graph, SIAM J. Appl.
Math. 36(1979) 177-189.

10. G.L. Miller, S.-H. Teng, and S. A. Vavasis, An unified geometric approach to graph
separators. In 32nd Annual Symposium on Foundation of Computer Science, IEEE
1991, pp. 538-547.

11. V. Ostromoukhov, Pseudo-random halftone screening for color and black & white
printing, Proceedings of the 9th congress on advances in non-impact printing tech-
nologies, Yohohama, 1993, pp. 579-581.

12. V. Ostromoukhov and R. D. Hersch, Stochastic clustered-dot dithering, Journal of
electronic imaging, 4(8), 1999, pp. 439-445.

13. J. Pach and P.K. Agarwal, Combinatorial Geometry, Wiley-Interscience Publica-
tion, 1995.

14. S. Sasahara and T. Asano, Adaptive cluster arrangement for cluster-dot halftoning
using bubble packing method, Proceeding of 7th Japan joint workshop on algo-
rithms and computation, Sendai, July 2003, pp. 87-93.

15. W. D. Smith and N. C. Wormald, Application of geometric separator theorems,
FOCS 1998, 232-243.

16. D. A. Spielman and S. H. Teng, Disk packings and planar separators, 12th Annual
ACM Symposium on Computational Geometry, 1996, pp.349-358.

Efficient Algorithms for Intensity Map Splitting
Problems in Radiation Therapy�

Xiaodong Wu

Department of Electrical and Computer Engineering
Department of Radiation Oncology

The University of Iowa
Iowa City, IA 52242, USA
xiaodong-wu@uiowa.edu

Abstract. In this paper, we study several interesting intensity map
splitting (IMSp) problems that arise in Intensity-Modulated Radiation
Therapy (IMRT), a state-of-the-art radiation therapy technique for can-
cer treatments. In current clinical practice, a multi-leaf collimator (MLC)
with a maximum leaf spread is used to deliver the prescribed intensity
maps (IMs). However, the maximum leaf spread of an MLC may require
to split a large intensity map into several abutting sub-IMs each being
delivered separately, which results in prolonged treatment time. Few IM
splitting techniques reported in the literature has addressed the issue of
treatment delivery efficiency for large IMs. We develop a unified approach
for solving the IMSp problems while minimizing the total beam-on time
in various settings. Our basic idea is to formulate the IMSp problem as
computing a k-link shortest path in a directed acyclic graph. We care-
fully characterize the intrinsic structures of the graph, yielding efficient
algorithms for the IMSp problems.

Keywords: Intensity map splitting, k-link shortest paths, Algorithms,
IMRT, Computational Medicine

1 Introduction

The intensity map splitting (IMSp) problems that we study in this paper arise
in Intensity-Modulated Radiation Therapy (IMRT) [19], a state-of-the-art radi-
ation therapy technique for cancer treatments. IMRT aims to deliver a highly
conformal radiation dose to a target tumor while sparing the surrounding nor-
mal tissues. The quality of IMRT crucially depends on the ability to accurately
and efficiently deliver the prescribed dose distributions of radiation, commonly
called intensity maps (IMs). An intensity map is specified by a set of nonnegative
integers on a 2-D grid (see Figure 1(a)). The number in a grid cell indicates the
amount (in unit) of radiation to be delivered to the body region corresponding
to that cell.
� This research was supported in part by a faculty start-up fund from the University

of Iowa, Iowa City, IA 52242, USA. Part of this work was done at the Department
of Computer Science, the University of Texas - Pan American, Edinburg, TX 78541.

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 504–513, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Efficient Algorithms for Intensity Map Splitting Problems 505

One of the most advanced tools today for delivering IMs is the multileaf
collimator (MLC) [19]. An MLC has multiple pairs of tungsten leaves of the
same rectangular shape and size (see Figure 1(f)). The two opposite leaves of
each pair are aligned to each other. The leaves can move left and right to form
(say) an y-monotone rectilinear region (i.e., monotone to the y-axis), called an
MLC-aperture. The cross-section of a cylindrical radiation beam (generated by a
radiotherapy machine) is shaped by this MLC-aperture to deliver certain units
of radiation to (a portion of) an IM. We associate that MLC-aperture with an
integer representing the amount of radiation delivered by it. The mechanical
constraints of the MLC limit what kinds of aperture shapes are allowed to be
used [19]. One such constraint is called the no-interleaf collision: The distance
between two opposite leaves of the neighboring pairs must be ≥ a given sepa-
ration value δ (e.g., δ = 1cm). For example, the Elekta MLC is subject to the
no-interleaf collision constraint, while the Varian MLC allows interleaf collision.
Another common constraint is called the maximum leaf spread: The two leaves
of the same pair have an opening ≤ a given threshold Δ (e.g., Δ = 14.5cm). Ge-
ometrically, the maximum leaf spread means the rectilinear y-monotone polygon
corresponding to each MLC-aperture has a maximum horizontal “width” ≤ Δ.

(f)

Fig. 1. (a) An intensity map A (bottom) and the corresponding 3-D IM mountain (top).
(b) – (e) Four MLC-apertures Sk’s (bottom) and the corresponding plateaus (top) of
a unit height for building the 3-D IM mountain in (a). (f) A multileaf collimator.

One of the most popular IMRT approaches for delivering IMs using an MLC
is the “step-and-shoot” technique [6, 19, 20]. Mathematically, the “step-and-
shoot” delivery planning can be viewed as the following segmentation problem:
Given an intensity map A defined on a 2-D m × n grid, decompose A into the
form of A =

∑κ
k=1 αkSk, where Sk is a special 0-1 matrix specifying an MLC-

aperture, αk is the amount of radiation delivered through Sk (called the height
of Sk), and κ is the number of MLC-apertures used to deliver A (see Figure
1(a)-(e)). (The reader is referred to [2, 5, 8, 20] for more details on the step-and-
shoot IMRT technique.) Intuitively, one may view the SLS problem as playing
the following game: An IM is a 3-D “mountain” made of unit cubes (Figure 1(a)).
Delivering an MLC-aperture can be viewed as creating a plateau whose height
is the amount of radiation delivered. Then, one likes to “build” this mountain
by stacking up the minimum number of plateaus with minimum total height
(Figures 1(b)–(e)). It is important to note that each plateau, like the 3-D IMB
mountain, is not one whole “rigid” object, i.e., it is made of unit cubes as well.

506 Xiaodong Wu

There are two major measures for the quality of the step-and-shoot delivery:
(1) the beam-on time which is given by

∑κ
k=1 αk, and (2) the number κ of the

MLC-apertures used in the delivery plan. The beam-on time is the actual time
that the patient is exposed under the radiation beams. Minimizing beam-on
time is crucial to reduce the patient’s risk under irradiation and to reduce the
delivery error caused by the tumor motion [2]. On the other hand, minimizing
the number of MLC-apertures (hence, reducing the treatment time of each IM)
is also important because it not only lowers the treatment cost for each patient
but also enables hospitals to treat more patients [5].

In current clinical radiation therapy, large intensity maps frequently occur
[7, 9, 16]. Due to the maximum leaf spread constraint of the MLC design, a
large IM needs to be split into several abutting sub-IMs each being delivered
separately using the step-and-shoot delivery technique. This results in prolonged
treatment times (longer beam-on times and more MLC-apertures). Although
the step-and-shoot delivery has received a great deal of attention from several
research communities, such as medical physics [3, 6, 14, 15, 17, 18, 20], computer
science [4, 5, 11, 12], and operations research [1, 2, 8], few IM splitting techniques
reported in the literature has addressed the issue of treatment delivery efficiency
for large IMs. To our best knowledge, Kamath et al. [13] first gave a quadratic
time algorithm to split a large IM into at most three sub-IMs (thus restricting
the maximum size of a large IM) while minimizing the total beam-on time.

In this paper, we study the following intensity map splitting (IMSp)
problem: Given an m × n IM A and an integral maximum leaf spread Δ > 0,
split A into a set of abutting sub-IMs {M1,M2, . . . ,M
 n

Δ �} each Ai with size of
m × ni (i = 1, 2, . . . , κ = � n

Δ�), such that: (1) ni ≤ Δ, (2)
∑κ

i=1 ni = n; and
(3) the total beam-on time for delivering those sub-IMs is minimized. Note that
κ = � n

Δ� is the minimum number of sub-IMs needed for delivering A subject to
the maximum leaf spread constraint.

We develop a unified approach for solving the IMSp problem in various set-
tings. In our solution, the IMSp problem is formulated as computing a k-link
shortest path on a directed acyclic graph (DAG) transformed from the given
IM. By judiciously characterizing the intrinsic structures, we compute the k-
link shortest path without explicitly constructing the graph and integrate the
computation of the beam-on times for sub-IMs into our k-link shortest path
computation, which yields an improvement of the running time by at least an
order of magnitude. Our main results in this paper are summarized as follows.

– An optimal O(n) time algorithm for solving the IMSp problem with m = 1
(i.e., using only one MLC leaf pair for the IM delivery).

– An O(mnΔ) time algorithm for solving the IMSp problem in which the
interleaf collisions are allowed.

– An O(m2nΔ) time algorithm for solving the IMSp problem subject to the
no-interleaf collision constraint.

Efficient Algorithms for Intensity Map Splitting Problems 507

2 Reformulation of the IMSp Problem

Given an instance of the IMSp problem, an m×n IM A and an integer Δ > 0 (the
maximum leaf spread), we define a weighted directed acyclic graph G = (V,E)
for A, as follows.

The vertices of G are defined as V = {s, t} ∪ {vj : 0 ≤ j < n}. Each column
A[∗, j] = {A[0, j], A[1, j], . . . , A[m− 1, j]} (j = 0, 1, . . . , n− 1) of A corresponds
to exact one vertex vj in G. For every j ∈ {0, 1, . . . , n − 2}, vertex vj has a
directed edge in E to each vertex in {vk : j < k ≤ min{j + Δ,n − 1}} (i.e.,
vj connects to its following Δ vertices). Note that every edge e = (vj , vj′) ∈ E
(j < j′) is associated with a sub-IM of A, denoted by A[∗, j + 1 .. j′], which
consists of all rows of A from column j+1 to column j′. Let Tbot(A′) denote the
minimum beam-on time for delivering the IM A′. The weight w(e) of the edge
e = (vj , vj′) is Tbot(A[∗, j + 1 .. j′]), which can be computed using algorithms in
[8, 10]. From vertex s, we introduce a directed edge (s, vj) ∈ E to every vertex vj

for 0 ≤ j < Δ and the weight of the edge equals to Tbot(A[∗, 0 .. j]). Meanwhile,
each vertex vj with n − Δ ≤ j < n − 1 has a directed edge to vertex t whose
weight is the minimum beam-on time for delivering the sub-IM A[∗, j+1 .. n−1].

Obviously, G = (V,E) thus constructed from A is a weighted directed acyclic
graph (DAG). We next show that a κ-link shortest path (κ = � n

Δ�) from s to t
in G specifies an optimal splitting of A. Note that each κ-link s-to-t path p in
G is of the form of s→ vj0 → vj1 → . . .→ vjκ−2 → t; further, p defines a set of
κ abutting sub-IMs A = {A[∗, 0 .. j0], A[∗, j0 + 1 .. j1], . . . , A[∗, jκ−2 + 1 .. n− 1]}
used for delivering the IM A. The total minimum beam-on time of A (i.e.,
Tbot(A) =

∑
M∈A Tbot(M)) equals to the total edge weight of p. Hence, we have

the following lemma.

Lemma 1. A κ-link shortest path from s to t in G specifies an optimal splitting
A of the given IM A.

The DAG G has O(n) vertices and O(Δ·n) edges. Thus, it takes O(κ·Δ·n) =
O(n2) time to compute a κ-link shortest path in G. Let T (G) denote the total
time complexity for constructing G from A, which depends on the computation
of the minimum beam-on time of an intensity map [8, 10]. Hence, the IMSp
problem is solvable in O(n2 + T (G)) time.

The k-link s-to-t path is a straightforward model for solving the IMSp prob-
lem. Next, we further exploit the intrinsic structures of the IMSp problem to
simplify G and give a new dynamic programming approach.

Let μ = n mod Δ and if μ = 0, set μ = Δ. Then, we partition the column
index set {0, 1, . . . , n − 1} of A into the following consecutive segments: Ck =
{j : k ·Δ+ μ− 1 ≤ j < (k+ 1) ·Δ} and Uk = {j : k ·Δ ≤ j < k ·Δ+ μ− 1} for
k = 0, 1, . . . , κ− 2; and Cκ−1 = {n− 1} and Uκ−1 = {j : (κ− 1) ·Δ ≤ j < n− 1}
(note that Uk’s are empty when μ = 1). Figure 2(b) illustrates the partition
for the sample IM in Figure 2(a) with Δ = 5. Let A = {A[∗, 0 .. j0], A[∗, j0 +
1 .. j1], . . . , A[∗, jκ−2 + 1 .. n− 1]} be a feasible splitting of A, simply denoted by
a set A = {j0, j1, . . . , jκ−1} with jκ−1 = n − 1. The following lemmas establish

508 Xiaodong Wu

(b)0 v1

s

U0 C0 U1 C1 U2 C2

0 3 6 5 2 7 8 1 6 9 5 0 0
2 4 1 1 6 6 9 12 12 16 8 6 2
1 1 3 12 9 16 16 7 8 12 8 13

v3v2 v4 v5 v6 v7 v8 v9 v v v10 11 12

(a)

v

Fig. 2. Illustrating the construction of the graph G. (a) An example IM A with size
of 3× 13 and the maximum leaf spread Δ = 5. (b) The graph G constructed from the
IM A in (a).

the connection between a feasible splitting A of A and the segments {Ck : 0 ≤
k < κ}.

Lemma 2. For any feasible splitting A = {j0, j1, . . . , jκ−1} of A, A∩
(⋃κ−1

k=0 Uk

)
= ∅.

Proof. If Uk’s are empty, obviously, A ∩
(⋃κ−1

k=0 Uk

)
= ∅. Otherwise, we prove

this lemma by contradiction.
Assume that there exists a feasible splitting A and q ∈ A such that q ∈ Ur

(0 ≤ r < κ). Thus, q ≥ r ·Δ. Hence, the sub-IM A[∗, 0 .. q] needs to be split into
at least (r + 1) sub-IMs subject to the maximum leaf spread constraint, while
A[∗, q+ 1 .. n− 1] needs at least (κ− r) sub-IMs. Therefore, the total number of
sub-IMs needed is at least κ+ 1, which is a contradiction.

Based on Lemma 2, any j ∈ A is in
⋃κ−1

k=0 Ck. Let us investigate the distri-
bution of A = {j0, j1, . . . , jκ−1} in the segments Ck’s. When κ = 2, note that
j1 ∈ A equals to n − 1 (i.e., j1 ∈ C1 = {n − 1}), it is then clear that j0 ∈ C0.
Next, we consider κ > 2 and claim that for each k = 0, 1, . . . , κ− 1, jk ∈ Ck. We
assume otherwise, that is, for any k = 0, 1, . . . , κ − 1, |Ck ∩ A| either equals to
0 or ≥ 2. Notice that if there exists Cr that |Cr ∩A| ≥ 2, then there must have
an Cq such that Cq ∩ A = ∅ since |A| = κ. Thus, there must exist an Cq with
|Cq∩A| = 0. Then, there is a sub-IM A[∗, j′ .. j′′] in A such that j′ < q ·Δ+μ−1
and j′′ ≥ (q+1) ·Δ, which indicates that j′′− j′ > Δ. Hence, A is not a feasible
splitting of A, a contradiction. Thus, the following lemma holds.

Lemma 3. In any feasible splitting A = {j0, j1, . . . , jκ−1} of A, jk ∈ Ck for
k = 0, 1, . . . , κ− 1.

Lemma 3 leads to a simple dynamic programming approach for solving the
IMSp problem, as follows. Let S(vj) denote the minimum total beam-on time for
delivering the sub-IM A[∗, 0 .. j] subject to the maximum leaf spread constraint.
Note that if j ∈ Ck (k = 1, 2, . . . , κ− 2), then any j′ with j −Δ ≤ j′ < k ·Δ is
in Ck−1. Thus, we have

Efficient Algorithms for Intensity Map Splitting Problems 509

S(vj) =

⎧⎨⎩
w(s, vj) if j ∈ C0

min{S(vj′) + w(vj′+1, vj) :
j −Δ ≤ j′ < k ·Δ} if j ∈ Ck (1 ≤ k < κ)

(1)

Hence, S(vn−1) is the minimum total beam-on time for delivering A, which
defines an optimal splitting A∗. Based on Lemma 3, we can remove all the
vertices vj ’s with j ∈

⋃κ−1
i=0 Ui from G, thus simplifying the construction of G.

Figure 2(b) shows an example graph G thus constructed from the IM in Figure
2(a) with Δ = 5. We still use G to denote the resulting graph. The running time
of this dynamic programming scheme is clearly O(Δ · n) in the worst case after
constructing the graph G, which takes T (G) time.

Lemma 4. The IMSp problem can be solved in O(Δ · n+ T (G)) time.

Note that G has O(Δ · n) edges each associated with one sub-IM of A, for
which we need to compute the minimum beam-on time. This may become the
bottleneck of our IMSp algorithm. In the following sections, we integrate the
computation of the beam-on time [8, 10] into our dynamic programming scheme
to further improve our algorithm for the IMSp solving problem in various setting.

3 The IMSp Problem with m = 1

This section presents our optimal O(n) time algorithm for computing an optimal
splitting of a given IM A with only one row of intensities (i.e., m = 1). For
example, this case occurs when using one pair of MLC leaves for delivering the
intensity map. Thus, we assume that the input IM A is a vector, i.e., A =
(A[0], A[1], . . . , A[n − 1]). Kamath et al. [13] gave an O(n2) algorithm for this
case while n ≤ 3Δ. We consider in this section an arbitrary n and Δ.

The minimum beam-on time Tbot(B) of an IM B (m = 1) can be computed
[8], as follows:

Tbot(B) = B[0] +
n−1∑
j=2

max{0, B[j]−B[j − 1]}.

Let A = {j0, j1, . . . , jκ−1} with jκ−1 = n− 1 be a feasible splitting of the given
IM A. Then,

Tbot(A) =

⎛⎝A[0] +
j0∑

j=2

max{0, A[j]−A[j − 1]}

⎞⎠
+

κ−1∑
k=1

⎛⎝A[jk−1 + 1] +
jk∑

j=jk−1+2

max{0, A[j]−A[j − 1]}

⎞⎠
Note that for any 0 < j < n, A[j] = max{0, A[j]−A[j−1]}+min{A[j−1], A[j]}.
Thus,

Tbot(A) = Tbot(A) +
κ−2∑
k=0

min{A[jk + 1], A[jk]}.

510 Xiaodong Wu

We call
∑κ−2

k=0 min{A[jk + 1], A[jk]} the bot-increase of a feasible splitting A of
A. Hence, the following lemma, which generalizes the result in [13], follows.

Lemma 5. A feasible splitting A = {j0, j1, . . . , jκ−2, n− 1} that minimizes the
bot-increase among all possible feasible splitting of A gives an optimal solution
to the IMSp problem.

Based on Lemmas 3 and 5, the following dynamic programming scheme is
used to compute an optimal splitting of A. Let S(j) be the minimum bot-increase
among all possible feasible splitting of A[0 .. j]. Then,

S(j) =

⎧⎨⎩
min{A[j], A[j − 1]} if j ∈ C0

min{S(j′) : j −Δ ≤ j′ < k ·Δ}
+ min{A[j], A[j − 1]} if j ∈ Ck (1 ≤ k < κ)

(2)

Thus, for each j ∈ Ck (1 ≤ k < κ), we need to compute the minimum of
S(j′)’s for j −Δ ≤ j′ < k ·Δ. A straightforward way takes O(Δ) time and the
total running time is O(Δ ·n). However, we can do better to achieve an optimal
linear time algorithm. We use an additional array L of size O(Δ) to keep the
minimum of {S(i), S(i+1), . . . , S(k ·Δ−1)} for each i = j−Δ, j−Δ+1, . . . , k ·
Δ− 1. It is easy to see that array L can be computed in O(Δ). Hence, for each
j ∈ Ck (1 ≤ k < κ), min{S(j′) : j−Δ ≤ j′ < k ·Δ}+min{A[j], A[j−1]} can be
obtained in O(1) time by using array L. Therefore, S(n − 1) can be computed
in O(n) time.

Theorem 1. The IMSp problem with m = 1 is solvable in an optimal O(n)
time.

4 The IMSp Problem Allowing the Interleaf Collisions

In this section, we give our O(mnΔ) time algorithm for solving the IMSp problem
in which the interleaf collisions are allowed.

As shown in Section 2, the graph G constructed from the given IM A has
O(Δ · n) edges. For each edge in G, we need to compute the minimum bean-on
time for its associated sub-IM of size O(m ×Δ). The minimum beam-on time
Tbot(B) of an m′ × n′ IM B can be computed as shown in [8]:

Tbot(B) = max
i∈{0,1,...,m′−1}

⎧⎨⎩B[i, 0] +
n′−1∑
j=1

max{0, B[i, j]−B[i, j − 1]}

⎫⎬⎭ ,

which takes O(m′n′) time. Thus, the time T (G) for constructing the graph G
is O(mnΔ2). Hence, our algorithm in Section 2 for solving the IMSp problem
allowing the interleaf collisions runs in O(mnΔ2) time.

However, by carefully characterizing the computation of the minimum beam-
on time, we are able to improve the algorithm by at least O(Δ). The value of
(B[i, 0] +

∑n−1
j=1 max{0, B[i, j] − B[i, j − 1]}) is the minimum beam-on time of

Efficient Algorithms for Intensity Map Splitting Problems 511

1

0

2

1 32 4 5 6 7 8

3c 4cc2 s

Fig. 3. Illustrating the construction of the graph Hq for computing S(vq) for the IM
in Figure 2(a) with Δ = 5 and q = 7.

the i-th row B[i, ∗] of B. Thus, Tbot(B) = maxi=0,1,...,m′−1 Tbot(B[i, ∗]). Then,
consider a sub-IM A[∗, j′ .. j] of A (j > j′ > 0). The minimum beam-on time
Tbot(A[∗, j′ .. j]) = maxi=0,1,...,m−1 Tbot(A[i, j′ .. j]). Note that,

Tbot(A[i, j′ .. j]) = Tbot(A[i, 0 .. j])−Tbot(A[i, 0 .. j′−1])+min{A[i, j′−1], A[i, j′]}.

Hence, for every row i ofA, we compute Tbot(i, 0 .. j) for each j ∈ {0, 1, . . . , n−1},
which totally takes O(n) time. Then, Tbot(A[i, j′ .. j]) can be computed in O(1)
time. Thus, S(vn−1), the minimum total beam-on time for delivering A subject
to the maximum leaf spread constraint, can be computed in O(mnΔ) time based
on the recursive Equation (1).

Theorem 2. The IMSp problem allowing interleaf collisions is solvable in
O(mnΔ) time for a given m× n IM A and the maximum leaf spread Δ.

5 The IMSp Problem Subject
to the No-interleaf Collision

This section presents our O(m2nΔ) time algorithm for solving the IMSp prob-
lem, in which an MLC subject to the no-interleaf collision constraint is used for
delivering the given m× n IM A.

Recall that S(vq) denotes the minimum total beam-on time for delivering the
sub-IM A[∗, 0 .. q] subject to the maximum leaf spread constraint. From Equation
(1),

S(vq) = min{S(vj) + w(vj+1, vq) : q −Δ ≤ j < k ·Δ},
if q ∈ Ck (k = 1, 2, . . . , κ − 1). For a given q ∈ Ck, instead of computing
w(vj+1, vq) for each possible j (i.e., q − Δ ≤ j < k · Δ) first, we compute all
w(vj+1, vq)’s in one shot by formulating it as a single-source longest path problem
in a weighted directed acyclic graph. Then, clearly S(vq) can be computed in
O(Δ) time.

The DAG Hq = (Vq, Eq) for computing all w(vj+1, vq)’s is constructed in the
following way. The vertices of Hq are defined as Vq = {s} ∪ {cj : q −Δ ≤ j <

512 Xiaodong Wu

k ·Δ} ∪ {ui,j : 0 ≤ i < m, q −Δ < j ≤ q} (note that q ∈ Ck). The edge set Eq

contains four different types of edges, Es, Eb, and Ec, that is, Eq = Es∪Eb∪Ec,
where

Es = {(s, ui,q) : 0 ≤ i < m},
Eb = {(ui,j , ui′,j−1) : 0 ≤ i, i′ < m, q −Δ+ 1 < j ≤ q},
Ec = {(ui,j , cj−1) : 0 ≤ i < m, q −Δ ≤ j < k ·Δ}.

Next, we define the cost w′(e) for each edge e ∈ Eq.

w′(e) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A[i, q] if e = (s, ui,q) ∈ Es,
max{0, A[i′, j − 1]−A[i′, j]}
−
∑i′−1

p=i A[p, j] if e = (ui,j , ui′,j−1)
∈ Eb and i ≤ i′,

max{0, A[i′, j − 1]−A[i′, j]}
−
∑i

p=i′+1 A[p, j] if e = (ui,j , ui′,j−1)
∈ Eb and i > i′,

0 if e = (ui,j , cj−1) ∈ Ec.

(3)

Figure 3 shows an example graph Hq for the IM in Figure 2(a) with q = 7. Using
similar techniques in [10], we are able to prove that the total cost of the longest
path from vertex s to cj (q −Δ ≤ j < k ·Δ) equals to the minimum beam-on
time of the sub-IM A[∗, j+1 .. q] (i.e., w(vj+1, vq)). Note that Hq is a DAG with
O(m · Δ) and O(m2 · Δ) edges. Thus, it takes O(m2 · Δ) time for computing
a shortest s-to-t path in Hq. Note that in the worst case, we need to compute
S(vq) for every q = 0, 1, . . . , n− 1. Hence, Theorem 3 follows.

Theorem 3. The IMSp problem subject to the no-interleaf collision constraint
can be solved in O(m2nΔ) time.

6 Conclusion

In this paper, we study the intensity map splitting problems that seek to split a
large intensity map into several deliverable sub-IMs while minimizing the total
beam-on time. Our unified approach leads to efficient algorithms for solving the
IMSp problems in various settings. When using only one pair of MLC leaves to
deliver the IMs, our algorithm is optimal for the IMSp problem.

References

1. R.K. Ahuja and H.W. Hamacher, Minimizing Beam-on Time in Radiation Therapy
Treatment Planning Using Network Flows, submitted to Networks, 2003.

2. N. Boland, H.W. Hamacher, and F. Lenzen, Minimizing Beam-on Time in Cancer
Radiation Treatment Using Multileaf Collimators, Networks, 43(2)(2004), pp. 226-
240.

Efficient Algorithms for Intensity Map Splitting Problems 513

3. T.R. Bortfeld, D.L. Kahler, T.J. Waldron, and A.L. Boyer, X-ray Field Compen-
sation with Multileaf Collimators, Int. J. Radiat. Oncol. Biol. Phys., 28(1994), pp.
723-730.

4. D.Z. Chen, X.S. Hu, S. Luan, X. Wu, and C.X. Yu, Optimal Terrain Construc-
tion Problems and Applications in Intensity-Modulated Radiation Therapy, Lecture
Notes in Computer Science, Springer-Verlag, Proc. 10th Annual European Symp.
on Algorithms (ESA), Vol. 2461, pp. 270-283, 2002.

5. D.Z. Chen, X.S. Hu, S. Luan, C. Wang, and X. Wu, Geometric Algorithms for
Static Leaf Sequencing Problems in Radiation Therapy, Proc. of 19th ACM Symp.
on Computational Geometry (SoCG), San Diego, CA, June 2003, pp. 88-97.

6. J. Dai and Y. Zhu, Minimizing the Number of Segments in a Delivery Sequence for
Intensity-Modulated Radiation Therapy with Multileaf Collimator, Med. Phys.,
28(10)(2001), pp. 2113-2120.

7. N. Dogan, L.B. Leybovich, A. Sethi, and B. Emami, Automatic Feathering of Split
Fields for Step-and-Shoot Intensity Modulated Radiation Therapy, Phys. Med.
Biol., 48(2003), pp. 1133-1140.

8. K. Engel, A New Algorithm for Optimal Multileaf Collimator Field Segmentation,
http://www.trinity.edu/aholder/HealthApp/oncology/papers, March 2003.

9. L. Hong, A. Kaled, C. Chui, T. LoSasso, M. Hunt, S. Spirou, J. Yang, H. Amols, C.
Ling, Z. Fuks, and S. Leibel, IMRT of Large Fields: Whole-Abdomen Irradiation,
Int. J. Radiat. Oncol. Biol. Phys., 54(2002), pp. 278-289.

10. T. Kalinowski, An algorithm for optimal multileaf collimator field segmentation
with interleaf collision constraint,
http://www.trinity.edu/aholder/HealthApp/oncology/papers, February 2003.

11. S. Kamath, S. Sahni, J. Li, J. Palta, and S. Ranka, Leaf sequencing algorithms for
segmented multileaf collimation, Phys. in Med. and Biol., 48(3)(2003), pp. 307-324.

12. S. Kamath, S. Sahni, J. Palta, S. Ranka, and J. Li, Optimal leaf sequencing with
elimination of tongue-and-groove underdosage, Phys. in Med. and Biol., 49(2004),
N7-N19.

13. S. Kamath, S. Sahni, S. Ranka, J. Li, and J. Palta, Optimal Field Splitting for
Large Intensity-Modulated Fields, to appear in Medical Physics.

14. L.D. Potter, S.X. Chang, T.J. Cullip, and A.C. Siochi, A Quality and Efficiency
Analysis of the IMFAST TM Segmentation Algorithm in Head and Neck “Step &
Shoot” IMRT Treatments, Med. Phys., 29(3)(2002), pp. 275-283.

15. W. Que, Comparison of Algorithms for Multileaf Collimator Field Segmentation,
Med. Phys., 26(1999), pp. 2390-2396.

16. Q. Wu, M. Arnfield, S. Tong, Y. Wu, and R. Mohan, Dynamic Splitting of Large
Intensity-Modulated Fields, Phys. Med. Biol., 45(2000), pp. 1731-1740.

17. R.A.C. Siochi, Minimizing Static Intensity Modulation Delivery Time Using an
Intensity Solid Paradigm, Int. J. Radiat. Oncol. Giol. Phys., 43(1999), pp. 671-
680.

18. R. Svensson, P. Kallman, and A. Brahme, An Analytical Solution for the Dynamic
Control of Multileaf Collimation, Phys. in Med. and Biol., 39(1994), pp. 37-61.

19. S. Webb, Intensity-Modulated Radiation Therapy, Institute of Cancer Research and
Royal Marsden NHS Trust, Jan. 2001.

20. P. Xia and L.J. Verhey, MLC Leaf Sequencing Algorithm for Intensity Modulated
Beams with Multiple Static Segments, Med. Phys., 25(1998), pp. 1424-1449.

Distributions of Points in d Dimensions
and Large k-Point Simplices

Extended Abstract

Hanno Lefmann

Fakultät für Informatik, TU Chemnitz, D-09107 Chemnitz, Germany
lefmann@informatik.tu-chemnitz.de

Abstract. We consider a variant of Heilbronn’s triangle problem by
asking for fixed dimension d ≥ 2 and for fixed integers k ≥ 3 with k ≤ d+
1 for a distribution of n points in the d-dimensional unit-cube [0, 1]d such
that the minimum volume of a k-point simplex among these n points is
as large as possible. Denoting by Δk,d(n) the supremum of the minimum
volume of a k-point simplex among n points over all distributions of n
points in [0, 1]d we will show that ck · (log n)1/(d−k+2)/n(k−1)/(d−k+2) ≤
Δk,d(n) ≤ c′k/n(k−1)/d for 3 ≤ k ≤ d + 1, and moreover Δk,d(n) ≤
c′′k/n(k−1)/d+(k−2)/(2d(d−1)) for k ≥ 4 even, and constants ck, c′k, c′′k > 0.

1 Introduction

For integers n ≥ 3, Heilbronn’s problem asks for the supremum Δ2(n) of the
minimum area of a triangle formed by three of n points over all distributions
of n points in the unit-square [0, 1]2. For primes n, the points Pk = 1/n ·
(k mod n, k2 mod n), k = 0, 1, . . . , n− 1, show that Δ2(n) = Ω(1/n2). Komlós,
Pintz and Szemerédi [10] improved this to Δ2(n) = Ω(log n/n2), see [5] for a
deterministic polynomial time algorithm achieving this lower bound on Δ2(n),
which is currently the best known. Upper bounds were proved in a series of pa-
pers by Roth [15–18] and Schmidt [19]. The currently best known upper bound is
due to Komlós, Pintz and Szemerédi [9], who proved Δ2(n) = O(2c

√
log n/n8/7)

for some constant c > 0. We remark that for n points chosen uniformly at ran-
dom and independently of each other from [0, 1]2, the expected value of the
minimum area of a triangle among these n points is Θ(1/n3), as was shown by
Jiang, Li and Vitany [8].

A variant of Heilbronn’s problem considered by Barequet asks, given a fixed
dimension d ≥ 2, for the supremum Δd+1,d(n) of the minimum volume of a (d+
1)-point simplex among n points in the d-dimensional unit-cube [0, 1]d over all
distributions of n points in [0, 1]d. He showed in [2] the lower bound Δd+1,d(n) =
Ω(1/nd), which was improved in [11] to Δd+1,d(n) = Ω(logn/nd). In [14], a
deterministic polynomial time algorithm was given achieving this lower bound
on Δ4,3(n). Recently, Brass [6] improved the known upper bound Δd+1,d(n) =
O(1/n) to Δd+1,d(n) = O(1/n(2d+1)/(2d)) for odd d ≥ 3. Moreover, an on-line
version of this variant was investigated in [3] for dimensions d = 3, 4.

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 514–523, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Distributions of Points in d Dimensions and Large k-Point Simplices 515

Here we consider the following generalization of Heilbronn’s problem: given
fixed integers d, k with 3 ≤ k ≤ d+1, find for any integer n ≥ k a distribution of
n points in the d-dimensional unit-cube [0, 1]d such that the minimum volume
of a k-point simplex among these n points is as large as possible. Let Δk,d(n)
denote the corresponding supremum values – over all distributions of n points in
[0, 1]d – on the minimum volume of a k-point simplex among n points in [0, 1]d.

The parameter Δ3,d(n), i.e. areas of triangles in [0, 1]d, was investigated
by this author in [12], where it was shown that c3 · (logn)1/(d−1)/n2/(d−1) ≤
Δ3,d(n) ≤ c′3/n

2/d for constants c3, c′3 > 0. Here we prove the following bounds.

Theorem 1. Let d, k be fixed integers with 3 ≤ k ≤ d+ 1. Then, for constants
ck, c

′
k, c

′′
k > 0, which depend on k, d only, for every integer n ≥ k it is

ck ·
(logn)1/(d−k+2)

n(k−1)/(d−k+2)
≤ Δk,d(n) ≤ c′k

n(k−1)/d
for k odd (1)

ck ·
(logn)1/(d−k+2)

n(k−1)/(d−k+2)
≤ Δk,d(n) ≤ c′′k

n(k−1)/d+(k−2)/(2d(d−1))
for k even. (2)

For d = 2 and k = 3, the lower bound (1) is just the result from [10]. For
k = d + 1, this yields the bounds from [6] and [11]. Indeed, our arguments for
proving Theorem 1 yield a randomized polynomial time algorithm, which finds
a distribution of n points in [0, 1]d achieving these lower bounds.

2 A Lower Bound on Δk,d(n)

Fist we introduce some notation which is used throughout this paper.
Let dist (Pi, Pj) be the Euclidean distance between the points Pi and Pj . A

simplex given by k points P1, . . . , Pk ∈ [0, 1]d is the set of all points P1+
∑k

i=2 λi ·
(Pi − P1) with λi ≥ 0, i = 2, . . . , k, and

∑k
i=2 λi ≤ 1. The (k − 1)-dimensional

volume of a k-point simplex determined by the points P1, . . . , Pk ∈ [0, 1]d,
2 ≤ k ≤ d + 1, is defined by vol (P1, . . . , Pk) := 1/(k − 1)! ·

∏k
j=2 dist (Pj ;<

P1, . . . , Pj−1 >), where dist (Pj ;< P1, . . . , Pj−1 >) denotes the Euclidean dis-
tance of the point Pj from the affine space < P1, . . . , Pj−1 > generated by
P1, . . . , Pj−1 with < P1 >:= P1.

In our arguments we will use hypergraphs. A hypergraph G = (V, E) with
vertex set V and edge set E is k-uniform if |E| = k for all edges E ∈ E . A subset
I ⊆ V of the vertex set V is independent if I contains no edges from E . The
largest size |I| of an independent set in G is the independence number α(G). A
hypergraph G = (V, E) is linear if |E ∩ E′| ≤ 1 for all distinct edges E,E′ ∈ E .

First we prove the lower bound in (1), (2) from Theorem 1, namely that

Δk,d(n) ≥ ck · (log n)1/(d−k+2)/n(k−1)/(d−k+2) . (3)

Proof. Let d, k be fixed integers with 3 ≤ k ≤ d+1. For arbitrary integers n ≥ k
and a suitable constant α > 0, we select uniformly at random and independently
of each other N := n1+α points P1, P2, . . . , PN from [0, 1]d.

516 Hanno Lefmann

For certain values Dj := N−γj for some constants γj > 0, j = 2, . . . , k − 1,
and some value V0 > 0, where all these will be fixed later, we form a random
hypergraph G = G(D2, . . . , Dk−1, V0) = (V, E2 ∪ · · · ∪ Ek) with vertex set V =
{1, 2, . . . , N}, where vertex i corresponds to the random point Pi ∈ [0, 1]d, and
with j-element edges, j = 2, . . . , k. For j = 2, . . . , k−1, let {i1, . . . , ij} ∈ Ej be a
j-element edge if and only if vol (Pi1 , . . . , Pij) ≤ Dj . Moreover, let {i1, . . . , ik} ∈
Ek be a k-element edge if and only if vol (Pi1 , . . . , Pik

) ≤ V0 and {i1, . . . , ik} does
not contain any j-element edges E ∈ Ej for j = 2, . . . , k − 1. An independent
set I ⊆ V in this hypergraph G yields |I| many points in [0, 1]d such that each
k-point simplex among these |I| points has volume bigger than V0. Our aim is
to show the existence of a large independent set I ⊆ V in G. For doing so, we
will use a result on the independence number of linear k-uniform hypergraphs
due to Ajtai, Komlós, Pintz, Spencer and Szemerédi [1], see [7].

Theorem 2. [1, 7] Let k ≥ 3 be a fixed integer. Let G = (V, E) be a k-uniform
hypergraph on |V | = n vertices with average degree tk−1 = k · |E|/|V |. If G is
linear, then for some constant c∗k > 0 its independence number α(G) satisfies

α(G) ≥ c∗k ·
n

t
· log

1
k−1 t . (4)

The difficulty in our arguments is, to find a certain subhypergraph of our
random non-uniform hypergraph G to which we can apply Theorem 2. For doing
so, we will select a random induced subhypergraph G∗ of G by controling certain
parameters of G∗. For j = 2, . . . , k−1, let |BPj(G)| be a random variable counting
the number of ‘bad j-pairs of simplices’ in G, which are among the N random
points P1, . . . , PN ∈ [0, 1]d those unordered pairs of k-point simplices arising
from Ek, which share j vertices. We will show that in the random nonuniform
hypergraph G the expected numbers E(|Ei|) and E(|BPj(G)|) of i-element edges
and of ‘bad j-pairs of simplices’ arising from Ek, respectively, i, j = 2, . . . , k− 1,
are not too big. Then in a certain induced subhypergraph of G, which will be
obtained by a random selection of vertices from V , we will delete one vertex
from each i-element edge E ∈ Ei and from each ‘bad j-pair of simplices’ arising
from Ek, i, j = 2, . . . , k − 1. This yields a k-uniform linear subhypergraph G∗ =
(V ∗, E∗k) of G, thus G∗ fulfills the assumptions of Theorem 2 and then we can
apply it.

Lemma 1. For i = 2, . . . , k with 2 ≤ k ≤ d+ 1 and random points P1, . . . , Pi ∈
[0, 1]d for constants c∗i > 0 and a real V > 0 it is

Prob (vol (P1, . . . , Pi) ≤ V) ≤ c∗i · V d−i+2 . (5)

Proof. Let P1, . . . , Pi be i random points in [0, 1]d. We may assume that the i
points are numbered in such a way that for 2 ≤ g ≤ h ≤ i it is

dist (Pg;< P1, . . . , Pg−1 >) ≥ dist (Ph;< P1, . . . , Pg−1 >) . (6)

The point P1 can be anywhere in [0, 1]d. Given the point P1, the probability,
that its Euclidean distance from the point P2 ∈ [0, 1]d is within the infinitesimal

Distributions of Points in d Dimensions and Large k-Point Simplices 517

range [r1, r1 + dr1], is at most the difference of the volumes of the d-dimensional
balls with center P1 and with radii (r1 + dr1) and r1, respectively, hence

Prob (r1 ≤ dist (P1, P2) ≤ r1 + dr1) ≤ d · Cd · rd−1
1 dr1 ,

where throughout this paper Cd denotes the value of the volume of the d-
dimensional unit-ball in Rd with C1 := 2.

Given the points P1 and P2 with dist (P1, P2) = r1, the probability that the
distance dist (P3;< P1, P2 >) of the point P3 ∈ [0, 1]d from the line < P1, P2 >
is within the infinitesimal range [r2, r2 + dr2] is at most the difference of the
volumes of cylinders centered at the line < P1, P2 > with radii r2 + dr2 and r2,
respectively, and, by assumption (6), with height 2 · r1 = 2 · dist (P1, P2), thus

Prob (r2 ≤ dist (P3;< P1, P2 >) ≤ r2 + dr2) ≤ 2 · r1 · (d− 1) · Cd−1 · rd−2
2 dr2.

In general, by condition (6), given the points P1, . . . , Pg, g < i, with dist (Pf ;<
P1, . . . , Pf−1 >) = rf−1 for f = 2, . . . , g, the projection of the point Pg+1 onto
the affine space < P1, . . . , Pf > must lie in a shape of volume at most 2f−1 · r1 ·
. . . · rf−1. Hence for g < i− 1 we obtain

Prob (rg ≤ dist (Pg+1;< P1, . . . , Pg >) ≤ rg + drg)
≤ 2g−1 · r1 · . . . · rg−1 · (d− g + 1) · Cd−g+1 · rd−g

g drg .

For g = i− 1, however, to satisfy vol (P1, . . . , Pi) ≤ V , we must have 1/(i− 1)! ·∏i
g=2 dist (Pg;< P1, . . . , Pg−1 >) ≤ V , hence the projection of the point Pi onto

the affine space < P1, . . . , Pi−1 > must lie in a shape of volume 2i−2 ·r1 · . . . ·ri−2

and the point Pi has Euclidean distance at most (i−1)!·V
r1·...·ri−2

from < P1, . . . , Pi−1 >,
which happens with probability at most

2i−2 · r1 · . . . · ri−2 · Cd−i+2 ·
(

(i− 1)! · V
r1 · . . . · ri−2

)d−i+2

.

Thus for some constants c∗i , c
∗∗
i > 0 we infer

Prob (vol (P1, . . . , Pi) ≤ V)

≤
∫ √

d

ri−2=0

. . .

∫ √
d

r1=0

2i−2 · Cd−i+2 ·
((i− 1)! · V)d−i+2

(r1 · . . . · ri−2)d−i+1
·

·
i−2∏
g=1

(
2g−1 · r1 · . . . · rg−1 · (d− g + 1) · Cd−g+1 · rd−g

g

)
dri−2 . . . dr1 ≤

≤ c∗∗i · V d−i+2 ·
∫ √

d

ri−2=0

. . .

∫ √
d

r1=0

i−2∏
g=1

r2i−2g−3
g dri−2 . . . dr1

≤ c∗i · V d−i+2 as 2 · i− 2 · g − 3 > 0. ��

Corollary 1. For i = 2, . . . , k − 1 with 2 ≤ k ≤ d + 1 and constants c′i, c
′
k > 0,

it is

E(|Ei|) ≤ c′i ·N i−γi(d−i+2) and E(|Ek|) ≤ c′k · V d−k+2
0 ·Nk . (7)

518 Hanno Lefmann

Proof. There are
(
N
i

)
possibilities to choose i out of the N random points

P1, . . . , PN ∈ [0, 1]d, and by (5) from Lemma 1 with V := N−γi for i =
2, . . . , k − 1 and V := V0 for i = k the inequalities (7) follow. ��

Lemma 2. For j = 2, . . . , k − 1 with 3 ≤ k ≤ d+ 1 and constants c′2,j > 0 it is

E(|BPj(G)|) ≤ c′2,j · V
2(d−k+2)
0 ·N2k−j+γj(d−k+2) . (8)

Proof. For j = 2, . . . , k−1, we show the upper bound O(V 2(d−k+2)
0 ·Nγj(d−k+2))

on the probability that 2k−j random points, chosen uniformly and independently
of each other in [0, 1]d, yield a ‘bad j-pair of simplices’. Since there are

(
N

2k−j

)
possibilities to choose 2k − j out of the N random points P1, . . . , PN ∈ [0, 1]d,
the upper bound (8) follows. There are

(
2k−j

k

)
choices for k out of 2k− j points

and
(
k
j

)
possibilities to choose the j common points, say the two simplices are

determined by the points P1, . . . , Pk and P1, . . . , Pj , Qj+1, . . . , Qk. By Lemma 1
we know that Prob (vol (P1, . . . , Pk) ≤ V0) ≤ c∗k · V d−k+2

0 . If {P1, . . . , Pk} ∈ Ek,
then by construction of our hypergraph G we have vol (P1, . . . , Pj) > N−γj , and
we condition on this in the following. Given the points P1, . . . , Pj , Qj+1, . . . , Qg,
g = j, . . . , k − 1, with dist (Qf ;< P1, . . . , Pj , Qj+1, . . . , Qf−1 >) = rf , f =
j + 1, . . . , g, we infer for g ≤ k − 2:

Prob (rg ≤ dist (Qg+1;< P1, . . . , Pj , Qj+1, . . . , Qg >) ≤ rg + drg)

≤ (
√
d)g−1 · (d+ 1− g) · Cd+1−g · rd−g

g drg ,

since all points Qg+1, which satisfy dist (Qg+1;< P1, . . . , Pj , Qj+1, . . . , Qg >) ≤
r, are contained in a product of a (g − 1)-dimensional shape of volume at most
(
√
d)g−1 and a (d+ 1− g)-dimensional ball of radius r.
For g = k − 1, having fixed the points P1, . . . , Pj , Qj+1, . . . , Qk−1 ∈ [0, 1]d,

to fulfill vol (P1, . . . , Pj , Qj+1, . . . , Qk) ≤ V0, we must have

(j − 1)!
(k − 1)!

·dist (Qk;< P1, . . . , Pj , Qj+1, . . . , Qk−1 >)·vol (P1, . . . , Pj)·
k−2∏
g=j

rg ≤ V0 ,

and, using vol (P1, . . . , Pj) > N−γj , this happens with probability at most

(
√
d)k−2 · Cd−k+2 ·

(
(k − 1)!
(j − 1)!

· V0 ·Nγj∏k−2
g=j rg

)d−k+2

.

Putting all these probabilities together, we obtain for constants c∗2,j , c
∗∗
2,j > 0 the

following upper bound, which finishes the proof of Lemma 2:

Distributions of Points in d Dimensions and Large k-Point Simplices 519

Prob ({P1, . . . , Pk}, {P1, . . . , Pj , Qj+1, . . . , Qk} is a ‘bad j-pair of simplices’)

≤ c∗k · V d−k+2
0 ·

∫ √
d

rk−2=0

. . .

∫ √
d

rj=0

d
k−2
2 · Cd+2−k ·

(k − 1)!d−k+2

(j − 1)!d−k+2
·

·
(
V0 ·Nγj∏k−2

g=j rg

)d−k+2

·
k−2∏
g=j

(
d

g−1
2 · (d+ 1− g) · Cd+1−g · rd−g

g

)
drk−2 . . . drj ≤

≤ c∗∗2,j · V
2(d−k+2)
0 ·Nγj(d−k+2) ·

∫ √
d

rk−2=0

. . .

∫ √
d

rj=0

k−2∏
g=j

rk−g−2
g drk−2 . . . drj

≤ c∗2,j · V
2(d−k+2)
0 ·Nγj(d−k+2) as k − g − 2 ≥ 0. ��

Using (7) and (8) and Markov’s inequality, there exist N = n1+α points in
the unit-cube [0, 1]d such that the corresponding hypergraph G = (V, E2∪· · ·∪Ek)
on |V | = N vertices satisfies for i, j = 2, . . . , k − 1 and 3 ≤ k ≤ d+ 1:

|Ei| ≤ 2k · c′i ·N i−γi(d−i+2)d (9)
|Ek| ≤ 2k · c′k · V d−k+2

0 ·Nk (10)

|BPj(G)| ≤ 2k · c′2,j · V
2(d−k+2)
0 ·N2k−j+γj(d−k+2) . (11)

By (10) the average degree tk−1 := k · |Ek|/|V | of G = (V, E2 ∪ · · · ∪ Ek)
among the edges from Ek satisfies tk−1 ≤ 2k2 · c′k · V d−k+2

0 · Nk−1 =: tk−1
0 . For

some suitable constant ε > 0, we pick uniformly at random and independently
of each other vertices from V with probability p := Nε/t0 ≤ 1. Let V ∗ ⊆ V
be the random set of the chosen vertices, and let G∗ = (V ∗, E∗2 ∪ · · · ∪ E∗k) with
E∗i := Ei∩ [V ∗]i, i = 2, . . . , k, be the resulting random induced subhypergraph of
G. By (9) – (11) we infer for the expected numbers of vertices, i-element edges and
‘bad j-pairs of simplices’ in G∗, i, j = 2, . . . , k−1, for constants c1, ci, c2,j , ck > 0:

E(|V ∗|) = p ·N≥c1 ·Nε/V
d−k+2

k−1
0

E(|E∗i |) = pi · |Ei|≤pi · 2k · c′i ·N i−γi(d−i+2)≤ci ·N iε−γi(d−i+2)/V
i(d−k+2)

k−1
0

E(|E∗k |) = pk · |Ek|≤pk · 2k · c′k · V d−k+2
0 ·Nk≤ck ·Nkε/V

d−k+2
k−1

0

E(|BPj(G∗)|) = p2k−j · |BPj(G)|≤c2,j · V
(j−2)(d−k+2)

k−1
0 ·N (2k−j)ε+γj(d−k+2) .

By Chernoff’s and Markov’s inequality there exists an induced subhyper-
graph G∗ = (V ∗, E∗2 ∪ · · · ∪ E∗k) of G, such that for i, j = 2, . . . , k − 1:

|V ∗| ≥ (c1 − o(1)) ·Nε/V
d−k+2

k−1
0 (12)

|E∗i | ≤ 2k · ci ·N iε−γi(d−i+2)/V
i(d−k+2)

k−1
0 (13)

|E∗k | ≤ 2k · ck ·Nkε/V
d−k+2

k−1
0 (14)

|BPj(G∗)| ≤ 2k · c2,j · V
(j−2)(d−k+2)

k−1
0 ·N (2k−j)ε+γj (d−k+2) . (15)

520 Hanno Lefmann

Now we set for some suitable constant c∗ > 0:

V0 := c∗ · (log n)
1

d−k+2 /n
k−1

d−k+2 . (16)

Lemma 3. For j = 2, . . . , k−1 and for fixed 0 < ε < (j−1)/((2k− j−1) · (1+
α)) − γj · (d− k + 2)/(2k − j − 1) it is |BPj(G∗)| = o(|V ∗|).

Proof. Using (12), (15) and (16) with N = n1+α, where α, γj > 0 are constants,
j = 2, . . . , k − 1, we have

|BPj(G∗)| = o(|V ∗|)

⇐= V
(j−2)(d−k+2)

k−1
0 ·N (2k−j)ε+γj(d−k+2) = o(Nε/V

d−k+2
k−1

0)

⇐⇒ V
(j−1)(d−k+2)

k−1
0 ·N (2k−j−1)ε+γj(d−k+2) = o(1)

⇐⇒ n(1+α)((2k−j−1)ε+γj (d−k+2))−(j−1) · log
j−1
k−1 n = o(1)

⇐= ε <
j − 1

(2k − j − 1) · (1 + α)
− γj · (d− k + 2)

2k − j − 1
. ��

Lemma 4. For i = 2, . . . , k−1 and fixed 0 < ε ≤ γi ·(d−i+2)/(i−1)−1/(1+α)
it is |E∗i | = o(|V ∗|).

Proof. By (12), (13) and (16), using N = n1+α, we infer

|E∗i | = o(|V ∗|)

⇐= N iε−γi(d−i+2)/V
i(d−k+2)

k−1
0 = o(Nε/V

d−k+2
k−1

0)

⇐⇒ N (i−1)ε−γi(d−i+2)/V
(i−1)(d−k+2)

k−1
0 = o(1)

⇐⇒ n(1+α)((i−1)ε−γi(d−i+2))+(i−1)/ log
i−1
k−1 n = o(1)

⇐= ε ≤ γi · (d− i + 2)
i− 1

− 1
1 + α

. ��

The assumptions in Lemmas 3 and 4 are satisfied for γj := (j − 1)/((d− k+
5/2)(1 + α)), j = 2, . . . , k − 1, and ε := 1/(4kd(1 + α)) and α := 1/(4kd), also
p = Nε/t0 ≤ 1 holds. In the induced subhypergraph G∗ = (V ∗, E∗2 ∪ · · · ∪ E∗k)
we delete one vertex from each i-element edge and from each ‘bad j-pair of
simplices’, i, j = 2, . . . , k−1. Let V ∗∗ ⊆ V ∗ be the set of remaining vertices. The
on V ∗∗ induced subhypergraph G∗∗ of G∗ is k-uniform, hence G∗∗ = (V ∗∗, E∗∗k)
with E∗∗k := [V ∗∗]k ∩E∗k , and fulfills |V ∗∗| = (1− o(1)) · |V ∗| by Lemmas 3 and 4.
By (12) and (14) we have |V ∗∗| ≥ c1/2 ·Nε/V

(d−k+2)/(k−1)
0 and |E∗∗k | ≤ |E∗k | ≤

2k·ck ·Nkε/V
(d−k+2)/(k−1)
0 , hence G∗∗ has average degree tk−1 = k·|E∗∗k |/|V ∗∗| ≤

(4k2 · ck/c1) ·N (k−1)ε =: tk−1
1 . Now the assumptions of Theorem 2 are fulfilled

by the k-uniform subhypergraph G∗∗ of G, as it is linear, and with (4) we obtain
for constants c∗k, c

′, c1, ck, c
∗ > 0:

Distributions of Points in d Dimensions and Large k-Point Simplices 521

α(G) ≥ α(G∗∗) ≥ c∗k ·
|V ∗∗|
t

· log1/(k−1) t ≥ c∗k ·
|V ∗∗|
t1

· log1/(k−1) t1 ≥

≥ c∗k ·
c
k/(k−1)
1 ·Nε/V

(d−k+2)/(k−1)
0

2 · (4k2 · ck)1/(k−1) ·Nε
·
(

log
(

4k2 · ck
c1

·N (k−1)ε

) 1
k−1

) 1
k−1

≥ c′ · log1/(k−1) n/V
(d−k+2)/(k−1)
0 as N = n1+α

≥ c′ · (1/c∗)(d−k+2)/(k−1) · log1/(k−1) n · n

log1/(k−1) n
≥ n ,

where the last inequality follows by choosing in (16) a sufficiently small con-
stant c∗ > 0. Thus the hypergraph G contains an independent set I ⊆ V
with |I| = n. These n vertices yield n points in [0, 1]d, such that each k-point
simplex arising from these points has volume bigger than V0, i.e. Δk,d(n) =
Ω((log n)1/(d−k+2)/n(k−1)/(d−k+2)), which finishes the proof of (3). ��

3 An Upper Bound on Δk,d(n)

Here we show the upper bounds in Theorem 1, namely that for fixed 2 ≤ k ≤
d + 1 and constants c′k, c

′′
k > 0 it is Δk,d(n) ≤ c′k/n

(k−1)/d, moreover Δk,d(n) ≤
c′′k/n

(k−1)/d+(k−2)/(2d(d−1)) for k even.

Proof. We prove first that Δk,d(n) ≤ c′k/n
(k−1)/d for some constant c′k > 0 and

2 ≤ k ≤ d+ 1. Given any n points P1, P2, . . . , Pn ∈ [0, 1]d, for some value D > 0
we construct a graph G = G(D) = (V,E) with vertex set V = {1, 2, . . . , n},
where vertex i corresponds to the point Pi ∈ [0, 1]d, and edge set E with
{i, j} ∈ E being an edge if and only if dist (Pi, Pj) ≤ D. An independent
set I ⊆ V in this graph G = G(D) yields a subset I ′ ⊆ {P1, P2, . . . , Pn} of
points in [0, 1]d with Euclidean distance between any two distinct points big-
ger than D. Each ball Br(P) with center P ∈ [0, 1]d and radius r ≤ 1 satisfies
vol (Br(P) ∩ [0, 1]d) ≥ vol (Br(P))/2d. The balls with radius D/2 and cen-
ters from an independent set I ′ have pairwise empty intersection. As each ball
BD/2(P) has volume Cd ·(D/2)d, we infer |I ′| ·Cd ·(D/2)d/2d ≤ vol ([0, 1]d) = 1,
and hence the independence number α(G) of G satisfies

α(G) ≤ 4d

Cd ·Dd
. (17)

For D := c/n1/d with c := (2 · (k−1) ·4d/Cd)1/d a constant, the average degree t
of G(D) satisfies t ≥ 1 for n ≥ 2d+1, hence by Turán’s theorem, α(G) ≥ n/(2 · t).
With (17) this yields

4d

Cd ·Dd
≥ α(G) ≥ n

2 · t =⇒ t ≥ Cd

2 · 4d
· n ·Dd ≥ k − 1 . (18)

Hence there exists a vertex i1 ∈ V and k − 1 edges {i1, i2}, . . . , {i1, ik} ∈ E
incident at vertex i1. By construction, each point Pij ∈ [0, 1]d, j = 2, . . . , k,

522 Hanno Lefmann

satisfies dist (Pi1 , Pij) ≤ D, thus dist (Pij ;< Pi1 , Pi2 , . . . , Pij−1 >) ≤ c/n1/d for
j = 2, . . . , k, which implies vol (Pi1 , . . . , Pik

) ≤ (1/(k − 1)!) · ck−1/n(k−1)/d, i.e.
Δk,d(n) = O(1/n(k−1)/d).

For even k ≥ 4 we are able to prove a better upper bound. From (18) we
obtain |E| = n · t/2 ≥ Cd · n2 · Dd/4d+1. Now let c := (d · 4d+1/Cd−1)1/d

and D := 1/n1/d. We adapt an argument of Brass [6]. Each edge {i, j} ∈ E
determines a direction (PiPj), which can be viewed as a vector of length 1. The
minimum angular distance between these directions is at most(

d · Cd

Cd−1 · |E|

)1/(d−1)

≤
(

d · 4d+1

Cd−1 · cd · n

)1/(d−1)

≤ 1
n1/(d−1)

.

Thus for some constant c(d) > 0 there exist
(
k
2

)
directions (PiPj), {i, j} ∈ E,

with pairwise angular distance at most φ := c(d)/n1/(d−1). The corresponding
set E∗ ⊆ E of edges covers a subset S ⊆ V of at least k vertices G. Consider a
minimum subset E∗∗ ⊆ E∗ of edges, which covers a subset S∗ ⊆ S of exactly k
vertices. This set E∗∗ contains only independent edges and stars. We pick one
vertex from each independent edge E ∈ E∗∗ and the center of each star. Let
S∗∗ ⊆ S∗ be the set of chosen vertices with |S∗∗| = s ≤ k/2.

For each vertex v ∈ S∗\S∗∗ there exists an edge {v, w} ∈ E∗∗ for some vertex
w ∈ S∗∗, hence dist (Pv, Pw) ≤ D. Thus for each vertex u ∈ S∗\(S∗∗∪{v}) there
is some vertex t ∈ S∗∗∪{w} such that the angular distance between the directions
(PuPt) and (PwPv) is at most φ. Thus, the Euclidean distance between the point
Pu and the affine space generated by the points Pr, r ∈ S∗∗ ∪ {v}, is at most D.
With D = c/n1/d and sinφ ≤ φ for φ ≥ 0, and (s− 1)! · vol (S∗∗) ≤ (

√
d)s−1 we

obtain for the volume of the simplex determined by the k points Ps, s ∈ S∗, the
following upper bound, which finishes the proof of Theorem 1:

vol (Ps∗ ; s∗ ∈ S∗) ≤ 1
(k − 1)!

· (
√
d)s−1 ·D · (D · sinφ)k−s−1 ≤

≤ 1
(k − 1)!

· d(k−2)/4 ·D · (D · c(d)/n1/(d−1))k/2−1 =
d(k−2)/4 · c(k)k/2−1

(k − 1)! · n
k−1

d + k−2
2d(d−1)

. ��

4 Concluding Remarks

Our arguments together with an algorithmic version of Theorem 2, see [4], yield
a randomized polynomial time algorithm for obtaining a distribution of n points
in [0, 1]d, which shows Δk,d(n) = Ω((log n)1/(k−1)/n(k−1)/(d−k+2)) for fixed 3 ≤
k ≤ d + 1. It might be of interest to have a deterministic polynomial time
algorithm achieving this lower bound, as well as investigating the case k > d+1,
compare [13] for the case of dimension d = 2.

References

1. M. Ajtai, J. Komlós, J. Pintz, J. Spencer and E. Szemerédi, Extremal Uncrowded
Hypergraphs, Journal of Combinatorial Theory Ser. A, 32, 1982, 321–335.

Distributions of Points in d Dimensions and Large k-Point Simplices 523

2. G. Barequet, A Lower Bound for Heilbronn’s Triangle Problem in d Dimensions,
SIAM Journal on Discrete Mathematics 14, 2001, 230–236.

3. G. Barequet, The On-Line Heilbronn’s Triangle Problem in Three and Four Dimen-
sions, Proc. 8rd Annual International Computing and Combinatorics Conference
COCOON’2002, LNCS 2387, Springer, 2002, 360–369.

4. C. Bertram–Kretzberg and H. Lefmann, The Algorithmic Aspects of Uncrowded
Hypergraphs, SIAM Journal on Computing 29, 1999, 201–230.

5. C. Bertram-Kretzberg, T. Hofmeister and H. Lefmann, An Algorithm for Heil-
bronn’s Problem, SIAM Journal on Computing 30, 2000, 383–390.

6. P. Brass, An Upper Bound for the d-Dimensional Heilbronn Triangle Problem,
SIAM Journal on Discrete Mathenmatics, to appear.

7. R. A. Duke, H. Lefmann and V. Rödl, On Uncrowded Hypergraphs, Random Struc-
tures & Algorithms 6, 1995, 209–212.

8. T. Jiang, M. Li and P. Vitany, The Average Case Area of Heilbronn-type Triangles,
Random Structures & Algorithms 20, 2002, 206–219.

9. J. Komlós, J. Pintz and E. Szemerédi, On Heilbronn’s Triangle Problem, Journal
of the London Mathematical Society, 24, 1981, 385–396.

10. J. Komlós, J. Pintz and E. Szemerédi, A Lower Bound for Heilbronn’s Problem,
Journal of the London Mathematical Society, 25, 1982, 13–24.

11. H. Lefmann, On Heilbronn’s Problem in Higher Dimension, Combinatorica 23,
2003, 669–680.

12. H. Lefmann, Large Triangles in the d-Dimensional Unit-Cube, Proc. 10th Annual
International Conference Computing and Combinatorics COCOON’2004, eds. K.-
Y. Chwa and J. I. Munro, LNCS 3106, Springer, 2004, 43–52.

13. H. Lefmann, Distributions of Points in the Unit-Square and Large k-Gons, Proc.
16th Symposium on Discrete Algorithms SODA’2005, ACM and SIAM, 241–250.

14. H. Lefmann and N. Schmitt, A Deterministic Polynomial Time Algorithm for Heil-
bronn’s Problem in Three Dimensions, SIAM Journal on Computing 31, 2002,
1926–1947.

15. K. F. Roth, On a Problem of Heilbronn, Journal of the London Mathematical
Society 26, 1951, 198–204.

16. K. F. Roth, On a Problem of Heilbronn, II and III, Proc. of the London Mathe-
matical Society (3), 25, 1972, 193–212 and 543–549.

17. K. F. Roth, Estimation of the Area of the Smallest Triangle Obtained by Selecting
Three out of n Points in a Disc of Unit Area, Proc. of Symposia in Pure Mathe-
matics, 24, 1973, AMS, Providence, 251–262.

18. K. F. Roth, Developments in Heilbronn’s Triangle Problem, Advances in Mathe-
matics, 22, 1976, 364–385.

19. W. M. Schmidt, On a Problem of Heilbronn, Journal of the London Mathematical
Society (2), 4, 1972, 545–550.

Exploring Simple Grid Polygons

Christian Icking1, Tom Kamphans2, Rolf Klein2, and Elmar Langetepe2

1 University of Hagen, Praktische Informatik VI, 58084 Hagen, Germany
2 University of Bonn, Computer Science I, Römerstraße 164, 53117 Bonn, Germany

Abstract. We investigate the online exploration problem of a short-
sighted mobile robot moving in an unknown cellular room without ob-
stacles. The robot has a very limited sensor; it can determine only which
of the four cells adjacent to its current position are free and which are
blocked, i. e., unaccessible for the robot. Therefore, the robot must enter
a cell in order to explore it. The robot has to visit each cell and to return
to the start. Our interest is in a short exploration tour, i. e., in keeping
the number of multiple cell visits small. For abitrary environments with-
out holes we provide a strategy producing tours of length S ≤ C+ 1

2
E−3,

where C denotes the number of cells – the area – , and E denotes the
number of boundary edges – the perimeter – of the given environment.
Further, we show that our strategy is competitive with a factor of 4

3
, and

give a lower bound of 7
6

for our problem. This leaves a gap of only 1
6

between the lower and the upper bound.

Keywords: Robot navigation, exploration, covering, online algorithms,
competitive analysis, lower bounds, grid polygons

1 Introduction

Exploring an unknown environment and searching for a target in unknown po-
sition are among the basic tasks of autonomous mobile robots. Both problems
have received a lot of attention in computational geometry and in robotics; see
e. g. [3, 5, 9, 12, 13, 17].

We use a simple model for the robot and its environment: the robot is short-
sighted, and the surrounding is subdivided by a rectangular integer grid, similar
to a chessboard. Essentially, there are two motivations for using this model
instead of a robot with a full vision system: First, even a laser scanner has a
reliable range of only a few meters. Hence, the robot has to move towards more
distant areas in order to explore them. Second, service robots like lawn mowers
or cleaners need to get close to their work areas. The robot’s sensors provide the
information, which of the four neighbors of the currently occupied cell do not
belong to the polygon and which ones do. The robot can enter the latter cells.
The robot’s task is to visit every cell inside the polygon and to return to the
start cell. Sometimes, this task in also called covering.

Even though our robot does not know its environment in advance it is in-
teresting to ask how short a tour can be in the offline situation, i. e., when the
environment is already known. This amounts to constructing a shortest traveling
salesperson tour on the free cells.

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 524–533, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Exploring Simple Grid Polygons 525

If the polygonal environment contains obstacles, the problem of finding such
a minimum length tour is known to be NP-hard, see Itai et al. [14]. There are
1 + ε approximation schemes by Grigni et al. [7], Arora [2], and Mitchell [16],
and a 53

40 approximation by Arkin et al. [1].
In a polygon without obstacles, the complexity of constructing offline a min-

imum length tour seems to be open. Ntafos [18] and Arkin et al. [1] have shown
how to approximate the minimum length tour with factors of 4

3 and 6
5 , respec-

tively. Umans and Lenhart [19] have provided an O(C4) algorithm for deciding
if there exists a Hamiltonian cycle, i. e., a tour that visits each of the C cells of a
polygon exactly once. For the related problem of Hamiltonian paths, Everett [4]
has given a polynomial algorithm for certain grid graphs.

In this paper our interest is in the online version of the cell exploration
problem. Exploring a grid polygon with holes was considered by Icking et al. [10,
11] and independently by Gabriely and Rimon [6]. Icking et al. showed a lower
bound of 2 for this problem and introduced an exploration strategy that needs
no more than C+ 1

2E+3H+W −2 steps1, see [15], where C denotes the number
of cells, E the number of boundary edges, H the number of holes and W is a
measure for the windings of the polygon. Gabriely and Rimon showed an upper
bound of C +B, where B denotes the number of boundary cells.

We consider the exploration of polygons without holes. Although both prob-
lems seem to be closely related there is an important difference: We have a lower
bound of 2 for polygons with holes, but it turns out that we can do much better
in simple polygons.
An upper bound for our exploration strategy
is given in terms of the polygon’s area, C, and
the perimeter, E. While C is the number of
free cells, E is the number of edges between
a free cell and a blocked cell, see for exam-
ple Fig. 1. We use E to distinguish between
skinny and thick environments. For thick en-
vironments, E ∈ O(

√
C) holds; thus, the num-

ber of additional cell visits is substantially
smaller than C. Only in polygons that do not
contain any 2× 2-square of free cells,

= 2(C+1)

C = 24
E = 40

C = 24
E = 20 << 2C

Fig. 1. The perimeter, E, to
distinguish between ’thin’ and
’thick’ environments.

E achieves its maximum value of 2(C + 1), and our upper bound is equal
to 2C − 2, but in this case one cannot do better, since even the optimal offline
strategy needs that number of steps.

Our paper is organized as follows: in Sect. 2 we give more detailled description
of our robot and the environment. We give a lower bound for our problem in
Sect. 3. In Sect. 4 we present an exploration strategy, SmartDFS. The analysis
shows in Sect. 5 that this strategy uses no more than C + 1

2E − 3 steps and is
in fact competitive with a factor of 4

3 .
SmartDFS was implemented in a Java-Applet available in the internet, see [8].

1 We assume that the cells have unit size, so the length of the path is equal to the
number of steps from cell to cell.

526 Christian Icking et al.

2 Definitions

We consider a simple model for the environment of the robot: the robot moves
in a surrounding with a grid structure. More precisely, a cell is a basic block
in our environment, defined by a pair (x, y) ∈ IN2. A cell is either free and
can be visited by the robot, or blocked, i. e., unaccessible for the robot. We call
two cells adjacent, if they share a common edge, and touching, if they share
a common edge or corner. A grid polygon, P , is a connected set of free cells.
A polygon without blocked cells inside its boundary is called simple. From its
current position, the robot can find out which of the adjacent cells are free and
which are blocked, and it can move in one step to an adjacent free cell, see Fig. 1.
The robot has enough memory to store a map of known cells.

3 A Lower Bound

Theorem 1. Every strategy for the exploration of a simple grid polygon with C
cells needs at least 7

6 C steps.

Proof. We assume that the robots starts in a corner of the polygon, see Fig. 2(i).
W. l. o. g. we assume that the strategy decides to walk one step to the east. For
the second step, the strategy has two possibilities: either it leaves the wall with
a step to the south, see Fig. 2(ii), or it continues to follow the wall with a further
step to the east, see Fig. 2(iii). In the first case, we close the polygon as shown
in Fig. 2(iv). The robot needs at least 8 steps to explore this polygon, but the
optimal strategy needs only 6 steps yielding a factor of 8

6 . In the second case
we proceed as follows. If the robot leaves the boundary, we close the polygon as
shown in Fig. 2(v) and (vi). The robot needs 12 step, but 10 steps are sufficient.
In the most interesting case, the robot still follows the wall, see Fig. 2(vii). In
this case, the robot needs at least 28 steps to explore this polygon, whereas an
optimal strategy needs only 24 steps. Thus, we achieve a factor of 7

6 .
We can easily extend this pattern to polygons of arbitrary size by repeat-

ing the construction using the ’entry’ and ’exit’ cells denoted by the arrows in
Fig. 2(iv)–(vii). This construction cannot lead to overlapping polygons or poly-
gons with holes, since the polygon always extends to the same direction. ��

(vii)

s

s

(ii) (iii)

ss

ss s

(i)

(iv) (v) (vi)

Fig. 2. A lower bound for the exploration of simple polygons. The dashed lines show
the optimal solution, � denotes the robot’s position.

Exploring Simple Grid Polygons 527

4 An Exploration Strategy

As a first approach, we can apply a simple depth-first search algorithm (DFS):
The polygon is explored following the left-hand rule, i. e., for every entered cell
the robot tries to continue its path to an adjacent and unexplored cell, preferring
a step to the left over a straight step over a step to the right. This results in a
complete exploration, but takes 2C − 2 steps. Since the shortest tour needs at
least C steps, DFS turns out to be 2-competitive. However, there is no reason to
visit each cell twice just because this is required in some special situations like
dead ends of width 1. In the following, we introduce two improvements to DFS.

improved DFS c2 s

c1

sc2

c1

DFS
(ii)(i)

Fig. 3. Improvement to DFS: (i) optimize return path, (ii) detect polygon splits.

The first improvement is to return directly to those cells that have unexplored
neighbors. See e. g. Fig. 3(i): DFS walks from c1 to c2 through the completely
explored corridor. A more efficient strategy walks on a shortest path – on cells
that are already known – from c1 to c2.

Now, observe the polygon shown in Fig. 3(ii). With DFS, the robot walks four
times through the narrow corridor. A more clever solution explores the right part
immediately after the first visit of c1, and continues with the left part, resulting
in only two visits. The cell c1 has the property that the graph of unvisited cells
splits into two components after c1 is explored. We call cells like this split cells.
The second improvement is to recognize and handle split cells, see Sect. 5. The
following description of our strategy, SmartDFS, resumes both improvements to
DFS, see Fig. 5 for an example.

SmartDFS(P, start):
Choose direction dir, such that

reverse(dir) is a blocked cell;
ExploreCell(dir);
Walk on the shortest path to start;

ExploreStep(base, dir):
if unexplored(base, dir) then

Walk on shortest path to base;
move(dir);
ExploreCell(dir);

end if

ExploreCell(dir):
base := current position;
if not isSplitCell(base) then

ExploreStep(base, ccw(dir));
ExploreStep(base, dir);
ExploreStep(base, cw(dir));

else
Choose different order, see

Sect. 5.
end if

528 Christian Icking et al.

5 The Analysis of SmartDFS

SmartDFS explores the polygon in layers, beginning with the cells along the
boundary of P and proceeding towards the interior of P .

Definition 2. Let P be a grid polygon. The boundary cells of P uniquely define
the first layer of P . The polygon P without its first layer is called the 1-offset of
P . The �-th layer and the �-offset of P are defined successively, see Fig. 4(i).

Lemma 3. The �-offset of a simple grid polygon, P , has at least 8� edges less
than P .

Proof. First, we cut off blind alleys narrower than 2�, since those parts of P
do not affect the �-offset. We walk clockwise around the boundary cells of the
remaining polygon, see Fig. 4(i). For every left turn the offset gains at most 2�
edges and for every right turn the offset looses at least 2� edges. Since, there are
four more right turns than left turns, we loose at least 8� edges. ��

cut off

2	 edges
(ii)

Π

	
(iv)

gained

(i)
	
2	 edges (iii)

lost

P1

P2

c
Q c′

P2

P1

c′

P1

c

c

P2

Q

Fig. 4. (i) The 2-offset (shaded) of a grid polygon; three examples for split cells, (ii)
type (II), (iii) and (iv) type (I).

Definition 2 allows us to specify the handling of a split cell in SmartDFS. Let
us consider the situation shown in Fig. 5(i): SmartDFS has just met the first
split cell, c, in the fourth layer of P . P divides into three parts: P = K1

•
∪K2

•
∪

{ visited cells of P }, where K1 and K2 denote the connected components of the
unvisited cells. In this case it is reasonable to explore the component K2 first
since the start cell s is closer to K1.

We use the layer numbers to decide which component we have to visit at last.
Whenever a split cell occurs in layer �, every component is one of the following
types, see Fig. 4(ii)–(iv): (I) Ki is completely surrounded by layer � 2, (II) Ki is
not surrounded by layer �, or (III) Ki is partially surrounded by layer �.

In any case, it is the best choice to explore the component of type (III) at
last. Note that it may occur that three components arise at a split cell, but we
can handle this case as two successive splits occuring at the same split cell.
2 More precisely, the part of layer 	 that surrounds Ki is completely visited. For

convenience, we will use slightly sloppy, but shorter form.

Exploring Simple Grid Polygons 529

K2

c
K1

s′

s

K1

c Q

s

c

P2

P1

Q

P

Q

K2

(i) (ii)

Fig. 5. A decomposition of P at the split cell c and its handling in smartDFS.

For the analysis we consider two polygons, P1 and P2, as follows. Let Q be

the square of width 2q + 1 around c with q :=
{
�, if K2 is of type (I)
�− 1, if K2 is of type (II) ,

where K2 denotes the component that is explored first, and � denotes the layer
in which the split cell was found. We choose P2 ⊂ P ∪Q, such that K2 ∪ {c} is
the q-offset of P2, and P1 := ((P\P2)∪Q)∩P , see Fig. 5. The intersection with
P is necessary, since Q may exceed the boundary of P .

The choice of P1, P2 and Q ensures that the robot’s path in P1\Q and in
P2\Q do not change compared to the path in P . The parts of the robot’s path
that lead from P1 to P2 and from P2 to P1 are fully contained in the square Q.
Just the parts inside Q are bended to connect the appropriate paths inside P1

and P2, see Fig. 5.
We want to visit every cell in the polygon and to return to s. Every strategy

needs at least C(P) steps to fulfill this task. Thus, we can split the overall
length of the exploration path Π into two parts, C(P) and excess(P), with
|Π | = C(P) + excess(P). Since SmartDFS recursively explores K2 ∪ {c}, we
want to apply the upper bound inductively to the component K2 ∪ {c}. The
following lemma gives us the relation between the path lengths in P and the
path lengths in the two components.

Lemma 4. Let P be a simple grid polygon. Let the robot visit the first split
cell, c, which splits the unvisited cells of P into two components K1 and K2,
where K2 is of type (I) or (II). With the preceding notions we have excess(P) ≤
excess(P1) + excess(K2 ∪ {c}) + 1.

Proof. Since c is the first split cell, there is no excess in P2\(K2 ∪ {c}) and it
suffices to consider excess(K2 ∪ {c}) for this part. After K2 ∪ {c} is finished,
the robot starts at c and explores K1. For this part we take excess(P1) into
account. Finally, we add one single step, because the split cell c is visitited twice:

530 Christian Icking et al.

once, when SmartDFS detects the split and once more after the exploration of
excess(K2 ∪ {c}) is finished. Altogether, the given bound is achieved. ��

The following lemma can easily be shown and allows us to charge the number
of edges in P1 and P2 against the number of edges in P and Q.

Lemma 5. Let P be a simple grid polygon, and let P1, P2 and Q be defined as
above. The number of edges satisfy E(P1) + E(P2) = E(P) + E(Q).

Lemma 6. Let Π be the shortest path between two cells in a grid polygon P .
The length of Π is bounded by |Π | ≤ 1

2E(P)− 2.

Proof. The maximal distance is achieved between two cells in the first layer, and
the shortest path between them is never longer than 1

2 ·#(cells in the first layer).
Analogously to Lemma 3, this layer has at most E(P)− 4 cells. ��

Now, we can give an upper bound for the number of steps used to explore a
simple polygon.

Theorem 7. Let P be a simple grid polygon with C cells and E edges. P can
be explored with S ≤ C + 1

2E − 3 steps. This bound is tight.

Proof. C is the number of cells and thus a lower bound on the number of steps
that are needed to explore the polygon P . We will show by induction on the
number of components that excess(P) ≤ 1

2E(P)− 3 holds.
For the induction base we consider a polygon without any split cell, i. e.,

SmartDFS visits all cells and returns on the shortest path to the start cell. Since
there is no polygon split, all cells of P can be visited by a path of length C − 1.
By Lemma 6 the shortest path back to the start cell is not longer than 1

2E − 2
and excess(P) ≤ 1

2E(P)− 3 holds.
Now, we assume that there is more than one component during the applica-

tion of SmartDFS. Let c be the first split cell detected in P . When SmartDFS
reaches c, two new components, K1 and K2, occur. We consider the two polygons
P1 and P2 defined as above using the square Q around c.

W. l. o. g. we assume that K2 is recursively explored first. After K2 is com-
pletely explored, SmartDFS proceeds with the remaining polygon. As shown in
Lemma 4 we have excess(P) ≤ excess(P1)+excess(K2∪{c})+1 . Now, we apply
the induction hypothesis to P1 and K2 ∪ {c} and get

excess(P) ≤ 1
2E(P1)− 3 + 1

2E(K2 ∪ {c})− 3 + 1 .
By applying Lemma 3 to the q-offset K2 ∪ {c} of P2 we achieve
excess(P) ≤ 1

2E(P1)− 3 + 1
2 (E(P2)− 8q)− 3 + 1 = 1

2 (E(P1) +E(P2))− 4q− 5 .
From Lemma 5 we conclude E(P1) + E(P2) ≤ E(P) + 4(2q + 1). Thus, we get
excess(P) ≤ 1

2E(P)− 3. This bound is achieved exactly in polygons that do not
contain any 2× 2-square of free cells. ��

So far we have shown an upper bound for the number of steps needed to
explore a polygon that depends on the number of cells and edges in the polygon.
Now we want to analyze SmartDFS in the competitive framework.

Exploring Simple Grid Polygons 531

Corridors of width 1 or 2 play a crucial role in the following, so we refer to
them as narrow passages3. It is easy to see that narrow passages are explored
optimally. In passages of width 1 both SmartDFS and the optimal strategy visit
every cell twice, and in the other case both strategies visit every cell exactly
once. We need two lemmata to show a competitive factor for SmartDFS. The
first one gives us a relation between the number of cells and the number of edges
for a special class of polygons.

Lemma 8. For a simple grid polygon, P , without any narrow passage or split
cells in the first layer, E(P) ≤ 2

3 C(P) + 6 holds.

Proof. Consider such a polygon, P , see Fig. 6(i). We successively remove an outer
row or column of at least three boundary cells, maintaining our assumptions on
P . These assumptions ensure that we can always find such a row or column.
Thus, we remove at least three cells and at most two edges. This decomposition
ends with a 3× 3 block of cells that fulfills E = 2

3C(P)+ 6. Now, we reverse our
decomposition, i. e., we successively add all rows and columns until we end up
with P . In every step, we add at least three cells and at most two edges. Thus,
E ≤ 2

3C(P) + 6 is fulfilled in every step. ��

(i)

c′

Π′
s′

s

optimal strategy(ii)

s

SmartDFS

s

P ′

Fig. 6. (i) For polygons without narrow passages or split cells in the first layer, E(P) ≤
2
3

C(P) + 6 holds, and the last explored cell, c′, lies in the 1-offset, P ′ (shaded), (ii) In
a corridor of width 3 and even length, S(P) = 4

3
SOpt(P) − 2 holds.

For the same class of polygons, we can show that SmartDFS behaves slightly
better than the bound in Theorem 7.

Lemma 9. A polygon of the same type as in Lemma 8 can be explored using no
more than S(P) ≤ C(P) + 1

2E(P)− 5 steps.

Proof. We have shown S(P) ≤ C(P) + 1
2E(P) − 3 in Theorem 7. In the proof,

we used Lemma 6 to bound the return path, but this lemma bounds the path
between two cells in the first layer. By our assumptions on P , we can completely
explore the first layer of P before visiting another layer, and the return path,
Π , starts in a cell, c′, in the 1-offset, P ′, see Fig. 6(i). Let s′ denote the first
3 More precisely, a cell, c, belongs to a narrow passage, if c can be removed without

changing the layer number of any other cell.

532 Christian Icking et al.

visited cell in P ′. Remark that s and s′ are at least touching each other. Now,
Π is bounded by a shortest path, Π ′, from c′ to s′ in P ′ and a shortest path
from s′ to s, i. e., |Π | ≤ |Π |′ + 2. Π ′, in turn, is bounded using Lemma 6 by
|Π |′ ≤ E(P ′)− 2. With Lemma 3, E(P ′) ≤ E(P) − 4 holds, and altogether we
get |Π | ≤ E(P)− 4, which is two steps shorter than stated in Lemma 6. ��

Theorem 10. The strategy SmartDFS is 4
3 -competitive.

Proof. Let P be a simple grid polygon. First, we remove all narrow passages
from P and get a sequence of (sub-)polygons Pi, i = 1, . . . , k, without narrow
passages. For every Pi, i = 1, . . . , k − 1, the optimal strategy in P explores the
part of P that corresponds to Pi up to the narrow passage that connects Pi with
Pi+1, enters Pi+1, and fully explores every Pj with j ≥ i. Then it returns to Pi

and continues with the exploration of Pi. Further, we already know that narrow
passages are explored optimally. This allows us to consider every Pi separately
without changing the competitive factor of P .

Now, we observe a (sub-)polygon Pi. We show by induction on the number
of split cells in the first layer that S(Pi) ≤ 4

3C(Pi) − 2 holds. Note that this is
exactly achieved in polygons of size 3×m with m even, see Fig. 6(ii).

If Pi has no split cell in the first layer, we can apply Lemma 9 and Lemma 8:
S(Pi) ≤ C(Pi) + 1

2E(Pi)− 5 ≤ C(Pi) + 1
2

(
2
3C(Pi) + 6

)
− 5 = 4

3 C(Pi)− 2 .
Two cases occur if we meet a split cell, c, in the first layer, see Fig. 4(ii)–(iv).

In the first case, the new component was never visited before (type (II)). Here,
we define Q := {c}. The second case occurs, because the robot meets a cell, c′,
that is in the first layer and touches the current cell, c, see for example Fig. 4(iii)
and (iv). Let Q be the smallest rectangle that contains both c and c′.

Similar to the proof of Theorem 7, we split the polygon Pi into two parts, both
including Q. Let P ′′ denote the part that includes the component of type (II) or
(III), P ′ the other part. For |Q| = 1, see Fig. 4(ii), we conclude S(Pi) = S(P ′)+
S(P ′′) and C(Pi) = C(P ′) + C(P ′′) − 1. Applying the induction hypothesis to
P ′ and P ′′ yields S(Pi) = S(P ′) + S(P ′′) ≤ 4

3 C(Pi) + 4
3 − 4 < 4

3 C(Pi)− 2 .
For |Q| ∈ { 2, 4 } we gain some steps by merging the polygons. If we consider

P ′ and P ′′ separately, we count the steps from c′ to c – or vice versa – in both
polygons, but in Pi the path from c′ to c is replaced by the exploration path in
P ′′. Thus, we have S(Pi) = S(P ′)+S(P ′′)−|Q| andC(Pi) = C(P ′)+C(P ′′)+|Q|.
This yields S(Pi) = S(P ′)+S(P ′′)−|Q| = 4

3 C(Pi)+ 1
3 (|Q|−6)−2 < 4

3 C(Pi)−2 .
An optimal strategy needs ≥ C steps, which, altogether, yields a competitive

factor of 4
3 . ��

6 Summary

It turned out that the exploration of simple polygons is easier than the explo-
ration of polygons with holes in terms of competitivity. In contrary to the lower
bound of 2 for polygons with holes, we have shown a lower bound of 7

6 and an
upper bound of 4

3 for simple polygons, leaving a gap of only 1
6 . Additionally, we

can also bound the length of an exploration path by C + 1
2E − 3 which is tight.

Exploring Simple Grid Polygons 533

References

1. E. M. Arkin, S. P. Fekete, and J. S. B. Mitchell. Approximation algorithms for
lawn mowing and milling. Technical report, Mathematisches Institut, Universität
zu Köln, 1997.

2. S. Arora. Polynomial time approximation schemes for Euclidean TSP and other
geometric problems. In Proc. 37th Annu. IEEE Sympos. Found. Comput. Sci.,
pages 2–11, 1996.

3. X. Deng, T. Kameda, and C. Papadimitriou. How to learn an unknown environment
I: The rectilinear case. J. ACM, 45(2):215–245, 1998.

4. H. Everett. Hamiltonian paths in non-rectangular grid graphs. Report 86-1, Dept.
Comput. Sci., Univ. Toronto, Toronto, ON, 1986.

5. A. Fiat and G. Woeginger, editors. On-line Algorithms: The State of the Art,
volume 1442 of Lecture Notes Comput. Sci. Springer-Verlag, 1998.

6. Y. Gabriely and E. Rimon. Competitive on-line coverage of grid environments by
a mobile robot. Comput. Geom. Theory Appl., 24:197–224, 2003.

7. M. Grigni, E. Koutsoupias, and C. H. Papadimitriou. An approximation scheme
for planar graph TSP. In Proc. 36th Annu. IEEE Sympos. Found. Comput. Sci.,
pages 640–645, 1995.

8. U. Handel, C. Icking, T. Kamphans, E. Langetepe, and W. Meiswinkel. Gridrobot
– an environment for simulating exploration strategies in unknown cellular areas.
Java Applet, 2000. http://www.geometrylab.de/Gridrobot/.

9. F. Hoffmann, C. Icking, R. Klein, and K. Kriegel. The polygon exploration problem.
SIAM J. Comput., 31:577–600, 2001.

10. C. Icking, T. Kamphans, R. Klein, and E. Langetepe. Exploring an unknown cel-
lular environment. In Abstracts 16th European Workshop Comput. Geom., pages
140–143. Ben-Gurion University of the Negev, 2000.

11. C. Icking, T. Kamphans, R. Klein, and E. Langetepe. On the competitive complex-
ity of navigation tasks. In H. Bunke, H. I. Christensen, G. D. Hager, and R. Klein,
editors, Sensor Based Intelligent Robots, volume 2238 of Lecture Notes Comput.
Sci., pages 245–258, Berlin, 2002. Springer.

12. C. Icking, R. Klein, and E. Langetepe. Searching for the kernel of a polygon: A
competitive strategy using self-approaching curves. Technical Report 211, Depart-
ment of Computer Science, FernUniversität Hagen, Germany, 1997.

13. C. Icking, R. Klein, E. Langetepe, S. Schuierer, and I. Semrau. An optimal com-
petitive strategy for walking in streets. SIAM J. Comput., 33:462–486, 2004.

14. A. Itai, C. H. Papadimitriou, and J. L. Szwarcfiter. Hamilton paths in grid graphs.
SIAM J. Comput., 11:676–686, 1982.

15. T. Kamphans. Models and Algorithms for Online Exploration and Search. PhD
thesis, University of Bonn, to appear.

16. J. S. B. Mitchell. Guillotine subdivisions approximate polygonal subdivisions: A
simple polynomial-time approximation scheme for geometric TSP, k-MST, and
related problems. SIAM J. Comput., 28:1298–1309, 1999.

17. J. S. B. Mitchell. Geometric shortest paths and network optimization. In J.-R.
Sack and J. Urrutia, editors, Handbook of Computational Geometry, pages 633–
701. Elsevier Science Publishers B.V. North-Holland, Amsterdam, 2000.

18. S. Ntafos. Watchman routes under limited visibility. Comput. Geom. Theory Appl.,
1(3):149–170, 1992.

19. C. Umans and W. Lenhart. Hamiltonian cycles in solid grid graphs. In Proc. 38th
Annu. IEEE Sympos. Found. Comput. Sci., pages 496–507, 1997.

Approximation Algorithms
for Cutting Out Polygons with Lines and Rays

Xuehou Tan

Tokai University, 317 Nishino, Numazu 410-0395, Japan
tan@wing.ncc.u-tokai.ac.jp

Abstract. This paper studies the problem of cutting out a given poly-
gon, drawn on a convex piece of paper, in the cheapest possible way. For
the problems of cutting out convex polygons with line cuts and ray cuts,
we present a 7.9-approximation algorithm and a 6-approximation algo-
rithm, respectively. For the problem of cutting out ray-cuttable polygons,
an O(log n)-approximation algorithm is given.

1 Introduction

Overmars and Welzl introduced the following problem about two decades ago:
Given a polygonal piece of paper Q with a polygon P drawn on it, cut P out of
Q in a cheapest possible way [5].

A cut is a line that does not intersect the interior of P and divides Q into a
number of pieces, lying on both sides of the line. The cost of a cut is the length
of the intersection of the cut with Q. A cut is an edge cut if it cuts along an
edge of P . After a cut is made, the polygon Q is updated to the piece containing
P . A cutting sequence is a sequence of cuts such that after the last cut in the
sequence we have P = Q. One natural question is to find an optimal cutting
sequence whose total cost is minimum.

It is clear that the problem is solvable only when P is convex. If Q is also
convex, then there exists an optimal cutting sequence with O(n) line cuts, in
which each cut touches P [5]. However, the problem has optimal solutions that
may lie in the algebraic extension of the field that the input data belongs to [1].
Thus, an approximation scheme is the best one can achieve.

The first polynomial-time approximation algorithm is due to Dumitrescu [4].
The solution consists of a separation phase and a carving phase. In the separation
phase, three line cuts are used to cut out a triangle that contains P and has
roughly the same size of P . In the carving phase, the polygon P is cut out by a
sequence of edge cuts of cost no more than O(log n) times the perimeter of P ,
where n is the number of vertices of P . This gives an O(log n)-approximation
algorithm with O(mn+n logn) running time, where m is the number of vertices
ofQ [4]. Very recently, Daescu and Luo showed that if P is enclosed in a minimum
axis-aligned rectangle Q, an optimal edge cutting sequence gives a (2.5 +

√
2)-

approximation [2]. Combining with the separation phase given by Dumitrescu,
it leads to an O(1)-approximation algorithm with O(n3 + (n + m) log(n + m))
running time [2]. When only edge cuts are allowed, an optimal cutting sequence
can be found in O(n3 +m) time using a dynamic programming algorithm [5].

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 534–543, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Approximation Algorithms for Cutting Out Polygons with Lines and Rays 535

Daescu and Luo also considered the problem of cutting out polygons with
ray cuts. A ray cut originates from infinity and ends at some point within Q.
Demaine et al. have presented a linear time algorithm to determine if a polygon
is ray-cuttable [3]. For the problem of cutting out convex polygons, Daescu and
Luo have given an 18-approximaton algorithm to cut out a triangle that contains
P . For the problem of cutting out ray-cuttable polygons, they have presented
an O(log2 n)-approximation algorithm with O(m+ n logn) running time [2].

Our Results. In this paper, we first present an O(n + m) time algorithm to
cut out a minimum axis-aligned rectangle that contains the convex polygon P ,
at the cost no more than (3.5 +

√
2) times that of the optimal cutting sequence.

Next, we show that if P is enclosed in a minimum rectangle, an optimal edge
cutting sequence is a (1.5 +

√
2)-approximation of an optimal cutting sequence.

It thus results in a (5 + 2
√

2)-approximation, or shortly, a 7.9-approximation
algorithm with O(n3 + m) running time. Alternatively, we give an O(log n)-
approximation algorithm that requires only O(n+m) time, an impovement over
the solution in [2] by a factor log(n+m). For the problem of cutting out a convex
polygon P with ray cuts, we also give a (5/

√
2)-approximation algorithm to cut

out a minimum rectangle that contains P . In the carving phase, we present a
dynamic programming algorithm to compute an optimal ray cutting sequence
such that all cuts in the sequence are along the edges of P , and then show
that the found sequence is a (1 +

√
2)-approximation. Thus, we obtain a (1 +

7/
√

2)-approximation, or shortly, a 6-approximation algorithm with O(n3 +m)
running time. For the problem of cuttting out ray-cuttable polygons, we present
an O(log n)-approximation algorithm with O(n3 +m) running time.

2 Cutting Out Convex Polygons with Line Cuts

Let P , Q be two convex polygons such that P ⊂ Q, and ∂P (resp. ∂Q) the
boundary of P (resp. Q). Let S∗ denote an optimal cutting sequence, and S∗

e an
optimal edge cutting sequence. The cost of a cutting sequence S is denoted by
|S|. Let ab denote a line segment with endpoints a and b. We denote by |ab| the
length of ab. Also, we use the notation |P | for the perimeter of P , and use D for
the diameter of P . Clearly, 2D ≤ |P | ≤ |S∗| holds [2–4].

2.1 Separation Phase

Dumitrescu was the first to give an O(nm) time algorithm to find a triangle that
contains P and has roughly the same size of P [4]. For a vertex v of P , define
the chord through v as the intersecting segment of Q with a line through v. The
angles between all pairs of shortest chords are examined by his algorithm. In
this section, we show that two shortest chords suffice to bound the size of the
minimum rectangle containing P . It results in not only a good approximation
factor, but also a simple algorithm for cutting out the rectangle containing P .

Let Cv denote a shortest chord through a vertex v of P . Let V (P) be the set
of vertices of P , and let |C| = maxv∈V (P)|Cv|. Then, |C| ≤ |S∗| holds [4].

536 Xuehou Tan

A chord through v ∈ V (P) is called an ST-chord if it is a shortest chord
through v and tangent to P . We denote it by STv. Let |ST | = minv∈V (P)|STv|.

Lemma 1 Let T denote the vertex or the edge of P that is touched by the chord
ST . Then, |ST |+ |P | − |T | ≤ |S∗| holds.

Proof. Since there is an optimal cutting sequence S∗ such that all cuts in S∗

touch P [5], the length of the first cut in S∗ is at least |ST |. All edge cuts have
to appear in S∗; otherwise, P cannot be cut out. Hence, the lemma follows. �

W.l.o.g., assume that the chord ST is on the x-axis. Let Q′ denote the min-
imum rectangle containing P . Then, |Q′| ≤

√
2|P | ≤

√
2|S∗| holds. Let Dx

(resp. Dy) denote the x-distance (resp. y-distance) between two vertical (resp.
horizontal) edges of Q′. Then, Dx ≤ D, Dy ≤ D, and Dx +Dy ≤

√
2|S∗|/2 hold.

Theorem 1 There is an O(n+m) time algorithm that cuts out a minimum rect-
angle containing P , through a cutting sequence of cost less than (3.5 +

√
2)|S∗|.

Proof. Suppose that a chord ST touches a vertex v of P . Let lv denote the
supporting line of the chord ST . Our first cut is made along lv. See Fig. 1, where
the cuts are shown with bold and dotted lines. Let u be the vertex of P whose
distance to lv is maximum, and u′ the point of lv such that the angle � uu′v is
π/2. Denote by Cu a shortest chord through u, and d, e two endpoints of Cu on
∂Q. Let lu and le denote the lines parallel to lv and through u and e, respectively.
W.l.o.g., assume that the point e lies in between lu and lv. (The point e may be
on lv.) Let f denote the intersection point of lv with the supporting line of de.
We distinguish below the following different cases.

Case 1 The chord Cu is tangent to P . In this case, we make the second cut
along Cu, whose length is at most |S∗|. W.l.o.g., assume that the slopes of the
first two cuts are different. The lines through two cuts ST and Cu partition
the plane into four wedges. Define the angle of the wedge containing P as the
enclosing angle of ST and Cu.

Case 1.1 The enclosing angle of ST and Cu is at most π/2. Consider a line
segment ap tangent to P , with p on lv and a on the semi-line originating from u′

and going through u. (The point p may not lie in Q.) Let b be the intersection
point of ap with lu. Assume also that b and e lie in different sides of au′ (Fig.
1a). Our third cut is made along ap, with the point a giving the minimum value
|ap|min of |ap|. (The point a giving |ap|min may not lie in Q.)

Let us now give an upper bound on |ap|min. Set Y = |au|. Since |au′| =
|au| + |uu′| ≤ Y + Dy and |ab| < |au| + |bu| = Y + |bu|, we have |ap| =
|au′|(|ab|/|au|) = (Dy/Y + 1)(Y + |bu|). Since |bu| ≤ Dx holds, we consider
the function F (Y) = (Dy/Y + 1)(Y + Dx). A simple analysis shows that the
minimum value F (Y)min of F (Y) is achieved when Y =

√
DxDy. Hence,

F (Y)min < (Dy/
√
DxDy + 1)(

√
DxDy +Dx) ≤ (1 +

√
2/2)|S∗|.

It is clear that |ap|min ≤ F (Y)min. Thus, the length of the cut along ap is less
than (1+

√
2/2)|S∗|. Finally, we make a cut along lu, and two cuts parallel to au′

Approximation Algorithms for Cutting Out Polygons with Lines and Rays 537

Q

P

p

a

vlv

u

(a)

d'

b

e

Q

P

p

a

l v

b=u

(c)

c'

d

v

e

Q

P

p

g u

l v

b

(e)

d

v

u

h

clu
lu

lu c

l e

f

e

Q

P

p

a

u

l v

b

(f)

d

v

lu c

i

f

g

e

Q

P

p

u

lv

b

(b)

a

v

lu

f

e

Q

P
p

g u

l v

b

(d)

d

v

l u c

le

u'u'

dd

e

Fig. 1. Illustration of cutting out a minimum rectangle containing P .

and tangent to P . This results in the minimum rectangle Q′ containing P (only
part of Q′ may result). See Fig. 1a. The sum of the cost taken for the cut along
the chord ST and the costs for the last three cuts is less than |Q′|+ |ST | − |T |.
Since |ST | ≥ |T |, we have |Q′| + |ST | − |T | ≤

√
2(|P | + |ST | − |T |) ≤

√
2|S∗|.

Hence, the total cost of these six cuts is less than (2 + 3√
2
)|S∗|.

Case 1.2 The enclosing angle of ST and Cu is larger than π/2 (Fig. 1b).
Consider a line segment ap tangent to P , with the point p on lv and the point a
on the semi-line originating from f and going through d, such that |ap| > |af |.
Let b be the intersection point of ap with lu. See Fig. 1b.

Set Y = |au|. Since the point f is contained in the right-angled triangle
�uu′v in this case, |uf | < |uv| ≤ D holds. Thus, |af | = |au| + |uf | ≤ Y + D.
Since |bu| ≤ Dx holds, we have |ab| < |au| + |bu| ≤ Y + Dx. Hence, |ap| =
|af |(|ab|/|au|) < (D + Y)(Y +Dx)/Y ≤ (D/Y + 1)(Y +Dx).

Also, the following upper bound on the minimum value |ap|min of |ap| holds.

|ap|min < D + 2
√
DDx +Dx ≤ |S∗|/2 + |S∗|+ |S∗|/2 = 2|S∗|.

To cut out the rectangle Q′, we compute the position of a giving |ap|min,
and make the third cut along ap. Finally, make a cut along lu and a cut tangent
to P and perpendicular to lv. The sum of the costs for the cut along ST and for
the last two cuts is at most

√
2|S∗|. The total cost is less than (3 +

√
2)|S∗|.

Case 2 The chord Cu intersects the interior of P . Let c be the point of lu
such that the angle � dcu is π/2.

Case 2.1 The supporting line of cd intersects the interior of P (Fig. 1c).
Because of the convexity of Q, we can move a line segment c′d′, with c′ on lu
and d′ on ∂Q, to a place such that the supporting line of c′d′ is parallel to cd
and tangent to P , and |c′d′| ≤ |cd|. See Fig. 1c. In this case, the second cut is
made along the supporting line of c′d′. Denote by h the other intersection of this

538 Xuehou Tan

cut with ∂Q. For efficiency, the cost of our second cut is considered as two parts
|c′h| and |c′d′|. Note that |c′d′| ≤ |cd| < |ud| < Cu ≤ |S∗|.

Consider a line segment ap tangent to P , with p on the line le and a on
the semi-line originating from h and going through d′. Let b be the intersection
point of the line lu with ap. Then, |bc′| ≤ Dx holds. See Fig. 1c. Again, we
compute the position of a that gives the minimum value of |ap|, and make the
third cut along ap. The rectangle Q′ can finally be cut out by making two cuts
along lu and along the other tangent to P which is parallel to d′h. The sum of
|c′h| and the costs taken for the first cut ST and the last two cuts is at most
|Q′|+ ST − T ≤

√
2|S∗|. As in Case 1.1, the total cost is less than (2 + 3√

2
)|S∗|.

Case 2.2 The supporting line of cd does not intersect the interior of P . Let
g denote the vertex of the rectangle Q′ such that it is on lu and |dg| > |du|.

Case 2.2.1 |gu| ≤ |du|. Suppose first that d and e are to different sides of the
vertex v (as viewed from v). See Fig. 1d. Let dp denote the segment tangent to P ,
with p on le, such that |dp| > |de|. The second cut is made along the supporting
line of dp. Let b be the intersection point of the cut with lu. Since |bu| ≤ |gu|, we
have |dp| = |de|(|db|/|du|) < |de|(|bu|+ |du|)/|du| ≤ |de|(|gu|/|du|+ 1) ≤ 2|de|.

To cut out the rectangelQ′, we make two cuts tangent to P and perpendicular
to lv. Also, the longer cut is considered as two parts: one is between lv and lu,
and the other is between lu and the line segment bd, whose length is less than
|dc| < |du| < Cu < |S∗|. See Fig. 1d. Finally, make a cut along lu. As analyzed
above (like Case 1.2), the total cost is then less than (3 +

√
2)|S∗|.

Assume now that d and e are to the same side of v (Fig. 1e). Let dp denote
the segment tangent to P , with p on lv, such that |dp| > |df |. Note that |df | =
|de| + |ef | ≤ |S∗| + |ef |. Our cutting sequence is exactly the same as above,
except for that the cost for the cut along dp is increased by 2|ef |. Since the
angle � efv is larger than π/2 in this case, |ef | < |ev|. Since ev is a part of the
final polygon Q and does not overlap with any cut, a mount of |ef | can be saved.
Since |ef | < |uf | < |uv| < D, the total cost is less than (3.5 +

√
2)|S∗|.

Case 2.2.2 |gu| > |du| (Fig. 1f). Assume first that d and e are to the same
side of the vertex v. Let ap be a line segment tangent to P , with p on lv and a
on the semi-line originating from f and going through d, such that |ap| > |af |.
Let b and i be the intersection points of ap with lu and with the line through d
and parallel to lv, respectively. See Fig. 1f.

Set Y = |ad| and H = |df |. Since |uf | < |uv| holds in this case, H = |du|+
|uf | < |gu|+ |uv| ≤ Dx +D ≤ |S∗|. Since |af | = |ad|+ |df | = Y +H and |ai| <
|ad|+ |di| = Y + |di|, we have |ap| = |af |(|ai|/|ad|) < (H/Y +1)(Y + |di|). Since
|di| < |bu| ≤ Dx holds, we have |ap|min < H + 2

√
HDx +Dx ≤ (1.5 +

√
2)|S∗|.

To cut out the rectangle Q′, we compute the position of a giving |ap|min,
and make the third cut along ap. Next, make a cut along di, whose length is
less than |bu|. Two cuts, tangent to P and perpendicular to lv, are then made.
Note that the longer cut can be considered as two parts: one is between lv and
lu and the other is between lu and the supporting line of di (whose length is less
than |gu|). Finally, a cut along lu is made. The sum of |gu| and the cost of the
cut along lu is clearly less than 2Dx ≤ |S∗|. Consider now the costs represented
by |bu| and taken for the first cut along ST and two cuts that are tangent to

Approximation Algorithms for Cutting Out Polygons with Lines and Rays 539

P and perpendicular to lv, excluding the part of the longer cut between lu and
the supporting line of di. By noticing the relation between the segment bu and
two considered vertical cuts (Fig. 1f), we have that the sum of these costs is less
than |P |+ |ST | − |T | ≤ |S∗|. Putting all together, the total cost of our cutting
sequence is less than (3.5 +

√
2)|S∗|.

For the case that d and e are to different sides of v, we can also show that
the cutting cost is less than (3.5 +

√
2)|S∗|. We leave the detail to readers.

Finally, the chord ST can be computed in O(n + m) time, by a clockwise
scan of ∂P and a clockwise scan of ∂Q. Other steps also take O(n+m) time. �

2.2 Carving Phase

In this section, we show that if P is enclosed in a minimum axis-aligned rectangle
Q, an optimal edge cutting sequence S∗

e is a (1.5 +
√

2)-approximation of an
optimal cutting sequence S∗. Note that |Q| ≤

√
2|P | holds in this case.

Theorem 2 If P is enclosed in a minimum axis-aligned rectangle Q, an optimal
edge cutting sequence S∗

e is a (1.5 +
√

2)-approximation of an optimal cutting
sequence S∗. Moreover, the cutting sequence S∗

e can be found in O(n3 +m) time.

Proof. Let us first review the approximation scheme given in [2]. Suppose that
an optimal cutting sequence S∗ is given. Construct an edge cutting sequence Se

as follows. For every cut C∗
v ∈ S∗, in order, if C∗

v is an edge cut, add it to Se.
Otherwise, C∗

v is tangent to a vertex v of P , and we add to Se two cuts C1 and
C2 which are along two edges of P incident at v. Since the original polygon Q is
a rectangle, we can select the first cut C1 such that the part of C1, not contained
in the polygon Qe obtained after C2 is made in Se, is of length at most |C∗

v |/2.
Hence, the extra cost taken for all such parts is at most |S∗|/2 [2].

Let a, b be two endpoints of C∗
v on the boundary of the current polygon Q

in S∗, and c, d two endpoints of C1 and C2 on the current polygon Qe (⊆ Q)
in Se. Suppose that a and c are to the same side of v. We now bound the
extra cost between |vc| and |va|. (The extra cost between |vd| and |vb| can be
estimated analogously.) If a and c are on an edge of the original rectangle or some
cut preceding C∗

v in S∗, the extra cost between |vc| and |va| is less than |ac|.
Probably, a is on some optimal cut C∗ ∈ S∗ preceding C∗

v , and c is on some edge
cut Ce ∈ Se preceding C1. Since c is contained in the polygon Q obtained after
C∗

v ∈ S∗ is made, we extend the segment vc until it intersects the cut C∗, say,
at the point c′. The extra cost between |vc| (< |vc′|) and |va| is less than |ac′|.
Since all segments representing these costs are disjoint, an upper bound on all
extra costs is |Q|+ |S∗|. Hence, |Se| < |S∗|+ |S∗|/2+(|Q|+ |S∗|) < 2.5|S∗|+ |Q|.

The extra costs analyzed above are overestimated. The cuts along all edges of
P have to appear in S∗, and the segments representing the extra costs described
above do not contain any edge of P . The total extra cost can then be reduced by
a factor |P |. Since |P | ≥ |Q|/

√
2, the new upper bound on |Se| is (1.5+

√
2)|S∗|.

Finally, note that |S∗
e | ≤ |Se| and S∗

e can be found in O(n3 +m) time. �

Combining Theorem 1 and Theorem 2, we have the following result.

540 Xuehou Tan

Theorem 3 Given two convex polygons P and Q, P ⊂ Q, with n and m ver-
tices, respectively, a 7.9-approximation of an optimal cutting sequence for cutting
P out of Q can be computed in O(n3 +m) time.

Lemma 2 Given two convex polygons P and Q, P ⊂ Q, with n and m vertices,
respectively, an O(log n)-approximation of an optimal cutting sequence can be
computed in O(n +m) time.

Proof. Our separation phase takes O(n+m) time. In the carving phase, the
O(log n)-approximation algorithm with O(n) running time in [2] can be used. �

3 Cutting Out Convex Polygons with Ray Cuts

A ray cut originates from infinity and ends at some point within Q. Denote also
by S∗ an optimal ray cutting sequence. We present below a 6-approximation
algorithm for the problem of cutting out convex polygons with ray cuts.

3.1 Separation Phase

Lemma 3 Let pq be the line segment that gives the closest distance between ∂P
and ∂Q. Then, 2|pq|+ |P | ≤ |S∗|.

Proof. Note that all ray cuts in S∗ touch the polygon P [2]. Assume that P
completely lies in the interior of Q (otherwise, |pq| = 0). Then, at least two ray
cuts intersect with the original boundary ∂Q, and the cuts along all edges of P
have to appear in any ray cutting sequence. Hence, the lemma follows. �

Also, denote by Q′ the minimum rectangle containing P , and Dx (resp. Dy)
the shortest distance between two vertical edges (resp. horizontal edges) of Q′.

Theorem 4 There is an O(n + m) time algorithm that cuts out a minimum
rectangle containing P , through a ray cutting sequence of cost less than 5√

2
|S∗|.

Proof. Let pq denote the line segment that gives the closest distance between
∂P and ∂Q, where p is a vertex of P and q is on some edge e of Q. Let lq denote
the supporting line of the edge e, and l′q the line tangent to P and parallel to lq
such that P is between lq and l′q. Let lpq be the line through p and q. See Fig. 2.

Suppose first that lpq is tangent to P at p. Consider a line segment ao tangent
to P , with the point a on lpq and the point o on lq, such that P is between aq and
ao. Let b and c be the intersection points of l′q with ao and aq, respectively. See
Fig. 2a. Since |pq| gives the shortest distance between ∂P and ∂Q, |cp| = Dy.

Set H = |cp| + |pq| = Dy + |pq| and Y = |ac|. It then follows from Lemma
3 that H ≤ |S∗|/2. We will make two ray cuts along qa and oa. For efficiency,
the cost of the cut along qa is considered as two parts |ac| and |cq|. Let Ca =
|ac|+ |ao|. Since |ab| < |ac|+ |bc| ≤ Y + |bc|, we have Ca = |ac|+ |aq|(|ab|/|ac|) =
Y + (H + Y)((Y + |bc|)/Y) = H + 2Y + (1 + H/Y)|bc|. Since |bc| ≤ Dx holds,
consider the function F (Y) = H + 2Y + (1 + H/Y)Dx. The minimum value of
F (Y) is achieved when Y =

√
HDx/2. So we have

Approximation Algorithms for Cutting Out Polygons with Lines and Rays 541

Q P

o

p

a

q
l

l'

q

q
c b

Q P

p

a

q

l

l'

q

q c b

(a) (b)

lpq

o

l p'q'

q'

p'

Fig. 2. Illustration of cutting out a minimum rectangle containing P with ray cuts.

Camin < H+2
√

2HDx+Dx ≤ Dx+Dy+|pq|+
√

2|S∗| ≤
√

2|P |/2+|pq|+
√

2|S∗|.

To cut out the rectangle Q′, we make a ray cut tangent to P and parallel to
lpq such that P is between qa and this cut. Finally, make two cuts tangent to P
and parallel to lq. See Fig. 2a. The sum of |cq| and the costs taken for the last
three cuts is less than |Q′|+ 2|pq| ≤

√
2|P |+ 2|pq|. Hence, the total cost is less

than 3√
2
|P |+ 3|pq|+

√
2|S∗| ≤ 3√

2
(|P |+

√
2|pq|) +

√
2|S∗| < 5√

2
|S∗|.

Consider now the case that the line lpq divides P into two parts. Let lp′q′

denote the line parallel to pq and tangent to P , with p′ ∈ ∂P and q′ ∈ ∂Q,
and c the intersection point of l′q with lp′q′ . See Fig. 2b for an example. Since
|cq′| = Dy + |pq|, the minimum rectangle containing P can also be cut out
through a cutting sequence of cost less than 5√

2
|S∗|.

Since both P and Q are convex, the closest segment pq between ∂P and ∂Q
can be found in O(n +m) time. All other steps also take O(n +m) time. �

3.2 Carving Phase

A ray cut is called an edge-ray cut if it is made along an edge of the polygon P .
Let S∗

e denote an optimal edge-ray cutting sequence. Define the virtual vertices
of P as the intersection points of the supporting lines of edges of P .

Lemma 4 Any cut in S∗
e has to end at one of the virtual vertices of P (including

the vertices of the polygon P) or on ∂Q before it can reach the target vertex.

Proof. Omitted in this extended abstract. �

The dynamic programming algorithm for line cuts in [5] is based the obser-
vation that after a pair of line cuts C1 and C2 are made, the following cuts along
the part of ∂P between C1 and C2 in clockwise order, are independent from
the cuts for the other part of ∂P . It also works for ray cuts, provided that the
polygon P is convex. Since an edge-ray cut ends at some virtual vertex of P ,
two cuts C1 and C2 may divide ∂P into at most eight types of configurations.
For each of these situations, the subproblems of cutting along two parts of ∂P
between C1 and C2 can be considered independently.

Theorem 5 If all cuts are along the edges of the polygon P , then an optimal
edge-ray cutting sequence S∗

e can be computed in O(n3 +m) time.

542 Xuehou Tan

Proof. The proof is omitted, as it is similar to that for line cuts [5]. �

Theorem 6 If P is enclosed in a minimum axis-aligned rectangle Q, then an
optimal edge-ray cutting sequence S∗

e is a (1 +
√

2)-approximation of an optimal
ray cutting sequence.

Proof. Similar to the proof of Theorem 2, we can construct an edge-ray cutting
sequence Se such that |Se| < (1 +

√
2)|S∗| (the detail is omitted). Since |S∗

e | ≤
|Se|, the theorem follows. �

Combining Theorems 4, 5 and 6, we have the following result.

Theorem 7 Given two convex polygons P and Q, P ⊂ Q, with n and m ver-
tices, respectively, a 6-approximation of an optimal ray cutting sequence for cut-
ting P out of Q can be computed in O(n3 +m) time.

Lemma 5 Given two convex polygons P and Q, P ⊂ Q, with n and m vertices,
respectively, an O(log n)-approximation of an optimal ray cutting sequence can
be computed in O(n +m) time.

Proof. The proof is similar to that of Lemma 2 and thus omitted. Box

4 Cutting Out Ray-Cuttable Polygons

In this section, we consider the problem of cutting out a ray-cuttable polygon P
out of a convex polygon Q. The difficulty of developing an O(1)-approximation
algorithm has been shown in [2], as the dynamic programming algorithm does not
work for non-convex polygons. Our approach is essentially the same as that in [2],
but in the carving phase, we use Theorem 6 to give an O(log n)-approximation.

Let CH(P) denote the convex hull of P . A connected region inside CH(P)
but exterior to P is called a pocket of P . See Fig. 3. The polygon P can be cut
out by first cutting out CH(P) and then all pockects of P from Q = CH(P). Let
T denote a pocket of P , and V (T) the set of the vertices of T . Clearly, there is a
unique edge e of T such that e ∈ Q (= CH(P)) and e /∈ P . Let u and v denote
two vertices of the edge e (Fig. 3). Denote by SPux (resp. SPvx), x ∈ V (T), the
shortest path from u (resp. v) to x in T . The region bounded by SPux, SPvx

and the edge uv is called a funnel, and denoted by Fx. Both SPux and SPvx

are inward convex; they bugle in toward the funnel region. See Fig. 3a for an
example, where x = a. Clearly, the pocket T is cut out if and only if all funnels
Fx, x ∈ V (T) (x �= u and x �= v), are cut out.

The problem of cutting out the pocket T can be reduced to the subproblems
of cutting out convex polygons by a recursive procedure [2]. Let Tu′v′ denote the
part of ∂T from u′ to v′, where u′ and v′ are two vertices of T such that u′ is
closer to u on ∂T than v′. First, we find the median vertex a of the vertices of
Tuv. Let b denote the point of the edge uv, which gives the closest distance of the
edge uv to the vertex a in the pocket T . Since P is ray-cuttable, the line segment
ab exists. Also, the point b on uv can be found in constant time, provided that

Approximation Algorithms for Cutting Out Polygons with Lines and Rays 543

T

P
a

bu v

SP SPvaua

T

Pa'

b'u v

SP SPvu'uv'

(a) (b)

Fig. 3. Illustration for cutting out a ray-cuttable polygon.

SPua and SPva have been computed. The path SPua (resp. SPva) is contained
in the triangle �uab (resp. �vab), which can be considered as the polygon Q.
The funnel Fa can thus be cut out by a ray cut along ba and an optimal ray
cutting sequence such that all cuts are along the edges of SPua (resp. SPva) in
the triangle �uab (resp. �vab). In the next step, we find the median vertex l
(resp. r) of Tua (resp. Tav), and then cut out the funnel Fl (resp. Fr). In this
way, T can be cut out by O(log n) recursive steps. Let a′ be the median vertext
of the vertices of some Tu′v′ , and o the interscetion point of two paths SPuv′

and SPvu′ . See Fig. 3b. Since Fu′ and Fv′ have been cut out, the part of Fa′

to be cut out is contained in the region bounded by u′o, ov′ and Tu′v′ . Since
|u′o|+ |ov′| = |Tu′v′ | [2], the total size of the parts of all funnels, which are used
in the carving phases, is O(|P | log n).

Let us now bound the time required to cut out T . All shortest paths SPux

and SPvx, x ∈ V (T), can be computed in linear time. The time taken for cutting
out Fa is O(n3

uv), where nuv is the number of vertices of Tuv. Solving T (nuv) =
2T (nuv

2)+O(n3
uv) gives the time bound O(n3

uv). All pockets of P can then be cut
out in O(n3) time. Hence, we have the following result (the proof is omitted).

Theorem 8 Given a ray-cuttable polygon with n vertices drawn on a convex
polygon with m vertices, an edge-ray cutting sequence that is an O(log n)-
approximation of an optimal ray cutting sequence can be computed in O(n3 +m)
time.

References

1. J.Bhadury and R.Chandrasekaran, Stock cutting to minimize cutting sequence,
European Journal of Operational Research 88 (1996) 69-87.

2. O.Daescu and J.Luo, Cutting out polygons with lines and rays, Submtted to
IJCGA (see also a preliminary version in LNCS 3341 (2004) 669-680).

3. E.D.Demaine, M.L.Demaine and C.S.Kaplan, Polygons cuttable by a circular saw,
Computational Geometry: Theory and Applications 20 (2001) 69-84.

4. A.Dumitrescu, An approximation algorithm for cuttng out convex polygons, Com-
putational Geometry: Theory and Applications 29 (2004) 223-231.

5. M.H.Overmars and E.Welzl, The complexity of cutting paper, Proc. of the 1st
Annual ACM Symposium on Computational Geometry (1985) 316-321.

Efficient Non-intersection Queries
on Aggregated Geometric Data�

Prosenjit Gupta1, Ravi Janardan2, and Michiel Smid3

1 International Institute of Information Technology, Gachibowli
Hyderabad 500 019, India

pgupta@iiit.net
2 Department of Computer Science & Engineering, University of Minnesota

Minneapolis, MN 55455, USA
janardan@cs.umn.edu

3 Department of Computer Science, Carleton University, Ottawa, Canada K1S 5B6
michiel@scs.carleton.ca

Abstract. Let S be a set of geometric objects that are aggregated into
disjoint groups. The problem considered is that of preprocessing S so that
for any query object, q, the distinct groups such that no objects from
those groups are intersected by q can be reported efficiently. The goal is to
devise solutions where the query time is sensitive to the output size, i.e.,
the number of groups reported. Unfortunately, the obvious approaches
of (i) solving the corresponding intersection problem for aggregated data
and reporting the complement, or (ii) querying with the complement of
q are either expensive or incorrect. Efficient, output-sensitive solutions
are given to several non-intersection searching problems on aggregated
data, using methods such as geometric duality, sparsification, persistence,
filtering search, and pruning.

1 Introduction

Consider the following scenario. The U.S. mutual fund universe consists of about
8,300 mutual funds aggregated into roughly 560 fund families [15]1. Confronted
with this bewildering array of choices, an investor might wish to consolidate
his/her holdings by identifying a small number of families whose funds meet
desired criteria (e.g., rate of return, volatility, and risk level – each specified as
a range of values). This can be accomplished by representing funds as points in
IR3, querying them with a box that is the Cartesian product of the three ranges,
and sifting through the retrieved funds to identify the associated families. In
computational geometry terms, this is merely the standard orthogonal range
search problem in IR3 [6]. However, this approach is not efficient for the problem
� Research of PG supported, in part, by grant SR/S3/EECE/22/2004 from the Dept.

of Science and Technology, Govt. of India. Research of RJ supported, in part, by
NSF grant INT–0422775. Research of MS supported, in part, by NSERC.

1 Worldwide, across 40 major countries, there are about 53,000 funds in an indeter-
minate number of families [15].

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 544–553, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Efficient Non-intersection Queries on Aggregated Geometric Data 545

at hand since the query time depends on the number of funds satisfying the
query range rather than the number of distinct fund families, which can be
much smaller. (For instance, a recent query using Yahoo’s mutual fund screener
yielded 935 funds in just 197 families that had a 1-year return of at least 10%
and market capitalization between one and five billion dollars.)

Ideally, one would like a query time that depends on the output size, which
here is the number of fund families. This can be done by assigning each point
a color based on the family it belongs to and requesting the distinct colors of
the points that are in the query range. This is a generalized orthogonal range
search problem (“generalized” because it includes the standard problem above
as a special case, when each color class has cardinality 1). Several types of such
generalized problems have been considered recently [1–5, 9–11, 13, 14, 17, 18].

Now, suppose instead that our investor is interested in identifying those fund
families for which no funds meet a specified set of criteria. For instance, a conser-
vative investor might want to avoid families whose funds have underperformed
with high risk and high volatility. In the generalized setting, the goal would be
to report the distinct colors such that no points of those colors are in the query
range that specifies the undesirable levels of performance, risk, and volatility.

At first sight, it would appear that this problem can be solved quite easily
using the generalized approach, by either (i) reporting the complement of the
set of distinct colors found in the range, or (ii) querying with the complement
of the query range. Unfortunately, this is not the case. Approach (i) is not
output-sensitive since the query time would depend on the number of distinct
colors in the range, which can be much greater than the number of colors that
avoid the range (the output size). Approach (ii) may not even yield the correct
answer: a color found in the complement of the query range could also occur
within the range! Furthermore, the complement of the query may not have a
compact representation and may need to be split into “simpler” queries (e.g.,
the complement of a query box would need to be represented as the union of
several semi-infinite boxes). Reconciling the responses to these simpler queries
and filtering out duplicates could be inefficient. Thus, a different approach is
needed.

There are many other examples of such generalized intersection problems.
For instance, in VLSI layout design, determining the circuits (i.e., connected
components of wires) that are affected/unaffected by the addition of a new wire
can formulated as a generalized intersection/non-intersection searching problem.

1.1 Contributions

Formally, our problem is: Preprocess a set, S, of n colored geometric objects into
a data structure and report efficiently, for any query object, q, the distinct colors
in S such that q intersects no objects of those colors.

We call such a problem a generalized non-intersection problem on S with q.
We measure the efficiency of a solution to this problem by the size and query time
of the data structure. Typically, but not exclusively, we seek solutions with linear
or close-to-linear storage (e.g., O(npolylog(n))) and low output-sensitive query

546 Prosenjit Gupta, Ravi Janardan, and Michiel Smid

Table 1. Summary of results for generalized non-intersection problems on S with q.
Rectangles are axes-parallel, t is the number of colors in S, I is the output size, d > 0
is an integer constant, and ε > 0 is an arbitrarily small constant.

Underlying Colored objects Query q Space Query time
space in S

IR1 points interval n log n + I

IR1 intervals interval n log2 n log n + I log2 n

IR2 points quadrant n log n + I

IR2 points grounded rectangle n log n log n + I

IR2 points rectangle n2 log n + I

IR2 horizontal vertical n log n log n + I
line segments line segment

IR1 intervals point n log n + I

IR2 rectangles point n log2 n log n + I log2 n

IRd (d ≥ 2) hyper-rectangles point nd logd−2 n logd−1 n + I

IR2 points halfplane n log n log2 n + I
tn log n + I

IR3 points halfspace n log2 n n1/2+ε + I
n2+ε log2 n + I

times of the form O(f(n) + I · g(n)), where f and g are “small” functions (e.g.,
polylogarithmic or sublinear in n), and I is the output size (i.e., the number
of distinct colors reported). Throughout, we make no assumptions about the
number of colors in S; it can range from a small constant all the way to n.

To our knowledge, there has, surprisingly, been no systematic study of such
generalized non-intersection problems. As mentioned earlier, neither solving the
corresponding generalized intersection problem and reporting the complement of
the answer nor solving one or more generalized problems with the complement
of the query is a satisfactory, or necessarily correct, solution. Here we develop
a different set of techniques, based on geometric duality, sparsification, persis-
tence, filtering search, and pruning, to solve several generalized non-intersection
problems. Table 1 summarizes our results, some of which are described here.
Due to space limitations, we omit all proofs and many details.

2 A General Approach for Non-intersection Queries

We describe a method that can be used for any generalized non-intersection
problem on S with q. All that is required is a data structure for the corresponding
generalized intersection problem on S with q which can answer counting queries.

We store the distinct colors in S at the leaves of a balanced binary tree, T ,
in no particular order. For any node v of T , let C(v) be the colors stored in the
leaves of v’s subtree and let S(v) be the points of S whose colors are in C(v).
We store the following information at v: (i) a count, count(v) = |C(v)|, of the
number of distinct colors in v’s subtree; and (ii) a data structure, G(v), that

Efficient Non-intersection Queries on Aggregated Geometric Data 547

answers generalized counting queries on S(v) with q; G(v) returns the number
of distinct colors among the objects in S(v) that are intersected by q.

To answer a non-intersection query on S with q, we do a depth-first search of
T . Let v be the current node and suppose it is a non-leaf. If the count returned by
G(v) is count(v), then we abandon the search below v (since q intersects at least
one object of S(v) for each color in C(v), the response to the non-intersection
query on S(v) with q is the empty set). If the count returned by G(v) is less than
count(v), then we search v’s subtree recursively (as there is at least one color in
C(v) for which q intersects no object in S(v) of that color). If v is a leaf, then
we output the color stored at v iff the count returned by G(v) is zero.

This approach is similar to one given by us in [12] for generalized intersection
queries, with one key difference. There we pruned the search below a node v iff
q did not intersect any object in S(v), which we were able to decide efficiently
by using for G(v) a structure that detects if q intersects any object in S(v) –
a standard problem. Here, we need to prune the search below v iff q intersects
at least one object of each color that occurs among the objects in S(v). This is
most easily determined by using a generalized counting structure for G(v), as
above; a standard counting would not reveal this information and a standard
reporting query would be too expensive.

Theorem 1. Let M(m) and f(m) be, respectively, the space and query time
complexity of the data structure G(v), where m = |S(v)|. Assume M(m)/m and
f(m) are non-decreasing for non-negative values of m. Then a set, S, of n colored
objects can be preprocessed into a data structure of size S(n) = O(M(n) log n)
so that a generalized non-intersection query on S with q can be answered in time
Q(n) = O(f(n) + I · f(n) logn), where I is the number of colors reported.

Applications: The above method can be used to derive efficient solutions for
several generalized non-intersection problems, as listed below. (In each case,
G(v) is a structure from [9].) We specify these problems below as the ordered
6-tuple 〈 S, q, M(m), f(m), S(n), Q(n) 〉: (i) 〈 colored intervals in IR1, interval,
O(m logm), O(logm), O(n log2 n), O(log n+I log2 n) 〉; (ii) 〈 colored intervals in
IR1, point, O(m), O(logm), O(n log n), O(log n+I log2 n) 〉; (iii) 〈 colored points
in IR2, axes-parallel rectangle, O(m2 log2 m), O(log2 m), O(n2 log3 n), O(log2 n+
I log3 n) 〉; and (iv) 〈 axes-parallel rectangles in IR2, point, O(m logm), O(logm),
O(n log2 n), O(log n+ I log2 n) 〉.

3 Querying Points with Orthogonal Ranges

3.1 Querying with Intervals in IR1

Given a set, S, of n colored points on the real line, IR1, we wish to answer a
generalized non-intersection query with an interval q = [a, b].

For each color, c, let Sc be the points of color c. We sort the points in Sc in
nondecreasing order as p1, p2, . . . , pk, where k = |Sc|. We transform this sequence
of points into a sequence of intervals (−∞, p1], [p1, p2], . . . [pk,+∞), which we
denote by Lc.

548 Prosenjit Gupta, Ravi Janardan, and Michiel Smid

Lemma 1. Query interval q = [a, b] does not contain any points of color c iff q
is contained properly in exactly one interval of Lc.

Lemma 1 implies that the original generalized non-intersection problem can
be re-phrased as the standard problem of reporting all intervals that contain a
query interval. To solve this, we map each input interval [x, y] to a point (x, y) in
IR2, and associate with it the color of [x, y]. Note that q = [a, b] ⊂ [x, y] iff x < a
and y > b, i.e. iff point (x, y) is contained properly in the northwest quadrant of
the point (a, b). The points contained in such a query quadrant can be reported
efficiently by storing the points (x, y) in a priority search tree [16]. The solution
can be made dynamic, to accommodate the insertion and deletion of colored
points in IR1. For each color c, we maintain the points of Sc in a balanced binary
search tree. We use this to update Lc whenever a point is inserted or deleted
in Sc, and then update the priority search tree with the corresponding point in
IR2, all in time O(log n). (We note that the static problem on integer inputs has
been solved independently in [17], in time O(I), using a different approach.)

Theorem 2. A set, S, of n colored points on IR1 can be preprocessed into a
data structure of size O(n), so that for any query interval q, a generalized non-
intersection query on S with q can be answered in time O(log n+ I), Moreover,
colored points can be inserted or deleted in S in time O(log n).

3.2 Querying with Quadrants in IR2

Given a set, S, of n colored points in IR2, we wish to answer a generalized non-
intersection query for a quadrant defined by a query point q = (a, b). Specifically,
we consider the north-east quadrant,NE(q), defined as the set of all points (x, y)
such that x ≥ a and y ≥ b. (Note that this is different from the quadrant problem
considered in Section 3.1, which is a standard intersection problem.)

As before, let Sc be the set of points of color c. Let Mc be the set of max-
imal points of Sc; that is, Mc ⊆ Sc consists of points each of whose north-east
quadrants contains no point of Sc.

Mc can be used to define a set, Hc, of horizontal line segments that form a
staircase-like structure which descends rightwards. Specifically, sort Mc by de-
creasing y-coordinates. For each pair of consecutive points, (xp, yp) and (xr, yr),
in this order, where yp > yr (note that xp < xr), insert the horizontal segment
((xp, yr), (xr , yr)] into Hc. Also include in Hc, a horizontal ray, from (xh, yh) to
(−∞, yh), where (xh, yh) is the highest point of Mc, and a horizontal ray from
(x�,−∞) to (∞,−∞), where (x�, y�) is the lowest point of Mc. Note that all the
segments in Hc (including the two rays) are open on the left.

Intuitively, if NE(q) does not contain any point of Sc, hence also of Mc, then
it does not intersect any segment from Hc. Thus, q must lie “above” the staircase
defined by Hc. All such staircases can be computed by shooting a vertical ray,
Ray(q) downwards from q. In what follows, the intersection of Ray(q) with a
segment is said to be proper if q is strictly above the segment.

Efficient Non-intersection Queries on Aggregated Geometric Data 549

Lemma 2. Let Ray(q) be the ray that emanates from q and is directed down-
wards. Then NE(q) contains no point of Sc iff Ray(q) intersects properly exactly
one segment of Hc.

Our goal now is to solve the standard problem of reporting the segments of
Hc, for all colors c, that are intersected by Ray(q). Given S, we compute and
store the segments of Hc, for all colors c, in a hive-graph [6] and query this with
Ray(q), for any query point q.

Theorem 3. A set, S, of n colored points in the plane can be preprocessed in
time O(n log n) into a data structure of size O(n), so that for any query point q,
a generalized non-intersection query on S with the north-east quadrant of q can
be answered in time O(log n+ I).

In the full paper, we also show how to semi-dynamize the above result using
O(n) space and O(log2 n + I) query time, with an insertion time of O(log n)
when amortized over n successive insertions into an empty set.

3.3 Querying with Grounded Rectangles in IR2

The data structure underlying Theorem 2 can be coupled with the notion of
persistence [7] to answer generalized non-intersection queries on a set, S, of n
colored points in IR2 with a grounded query rectangle q = [a, b]× [f,∞).

We create a linked list, L, which contains the c-colored point of maximum
y-coordinate, for each color c (ties broken arbitrarily). Next, we sort the points of
S by non-increasing y-coordinates and insert them in this order into a partially
persistent version of the structure of Theorem 2, using the x-coordinate as the
key. To answer a query q = [a, b] × [f,∞), we access the persistent version
corresponding to the smallest y-coordinate greater than or equal to f and query it
with the interval [a, b]. Additionally, we traverse L in the order of nondecreasing
y-coordinates and report all colors with maximum y-coordinate less than f .

Note that it is possible that there are colors such that all points of those
colors have y-coordinate less than f . These colors need to be reported but they
will not be found when querying the partially persistent structure; hence the
need for list L.

Theorem 4. A set, S, of n colored points in IR2 can be stored in a structure of
size O(n logn), so that for any query rectangle q = [a, b]× [f,∞), a generalized
non-intersection query on S with q can be answered in O(log n + I) time.

3.4 Querying with Orthogonal Rectangles in IR2

The data structure of Theorem 4 can be incorporated within the filtering search
paradigm [6] to answer generalized non-intersection queries on a set S of n
colored points in IR2 with a general (axes-parallel) query rectangle q = [a, b]×
[f, g]. The idea is to partition IR2 into regions within which q behaves like a
grounded rectangle. However, in doing so, q may retrieve colors that are not

550 Prosenjit Gupta, Ravi Janardan, and Michiel Smid

in the true output. Fortunately, the number of such overreported colors will be
small enough that they can be filtered out efficiently.

Let p1, p2, . . . , pn be the points of S, sorted in increasing order of their y-
coordinates. For each 1 ≤ k ≤ n/ logn, let Sk = {p1, p2, . . . , pk log n}, and let yk

be the y-coordinate of the point pk log n. We store each set Sk in an instance, Dk,
of the data structure of Theorem 4.

For every color, we find the point of that color in S which has minimum
y-coordinate and store all these points in a list L, sorted in decreasing order
of their y-coordinates. We initialize to zero an integer array B whose length is
equal to the number of distinct colors that occur in S.

A query on S, with q = [a, b]× [f, g], is answered as follows:

1. Using binary search, find the index k such that yk ≤ g < yk+1. (Thus, q’s
upper edge is above the line y = yk. W.r.t. the subset of S on or below this
line (i.e., Sk), q functions like the grounded rectangle q′ = [a, b]× [f,∞).)

2. Query Dk with q′, and store the colors found to not be in q′ in a list A. For
each color c in A, set B[c] = 1, and store with B[c] a pointer to its occurrence
in A. (Note that, at this stage, A may contain colors that are actually in
q = [a, b] × [f, g]. It may also not contain certain colors that are not in q
because these colors do not occur in Sk. The overreported colors are filtered
out and the underreported colors are discovered in the next few steps.)

3. For each j, where k logn+ 1 ≤ j ≤ (k+ 1) logn, if pj is in q and if B[c] = 1,
where c is the color of pj , then set B[c] = 0, follow the pointer that is stored
with B[c] to the occurrence of c in the list A, and delete c from A. (This
removes from A those colors that were overreported in step 2.) On the other
hand, if pj is not in q and B[c] = 0, then add c to A. (This includes in A
some of the colors that were underreported in step 2.)

4. Scan L, by decreasing y-coordinates, and find the colors of all points with
y-coordinate larger than yk+1. For each of these colors c, set B[c] = 1 and
add c to the list A. (This includes in A the remainder of the colors that were
underreported in step 2. Such colors will be discovered by scanning L since
it stores for each color the point with minimum y-coordinate.)

5. For each color c in A set B[c] = 0 and return A as the answer to q.

Theorem 5. A set, S, of n colored points in IR2 can be preprocessed into a
data structure of size O(n2), so that for any query rectangle q = [a, b]× [f, g], a
non-intersection query on S with q can be answered in time O(log n + I).

4 Queries Involving Orthogonal Line Segments

We consider generalized non-intersection queries on colored horizontal line seg-
ments in IR2 with a vertical query segment q, whose endpoints are (a, f) and
(a, g). Our solution uses a persistent version of the structure of Theorem 2 and
also a persistent red-black tree.

Call the distinct colors of the segments that intersect the supporting line of
q the active colors; the remaining colors are the inactive colors. We can solve

Efficient Non-intersection Queries on Aggregated Geometric Data 551

our generalized non-intersection problem, w.r.t. the active colors, by using an
instance of the data structure in Theorem 2. We make the structure of Theorem 2
persistent, and query the appropriate version with q. Note that this only reports
the active colors that are not intersected by q. We also need to report all the
inactive colors. For this, we track the set of inactive colors over all possible
queries q, again using persistence.

We sort the endpoints of the segments in S by nondecreasing x-coordinates
(favoring right endpoints over left endpoints, in the case of ties), and sweep over
them with a vertical line L. Let D be the data structure of Theorem 2, T be a
red-black tree, and let B be an array indexed by color. At any time in the sweep
D stores a set of colored points that are the y-coordinates of the segments that
are intersected currently by L, T stores the inactive colors, and B stores, for
each color, the number of segments of that color that are intersected by L.

Initially, L is to the left of all the segments, so no segments are intersected
by it and all the colors are inactive. Thus, D is empty, T contains all the colors,
and B is all-zero. We build the persistent versions of D and T as follows.

In a general step, suppose that L reaches an endpoint e of a horizontal seg-
ment h, of color c. If e is the left endpoint of h, then we insert persistently
the y-coordinate of h in D, with color c. We increment B[c] and, if B[c] = 1
now, then we delete c persistently from T . If e is the right endpoint of h, then
we delete persistently the y-coordinate of h from D. We decrement B[c] and, if
B[c] = 0 now, then we insert c persistently into T .

Denote the persistent versions of D and T as D and T , respectively. Given q,
with endpoints (a, f) and (a, g), we locate in D the instance of D corresponding
to the largest x-coordinate that is at most a and answer the query underlying
Theorem 2 using the interval [f, g]. In addition, we also output the colors in the
corresponding instance, T , of T .

Theorem 6. A set, S, of n colored, horizontal line segments in IR2 can be
preprocessed in time and space O(n log n), so that for any vertical query segment,
q, a generalized non-intersection query on S with q can be answered in time
O(log n+ I).

5 Querying Points with Halfspaces in IRd

We consider how to answer generalized non-intersection queries on a set, S,
of n colored points in IRd with a query halfspace bounded by a hyperplane q.
Specifically, if xi, 1 ≤ i ≤ d, are the coordinate axes, then the query is the open
halfspace, q−, consisting of points that lie below q in direction xd.

W.l.o.g. assume that q is non-vertical (the vertical case is easy). Our approach
is based on transforming the problem to a standard intersection problem in a
dual space. Let F denote the well-known point-hyperplane duality transform [8]:
If p = (p1, . . . , pd) is a point in IRd, then F(p) is the hyperplane xd = 2p1x1 +
· · · + 2pd−1xd−1 − pd. If H : xd = a1x1 + · · · + ad−1xd−1 + ad is a non-vertical
hyperplane in IRd, then F(H) is the point (a1/2, . . . , ad−1/2,−ad).

552 Prosenjit Gupta, Ravi Janardan, and Michiel Smid

Using F we map the colored points in S to a set, S′, of colored hyperplanes
and map q to the point q′ = F(q), all in IRd. The halfspace q+ is mapped to a
ray, Ray(q), which emanates from q′ and is directed downwards.

Lemma 3. Let Ec be the upper-envelope of the hyperplanes of color c. There are
no points of color c in q− iff Ray(q) intersects Ec. Moreover, if Ray(q) intersects
Ec, then it does so exactly once.

It suffices to determine from the collection of envelopes of different colors,
those that are intersected by Ray(q′); the number, k, of such intersected en-
velopes is also the number, I, of colors not in q−. Efficient solutions are known
for this ray-envelope intersection problem [10] in IR2 and IR3.

Theorem 7. For a set, S, of n colored points in IRd and any query hyperplane
q, a generalized non-intersection query on S with an open halfspace of q can
be answered in O(n logn) space and O(log2 n + I) query time for d = 2, and
O(n log2 n) (resp. O(n2+ε)) space and O(n1/2+ε + I) (resp. O(log2 n+ I)) query
time for d = 3.

5.1 A More Efficient Solution in IR2 for Few Colors

The above solution for d = 2 can be improved when t – the number of colors
in S – is O(log n). We represent each set of colored points by a sparse subset
consisting of their convex hull and establish a necessary and sufficient condition
for a color to be reported. Then, using geometric duality, we transform the
generalized non-intersection problem to a standard one and solve the latter.

For each color c, let CHc denote the convex hull of the points of color c. The
boundary of CHc can be partitioned into an upper chain, Uc, and a lower chain,
Lc, whose endpoints are the leftmost and rightmost vertices of CHc.

Lemma 4. No c-colored point is in q− iff Lc is in the closed halfplane q+.

Our goal now is to report the distinct colors, c, such that Lc is in q+. We
map this to a standard intersection problem in the dual space, via F . Thus,
Lc maps to an infinite convex chain L′

c which is convex downwards, q maps to
a point q′, and q+ maps to a vertical ray, Ray(q), emanating downwards from
q′. Moreover, Lc is in q+ iff Ray(q) intersects L′

c. Also, by convexity, if Ray(q)
intersects L′

c, then it does so exactly once. Thus, our problem can be solved by
simply reporting the dual chains intersected by Ray(q).

We associate with each dual chain, Lc, the color c. We draw a vertical line
through each vertex and intersection point in the set of dual chains of the
different colors. Within each strip so obtained, the chain segments are non-
intersecting, so they can be totally ordered. Given Ray(q), we locate, via binary
search, the strip containing the x-coordinate of q′, and then do a second binary
search within this strip using the y-coordinate of q′. We report the color of each
chain for which there is a segment in the strip that is on or below q′.

Efficient Non-intersection Queries on Aggregated Geometric Data 553

Theorem 8. A set, S, of n colored points in IR2, drawn from a palette of t
colors, can be stored in a structure of size O(tn), so that for any query line, q,
a generalized non-intersection query on S with an open halfplane of q can be
answered in time O(log n+ I).

References

1. P.K. Agarwal, S. Govindarajan, S. Muthukrishnan. Range Searching in categor-
ical data: colored range searching on grid-trees, Proc. 10th European Symp. on
Algorithms, LNCS 2461, Springer 2002, 323–334.

2. P.K. Agarwal and M. van Kreveld. Connected component and simple polygon
intersection searching. Algorithmica 15(6), 1996, 626–660.

3. P. Bozanis, N. Kitsios, C. Makris, and A. Tsakalidis. New upper bounds for gen-
eralized intersection searching problems. Proc. 22nd ICALP, LNCS 944, Springer
1995, 464–475.

4. P. Bozanis, N. Kitsios, C. Makris, and A. Tsakalidis. Red-Blue intersection report-
ing for objects of non-constant size. The Computer J., 39(6), 1996, 541–546.

5. P. Bozanis, N. Kitsios, C. Makris, and A. Tsakalidis. New results on intersection
query problems. The Computer J., 40(1), 1997, 22–29.

6. B. Chazelle. Filtering search: A new approach to query-answering. SIAM J. Com-
puting, 15(3), 1986, 703–724.

7. J.R. Driscoll, N. Sarnak, D.D. Sleator, and R.E. Tarjan. Making data structures
persistent. J. Computer and System Sciences, 38:86–124, 1989.

8. H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer-Verlag (1987).
9. P. Gupta, R. Janardan, and M. Smid. Further results on generalized intersec-

tion searching problems: counting, reporting, and dynamization, J. Algorithms,
19, 1995, 282–317.

10. P. Gupta, R. Janardan, and M. Smid. Algorithms for generalized halfspace range
searching and other intersection searching problems, Computational Geometry:
Theory and Applications, 5, 1996, 321–340.

11. P. Gupta, R. Janardan, and M. Smid. A technique for adding range restrictions to
generalized searching problems. Information Processing Letters, 64, 1997, 263–269.

12. P. Gupta, R. Janardan and M. Smid. Algorithms for some intersection searching
problems involving circular objects, Intl. J. Math. Algorithms, 1, 1999, 35–52.

13. P. Gupta, R. Janardan and M. Smid. Computational Geometry: Generalized In-
tersection Searching Handbook of Data Structures, S. Sahni and D. Mehta, eds.,
CRC Press, 2004, Ch. 64, 1–17.

14. R. Janardan and M. Lopez. Generalized intersection searching problems. Intl. J.
Computational Geometry & Applications, 3, 1993, 39–69.

15. Information culled from the Investment Company Institute’s Mutual Fund Fact-
book, 2003 (www.ici.org), and Yahoo.com (finance.yahoo.com).

16. E.M. McCreight. Priority search trees, SIAM J. Computing, 14(2), 1985, 257–276.
17. S. Muthukrishnan. Efficient algorithms for document retrieval problems. Proc. 13th

Annual Symp. on Discrete Algorithms, 2002, 657–666.
18. Q. Shi and J. JaJa. Optimal and near-optimal algorithms for generalized inter-

section reporting on pointer machines. Technical Report CS–TR–4542, UMIACS
Univ. of Maryland, College Park, MD, 2003.

An Upper Bound on the Number
of Rectangulations of a Point Set�

Eyal Ackerman, Gill Barequet, and Ron Y. Pinter

Dept. of Computer Science
Technion–Israel Institute of Technology, Haifa 32000, Israel

{ackerman,barequet,pinter}@cs.technion.ac.il

Abstract. We consider the number of different ways to divide a rect-
angle containing n noncorectilinear points into smaller rectangles by n
non-intersecting axis-parallel segments, such that every point is on a
segment. Using a novel counting technique of Santos and Seidel [12], we
show an upper bound of O(20n/n4) on this number.

1 Introduction

Given a set P of n points within an axis-parallel rectangle R, a rectangulation
of (R,P) is a set of non-intersecting segments that partitions R into smaller
rectangles, such that every point in P is on a segment. See Figure 1 for examples
of rectangulations.

The problem of finding a rectangulation with a minimum total length of
the segments has attracted considerable attention in the literature. Lingas, Pin-
ter, Rivest, and Shamir [10] introduced it as a special case of a problem with
applications to VLSI design, and showed that it is NP-hard. Since then, sev-
eral approximation algorithms have been suggested (e.g., [7–9]), including a
polynomial-time approximation scheme [11]. De Meneses and de Souza [6] sug-
gested integer-programming formulations and techniques to find exact solutions
for medium sized instances of the problem.

When the points are noncorectilinear, i.e., no two points share the same x
or y coordinate, the complexity class of the minimization problem is unknown.
However, it can be shown [3] that the optimal solution in this case consists
of exactly n segments. Hereafter, we consider only such rectangulations and
investigate the following question:

Given a set P of n noncorectilinear points within a rectangle R, how
many different rectangulations (by n segments) of (R,P) are there?

A similar question, that of the number of triangulations of the convex hull
of a set of n points in the plane, has attracted considerable attention in the
� Work on this paper by the first author has been supported in part by a Nee-

man fellowship at the Technion. Work by the first and second authors has also
been supported in part by the European FP6 Network of Excellence Grant 506766
(AIM@SHAPE).

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 554–559, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

An Upper Bound on the Number of Rectangulations of a Point Set 555

P

R

r1 r2

(a) (b) (c)

Fig. 1. Rectangulations of (R, P)

π2π

π1

π

π1

π2

(a) (b)

Fig. 2. Point sets in separable permutations

literature. The first singly-exponential upper bound on the number of trian-
gulations, O(173, 000n), was given by Smith [15]. The upper bound was im-
proved by Seidel [13] to O(212.245113n−Θ(log n)) ≈ O(4, 855n) and by Denny
and Sohler [5] to O(28.2n+O(log n)) ≈ O(294n). The best currently-known up-
per bound, O(59n/n6), is due to Santos and Seidel [12].

In a previous paper [1] we observed that the number of rectangulations of
a point set P depends only on the relative order of the points in P , which can
be represented by a permutation on n. We proved that if the permutation of
the points is separable [2]1, then the number of rectangulations is exactly the
(n + 1)st Baxter number, which is [4, 14]:

B(n + 1) =
n∑

r=0

(
n+2

r

)(
n+2
r+1

)(
n+2
r+2

)(
n+2

1

)(
n+2

2

) = Θ(8n/n4).

(In [1] we also observed that the number of separable permutations on n is the
(n−1)st Schröder number rn =

∑n
k=0 2k

(
n
k

)(
n

k−1

)
/n = Θ((3+

√
8)n/n1.5). Thus,

1 A separable permutation is either a permutation on one element or the concatenation
of two separable permutations. Formally, let π1 = (α1, α2, α3, . . . , αn) and π2 =
(β1, β2, β3, . . . , βm) be two permutations on n and m, respectively. We say that
π = (σ1, σ2, σ3, . . . , σn+m) is the result of concatenating π2 above π1 if σi = αi for
1 � i � n and σn+i = n + βi for 1 � i � m (see Figure 2(a)). Likewise, we say that
π = (σ1, σ2, σ3, . . . , σn+m) is the result of concatenating π2 below π1 if σi = m + αi

for 1 � i � n and σn+i = βi for 1 � i � m. (see Figure 2(b)). Then, a permutation
π is a separable if 1. π = (1); or 2. There are two separable permutations π1 and π2

such that π is the the concatenation of π2 above or below π1.

556 Eyal Ackerman, Gill Barequet, and Ron Y. Pinter

the portion of separble permutations out of the n! permutations is asymptotically
zero.)

We observed empirically that the number of rectangulations of all other sets
of n points in non-separable permutations is strictly larger than the (n + 1)st
Baxter number. This was done by counting systematically all the rectangulations
of sets of up to 10 points in all possible permutations. Nevertheless, we were
unable to prove that this is true, that is, that the (n + 1)st Baxter number is a
lower bound on the number of rectangulations of all point sets of size n.

It is easy to show super-exponential upper bounds. For example, assume
(without loss of generality) that there are fewer vertical segments than horizontal
segments in any rectangulation. Then choose the endpoints of the at most n/2
vertical segments; for each such segment there are no more than

(
n+1

2

)
options.

After determining the vertical segments, all the horizontal segments are unique:
they extend on both sides of the yet unused points until hitting the interior
of the first vertical segment (or the bounding rectangle). This yields the upper
bound O(

(
n+1

2

)n/2
), which is O(nn).

Another method uses the fact that the number of “point-free” rectangulations
(also known as floor-plans – subdivisions of a rectangle into smaller isothetic
rectangles) is also related to Baxter numbers [16] and is thus Θ(8n/n4). Each
such floor-plan can be trivially associated with at most n! permutations, hence
we obtain the slightly upper bound O(n! 8n/n4).

An even better – but still super-exponential – upper bound can be obtained
from the fact that in any rectangulation there always exists a segment s that
touches at most three other segments. By removing s and the point p on it (and
extending the segment supported by s, if such segment exists), we obtain a rect-
angulation of n− 1 points. Now, there are exactly six possible ways of inserting
s into this rectangulation. Suppose s was horizontal. Then, if s touched exactly
two vertical segments, we stretch a horizontal segment from p, in both directions,
until hitting a vertical segment. If s touched exactly three vertical segments, then
there are two possibilities: s must “chop” the first vertical segment either to its
right or to its left. Since s might be vertical, we have a total of six possibilities.
To be able to construct the rectangulation all we need to store is the way every
point and segment are added and the order of the points. Thus the number of
rectangulations is O(n! 6n).

In the following section we show that the number of rectangulations of a set of
n noncorectilinear points (arranged in any arbitrary permutation) is O(20n/n4).
This is the first proven singly-exponential upper bound on the number of rect-
angulations of any point set.

2 The Upper Bound

Our main result is:

Theorem 1. The maximum number of rectangulations of n noncorectilinear
points (by n segments) is O(20n/n4).

An Upper Bound on the Number of Rectangulations of a Point Set 557

Proof. The proof follows the structure of the proof of the upper bound on the
number of triangulations of a planar point set, given in [12]. We denote by
f(n) the maximum number of rectangulations of n points. Let P be a set of n
noncorectilinear points within a rectangle R, and let r be a rectangulation of
(R,P). A T-junction is an endpoint of a segment on another segment, or on the
boundary. The degree of a point p ∈ P in r is the number of T-junctions on the
segment that contains p. For example, the rightmost point in P in Figure 1 has
degree 2 in r1 and degree 3 in r2. Let nr

i be the number of points with degree i
in r, then clearly n =

∑
i n

r
i .

Every segment is bounded by two T-junctions, thus every segment s con-
tributes at most four to the total sum of degrees: two to the point it contains,
and one to every point that is contained in a segment bounding s (if it is not
a boundary segment). Note that the point on s might have a degree greater
than four, however we charge other segments for their contribution to this de-
gree. Therefore, the total sum of degrees is 4n − b, where b is the number of
T-junctions on the boundary of R in r. It is easy to verify that if n ≥ 3, then
b ≥ 4. Thus, for n ≥ 3 we have

4n− 4 ≥
∑

i

i · nr
i .

Easy manipulations show that

4
∑

i

nr
i ≥ 4 +

∑
i

i · nr
i ,∑

i

(4− i)nr
i ≥ 4, and∑

i

(5− i)nr
i ≥ 4 +

∑
i

nr
i = n+ 4.

Considering only the positive summands on the left-hand side of the last
equation we have:

3nr
2 + 2nr

3 + nr
4 ≥ n+ 4. (1)

Denote by hi the maximum number of rectangulations of (R,P) that one can
obtain by adding some point p ∈ P to a rectangulation r′ of (R,P \ {p}) and
“stretching” the segment through p such that the degree of p in the resulting
rectangulation is i. Clearly, h2 = 2, since the segment through p can be either
vertical or horizontal and we must stop “stretching” it as soon as it hits another
segment in each direction. Similarly, h3 = 4, since when the orientation of the
segment through p is horizontal (resp., vertical), then we must “chop” the first
segment either to the left (resp., below) or to the right (resp., above) of p. Note
that segments that were supported by the chopped part of the segment are
extended until they hit another segment or the boundary (see Figures 3(d,e) for
examples). Likewise, h4 ≤ 6 and in general hi ≤ 2(i− 1).

Let Ni be the number of points with degree i in all the rectangulations of
(R,P). Then,

Ni ≤ n · hi · f(n− 1),

558 Eyal Ackerman, Gill Barequet, and Ron Y. Pinter

r′ p p p

(a) (b) (c)

p p

(d) (e)

Fig. 3. Four possible ways of adding p to r′ such that the degree of p is 3

Table 1. Empirical results of the maximum number of rectangulations

n B(n + 1) Maximum number
of rectangulations

4 92 93
5 422 428
6 2,074 2,122
7 10,754 11,092
8 58,202 60,524
9 326,240 342,938

10 1,882,960 2,000,856

and specifically N2 ≤ 2n · f(n− 1), N3 ≤ 4n · f(n− 1), and N4 ≤ 6n · f(n− 1).
We now prove by induction on n that f(n) ≤ 20n/

(
n+4

4

)
. For n = 0, 1, 2

the claim holds trivially (f(0) = 1 = 200/
(
4
4

)
, f(1) = 2 < 4 = 201/

(
5
4

)
, and

f(2) = 6 < 26.666... = 202/
(
6
4

)
). Now assume that the claim holds for all n′ < n,

for n ≥ 3. By summing Equation 1 over all possible rectangulations, we have:

3N2 + 2N3 +N4 ≥ (n+ 4)f(n) (2)

On the left-hand side of Equation 2 we have:

20n · f(n− 1) ≤ 20n
20n−1(

n+3
4

) = (n+ 4)
20n(
n+4

4

) .
Hence f(n) = O(20n/n4), and the claim follows.

An Upper Bound on the Number of Rectangulations of a Point Set 559

3 Conclusions

We have showed that the number of rectangulations of a set of n noncorectilinear
points is O(20n/n4). However, according to our experiments for small values of
n (see Table 1), it seems that the maximum number of rectangulations is much
closer to the B(n + 1) = Θ(8n/n4) lower bound from [1]. As mentioned in the
introduction, we also believe that for every set of n (noncorectilinear) points,
the number of rectangulations is at least the (n + 1)st Baxter number.

References

1. E. Ackerman, G. Barequet, and R.Y. Pinter, On the number of rectangular
partitions, Proc. 15th ACM-SIAM Symp. on Discrete Algorithms, New Orleans,
LA, January 2004, 729–738.

2. P. Bose, J.F. Buss, and A. Lubiw, Pattern matching for permutations, Infor-
mation Processing Letters, 65 (1998), 277–283.

3. F.C. Calheiros, A. Lucena, and C.C. de Souza, Optimal rectangular parti-
tions, Networks, 41:1 (2003), 51–67.

4. F.R.K. Chung, R.L. Graham, V.E. Hoggatt, and M. Kleiman, The number
of Baxter permutations, J. Combinatorial Theory, Ser. A, 24 (1978), 382–394.

5. M. Denny and C. Sohler, Encoding a triangulation as a permutation of its point
set, Proc. 9th Canadian Conf. on Compututational Geometry, Kingston, Ontario,
Canada, August 1997, 39–43.

6. C.N. de Meneses and C.C. de Souza, Exact solutions of rectangular partitions
via integer programming, Int. J. of Computational Geometry and Applications,
10 (2000), 477–522.

7. D.Z. Du, L.Q. Pan, and M.T. Shing, Minimum edge length guillotine rectangular
partition, Technical Report MSRI 02418-86, University of California, Berkeley, CA,
1986.

8. T.F. Gonzalez and S.-Q. Zheng, Improved bounds for rectangular and guillotine
partitions, J. of Symbolic Computation, 7 (1989), 591–610.

9. T.F. Gonzalez and S.-Q. Zheng, Approximation algorithms for partitioning a
rectangle with interior points, Algorithmica, 5 (1990), 11–42.

10. A. Lingas, R.Y. Pinter, R.L. Rivest, and A. Shamir, Minimum edge length
rectilinear decompositions of rectilinear figures, Proc. 20th Allerton Conf. on Com-
munication, Control, and Computing, Monticello, IL, 1982, 53–63.

11. J.S.B. Mitchell, Guillotine subdivisions: Part II – A simple polynomial-time
approximation scheme for geometric k-MST, TSP, and related problems, SIAM J.
on Computing, 28 (1999), 1298–1309.

12. F. Santos and R. Seidel, A better upper bound on the number of triangulations
of a planar point set, J. Combinatorial Theory, Ser. A, 102 (2003), 186–193.

13. R. Seidel, On the number of triangulations of planar points sets, Combinatorica,
18 (1998), 297–299.

14. Z.C. Shen and C.C.N. Chu, Bounds on the number of slicing, mosaic, and gen-
eral floorplans, IEEE Trans. on Computer-Aided Design of Integrated Circuits and
Systems, 22:10 (2003), 1354–1361.

15. W.D. Smith, Studies in computational geometry motivated by mesh generation,
Ph.D. Thesis, Princeton University, 1989.

16. B. Yao, H. Chen, C.K. Cheng, and R. Graham, Floorplan representations:
Complexity and connections, ACM Trans. on Design Automation of Electronic
Systems, 8 (2003), 55–80.

Opportunistic Data Structures
for Range Queries�

Chung Keung Poon and Wai Keung Yiu

Department of Computer Science, City University of Hong Kong
{ckpoon,kwkyiu}@cs.cityu.edu.hk

Abstract. In this paper, we study the problem of supporting range
sum queries on a compressed sequence of values. For a sequence of n
k-bit integers, k ≤ O(log n), our data structures require asymptotically
the same amount of storage as the compressed sequence if compressed
using the Lempel-Ziv algorithm. The basic structure supports range sum
queries in O(log n) time. With an increase by a constant factor in the
storage complexity, the query time can be improved to O(log log n

log log log n
+k).

1 Introduction

With the proliferation of electronic data nowadays, there is a growing demand
to store data in compressed form. In fact, data compression has long been rec-
ognized as an important area in computer science and engineering. Numerous
compression algorithms [3, 7, 10, 15] have been devised and used in day-to-day
computer operations to reduce the storage requirement for data as well as the
necessary bandwidth for data transmission.

Very often, we need to retrieve or operate on only part of the data. It would be
desirable if the data is compressed in such a way that one could inspect or extract
information about part of the original data directly from the compressed data.
For example, textual information can be stored and indexed by a compressed
suffix array [8, 13, 14] or Burrows-Wheeler Transform with Lempel-Ziv algorithm
[5] so that one can search for a pattern in the text efficiently. However, for many
fundamental data structural problems including range sum queries, we are not
aware of any focused research reported in the literature. Thus we are motivated
to study the range sum query problems in this paper.

Formally, our problem can be defined as follows. Given an array A[0..n−1] of
k-bit integers, k ≤ O(log n), compress it so that range sum queries, i.e., the sum
of values in A[i..j] given the boundaries i and j, can be answered efficiently. Note
that when i = j, the range query becomes a point query. That means, the data
structure should be able to report every entry of A without decompressing the
whole data. Clearly, the major performance measures of interest are the storage
and query complexities. We will assume a unit-cost word RAM with word size
� The work described in this paper is fully supported by a grant from the Research

Grant Council of the Hong Kong Special Administrative Region, China (CityU
1071/02E).

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 560–569, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Opportunistic Data Structures for Range Queries 561

Θ(log n). On such a model, standard arithmetic and bitwise boolean operations
on word-sized operands can be performed in constant time. Throughout this
paper, storage complexities are expressed in terms of bits.

A simple approach to solve the problem is to compute the prefix (or partial)
sum array P [0..n − 1] such that P [i] stores the sum of A[0..i]. Any range sum,
sum(A[i..j]), can be computed inO(1) time by taking the difference between P [j]
and P [i−1]. Storing P [0..n−1] requires O(n log n) bits. This storage requirement
can be reduced by way of a succinct (or space-efficient) data structure. The aim of
such a structure is to achieve optimal space usage to within lower order additive
terms while having asymptotically optimal operation times. In particular, using
structures by Raman et al. [12] and Hon et al. [9] with suitable parameters, the
partial sum problem can be solved in O(1) time and kn+ o(kn) bits.

However, a succinct data structure is still not taking the full opportunity
offered by the particular data stored in A. To illustrate this point, suppose
there are only m 0 n non-zero entries in A. Then, we can store the indices
to those non-zero entries in A together with the associated prefix sums in a
predecessor structure. Computing a range sum queries then amounts to two
predecessor lookups and an integer subtraction. Using the optimal predecessor
structure of Beame and Fich [1], it takes O(τ) time and O(m log n) storages

where τ = min
{

log log n
log log log n ,

√
log m

log log m

}
.

In general, the array A may or may not contain many zeroes. Thus com-
mitting ourselves to either a predecessor structure or a succinct data structure
without prior knowledge of A may not work well always. Even if we do a scan on
A before making the choice, it could happen that A contains few zeroes but is
nevertheless rather compressible. To take full advantage of the compressibility of
the data, we propose to design data structures whose storage is asymptotically
the same as the size of the compressed data while having the same operation
times as in a traditional or succinct data structure.

For the range sum query problem here, we design data structures whose space
requirement is of the same order as the compressed array when compressed using
the Lempel-Ziv algorithm [15] (commonly known as ZL78). Our basic structure
answers a range sum query in O(log n) time. With an increase by a constant
factor in storage complexity, we obtain a variant in which the query time is
O(log log n

log log log n + k). Also our method does not modify the compressed data and
can be viewed as an additional index structure on it.

Our method is based on the Lempel-Ziv algorithm (obviously) and employed
many standard techniques in succinct data structures. The Lempel-Ziv algorithm
and its variants are an important class of compression algorithms. Its behaviour
is well-understood and is optimal in certain information-theoretic sense. It is
popular and easy to implement. For example, it is implemented in the compress
program in UNIX and in the arc program for PC’s. In the next section, we
will describe the main idea of the Lempel-Ziv algorithm. Then we explain our
method for bit strings in sections 3. Section 4 briefly describes the extension
to general arrays and some variations. Details will be given in the full paper.
Section 5 contains the conclusion.

562 Chung Keung Poon and Wai Keung Yiu

2 The Lempel-Ziv’s Algorithm

The Lempel-Ziv algorithm [15] is a lossless compression algorithm that will au-
tomatically adapt to the data distribution. It can be applied to strings over a
finite alphabet. For our usage here, we just need to understand the compression
and we will omit the decompression. We will first describe the idea on bit strings.

2.1 Parsing the String

The idea is to partition the bit string into phrases not appeared before. After
marking off the end of the last phrase, we start from the next bit in the input
sequence until we come to the shortest string s that has not been marked off
before. Denote by s− the longest prefix of s, i.e., all but the last bit of s. By
minimality of |s|, s− has appeared as a phrase before. We mark off s as a new
phrase and encode it by the pair (p, b) where p is the index of the phrase s−

(stored in a dictionary of discovered phrases, to be described in section 2.2) and
b is the last bit of s. Note that by construction, s− appears only once before.
Moreover, each phrase (of variable length) is now encoded as a fixed length code.

A running example: Consider the following input string. (Spaces are inserted
in the string for clarity.)

1 0 01 10 011 11 010 101 00 011

It will be parsed into the following sequence of phrases:

a b c d e f g h i e

where the substring represented by each phrase is shown in Figure 1.

phrase a b c d e f g h i

substring represented 1 0 01 10 011 11 010 101 00

Fig. 1. The string represented by each phrase

Note that only the last phrase can be a repetition of some previous phrase.
The encoded string is

λ1 λ0 b1 a0 c1 a1 c0 d1 b0 e

where λ represents the empty string. If there are altogether c(n) distinct phrases,
each index p can be encoded in log c(n) bits. In total, the encoded string has
length c(n)(log c(n)+1) bits (or (c(n)+1)(log c(n)+1)−1 bits if the last phrase
has appeared before). It takes O(c(n) log c(n)) bits asymptotically in both cases.

Plugged into the example in Figure 1, the original string has 22 bits. There are
10 phrases in the encoded string, the last one being a repetition of another phrase
before. Therefore, the encoded string has 9× (4+1)+4 = 49 bits which is longer

Opportunistic Data Structures for Range Queries 563

than the original string. For longer strings with many repeating patterns, the
phrases will get longer and encoding a long phrase with log c(n) bits will become
a big saving. More rigorously, how good we can compress with Lempel-Ziv is
controlled by the parameter c(n). It can be shown that

√
n ≤ c(n) ≤ O(n/ logn).

Moreover, if we assume the values of A are drawn from a stationary ergodic
source with entropy rate H (i.e., it takes on average H bits to describe one value
of A in the long run), then c(n) log c(n)

n → H as n→∞. See, for example, Lemma
12.10.1 and Theorem 12.10.1 of Cover and Thomas [4] for more details.

2.2 A Dictionary of Phrases

During the parsing of the input sequence, a dictionary of phrases is gradually
built up to facilitate the discovery of new phrases. Newly discovered phrases will
be added to the dictionary. An appropriate data structure for the dictionary is
the binary trie structure.

A binary trie is a tree in which each internal node has at most two children.
The edge to the left (resp. right) child will be labelled with 0 (resp. 1). Each node
in the trie corresponds to a string, namely, the string obtained by concatenating
all the edge labels in the order from the root to that node. As a special case, the
root corresponds to the empty string.

The Lempel-Ziv algorithm will construct a trie T so that each node corre-
sponds to a phrase discovered in the input sequence scanned so far. When we
try to discover a new phrase in the remainder of the input sequence, we search
T from the root and follow the edges as we read off the bits from the input
sequence until we reach a leaf. Then the string formed by appending the next
bit in the input sequence to the string represented by that leaf is a new phrase
not yet appeared before. We add this to the trie by creating a left or right child
to this leaf depending on the next bit is 0 or 1. Thus, parsing requires O(n) time.
For our running example, the corresponding trie T is shown in Figure 2.

b

h

fdi c

a

e

λ

0

0

0

0

1

11

1 1

g

Fig. 2. Trie T

In the ordinary usage of Lempel-Ziv, T is discarded after parsing is com-
pleted. Here, we will keep T in order to facilitate the construction of our data
structure. After the construction, T is discarded.

564 Chung Keung Poon and Wai Keung Yiu

3 Range Sum Queries on Compressed Bit Strings

Now we are ready to describe our data structure for bit strings. On the highest
level, we partition the input bit string into phrases according to the Lempel-Ziv
parsing mentioned in section 2.1. Then we will build two structures:

– the inter-phrase structure that supports queries on the number of 1’s in a
contiguous sequence of phrases, and

– the intra-phrase structure that supports queries on the number of 1’s in a
continuous range within a phrase.

In general, a query range covers a (possibly zero) number of phrases completely
and at most two phrases partially. Thus a query range can be broken into at
most three parts. See Figure 3. The sequence of completely covered phrases is
handled using the inter-phrase structure while the partially covered phrases are
handled using the intra-phrase structure.

A

a phrase

A

middleleft right

Query region

a phrase

Query region

Case 2Case 1

Fig. 3. Breaking down a query region

3.1 The Inter-phrase Structure

The inter-phrase structure contains the arrays P and S. In P , we store in ascend-
ing order the starting position of each phrase in the input sequence and in S, we
store the number of 1’s in front of each phrase. See Figure 4 for an illustration.
In total, P and S require O(c(n) log n) space and can be constructed in O(n)
time during the parsing of the input sequence.

P 0 1 2 4 6 9 11 14 17 19

S 0 1 1 2 3 5 7 8 10 10

pointer to phrase a b c d e f g h i e

Fig. 4. Inter-phrase Structure

Given a query region [�, r], we find the smallest i such that P [i] ≥ � and
the largest j such that P [j] − 1 ≤ r. This takes O(log c(n)) = O(log n) time by
binary search on P . Then the i-th to (j − 1)-st phrases are completely within
the query range. The number of 1’s in this sequence of phrases is computed as
S[j]− S[i].

Opportunistic Data Structures for Range Queries 565

After computing i and j in the above query, we need to query the intra-phrase
structure to determine the number of 1’s in a range in the (i−1)-st and the j-th
phrase. To allow for locating any desired phrase in the intra-phrase stucture, the
inter-phrase structure will also store an array of pointers (bottom row in Figure
4). It will be clear in the next section that each pointer requires O(log c(n)) bits.
Hence the array of pointers requires O(c(n) log c(n)) = O(c(n) log n) bits. This
array is constructed at the same time when the inter-phrase stucture is being
built and it takes O(c(n)) time.

3.2 The Intra-phrase Structure

To compute the number of 1’s within a range in a phrase quickly, we make use
of the trie T . In what follows, we will describe a succinct representation of T in
4c(n) + o(c(n)) bits, using many standard techniques in succinct data structure
design. This will be useful in minimizing the storage in practical implementa-
tions. We begin with a few easy definitions.

Definition 1: The depth of a node in the trie is defined as the number of edges
from the root to that node.

Definition 2: The level-d ancestor of a node v is the (unique) node that has
depth d on the path from the root to v.

Definition 3: The Euler tour of a rooted tree T is the sequence of edges tra-
versed during a depth-first traversal of T starting from the root, and ending at
the root after visiting all the nodes in T .

For example, the Euler tour of our trie T is shown on the row labelled with
E in Figure 5. Here, we represent an edge by one of the 4 symbols, (0, (1,)0
and)1, depending on whether the edge is downward or upward and with label
0 or 1. Since each edge is traversed twice, this sequence contains 2c(n) brackets
in total. Furthermore, each bracket is associated with a node, namely, the node
reached by following that edge. See the row labelled with “phrase” in Figure 5.
Notice that a node may appear more than once in the Euler tour.

phrase b i b c g c e c b λ a d b d a f a λ

E (0 (0)0 (1 (0)0 (1)1)1)0 (1 (0 (1)1)0 (1)1)1
D +1 +1 −1 +1 +1 −1 +1 −1 −1 −1 +1 +1 +1 −1 −1 +1 −1 −1

C −1 −1 +1 +1 −1 +1 +1 −1 −1 +1 +1 −1 +1 −1 +1 +1 −1 −1

Fig. 5. Intra-phrase Structure

Definition 4: An index of a node v in a tree T is the position of an occurrence
of v in the Euler tour of T , and the principle index is the position of the leftmost
occurrence.

566 Chung Keung Poon and Wai Keung Yiu

The intra-phrase structure will support the following primitive operations:

Count(v) – Given an index of a node v, find the number of 1’s on the path
from the root to v.

Depth(v) – Given an index of a node v, find the depth of v, i.e., the number of
edges from the root to v.

Ancestor(v, d) – Given the principle index of a node v and an integer d, find
an index of the level-d ancestor of v.

Given these three operations, we can compute the number of 1’s on the path
from the level-i ancestor to the level-j ancestor of a node v, given i, j and
the principle index of node v. That is, we compute Count(Ancestor(v, j)) −
Count(Ancestor(v, i− 1)). This corresponds to the number of 1’s in the contin-
uous range from position i to j of a phrase v. To be able to invoke Ancestor(),
the inter-phrase structure stores the principle indices of the phrases in the array
of pointers (bottom row of Figure 4). Each index requires O(log c(n)) bits.

To support the three primitive operations, we store two arrays, C and D,
of bits. See Figure 5. (Note that we do not store E and the row labelled with
“phrase”.) The array D will give information on the depth of the nodes in the
trie while C and D together will give information on the number of 1’s along
the path from the root to each node.

More precisely, for 0 ≤ i < 2c(n), we define D[i] as +1 (−1) if E[i] is an open
(close) bracket. Hence, the sum of values in D[0..i] is the difference between the
number of open and close brackets in E[0..i]. This, in turn, represents the depth
of the node reached by following the traversal specified in E[0..i]. Similarly, for
0 ≤ i < 2c(n), we define C[i] as

C[i] =
{

+1 if E[i] =)0 or (1
−1 if E[i] =)1 or (0

.

It is easy to check that

C[i] +D[i] =

⎧⎨⎩
+2 if E[i] = (1
−2 if E[i] =)1
0 if E[i] =)0 or (0

.

Hence the sum of values in C[0..i] and D[0..i] gives twice the number of 1’s from
the root to the node corresponding to E[i].
Supporting Count(v) and Depth(v). We need to compute the sum of
values in C[0..i] and D[0..i] where i is an index of v in E. We will explain the
computation for C[0..i]. (Computaion for D[0..i] is identical.) The technique is
typical in succinct data structures.

We will construct an arrayC0 with 2c(n)
log2 c(n)

= o(c(n)) entries such that for i =

0 to 2c(n)
log2 c(n)

−1, the entry C0[i] will store the sum in C
[
0..(i+ 1) log2 c(n)− 1

]
.

Since C has length 2c(n), the maximum sum can be stored in O(log c(n)) bits.
Hence C0 will occupy O

(
c(n)

log2 c(n)
× log c(n)

)
= o(c(n)) bits. We can, in O(1)

time, look up the number of 1’s in C[0..i] when i is a multiple of log2 c(n).

Opportunistic Data Structures for Range Queries 567

Next, we will construct another array C1 with 4c(n)
log c(n) entries. For i = 0 to

2c(n)
log2 c(n)

−1 and for j = 0 to 2 log c(n)−1, the entry C1[i·2 log c(n)+j] will contain

the sum in C
[
i log2 c(n) . . . i log2 c(n) + (j + 1) log c(n)

2 − 1
]
. Since each short-

ranged sum is at most log2 c(n), each entry of C1 requires only log(log2 c(n))
bits. Hence C1 occupies O

(
4c(n)

log c(n) × log log c(n)
)

= o(c(n)) bits. With C1 and

C0, we can compute the sum in C[0..i] when i is a multiple of log c(n)
2 .

Finally, for the number of 1’s within a (±1)-pattern of length log c(n)
2 , we make

use of a 2-dimensional lookup table L. Notice that there are 2(log c(n))/2 =
√
c(n)

different (±)-patterns of length log c(n)
2 . For each such pattern α and for each

position 0 ≤ j < log c(n)
2 , the sum of±1’s from position 0 to j can be precomputed

and stored in L[α, j]. Thus, L has size
√
c(n) × log c(n)

2 × log log c(n) = o(c(n))
bits. Moreover, each chunk of log c(n)/2 bits in C can share the same table L.

We will similarly construct D0 and D1 for D but we can share the same
lookup table L. In total, the storage required by the arrays C, C0, C1, D, D0,
D1 and L is 4c(n)+ o(c(n)) bits. Moreover, the operations require only constant
time to complete.
Supporting Ancestor(v, d). Observe that the lowest common ancestor
(LCA) of v with any node is an ancestor of v. Let j be the principle index
of v. By the property of an Euler tour, the LCA of the nodes with indices x and
y (x ≤ y) is the node of minimum depth among those with an index z such that
x ≤ z ≤ y. Thus, for any i ≤ j, the LCA of node v and the node correspond-
ing to i is the node with minimum depth in E[i..j]. It can be proved that the
depth of the LCA between the nodes with indices i and j is monotonic increas-
ing as i increases from 0 to j. Details will be given in the full paper. Thus the
level-d ancestor of j can be found by a binary search in O(log c(n)) = O(log n)
time, provided we can compute the depth of the LCA between any pair of in-
dices, (i, j), in constant time. This amounts to computing the minimum among
D[0..i], D[0..i + 1], . . . , D[0..j]. In the next subsection, we will describe a data
structure of space o(c(n)) that answers such implicit range minimum queries in
O(1) time. There exist algorithms that support level ancestor query in O(1) time
using space O(n log n) [2] or even O(n) [6]. We do not use them here because the
overall query time is not improved and they do not blend well with the other
components of our structures, resulting in a larger constant factor in the storage.

3.3 A Range Minimum Structure

Let D̃1 be the array storing the index to the minimum of each sub-interval
of length log3 c(n) in D. Thus D̃1 has 2c(n)/ log3 c(n) entries, each storing
an O(log c(n))-bit index. On this array, we build an APM structure of Poon
[11] which can answer range min queries in constant time and uses 2c(n)

log3 c(n)

log
(

2c(n)
log3 c(n)

)
log c(n) = o(c(n)) bits. We denote this structure by APM(D̃1).

For each interval of length log3 c(n) in D, we further break it down into
sub-intervals of length log c(n)/2 and store the index to the minimum of each

568 Chung Keung Poon and Wai Keung Yiu

sub-interval in another array D̃2 of length 2c(n)/ log3 c(n) × 2 log2 c(n) =
4c(n)/ log c(n). This time, each index will need only O(log log c(n)) bits since
they are indices relative to a sub-interval. Again, we build an APM structure
for every 2 log2 c(n) entries of D̃2. We denote this collection of structures by
APM(D̃2). This requires 2c(n)

log3 c(n)
(2 log2 c(n) log(2 log2 c(n)) log log c) = o(c(n))

bits.
Finally, we build a lookup table M for range minimum within a sub-interval

of length log c(n)/2. The table has size (
√
c(n))×(log c(n)/2)2× log log c(n) bits.

The table is shared by all the sub-intervals of length (log c(n))/2. In total, the
two structures, APM(D̃1) and APM(D̃2), together with M , require at most
o(c(n)) bits.

4 Extension and Variations

4.1 Generalizing to Array of Integers

To extend the previous ideas on a general array of k-bit integers, we apply
Lempel-Ziv over an alphabet of size 2k. Thus, the dictionary of phrases T will
be a 2k-ary trie instead of a binary trie.

For the inter-phrase structure, we have P , S and the array of principle indices
using O(c(n) log n) bits of storage. For the intra-phrase structure, we store T
succinctly using array D as defined before but with arrays C0, C1, . . . , Ck−1

defined as follows. For each i ∈ {0, . . . , k − 1}, Ci is designed such that the
sum of values in Ci[0..j] and D[0..j] is equal to twice the number of 1’s in the
i-th bit position of the phrase from the root to the node corresponding to E[i].
Furthermore, we will store APM(D̃1) and APM(D̃2). In total, these require
(2(k + 1)c(n) + o(c(n)) = O(c(n) log n) bits of storage as k = O(log n).

To handle a query, we first query the inter-phrase structure as in section 3.1.
For the intra-phrase query, we compute the number of 1’s within the required
range in each of the k bit positions. Then we shift these k sums properly and
sum them. This takes O(k) = O(log n) time.

4.2 Speeding Up Queries

To speed up the query, we use an optimal predecessor structure [1] to store the
P array. Furthermore, we will have a number of predecessor structures, one for
each level of T , to store entries in the Euler tour E. It can be proved that the
level-d ancestor of a node v is the predecessor (among those indices of nodes in
level d of T) of i where i is the principle index of v. Thus, both the inter-phrase
and intra-phrase queries can be sped up to O(log log n

log log log n) time while the storage
complexity remains to be O(c(n) log n). Hence for arrays of k-bit integers, the
query time is O(log log n

log log log n + k).

4.3 Reducing Storage

Although in terms of asymptotic complexity, the storage is optimal relative to
the Lempel-Ziv compression, the constant factor can still be reduced. This will be

Opportunistic Data Structures for Range Queries 569

important in practice. The idea is to sparsify the arrays P and S by storing only
part of the entries. This will reduce the storage from 3c(n) logn+4c(n)+o(c(n))
to c(n) log c(n) + 6c(n) + o(c(n)).

5 Conclusion

We have described an opportunistic data structure that support efficient range
sum queries in a compressed sequence of integers. In fact, many variations in
implementations are possible. We have implemented the version without the
predecessor structures since the increase in the constant factor in storage due to
the predecessor structures makes it less attractive in practice.

References

1. P. Beame and F. Fich. Optimal bounds for the predecessor problem. In STOC’99,
pages 295–304, 1999.

2. M. Bender and M. Farach-Colton. The level ancestor problem simplified. In
LATIN’02, LNCS 2286, pages 508–512, April 2002.

3. M. Burrows and D.J. Wheeler. A block-sorting lossless data compression algo-
rithms. Technical Report 124, Digital SRC Research Report, 1994.

4. Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley
Series in Telecommunications. John Wiley & Sons, 1991.

5. Paolo Ferragina and Giovanni Manzini. On compressing and indexing data. Tech-
nical Report TR-02-01, Dipartimento di Informatica, Universita di Pisa, Jan 2002.

6. Richard Geary, Rajeev Raman, and Venkatesh Raman. Succinct ordinal trees with
level-ancestor queries. In SODA’04, pages 1–10, 2004.

7. S.W. Golomb. Run-length encodings. IEEE Transaction on Information Theory,
12:399–401, 1966.

8. Roberto Grossi and Jeffrey Scott Vitter. Compressed suffix arrays and suffix trees
with applications to text indexing and string matching. In STOC’00, pages 397–
406, 2000.

9. Wing-Kai Hon, Kunihiko Sadakane, and Wing-Kin Sung. Succinct data structures
for searchable partial sums. In ISAAC’03, LNCS 2906, pages 505–516, 2003.

10. D.A. Huffman. A method for the construction of minimum-redundancy codes. In
Proc. of the I.R.E. 40, pages 1098–1101, 1952.

11. Chung Keung Poon. Dynamic orthogonal range queries in OLAP. Theoretical Com-
puter Science, 296(3):487–510, March 2003.

12. Rajeev Raman, Venkatesh Raman, and S. Srinivasa Rao. Succinct dynamic data
structures. In WADS’01, LNCS 2125, pages 426–437, 2001.

13. K. Sadakane. Succinct representation of lcp information and improvements in the
compressed suffix arrays. In SODA’02, pages 225–232, 2002.

14. K. Sadakane. New text indexing functionalities of the compressed suffix arrays.
Journal of Algorithms, 48:294–313, 2003.

15. J. Ziv and A. Lempel. Compression of individual sequences by variable rate coding.
IEEE Transaction on Information Theory, 24(5):530–536, 1978.

Generating Combinations by Prefix Shifts

Frank Ruskey� and Aaron Williams��

Dept. of Computer Science, University of Victoria

Abstract. We present a new Gray code for combinations that is practi-
cal and elegant. We represent combinations as bitstrings with s 0’s and t
1’s, and generate them with a remarkably simple rule: Identify the short-
est prefix ending in 010 or 011 (or the entire bitstring if no such prefix
exists) and then rotate (shift) it by one position to the right. Since the
rotated portion of the string consists of at most four contiguous runs of
0’s and 1’s, each successive combination can be generated by transpos-
ing only one or two pairs of bits. This leads to a very efficient loopless
implementation. The Gray code also has a simple and efficient ranking
algorithm that closely resembles that of combinations in colex order. For
this reason, we have given a nickname to our order: cool-lex!

1 Background and Motivation

An important class of computational tasks is the listing of fundamental combina-
torial structures such as permutations, combinations, trees, and so on. Regarding
combinations, Donald E. Knuth [8] writes “Even the apparently lowly topic of
combination generation turns out to be surprisingly rich, I strongly believe
in building up a firm foundation, so I have discussed this topic much more thor-
oughly than I will be able to do with material that is newer or less basic.”

The applications of combination generation are numerous and varied, and
Gray codes for them are particularly valuable. We mention as application areas
cryptography (where they have been implemented in hardware at NSA), genetic
algorithms, software and hardware testing, statistical computation (e.g., for the
bootstrap, Diaconis and Holmes [3]), and, of course, exhaustive combinatorial
searches.

As is common, combinations are represented as bitstrings of length n = s+ t
containing s 0’s and t 1’s. We denote this set as B(s, t) = {b1b2 · · · bn |

∑
bi =

t}. Another way of representing combinations is as increasing sequences of the
elements in the combination. We denote this set as C(s, t) = {c1c2 · · · ct | 1 ≤
c1 < c2 < · · · < ct ≤ s+ t}.

We consider here the problem of listing the elements of B(s, t) so that suc-
cessive bitstrings differ by a prefix that is cyclically shifted by one position to
the right. We call such shifts prefix shifts, or rotations, and they may be repre-
sented by a cyclic permutation σk = (1 2 · · · k) for some 2 ≤ k ≤ n, where this
permutation acts on the indices of a bitstring.
� Research supported in part by an NSERC Discovery Grant.

�� Research supported in part by a NSERC PGS-D.

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 570–576, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Generating Combinations by Prefix Shifts 571

As far as we are aware, the only other class of strings that has a listing by
prefix shifts are permutations, say of {1, 2, . . . , n}. In Corbett [1] and Jiang and
Ruskey [7] it is shown that all permutations may be listed by prefix shifts. That
is, the directed Cayley graph with generators (1 2), (1 2 3), . . . , (1 2 · · · n) is
Hamiltonian. In our case we have the same set of generators acting on the indices
of the bitstring, but the underlying graph is not vertex-transitive; in fact, it is
not regular.

There are many algorithms for generating combinations. The one presented
here has the following novel characteristics.

1. Successive combinations differ by a prefix shift. There is no other algorithm
for generating combinations with this feature. In some applications combi-
nations are represented in a single computer word; our algorithm is very fast
in this scenario. It is also very suitable for hardware implementation.

2. Successive combinations differ by one or two transpositions of a 0 and a 1.
There are other algorithms where successive combinations differ by a single
transposition (Tang and Liu [10]). Furthermore, that transposition can be
further restricted in various ways. For example, so that only 0’s are between
the transposed bits (Eades and McKay) [5], or such that that the transposed
bits are adjacent or have only one bit between (Chase [2]). Along with ours,
these other variants are ably discussed in Knuth [8].

3. The list is circular; the first and last bitstrings differ by a prefix shift.
4. The list for (s, t) begins with the list for (s− 1, t). Usually, this property is

incompatible with Property 3, relative to the elementary operation used to
transform one string to the next. For example, colex order has Property 4
but not Property 3.

5. The algorithm can be implemented so that in the worst case only a small
number of operations are done between successive combinations, independent
of s and t. Such algorithms are said to be loopless, an expression coined by
Ehrlich [6].

6. Unlike other Gray codes for combinations, this one has a simple ranking
function whose running time is O(n) arithmetic operations.

2 Recursive Construction Rule

If S = s1, s2, . . . , sm is a sequence of strings and x is a symbol, then Sx repre-
sents the sequence of strings Sx = s1x, s2x, . . . , smx. We recursively define the
following list of bitstrings.

Wst = W(s−1)t0, Ws(t−1)1, 1t−10s1 (1)

As will be proven below this list accounts for all strings in B(s, t) except for
1t0s. To get all of B(s, t) we define

W′
st = 1t0s,Wst. (2)

Examples of W′ may be found in Figure 1 (the additional columns for W′
33 give

the corresponding element of C(3, 3) and the rotation σk used in transforming
one bitstring to the next).

572 Frank Ruskey and Aaron Williams

W′
42 W′

24 W′
33

110000 111100 111000 123 σ4

011000 011110 011100 234 σ2

101000 101110 101100 134 σ3

010100 110110 110100 124 σ5

001100 111010 011010 235 σ4

100100 011101 101010 135 σ4

010010 101101 010110 245 σ3

001010 110101 001110 345 σ3

000110 011011 100110 145 σ4

100010 101011 110010 125 σ6

010001 010111 011001 236 σ2

001001 001111 101001 136 σ4

000101 100111 010101 246 σ3

000011 110011 001101 346 σ3

100001 111001 100101 146 σ5

010011 256 σ3

001011 356 σ4

000111 456 σ4

100011 156 σ5

110001 126 σ6

Fig. 1. Cool-lex listings W′
42, W′

24, W′
33.

Theorem 1. The list Wst defined in (1) has the following properties.

– The list contains each bitstring of B(s, t) exactly once, except for 1t0s.
– Successive bitstrings differ by a prefix shift of one position to the right.
– Successive bitstrings differ by the transposition of one or two pairs of bits.
– first(Wst) = 01t0s−1.
– last(Wst) = 1t−10s1.

Proof. Our proof is by induction on n = s + t. The first property is satisfied
since, inductively, W(s−1)t0 is a list of all elements of B(s, t) that end in a 0,
except for 1t0s−10, and Ws(t−1)1 is a list of all elements of B(s, t) that end in
a 1, except for the bitstring 1t−10t1, which is appended to the end of the list.

To prove the remaining properties it is convenient to separate out the cases
t = 1 and s = 1. The interfaces between sublists are indicated below as horizontal
lines, and transposed bits are underlined. The list below on the left is for t = 1
and on the right for s = 1.

010s−2 0 011t−2 1
...

...
0s−201 0 1t−201 1

00s−20 1 11t−20 1

Below we show the lists for the case where t > 1 and s > 1. The left and
right lists are identical, except that the left list illustrates shifts, while the right

Generating Combinations by Prefix Shifts 573

list illustrates transpositions. The starting and ending bitstring in each sublist
is obtained from the induction assumption.

011t−210s−2 0 011t−210s−2 0
...

...
11t−200s−21 0 11t−200s−21 0
011t−200s−2 1 01t−210s−20 1

...
...

1t−200s−201 1 1t−2000s−21 1
11t−200s−20 1 1t−2100s−20 1

To verify the second and third properties we need to examine what happens
at the interfaces (indicated by the long horizontal lines) between the lists in (1)
as illustrated above. Note that at the two interfaces the successive bitstrings
differ by a right rotation of all n positions (although at the second interface we
could also think of it as a rotation of the first n− 1 positions).

Note that two pairs of bits are transposed at the first interface, and one
pair of bits at the second interface. Thus the third property is satisfied. Finally,
observe that the first and last bitstrings in these lists have the required form. �

To close this section, we observe that last(Wst) = first(Wts)
R
; such equa-

tions would allow us to define cool-lex order in other ways.

3 Implementation

Referring back to the proof of Theorem 1, we observe that the bits that are
transposed at the first interface are at positions (1, t) and (n − 1, n), and at
the second interface are at positions (t − 1, n − 1). Below we show a recursive
implementation of the algorithm; this is followed by an iterative implementation.
In both cases, the code that initializes b to 1t0s and outputs it is omitted; we
also assume that s > 0 and t > 0.

For the recursive version, the array b has indexing starting at 1. The ini-
tial call is swap(1, t+1); visit(b); gen(s, t);. Since every recursive
call is followed by a visit, the algorithm runs in constant amortized time.

static void gen (int s, int t) {
if (s > 1) { gen(s-1, t);

swap(1, t); swap(s+t, s+t-1); visit(b); }
if (t > 1) { gen(s, t-1);

swap(t-1, s+t-1); visit(b); }
}

We now present the iterative loopless implementation. In this case the array
indexing is 0 based. It is useful to maintain a variable x, which is the smallest
index for which b[x-1] == 0 and b[x] == 1. In terms of shifts, the code to
obtain the next bitstring and to update x is amazingly simple.

574 Frank Ruskey and Aaron Williams

shift(++x);
if (b[0] == 0 && b[1] == 1) x = 1;

To generate the next bitstring by transpositions it is useful to maintain another
variable y, which is the smallest index for which b[y] == 0. Referring back to
the proof of Theorem 1 we observe that in every case b[x] becomes 0 and b[y]
becomes 1. The test b[x+1] == 0 determines whether we are at the first or the
second interface. If we are at the first interface, then we set b[x+1] to 1 and b[0]
to 0. It now remains to update x and y. At the second interface they are simply
incremented. At the first interface y always becomes 0; also, x is incremented
unless y = 0, in which case x becomes 1 (see the t = 1 case of the proof of
Theorem 1).

static void iterate (int s, int t) {
b[t] = 1; b[0] = 0;
visit(b);
int x = 1, y = 0;
while (x < n-1) {

b[x++] = 0; b[y++] = 1; /* X(s,t) */
if (b[x] == 0) {

b[x] = 1; b[0] = 0; /* Y(s,t) */
if (y > 1) x = 1; /* Z(s,t) */
y = 0; }

visit(b); } }

The structure of the implementation allows us to completely determine the
number of times each statement in the code is executed. Call the relevant quan-
tities X(s, t), Y (s, t), and Z(s, t) corresponding to the various statements as
shown above. I.e., Y (s, t) is the number of times b[x] == 0 is true and Z(s, t)
is the number of times y > 1 is true. We find that

X(s, t) =
(
s+ t

t

)
− 1, Y (s, t) =

(
s+ t− 1

t

)
, Z(s, t) =

(
s+ t− 2
t− 1

)
.

4 Ranking Algorithm

Given a listing of combinatorial structures, the rank of a particular structure is
the number of structures that precede it in the listing.

Colex order is lexicographic order applied to the reversal of strings. It has
many uses, for example in Frankl’s now standard proof of the Kruskal-Katona
Theorem [11]. Given an (s, t)-combination represented as a bitstring b1b2 · · · bn
the corresponding set elements can be listed as c1 < c2 < · · · < ct where ci is the
position of the i-th 1 in the bitstring. As is well-known ([8],[11]) in colex order
the rank of c1c2 · · · ct is

t∑
j=1

(
ci − 1
i

)
. (3)

Generating Combinations by Prefix Shifts 575

As we see in the statement of the theorem below, in cool-lex order there is a very
similar rank function. Let rank(c1c2 · · · ct) denote the rank of c1c2 · · · ct ∈ C(s, t)
in our order.

Theorem 2. Let r be the smallest index such that cr > r (so that cr−1 = r−1).

rank(c1c2 · · · ct) =
(
cr
r

)
− 1 +

t∑
j=r+1

((
cj − 1
j

)
− 1

)
, (4)

Proof. Directly from the recursive construction (1) we have

rank(b1b2 · · · bn) =

⎧⎪⎨⎪⎩
rank(b1b2 · · · bn−1) if bn = 0,(
s+t

t

)
− 1 if b1b2 · · · bn = 1t−10s1,(

s+t−1
t−1

)
−1+rank(b1b2 · · · bn−1) otherwise.

Let us now consider the rank in terms of the corresponding list of elements
1 ≤ c1 < c2 < · · · < ct. The case rank(b1b2 · · · bn) = rank(b1b2 · · · bn−1) =
rank(b1b2 · · · bn−2) will continue to apply until bn−k = 1; i.e., until n−k = ct−1.
Hence the number of 0’s and 1’s to the left of position ct−1 in b1b2 · · · bn is
ct−1 − 1, which leads us to the expression below.

rank(c1c2 · · · ct) =

{(
ct

t

)
− 1 if ct = n and ct−1 = t−1(

ct−1−1
t−1

)
−1+rank(c1c2 · · · ct−1) otherwise.

As in (3) and (4), the recursion above has the remarkable and useful property
that it depends only on t and not on s. In other words, the cool-lex lists begin
with cool-lex lists with smaller s values (fewer zeroes). �

The ranking function can also be written recursively, as shown below.

rank(c1ct · · · ct) = rank(c1c2 · · · ct−1) +
(
cr − 1
r − 1

)
+ r − t− 1. (5)

Using standard techniques, as explained for example in [8] the expression in (4)
can be evaluated in O(n) arithmetic operations.

5 Final Remarks

Unlike every other recursive Gray code definition, (1) has the remark-
able property that it involves no reversal of lists. The list for C(6, 3) has
been rendered musically by George Tzanetakis and is available on the page
http://www.cs.uvic.ca/~ruskey/Publications/Coollex/Coollex.html

The algorithm discussed here appears in Knuth’s prefasicle [8] (latest version
of January 19, 2005). The output of the algorithm is illustrated in Figure 26 on
page 16. He refers to the listing as suffix-rotated (since he indexes the bitstrings
bn−1 · · · b1b0). See also Exercise 55 on page 30 and it’s solution on page 46.

576 Frank Ruskey and Aaron Williams

To conclude the paper we list some open problems:

– Is it possible to generate combinations if the allowed operations are futher
restricted? For example, all permutations can be generated by letting the
permutations (1 2) and (1 2 · · · n) and their inverses act on the indices.
Can all combinations be so generated?

– Can the permutations of a multiset be generated by suffix rotations?
– What is the fastest combination generator when carefully implemented? It

would be interesting to undertake a comparative evaluation in a controlled
environment, say of carefully implemented MMIX programs. Testing should
be done, in the three cases, depending on whether the combination is rep-
resented by a single computer word, an element of B(s, t), or an element of
C(s, t).

References

1. P.F. Corbett, Rotator Graphs: An Efficient Topology for Point-to-Point Multipro-
cessor Networks, IEEE Transactions on Parallel and Distributed Systems, 3 (1992)
622–626

2. P.J. Chase, Combination Generation and Graylex Ordering, Congressus Numeran-
tium, 69 (1989) 215–242.

3. P. Diaconis and S. Holmes, Gray codes for randomization procedures, Statistical
Computing, 4 (1994) 207–302.

4. P. Eades, M. Hickey and R. Read, Some Hamilton Paths and a Minimal Change
Algorithm, Journal of the ACM, 31 (1984) 19–29.

5. P. Eades and B. McKay, An Algorithm for Generating Subsets of Fixed Size with a
Strong Minimal Change Property, Information Processing Letters, 19 (1984) 131–
133.

6. G. Ehrlich, Loopless Algorithms for Generating Permutations, Combinations and
Other Combinatorial Configurations, Journal of the ACM, 20 (1973) 500–513.

7. M. Jiang and F. Ruskey, Determining the Hamilton-connectedness of certain
vertex-transitive graphs, Discrete Mathematics, 133 (1994) 159–170.

8. Donald E. Knuth, The Art of Computer Programming, pre-fascicle 4A (a draft
of Section 7.2.1.3: Generating all Combinations), Addison-Wesley, 2004, 61 pages
(http://www-cs-faculty.stanford.edu/~knuth/fasc3a.ps.gz).

9. F. Ruskey, Simple combinatorial Gray codes constructed by reversing sublists,
4th ISAAC (International Symposium on Algorithms and Computation), Lecture
Notes in Computer Science, #762 (1993) 201–208.

10. D.T. Tang and C.N. Liu Distance-2 Cycle Chaining of Constant Weight Codes,
IEEE Transactions, C-22 (1973) 176–180.

11. D. Stanton and D. White, Constructive Combinatorics, Springer-Verlag, 1986.

Error-Set Codes and Related Objects�

An Braeken1, Ventzislav Nikov2, and Svetla Nikova1

1 Department Electrical Engineering, ESAT/COSIC
Katholieke Universiteit Leuven, Kasteelpark Arenberg 10

B-3001 Heverlee-Leuven, Belgium
{an.braeken,svetla.nikova}@kuleuven.ac.be

2 Department of Mathematics and Computing Science
Eindhoven University of Technology

P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
v.nikov@tue.nl

Abstract. By considering a new metric, Nikov and Nikova defined the
class of error-set correcting codes. These codes differ from the error-
correcting codes in the sense that the minimum distance of the code is
replaced by a collection of monotone decreasing sets Δ which define the
supports of the vectors that do not belong to the code. In this paper we
consider a subclass of these codes - so called, ideal codes - investigat-
ing their properties such as the relation with its dual and a formula for
the weight enumerator. Next we show that the Δ-set of these codes cor-
responds to the independent sets of a matroid. Consequently, this com-
pletes the equivalence of ideal linear secret sharing schemes and matroids
on one hand and linear secret sharing schemes and error-set correcting
codes on the other hand.

1 Introduction

Nikov and Nikova introduced a class of generalized codes, called error-set codes
in [14]. These codes were originally defined by the property that the codewords
should belong to a monotone increasing set. In this paper, we show that the ideal
error-set codes can be represented as [N, k,Δ]-code, where N is the length, k the
corresponding dimension and where the monotone decreasing set Δ defines the
forbidden supports of the codewords (forbidden distances). Error-set codes have
been constructed by means of Monotone Span Programs (MSP) and have been
used in order to establish the minimum conditions for security of linear secret
sharing schemes (LSSS) and verifiable secret sharing (VSS) schemes.

This paper shows that the set of forbidden distances Δ of the ideal error-set
codes corresponds to the independent sets of a matroid. From this relation, we
derive other properties and insights of the error-set codes. For instance, we show

� The work described in this paper has been supported in part by the European Com-
mission through the IST Programme under Contract IST-2002-507932 ECRYPT and
by Concerted Research Action GOA Ambiorix 2005/11 of the Flemish Government.
An Braeken is research assistent of the FWO.

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 577–585, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

578 An Braeken, Ventzislav Nikov, and Svetla Nikova

how the corresponding dual error-set code is constructed from a given error-set
code. The equivalence between ideal LSSS and matroids was known since 1991
[1]. In 2003 [14], the equivalence between LSSS and the error-set codes has been
proven. Consequently, the relation between ideal error-set codes and matroids
follows.

The paper is organized as follows. In Sect. 2 we start with the definitions
of matroids and the relation between linear codes and matroids. In Sect. 3, we
study the properties of ideal error-set codes. In Sect. 4, we recall the relations
between ideal LSSS and matroids, LSSS and codes, and show how the relation
between matroids and ideal codes completes the equivalence relations. We end
with some conclusions in Sect. 5.

2 Background

We first explain the definitions and properties of matroids together with a rela-
tion between matroids and error-correcting codes.

2.1 Matroids

Matroids have been introduced by Withney [16]. We first recall some basic facts,
but refer to [17] for a more comprehensive introduction into the subject. A
matroid M = (S, I) is a finite set S and a collection I of subsets of S (called
the independent sets) such that (I1)− (I3) are satisfied:

(I 1) ∅ ∈ I.
(I 2) If X ∈ I and Y ⊆ X , then Y ∈ I.
(I 3) If U, V ∈ I with |U | = |V |+ 1, there exists x ∈ U \ V such that V ∪ x ∈ I.

A subset of S not belonging to I is called dependent. The maximal independent
subsets of S are called the bases, while the minimal dependent subsets are called
circuits. The collection of bases is denoted by B, while the collection of circuits
is denoted by C. A matroid is uniquely defined by B or C.

The following theorem, known as the augmentation theorem, gives as a con-
sequence that all bases in M have the same cardinality.

Theorem 1. [17] (Augmentation Theorem) Suppose that X,Y ∈ I and that
|X | < |Y |. Then there exists Z ⊆ Y \X such that |X ∪Z| = |Y | and X ∪Z ∈ I.
If every set of cardinality k is a base in S with 1 ≤ k ≤ n where n is the number
of elements of S, the matroid is said to be uniform, denoted by Mk,n.

A matroid can also be uniquely defined by its rank function

ρ : 2S → Z : ρ(A) = max{|X | : X ⊆ A,X ∈ I}, ∀A ⊆ S.

The rank of the matroid, denoted by r(M) is the rank of the bases. Consequently,
if C is a circuit then ρ(C) = |C| − 1 and every proper subset of a circuit is
independent. If for x ∈ S, A ⊆ S, ρ(A ∪ x) = ρ(A) it is said that x depends on
A and it is denoted by x ∼ A. With any matroid, one can associate its dual.

Error-Set Codes and Related Objects 579

Definition 1. [17] If B = {Bi : i ∈ I} is the set of bases of a matroid M.
Then the dual matroid M∗ of a matroid M is defined by the set of bases B∗ =
{S \ Bi : i ∈ I}. The corresponding rank function is defined by ρ∗(S \ A) =
|S| − ρ(S) − |A|+ ρ(A), ∀A ⊆ S.

The function ρ∗ is called corank function of M. A cobase of M is a base of M∗,
a cocircuit of M is a circuit of M∗ and so on.

It is said that a matroid M is connected or non-separable if for every pair
of distinct elements x and y of S there is a circuit of M containing x and y.
Moreover, a matroid M is connected if and only if its dual M∗ is connected. It
appears that if a matroid M is connected then we do not need to know the full
set of circuits of M in order to be able to specify the matroid completely.

Theorem 2. [17] Let M be a connected matroid on S and let x be a fixed ele-
ment of S. The collection of circuits of M which contains x uniquely determines
M.

The Tutte polynomial of M is defined as

T (M, x, y) =
∑
A⊆S

(x− 1)ρ(S)−ρ(A)(y − 1)|A|−ρ(A).

The evaluation of this polynomial provides a lot of information about the ma-
troid, e.g., the numbers of bases, the number of independent sets, the number of
sets which contain a base, the number of all subsets in S. Moreover, by definition
we have that T (M, x, y) = T (M∗, y, x).

A matroid is said to be representable over a field Fq if there exists a vector
space V over Fq together with a map φ : S → V which represents the rank.
However, the representability problem for matroids is still not completely solved.
See, for instance, [17, Chapter 9] for some results on this problem.

2.2 Matroids and Codes

An [n, k, d] linear code C over a finite field Fq defines a subspace of dimension
k in Fn

q . All codewords have minimum weight d. The dual code C⊥ consists
of elements {y : y · x = 0 for all x ∈ C}. Consequently, C⊥ has parameters
[n, n− k, d⊥], where d⊥ is the minimum distance of the code C⊥.

A linear code can be defined by two matrices: the generator matrix and the
parity check matrix. The generator matrix G of an [n, k, d]-code is a k×n-matrix,
whose rows form a basis for C. The generator matrix H of C⊥ is called the parity
check matrix of the code, which is an (n − k) × n-matrix. Hence, x ∈ C if and
only if xHT = 0, (since GHT = 0).

The weight enumeratorWC(x, y) of the code C is the homogeneous polynomial

WC(x, y) =
∑
c∈C

xn−wt(c)ywt(c) =
n∑

i=0

Aix
n−iyi,

where Ai represents the number of words of weight i in C.

580 An Braeken, Ventzislav Nikov, and Svetla Nikova

The connection between the weight enumerator WC⊥(x, y) of the dual code
C⊥ and the weight enumerator of C is as follows:

WC⊥(x, y) =
1
|C|WC(x + (q − 1)y, x− y).

We refer to [12] for more details on linear codes.
The relation between matroids and linear codes over a given field has been

studied in [7]. In short, if G is the generator matrix of a linear code C in Fn
q , then

the matroidM(C) associated with the code C is the matroid defined over the set
of column indices {1, . . . , n} whose independent sets are the linearly independent
columns of G.

Theorem 3. [3, 4] If the matroid M corresponds to the code C, then the dual
matroid M∗ corresponds to the dual code C⊥.

Theorem 4. [3, 4] Let C be a code over a field with q elements, and M is the
corresponding matroid. Then

WC(x, y) = yn−dim(C)(x − y)dim(C)T (M,
x+ (q − 1)y

x− y
,
x

y
).

The analogues of deletion and contraction of a matroid are the operations of
puncturing and shortening a code.

2.3 Secret Sharing Schemes

Define the set of participants in a secret sharing scheme (SSS) by P = {1, . . . , n}
= {P1, . . . , Pn} and denote the power set of P by P (P). The set Γ ⊆ P (P) is
called monotone increasing if for each set A in Γ , each set containing A is also
in Γ . Similarly, the set Δ ⊆ P (P) is called monotone decreasing, if for each
set B in Δ each subset of B is also in Δ. A monotone increasing set Γ can be
described efficiently by the set Γ− consisting of the minimal elements (sets) in
Γ , i.e., the elements in Γ for which no proper subset is also in Γ . Similarly, the
set Δ+ consists of the maximal elements (sets) in Δ, i.e., the elements in Δ for
which no proper superset is also in Δ.

The tuple (Γ,Δ) defines an access structure on P when Γ ∩ Δ = ∅. When
Δ = P (P) \ Γ (i.e. Δ = Γ c) then the access structure (Γ,Δ) is said to be
complete and is denoted just by Γ. If Δ consists of all elements of weight less
than k, we call the access structure threshold and denote it by Γk,n.

The dual sets Δ∗ and Γ ∗ to Γ and Δ, respectively, are defined by Γ ∗ = {A :
P \ A ∈ Δ} and Δ∗ = {A : P \ A ∈ Γ}. The tuple (Γ ∗, Δ∗) (or Γ ∗ when it is
complete) is called the dual access structure. It is easy to see that Δ∗ is monotone
decreasing and Γ ∗ is monotone increasing. For two monotone decreasing sets Δ1

and Δ2 define Δ1 +Δ2 = {A = A1 ∪A2;A1 ∈ Δ1, A2 ∈ Δ2}. Note that Δ1 +Δ2

is again a monotone decreasing set.
A secret sharing scheme allows the dealer P0 to share a secret among n par-

ticipants in such a way that some sets of participants (those in Γ), called allowed

Error-Set Codes and Related Objects 581

coalitions, can recover the secret, while any other set of participants (non-allowed
coalitions) cannot get any information about the secret. The scheme is called
ideal if the size of any share coincides with the size of the secret. If the share of
any participant is computed by a fixed linear function of the key and some other
random elements, the SSS is said to be linear (shortly denoted as LSSS).

An access structure is called ideal if there is an ideal SSS realizing it. For
an access structure (Γ,Δ), core(Γ) is defined to be the set of players which are
in some minimal qualified set, that is, core(Γ) = ∪A∈Γ−A. An access structure
(Γ,Δ) is called connected if core(Γ) = P .

3 Error-Set Codes

The linear [n, k, d]-code over Fq can be generalized to the linear [N, k,Δ]-code
C over Fq. The [N, k,Δ]-code is called an error-set code [14] because of the
property that all vectors for which the support belongs to Δ are no codewords.
It also implies that if x is a codeword then sup(x) /∈ Δ. The set Δ is called the set
of forbidden distances and denoted by Δ(C). In its most general definition for
the error-set code, the set Δ is defined over the set (of sub-vectors formed by a
partition) {1, . . . , n+1}. When instead Δ is defined over the set (of coordinates)
{1, . . . , N} the code is called ideal and thus N = n + 1. It is clear that for
Δ = {A : |A| ≤ d− 1}, the [n+ 1, k,Δ]-code coincides with the usual definition
of [n + 1, k, d]-code. We will consider further only the ideal error-set codes. Let
us first derive some new properties of these codes.

Theorem 5. The parity check matrix of an [n + 1, k,Δ(C)]-code is a matroid
defined on the set of column indices S = {1, . . . , n + 1} with independent set
I = Δ(C).

Proof. A vector x does not belong to the code if and only if HxT �= 0. This
also means that the columns corresponding to the indices defined by sup(x) are
linearly independent. Recall that by Theorem 1 the columns corresponding to the
indices defined by the supports of the vectors from Δ(C) define the independent
sets of a matroid on S. ��

Theorem 6. The dual of an [n+1, k,Δ(C)]-code is an [n+1, n+1−k,Δ(C⊥)]-
code with Δ(C⊥) = Δ(C)∗.

Proof. By Theorem 3 the dual of a matroid with independent sets defined by
Δ(C) is the matroid with independent sets defined by Δ(C)∗. This matroid
defines the parity check matrix of the dual code. By Theorem 5, the dual code
cannot have vectors with support belonging to Δ(C⊥). ��

Corollary 1. The generator matrix of an [n+1, k,Δ(C)]-code is equivalent to a
matroid defined on the set S = {1, . . . , n+1} with an independent set I = Δ(C)∗.

Example 1. Consider the [5, 3, Δ(C)]-code with its corresponding dual the
[5, 2, Δ(C)∗]-code where (Δ(C)∗)+ = {{2, 3, 5},{1, 3, 5},{1, 2, 5},{2, 4, 5},{1, 4, 5},

582 An Braeken, Ventzislav Nikov, and Svetla Nikova

{1, 2, 4}, {1, 3, 4}, {2, 3, 4}} and Δ(C)+ = {{1, 4},{2, 4},{3, 4},{1, 3},{2, 3},{3, 5},
{2, 5}, {1, 5}}. The generator matrix G and parity check matrix H of the code
are given by:

G =

⎛⎝1 0 1 1 0
0 1 1 1 0
0 0 0 1 1

⎞⎠ , H =
(

1 1 1 0 0
0 0 1 1 1

)

The linearly independent sets of columns in H correspond to the elements of
Δ(C), while the linearly independent sets of columns in G correspond to the
elements of Δ(C)∗.

Another way for determining codes and matroids for a given generator matrix
G is given in the following two theorems.

Theorem 7. Set A belongs to Δ(C)+ if and only if the matrix G of an [n +
1, k,Δ(C)]-code obtained by removing the columns corresponding to A has rank
k.

Theorem 8. Set A belongs to Δ(C⊥)+ if and only if the columns of the gener-
ator matrix G of an [n + 1, k,Δ(C)]-code corresponding to A are linearly inde-
pendent.

Theorem 9. Consider the [n + 1, k,Δ(C)]-code C and the corresponding dual
[n+1, n+1− k,Δ(C⊥)]-code C⊥. The elements of Δ(C)+ have size (n+1− k)
and the elements of Δ(C⊥) have size k.

Proof. The size of the elements of Δ(C)+ (resp. Δ(C⊥)+) follows from the rank
of matrix H (resp. G). ��

By Corollary 1 and by Theorem 4 we can derive the weight enumerator of an
[n+ 1, k,Δ(C)]-code.

Theorem 10. [7] Let C be an [n+ 1, k,Δ(C)]-code and M be the matroid with
independent sets defined by Δ(C)∗. Then

WC(x, y) = yn+1−r(M)(x− y)r(M)T (M ;
x+ (q − 1)y

x− y
,
x

y
). (1)

4 Relations Between Matroids, Codes and LSSS

The following equivalence relations between matroids and ideal LSSS on one
hand and LSSS and error-set codes on the other hand are known. First we
briefly recall these equivalences and using the results from the previous section
we close the chain of relations by establishing directly the equivalence between
ideal error-set codes and matroids.

Error-Set Codes and Related Objects 583

4.1 LSSS and Matroids

Brickell and Davenport were the first to point out the relation between ideal
LSSS and matroids over the set S = {0, 1, . . . , n} = {P0} ∪ P .

Definition 2. [1] Let M be an ideal SSS, The Δ-set of such a scheme is

D(M) = {A ⊆ P : ∃y ∈ A such that y ∼ A \ y}.

Theorem 11. [1, 6, 9] Let Γ be an ideal connected access structure on P with
Γ− = {Ci, i ∈ I}. Then the sets {P0} ∪Ci, i ∈ I are all circuits through P0 of a
unique matroid (by Theorem 2) defined on S = {P0} ∪P. This matroid is called
to be induced by Γ , and denoted by M(Γ). The sets D(M) are the dependent
sets of the connected matroid.

Theorem 12. [15] Let Γ be an ideal access structure for the ideal SSS M . The
sets X ∈ Γ− and sets (X \ {Pi}) ∪ {P0} for Pi ∈ X, X ∈ Γ− form the bases of
a representable matroid M(Γ) if and only if Γ and M satisfy the requirement
X ∈ Γ− ⇔ rows of MX are independent.

The opposite relation is also true.

Theorem 13. [1] Let M = (S, I) be a connected representable matroid and let
P0 ∈ S. Then there exists a connected ideal SSS M on P = S \ {P0} with a
dealer P0 and a target vector ε and such that D(M) = I.

A relation between the dual access structures and matroids also holds.

Theorem 14. [6, 9] Let Γ be a connected ideal access structure that induces a
matroid M(Γ). Then Γ ∗ induces a matroid M(Γ ∗) and

M(Γ)∗ = M(Γ ∗).

Theorem 15. [6, 9] Let Γ be an ideal access structure that induces a matroid
M(Γ). Then Γ is connected if and only if M(Γ) is connected.

4.2 LSSS and Codes

The connection between LSSS and error-set codes is made using the concept of
MSP.

Definition 3. [10] A Monotone Span Program (MSP) M is defined by the
quadruple (F,M, ε, ψ), where F is a finite field, M is a matrix (with m rows
and d ≤ m columns) over F, ψ : {1, . . . ,m} → {1, . . . , n} is a surjective func-
tions and ε = (1, 0, . . . , 0) is a fixed non-zero vector, called target vector. The
function ψ labels each row with a number i that corresponds to player Pψ(i). The
size of M is the number of rows and is denoted as size(M).

584 An Braeken, Ventzislav Nikov, and Svetla Nikova

Let M be an m × d matrix and let MA be the matrix consisting of the rows
owned by A. An MSP is said to compute the access structure Γ when ε ∈ MT

A

if and only if A ∈ Γ . Or equivalently

A ∈ Γ ⇔ ∃λ ∈ F|A| such that MT
Aλ = ε

B /∈ Γ ⇔ ∃k ∈ Fd such that MBk = 0 and k1 = 1.

The MSP which computes Γ ∗ is called the dual MSP M∗ with corresponding
matrix M∗. A relation between dual access structures and dual codes has been
established as follows.

Theorem 16. [13] Let M be an MSP program computing Γ , and M⊥ be an
MSP computing the dual access structure Γ⊥. Let code C⊥ have the parity check
matrix H⊥ = (ε | (M⊥)T) and let code C have the parity check matrix H =
(ε | MT). Then for any MSP M there exists an MSP M⊥, such that C and
C⊥ are dual.

For expressing the relations between LSSS and error-set codes, we need to work
with a particular type of MSP.

Definition 4. [13] An MSP M = (F,M, ε, ψ) is called a Δ-non-redundant
monotone span program (denoted by Δ-rMSP), if ker(MT

A) = {0} holds for
any A ∈ Δ.

Theorem 17. [14] Consider the Δ-rMSP M. Let C be an error-set correcting
code with a generator matrix G of the form G = (ε | MT). Then C defines an
LSSS with the set of forbidden distances Δ(C) equal to Δ⊥ + {∅, {P0}}.

4.3 Codes and Matroids

For the threshold case, all relations are well known: every threshold access struc-
ture Γk,n realized by an SSS over Fq has an associate uniform matroid Mk,n+1

and corresponds to an MDS [n+1, k, n−k+2]-code. ThusMk,n+1 =M(Γk,n) =
M([n+1, k, n−k+2]) hold. It seems that similar relations hold for general access
structures.

Let us analyze the equivalence between Theorem 12 and Theorem 17 for the
ideal case. The definition of Δ-rMSP corresponds to the property that X ∈ Γ−

if and only if the rows of MX are linearly independent. Furthermore, Theorem 5
where the relation between matroids and error-set codes is expressed, shows the
equivalence between the assumptions of both theorems.

For a relation between the connected LSSS and the error-set codes, it is clear
by Theorem 5 that the only extra requirement in Theorem 17 will be that the set
Δ(C) satisfies the properties of a connected matroid. Moreover, the equivalence
between Theorem 14 and Theorem 16 follows from Theorem 17.

5 Conclusion

We continued the study of combinatorial objects defined in a setting where the
set of positions in which two vectors differ is used as a metric and the support

Error-Set Codes and Related Objects 585

of a vector as a norm. More precisely, we have shown the relation between the
[N, k,Δ]-error-set codes and the matroids.

References

1. E. Brickell and D. Davenport. On the classification of ideal secret sharing schemes,
J. of Cryptology 4, 1991, pp. 123–134.

2. A. Braeken, V. Nikov, S. Nikova, B. Preneel. On Boolean Functions with General-
ized Cryptographic Properties, INDOCRYPT’04, LNCS 3348, 2004, pp. 119-134.
full version - Cryptology ePrint Archive: Report 2004/259.

3. P. Cameron. Codes, Matroids and Trelises, preprint.
4. P. Cameron. Polynomial aspects of codes, matroids and permutation groups, Lec-

ture Notes, 2002.
5. M.van Dijk. Secret Key Sharing and Secret Key Generation, Ph.D. Thesis, TU

Eindhoven, 1997.
6. M.van Dijk, W.-A. Jackson and K. Martin. A note on duality in linear secret

sharing scheme, Bulletin of the Institute of Combinatorics and its Application, 19,
1997, pp. 93–101.

7. C. Greene. Weight Enumerator and the Geometry of Linear Codes, Studies in
Applied Mathematics, 55, 1976, pp. 119–128.

8. K. Luders-Jensen. Secret Sharing, Master Thesis, Dept. of Math. DTU, 1996.
9. W.-A. Jackson and K. Martin. Geometric Secret Sharing Schemes and Their Duals,

Designs Codes and Cryptography, 4, 1994, pp. 83–95.
10. M. Karchmer and A. Wigderson. On Span Programs, Proc. of 8th Annual Structure

in Complexity Theory Conference, 1993, pp. 102-111.
11. J. Massey. Minimal codewords and secret sharing, Proc. 6th Joint Swedish-Russian

Int. Workshop on Inform. Theory, 1993, pp. 276-279.
12. F.J. MacWilliams and N.J.A. Sloane. The Theory of Error-Correcting Codes, El-

sevier, 1991.
13. V. Nikov, S. Nikova, B. Preneel. On the size of Monotone Span Programs, SCN’04,

LNCS 3352, 2004, pp. 252-265.
14. V. Nikov, S. Nikova. On a relation between Verifiable Secret Sharing Schemes and

a class of Error-Correcting Codes, Cryptology ePrint Archive: Report 2003/210.
15. T. Uehara, T. Nishizeki, T. Okamoto and K. Nakamura. A Secret Sharing System

with Matroid Access Structure, Trans. IECE Japan, J69-A 9, 1986, pp. 1124–1132.
16. H. Whitney. On the Abstract Properties of Linear Dependence, American Journal

of Mathematics, 57, 1935, pp. 509–533.
17. D. Welsh. Matroid Theory, Academic Press, London, 1976.

On Walrasian Price of CPU Time

Extended Abstract

Xiaotie Deng1,�, Li-Sha Huang2,��, and Minming Li2

1 Department of Computer Science, City Univ. of Hong Kong
csdeng@cityu.edu.hk

2 State Key Laboratory of Intelligent Technology and Systems
Dept. of Computer Science and Technology, Tsinghua Univ., Beijing, China

{hs02,liminming98}@mails.tsinghua.edu.cn

Abstract. We study a Walrasian Equilibrium model to determine the
prices of CPU time as merchandise. The customers have jobs that require
a given length of CPU slot allocation with their valuations dependent on
the assigned time slots. The owner of CPU processing time receives com-
pensation for time slots sold to the customers, subject to the condition
that the slots sold to a customer is those that customer most desires,
given the price structure for the time slots. We establish conditions for
jobs to have Walrasian Equilibrium, and obtain algorithm and complex-
ity results to determine Walrasian equilibrium price and allocation. In
particular, the issues of excessive supply of CPU time and price dynamics
are discussed under our model.

1 Introduction

Information technology has changed our lifestyles with the creation of many new
consumer products, such as word processing software, computer games, search
engines, and online communities. Digital goods and services are fast becoming
everyone’s shopping items. While the new goods of Information Age are enriching
the market place with ever-changing products, they pose a great challenge to our
understanding of economics. Such a new economy has already demanded many
theoretical tools (new and old, of economics and other related disciplines) be
applied to their development and production, marketing and pricing (see e.g.
[10]). At the same time, no theory have been able to paint a clear picture of the
reality, far less so in comparison with classic economics.

The lack of a full understanding of the new economy is mainly due to the
fact that digital goods can often be re-produced at no additional cost, though
multi-fold other factors could also be part of the difficulty. Not surprisingly, the
marketplace practice of digital goods is anything but what is predicted by classic
economics for commodities:
� Supported by a grant from the Research Grants Council of the Hong Kong Special

Administrative Region, China (Project No. CityU 1156/04E).
�� Supported by Natural Science Foundation of China (No.60135010,60321002) and the

Chinese National Key Foundation Research and Development Plan (2004CB318108).

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 586–595, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

On Walrasian Price of CPU Time 587

– While the price is much influenced by the marginal cost re-production, dig-
ital goods are not all sold at zero price but a wide range of possible (and
seemingly arbitrary) prices.

– While consumers of the same product pay the same price in classic eco-
nomics, differentiated pricing is a common practice for digital goods.

– While all positive priced goods are cleared in classic economics, digital goods
and services with excessive supplies are often not free.

It is understandable to have some of such contradictions to classic economics
because of the special characteristics of digital goods, pointed out above. It may
well be treated as a special extreme case for the commodity economy. However,
as the Internet economy becomes an indispensable part of everyone’s life, it is
unavoidable that one may quest for a comprehensive theoretical understanding
of digital goods pricing mechanism. In this work, we take a humble step on such
a mission by focusing on CPU time as a product for sale in the market. We study
it with the Walrasian pricing model in economics.

CPU time as a commercial product is extensively studied in grid computing
(see, e.g., [8]). Singling out CPU time pricing will help us to set aside other
complicated issues caused by secondary factors, and a complete understanding
of this special digital product (or service) may shed some light on the study of
other goods in the digital economy.

The utilization of CPU time by multiple customers has been a crucial issue
in the development of operating system concept. The rise of grid computing
proposes to fully utilize computational resources, e.g. CPU time, disk space,
bandwidth. Market oriented schemes have been proposed for efficient allocation
of computational grid recourses, by [9, 12]. And later, various practical and sim-
ulation systems have emerged in grid resource management, e.g., Spawn [15],
Popcorn [14], D’Agents [3], etc.. Besides the resource allocation in grids, Feigen-
baum et. al. [7] gave an example of introducing economic mechanism into routing
between Internet domains.

Our approach deals with the relationship of key concepts in the economy:
commodity, price, and customer valuation. We are interested in the price equi-
librium model in the tradition of Walras [16], Arrow and Debreu [1] and the
complexity of computing equilibrium [6]. In most of CPU allocation models,
CPU time is treated as the same commodity that would reduce the theoretical
problem to the classic model of one commodity economy, and the rigidity of cus-
tomer job makes it further simplified. For such customer jobs, price equilibrium
is quite impossible since the CPU time is often not fully utilized. The equilibrium
price would be, in such case of excessive supply, zero. We explore a more general
job model that the customer valuation would be dependent on the completion
time of its job. We also study the non-increasing propert of price sequence in
job scheduling models, which can be viewed as a comparative work to Chen et.
al. [5]’s study in the price sequence of online auctions.

The paper is organized as follows. In Section 2, the relevant definitions and
necessary preliminaries are introduced. In Section 3, we first establish a theorem
on the existence of Walrasian Equilibrium for our general CPU job model, in the

588 Xiaotie Deng, Li-Sha Huang, and Minming Li

traditional linear programming and integer programming paradigm. With this
theorem, we prove that it is NP-hard to determine the existence of Walrasian
Equilibrium in job scheduling model. In Section 4, we focus on a class of linear
valuation functions. As a positive result, we prove that Walrasian Equilibrium
exists in the model if the total available CPU time is a little more than the sum
of all required CPU service time. In Section 5, we establishes a non-increasing
property of equilibrium price for job scheduling models. We conclude our work
in Section 6 with remarks and discussion on the current results and possible
future extensions.

2 Preliminaries

In this section, we introduce the job scheduling problem, a model of valuation
functions, and Walrasian Equilibrium price.

2.1 XOR Bids and Valuation Functions

We adopt the notion of combinatorial auctions [13] in our discussion, which is
helpful for us to establish our results. Consider an exchange economy (Ω, I, V):

– Commodities: The seller sells m kinds of indivisible commodities in the mar-
ket. Let Ω = {ω1 × δ1, ..., ωm × δm} denote the set of commodities where δj

is the available quantity of the item ωj.
– Agents: There are n agents in the market acting as buyers, denoted by I =
{1, 2, ..., n}.

– Valuation functions: Each buyer i ∈ I has a valuation function vi : 2Ω → R+

to submit the maximum amount of money he is willing to pay for a certain
bundle of items. V = {v1, v2, ..., vn}.

Nisan [13] introduced a formalism, the bidding language, to express various
valuation functions. Any valuation function can be presented in this form [13].

Definition 1. [13] An XOR combination of two valuation functions v1 and v2
is defined by:

(v1 XOR v2)(S) = max {v1(S), v2(S)}
An atomic bid, or so called single-minded bid, is a valuation function v de-

fined by a pair {S, q} where S ⊂ Ω and q ∈ R+:

v(T) =
{
q if S ⊂ T
0 otherwise

An XOR bid is a combination of several atomic bids by XOR operators,
written as

v = (S1, q1) XOR (S2, q2)... XOR (Sn, qn)

Given (Ω, I, V) as input, the market is to determine an allocation and a price
vector as output:

On Walrasian Price of CPU Time 589

– An allocation X = {X0, X1, X2, ..., Xn} is a partition of Ω in which Xi is the
bundle of commodities assigned to buyer i and X0 is the set of unallocated
commodities.

– A price vector p is a nonnegative vector in Rm whose j-th entry is the price
of good ωj ∈ Ω.

The social efficiency of an allocation X is the sum of all buyers’ valua-

tion:
n∑

i=1

vi(Xi). An allocation X∗ = {X∗
0 , X

∗
1 , ..., X

∗
n} is said to be optimal if it

maximizes social efficiency, i.e.
n∑

i=1

vi(X∗
i) ≥

n∑
i=1

vi(Xi) for any other allocation

X = {X0, X1, ..., Xn}.
For any subset T = {ω1 × σ1, ..., ωm × σm} ⊂ Ω, define p(T) as p(T) =

m∑
j=1

σjpj . If buyer i is assigned to a bundle of commodities Xi and the price

vector is p, his utility is defined to be ui(Xi, p) = vi(Xi)− p(Xi).

2.2 The CPU Job Scheduling Problem

We consider two types of players in a market-driven CPU resource allocation
model: a resource provider and n consumers. The provider sells to the consumers
CPU time slots and the consumers each has a job that requires a fixed number
of CPU time, and its valuation function depends on the time slots assigned to
the job, usually the last assigned CPU time slot. We assume that all jobs are
released at time t = 0 and the i-th job needs si time units. We denote by vi(·) the
valuation function of agent i on the time slots assigned to it. In general, the jobs
may be or may not be interruptible but we focus on jobs that are interruptible
without preemption cost, as is often modelled for CPU jobs.

Using the notion of the previous subsection, for the job scheduling problem,
there are m commodities (time units), Ω = {ω1, ..., ωm}, and n buyers (jobs) ,
I = {1, 2, ..., n}, in the market. Each buyer has a valuation function vi, usually
only dependent on the completion time. Moreover, if not explicitly mentioned,
every job’s valuation function is non-increasing w.r.t. completion time. We call
such valuation functions non-increasing valuation functions.

2.3 Walrasian Equilibrium Price

Definition 2. [11]A Walrasian Equilibrium for an exchange economy (Ω, I, V)
is a tuple (X, p), where X = {X0, X1, ..., Xn} is an allocation and p is a price
vector, satisfying that:

(1) p(X0) = 0;
(2) ui(Xi, p) ≥ ui(B, p), ∀B ⊂ Ω, ∀1 ≤ i ≤ n

Such a price vector is also called a market clearing price, or Walrasian price, or
equilibrium price.

590 Xiaotie Deng, Li-Sha Huang, and Minming Li

There is a well-known proposition of Walrasian equilibrium:

Proposition 1. [4] Walrasian equilibrium maximizes the social efficiency, i.e.
if (X, p) is a Walrasian equilibrium, then X is an optimal allocation.

Example 1. Two non-interruptible jobs compete for four time units
{ω1, ω2, ω3, ω4}. Their valuation functions are:

v1 = ({ω1, ω2} , 7) XOR ({ω2, ω3} , 4) XOR ({ω3, ω4} , 1)
v2 = ({ω1} , 7) XOR ({ω2} , 5) XOR ({ω3} , 3) XOR ({ω4} , 1)

The equilibrium price is (3, 1, 0, 0). Job 1 gets {ω2, ω3}, job 2 gets {ω1}. It is an
example of Walrasian Equilibrium for the job scheduling problem.

3 Existence and Complexity

In this section, we propose a sufficient and necessary condition for the existence
of Walrasian Equilibrium in an exchange economy with indivisible commodities.
As its application, we show that deciding the existence of Walrasian Equilibrium
is strong NP-hard even when restricted to job scheduling models.

3.1 Relation to Linear Programming

Bikhchandani et. al. [2] proved that Walrasian Equilibrium exists in an exchange
economy with indivisible commodities if and only if the buyers’ welfare cannot be
improved by making the commodities divisible. In other words, Bikhchandani’s
theorem [2] claims that Walrasian Equilibrium exists if and only if the optimum
of an integer programming problem equals the optimum of its linear relaxation.

However, the size of their linear programming problem is exponential to the
total number of commodities which is unacceptable computationally. Chen et.
al. [4] obtained a similar result for atomic bids while the complexity is linear to
the number of commodities and buyers. We extend their result to XOR bids and
show that the size of the linear programming problem is linear to the number of
items and XOR clauses.

Assume in an economy, Ω = {ω1 × δ1, ..., ωm × δm} is the set of commodities,
I = {1, 2, ..., n} is the set of buyers. Each buyer i has a valuation function which
can be represented by ri pairs:

(Si1, qi1) XOR (Si2, qi2) XOR ... XOR (Siri , qiri)

Maximization of social efficiency is equivalent to solving the following linear
programming problem when items are divisible:

On Walrasian Price of CPU Time 591

LPR:

max
n∑

i=1

ki∑
j=1

qijxij

s.t.
∑

i,j|ωk∈Sij

xij ≤ δk, ∀ωk ∈ Ω

ri∑
j=1

xij ≤ 1, ∀1 ≤ i ≤ n

0 ≤ xij ≤ 1, ∀i, j

Denote its integer restriction as IP. Now we can reach the main theorem of
this subsection:

Theorem 1. In an economy with indivisible commodities and XOR valuation
functions, the Walrasian Equilibrium exists if and only if the optimum of IP
equals the optimum of LPR. The size of LP problem is linear to the total number
of XOR bids.

The proof of this theorem can be found in the full version of this paper.

3.2 Reducing LP Size for Non-increasing Valuation Function

The main difficulty of directly applying Theorem 1 to job scheduling problems is
that the number of XOR clauses is exponential to the number of available time
units if the jobs are allowed to be interrupted. More precisely, if the number of
total time units is m and job i’s time span is si, then there are

(
m
si

)
XOR clauses

in the valuation function vi. In this subsection, we try to overcome this obstacle.
In a feasible allocation, the allocated time units to every job must be or may

not be consecutive. We call the former one consecutive allocation, and the latter
general allocation.

Lemma 1. General allocation can not gain more social efficiency than consec-
utive allocation.

Lemma 1 shows that general allocation cannot gain more social efficiency
than consecutive allocation, when the valuation functions are non-increasing
w.r.t completion time. What happens if we stands on Walrasian Equilibrium’s
point of view?

In the next theorem, if jobs are all interruptible, we call the scheduling prob-
lem general scheduling, and restricted scheduling if jobs are all non-interruptible.

Theorem 2. Walrasian Equilibrium exists in the general scheduling model if
and only if Walrasian Equilibrium exists in the restricted scheduling version.

Compared to
(
m
si

)
clauses in one valuation function of general scheduling prob-

lem, there are only (m − si + 1) XOR clauses in the restricted version. Hence
Theorem 2 dramatically reduces the scale of the corresponding linear program-
ming problem in Theorem 1. The following example illustrates an application of
Theorem 1 and Theorem 2.

592 Xiaotie Deng, Li-Sha Huang, and Minming Li

Example 2. Suppose there are three time units for two buyers.

v1 = ({1, 2} , 15) XOR ({2, 3} , 2)
v2 = ({1} , 20) XOR ({2} , 20) XOR ({3} , 8)

It is easy to see that the optimal integer allocation produces the social ef-
ficiency 23. However, the linear program can yield a better solution 27.5 by
distributing {1, 2}× 0.5 to buyer 1 and {1}× 0.5 + {2}× 0.5 to buyer 2. There-
fore, Walrasian Equilibrium does not exist in the example.

3.3 Strong NP-Hardness

Although Theorem 1 can help us to determine the existence of Walrasian Equi-
librium in job scheduling problems, it is still a hard problem because integer
programming is hard. In this subsection, we will show that it is strong NP-hard
to decide whether Walrasian Equilibrium exists in a job scheduling problem.

DWE Problem: Given m time units and altogether n jobs. The i-th job needs si

time units. Each job’s valuation on its allocated time units only depends on its
completion time and is non-increasing w.r.t. this time. Determine the existence
of Walrasian Equilibrium in this job scheduling problem.

We will reduce a strong NP-hard problem, 3-Partition, to DWE problem.

3-Partition problem: Given a set of 3N integer numbers S = {s1, s2,s3N},

and an integer B, which satisfy
3N∑
i=1

si = NB, and B/4 < si < B/2. Determine

whether there exists a partition of S into P1, P2, ...PN , such that∑
j∈Pi

sj = B for all 1 ≤ i ≤ N (1)

For the preceding 3-Partition problem, we construct a DWE problem in
which there are altogether NB time units, with 3N jobs each applying for si

time units respectively. If job i’s completion time is ti, its valuation is set to be
si(N − � ti

B �+ 1).
This job scheduling problem naturally induces an integer programming prob-

lem and its linear relaxation. Denote the optimum of these two programming
problems by MIP and MLP . By Theorem 1, MIP = MLP if and only if DWE
admits a Walrasian Equilibrium.

Lemma 2. MLP ≤ BN(N + 1)/2.

Lemma 3. 3-Partition has a solution if and only if the maximal social efficiency
in the corresponding job scheduling problem equals BN(N + 1)/2.

Theorem 3. Determination of Walrasian Equilibrium Existence(DWE) is
strong NP-hard.

On Walrasian Price of CPU Time 593

Proof. With an oracle of DWE problem, we can solve 3-Partition in polynomial
time:

If the oracle declares that Walrasian Equilibrium doesn’t exist in the job
scheduling problem, then due to Theorem 1 and Lemma 2, MIP < MLP ≤
BN(N + 1)/2 which means that the social efficiency of the best allocation is
less than BN(N + 1)/2. Thus Lemma 3 ensures that 3-Partition does not have
a solution.

If the oracle declares that there exists a Walrasian Equilibrium, due to The-
orem 1, we can in polynomial time obtain the maximal social efficiency by solv-
ing the linear programming problem. A simple comparison will yield whether
3-Partition has a solution.

4 Excessive CPU Time and Equilibrium
in MWCT Model

In the section, we concentrate on a scheduling problem with linear valuation
functions. Assume n jobs are released at the time t = 1 for a single machine, the
j-th job’s time span is sj ∈ N+ and weight wj ≥ 0. The goal of the scheduling is

to minimize the weighted completion time:
n∑

i=1

witi, where ti is the completion

time of job i. Such a problem is called MWCT (Minimal Weighted Completion
Time) in this section.

We can convert an MWCT problem to an exchange economy: the market
sells m commodities T = {t1, ..., tm} (time slots) to n buyers I = {1, 2, ..., n}
(jobs). The valuation of buyer i to a bundle Ti is vi(Ti) = wi(m − t), where
|Ti| = si and t is the largest item in Ti (completion time). Due to the nice form
of the valuation functions, we immediately have the proposition:

Proposition 2. The social optimum in the economy is equivalent to the opti-
mum in its corresponding MWCT problem.

By Theorem 2, we can w.o.l.g. assume that buyer i only applies for consec-
utive time units. Note that there is a classical O(n logn)-time algorithm to find

the optimum of MWCT when m ≥
n∑

i=1

si. It just simply executes the jobs in a

heavier average weight earlier order, i.e. if wi/si > wj/sj , then job i must be
executed before job j.

Though the universal problem for MWCT is intractable both at optimization
and determination of existence of equilibrium, we do have some promising result
when the total number of processor time is large enough:

Theorem 4. In a single machine MWCT job scheduling problem, Walrasian
Equilibrium always exists when m ≥ EM + Δ, where m is the total number of

processor time, EM =
n∑

i=1

si and Δ = max
k
{sk}.

The following example shows that the enough excessive CPU time is neces-
sary.

594 Xiaotie Deng, Li-Sha Huang, and Minming Li

Example 3. There are two jobs {1, 2} and five CPU time slots {t1, t2, t3, t4, t5}
in the market. w1 = 3, s1 = 2;w2 = 4, s2 = 3. Allocate (t1, t2) to job 1 and
(t3, t4, t5) to job 2 will produce social efficiency at 9. However, allocate (t1, t2)×
0.5 and (t3, t4) × 0.5 to job 1 and (t1, t2, t3) × 0.5 to job 2 will produce social
efficiency at 10. Hence by Theorem 1, the Walrasian Equilibrium does not exist.

5 Price Sequence

If Walrasian Equilibrium exists, then we can find not only an optimal schedule
but also a price vector for all time units. In this section, we prove the existence
of non-increasing price sequence if Walrasian Equilibrium exists under the as-
sumption that the valuation functions are non-increasing w.r.t. completion time.

The proofs of the following lemmas can be found in the full version of this
paper.

Lemma 4. If Walrasian Equilibrium exists with a general allocation and an
equilibrium price, then there exists a Walrasian Equilibrium with a consecutive
allocation and corresponding equilibrium price.

Lemma 5. Equilibrium price in a consecutive allocation must satisfy the fol-
lowing property: if buyer i is allocated before buyer i′, then the price of any time
unit allocated to i will be higher than or equal to the price of every time unit
allocated to buyer i′.

Definition 3. Given two sequences P = {p1, p2, ...pm}, Q = {qs, qs+1, ...qm}
(0 < s ≤ m), define the Minimum s- Sum of P at position i as:

msi(P) = min
T⊂|i|,|T |=s

{∑
k∈T

pk

}

and the Maximal Difference of Q to P as:

MD(Q,P) = max
s≤i≤m

{qi −msi(P)}

Lemma 6. For a permutation π : |m| → |m| and a vector P = (p1, ..., pm) ∈
Rm, define π(P) = (pπ(1), ..., pπ(m)). Given two non-increasing sequences P =
{p1, p2, ...pm} and Q = {qs, qs+1, ...qm}, we have MD(Q,P) ≤MD(Q, π(P)).

Lemma 7. If Walrasian Equilibrium exists with consecutive allocation, then for
every consecutive segment, sorting the prices in non-increasing order will still
yield an equilibrium price sequence.

By Lemma 4, Lemma 5 and Lemma 7, we reach the main theorem of the
section:

Theorem 5. If there exists a Walrasian Equilibrium in a job scheduling prob-
lem, we can always let it be an equilibrium with consecutive allocation and a
non-increasing equilibrium price vector.

On Walrasian Price of CPU Time 595

6 Conclusion and Discussion

In the paper, we have shown in Theorem 1 the relation of the duality theory
of linear programming and the existence of Walrasian Equilibrium with indi-
visible commodities. Theorem 2 and Theorem 3 are the examples of its direct
application in algorithmic complexity issues. With similar technique in the proof
of Theorem 3, we prove the NP-hardness of determining existence of Walrasian
Equilibrium in various job scheduling models.

In Section 4, we study MWCT model and show that enough excessive CPU
time always admit Walrasian Equilibrium. We believe that the equilibrium price
will lead to an incentive compatible pricing mechanism in the model.

References

1. K. J. Arrow and G. Debreu. Existence of an equilibrium for competitive economy.
Econometrica, 22:265–290, 1954.

2. S. Bikhchandani and J. W. Mamer. Competitive equalibrium in an exchange econ-
omy with indivisibilities. Journal of Economy Theory, 74:385–413, 1997.

3. J. Bredin, D. Kotz, and D. Rus. Market-based resource control for mobile agents. In
the Proceeding of the 2nd International Conference on Autonomous Agents. ACM
Press, 1998.

4. Ning Chen, Xiaotie Deng, and Xiaoming Sun. On complexity of single-minded
auction. Journal of Computer and System Sciences, 69(4):675–687, 2004.

5. Ning Chen, Xiaotie Deng, Xiaoming Sun, and Andrew C. Yao. Dynamic price
sequence and incentive compatibility. In the Proceedings of ICALP, 2004.

6. X. Deng, C. Papadimitriou, and S. Safra. On the complexity of price equilibria.
Journal of Computer and System Sciences, 67(2):311–324, 2003.

7. J. Feigenbaum, C. H. Papadimitriou, R. Sami, and S. Shenker. A BGP-based mech-
anism for lowest-cost routing. In the Proceedings of PODC, 2002.

8. D. Ferguson, C. Nikolaou, J. Sairamesh, and Y. Yemini. Economic models for
allocating resources in computer systems. 1996.

9. D. Ferguson, Y. Yemini, and C. Nikolaou. Microeconomic algorithms for load bal-
ancing in distributed computer systems. In the Proceedings of DCS, 1988.

10. A. V. Goldberg, J. D. Hartline, and A. Wright. Competitive auctions and digital
goods. 2001.

11. F. Gul and E. Stacchetti. Walrasian equilibrium with gross substitutes. Journal of
Economy Theory, 87:95–124, 1999.

12. J. F. Kurose and R. Simha. A microeconomic approach to optimal resource alloca-
tion in distributed computer systems. IEEE Trans. on Computers, 38(5):705–717,
1989.

13. N. Nisan. Bidding and allocation in combinatorial auctions. In ACM Conference
on Electronic Commerce, pages 1–12, 2000.

14. N. Nisan, L. London, O. Regev, and N. Camiel. Globally distributed computa-
tion over the internet - the POPCORN project. In International Conference on
Distributed Computing Systems, 1998.

15. C. A. Waldspurger, T. Hogg, B. A. Huberman, J. O. Kephart, and W. S. Stornetta.
Spawn: A distributed computational economy. IEEE Transactions on Software
Engineering, 18(2):103–117, 1992.

16. L. Walras. Elements d’Economique Politique Pure. Corbaz, Lausanne, Switzerland,
1874.

On-Line Algorithms for Market Equilibria

Spyros Angelopoulos1, Atish Das Sarma2,
Avner Magen3, and Anastasios Viglas4

1 University of Waterloo
sangelop@cs.uwaterloo.ca

2 IIT Bombay
atish@cse.iitb.ac.in
3 University of Toronto
avner@cs.toronto.edu
4 University of Sydney
tasos@it.usyd.edu.au�

Abstract. We consider a variation of the classical problem of finding
prices which guarantee equilibrium in linear markets consisting of di-
visible goods and agents with money. Specifically, we consider on-line
algorithms for this problem in which goods are considered on-line, and
each good is assigned an irrevocable price. Since exact equilibria will not
be found in such a setting, we appeal to the concept of approximate equi-
librium defined in previous studies of the problem, to characterize the
quality of our solutions. We consider both deterministic and randomized
algorithms for finding approximate equilibria. We prove a tight bound
on the performance of deterministic algorithms, and show that under
certain natural conditions, randomized algorithms lead to market prices
which are closer to equilibrium.

1 Introduction

The existence of equilibria in markets is a central problem in mathematical
economics, and has attracted enormous interest since the pioneering work of
Walras [10] and Fisher [3]. The problem is the following. Consider a market
which consists of buyers, each with a certain amount of money, and divisible
goods of a certain amount each. The desirability of goods to each of the buyers
is expressed by the utility functions of the buyers. The goal is to assign prices
to goods such that the buyers can buy their individually optimal bundle of
goods in terms of the utility they get and there is no surplus of goods, i.e, the
market clears. The theorem of Arrow and Debreu [1] established the existence
of equilibrium prices in a very general setting. The proof is nonconstructive,
yet recently polynomial-time algorithms for the case of linear utility functions
have been presented. These algorithms assume complete knowledge of the entire
market meaning that the utility functions of all goods are known beforehand.
� Research supported in part by the European Social Fund (75%) and the Greek Min-

istry of Education (25%) through a grant of the Operational Program “Pythagoras”.

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 596–607, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

On-Line Algorithms for Market Equilibria 597

This might be the case in a static market, but it does not reflect the situation in
a dynamic market, in which little, if anything, is known about goods that will
appear in the market in the future.

This work focuses on the performance of on-line algorithms for computing or
predicting equilibrium prices. The online algorithm assigns prices incrementally
trying to approximate the actual equilibrium prices that correspond to the actual
offline market problem. Prices are assigned without complete knowledge of the
market and cannot change. In a more general setting we can formulate the
restriction on re-assigning prices by associating a change in a previously assigned
price of a good with a cost which measures how undesirable such a change would
be. The online setting addressed in this work captures the special case where
this cost is infinite and therefore any price assignment is irrevocable. In other
words, the assigned price is advertised and must be honoured as advertised even
after other products appear on the market. Also, when a good appears, it comes
with a survey that specifies how much various customers desire it, i.e. with a
complete apecification of its utilities to all agents.

As we mentioned, in our setting the algorithm assigns prices trying to ap-
proximate the price equilibrium that we would get in an offline setting. It quickly
becomes obvious that in the setting described above, the exact equilibrium are
not generally computable. Hence we appeal to the concept of an approximate
equilibrium as introduced by Deng, Papadimitriou and Safra [5] (precise defini-
tions are given in Section 2). Prices set by online algorithms will not necessarily
correspond to an exact market equilibrium, but we may still be looking for the
best possible approximation, which is an approximate equilibrium. The two main
parameters of an approximate equilibrium are market clearence and optimizing
the pay-off for each agent (personal optimal bundle). We distinguish between
two types of approximate market clearance: we can require that every good is
cleared to a certain extent, or we can require that on average the goods clear.
The former definition associates each good with a distinct seller and is the one
adopted in the study of (off-line) equilibria, while the latter captures a setting in
which there is only one seller that is satisfied when goods are cleared on average.

Our model is quite different from previous auction-type algorithms [2] for
market clearence, based on online matching algorithms. Those models enforce
the extra restriction that a price and an allocation or sale must be done online in
an irrevocable way. Our model only requires that the price is set and advertised,
while the allocation of goods, or the sales can be done at the end when all
prices have been set. This gives a characterization of the best approximation of
equilibrium prices in a different market setting, and our results indicate that it
is much more difficult to get good equilibrium approximations.

Previous Work. The Arrow-Debreu theorem [1] states that in general divisible
markets, equilibrium prices always exist. The theorem applies in the general
setting in which each agent (buyer) has an initial endowment of goods, which
she can then trade to acquire other goods, but it also applies to markets in
which the agents have money with which they buy goods (and hence there is
a clear distinction between sellers and buyers). Such markets are called Fisher
markets [3, 6], and they are focus of this paper.

598 Spyros Angelopoulos et al.

Computing market equilibria has been a long-standing problem in economics
[9] but it was only recently that it was approached from the point of view of
algorithmic solutions with strict guarantees. Deng, Papadimitriou and Safra [5]
introduced the concept of an approximate equilibrium: essentially, one seeks an
allocation of goods which approximately clears the market and for which every
agent is approximately maximally happy. Deng et al considered the problem
of approximating equilibria in endowment markets with linear utility functions
(linear markets). They showed that, for indivisible goods, the problem is NP-
hard to approximate within 1/3, and it is NP-hard even when the number of
agents is two. In contrast, for the case where the number of agents is fixed,
they provided a (1+ ε)-approximation. For divisible goods they showed an exact
(polynomial-time) algorithm provided that the number of goods, or the number
of agents, is bounded.

For linear Fisher markets with divisible goods, Devanur, Papadimitriou,
Saberi and Vazirani [4] presented a polynomial-time exact algorithm based on
the primal-dual schema. Jain, Mahdian and Saberi [8] used the algorithm of [4]
to provide a FPTAS in the more general setting of endowment markets. This
algorithm was recently improved to a strongly polynomial algorithm by Deva-
nur and Vazirani [6]. More work on market equilibria was presented in [7] on the
spending constraint model.
Our Results. We provide upper and lower bounds on the deviation-from-
equilibrium of an algorithm for the problem with respect to the two definitions
of clearance. Here, the deviation-from-equilibrium is defined as the smallest k for
which the prices are (1 − 1/k)-equilibrium prices (the precise definition of this
measure and its rational is given in Section 2). For deterministic algorithms we
show a (tight) bound of Θ(min{

√
m,n}) for both individual and global clear-

ance (n and m are the number of agents and goods respectively). We then
turn our attention to the application of randomization in the context of this
problem; this is motivated by the observation that an algorithm with access to
random bits could possibly avoid (on an average case) bad prices for the whole
sequence of goods. We show a randomized algorithm that acheives a better
deviation-from-equilibrium that its deterministic counterpart, when clearence
is required ”on the average”. Specifcally, we show how to get deviation-from-
equilibrium O(min{m1/3

√
logm,n}) albeit for a somewhat restricted, but still

fairly broad and natural family of inputs. Furthermore, we provide a lower bound
of Ω(min{m1/3,

√
n}). For the case of individual clearance we show that random-

ization does not actually help, as we show a lower bound of Ω(min{√m,n}) to
the deviation-from-equilibrium under this criterion.

2 Problem Definition and Preliminaries

A market consists of a set A of n agents and a set G of m divisible goods. Each
good is characterized of its size bj. Agent i possesses a certain amount of money
ei ∈ R+, which she can use to buy goods in G. A bundle of goods for agent i is a
vector xi ∈ Rm such that xij ≤ bj . A feasible allocation (or simply allocation) x

On-Line Algorithms for Market Equilibria 599

is a collection of n bundles x1, . . . , xn (one for each agent), such that, for every j,∑n
i=1 xij ≤ bj . The utility function of i is a function ui : Rm → R; in particular,

ui(xi) specifies the utility of agent i for bundle xi (informally, it represents the
happiness of i if she buys a quantity xij ≤ bj of good j). Throughout this paper,
we assume linear utility functions, that is ui(xi) =

∑m
j=1 uijxij , for non-negative

constants uij . We call uij the utility of j for i.
Suppose that good j is assigned a price pj ∈ R+. Since agent i wants to

maximize her utility, the optimal bundle for i is the bundle x̃i which is the
solution to the following maximization program:

maximize ui(xi)

subject to
m∑

j=1

pjxij ≤ ei. (1)

Informally, the optimal bundle for agent i maximizes the utility i can make
without taking into consideration the presence of other agents. Can we set prices
so that we can find an allocation that consists of bundles that are close to
optimal, for all users? Clearly, if prices are high enough then this requirement
is met, as there are no conflicts between different buyers demanding more than
the supply. However, we also wish to achieve market clearance, in the sense that
there is no surplus or deficiency of goods. The concept of a market equilibrium
aims to strike a balance between these two conflicting goals. More formally, an
ε-approximate equilibrium (0 ≤ ε ≤ 1), or ε-equilibrium for brevity, is a price
vector p ∈ Rm

+ such that there exists an allocation x = {x1, . . . , xn} with the
following two properties:

1. For all i, ui(xi) ≥ (1 − ε)ui(x̃i). x̃i is the solution to the maximization
program (1).

2. The market approximately clears. Let cj = 1
bj

∑n
i=1 xij , namely the fraction

of good j that was bought. In individual clearance we require that minj cj ≥
1 − ε, in other words we consider the worst case clearance of the goods.
Alternatively, we can look at a more relaxed definition and require that the
average of the cj-s is at least 1 − ε. We call this type of clearance global
clearance.

A 0-equilibrium is simply called an equilibrium. We call the price vector
relative to which one can find an allocation that leads to an ε-equilibrium an
ε-equilibrium price. Without loss of generality, in linear markets and for both
variants of clearance, we can normalize the size of each good to 1 unit by scaling
the utilities appropriately. We notice that subject to this normalization global
clearance simply states that the total number of units bought is at least (1−ε)m.
The setting of the market equilibrium problem assumes that all information is
available to an algorithm for the problem. In this paper we consider the on-line
version of the market equilibrium problem. More specifically, we assume that
goods arrive on-line. Every time a good j appears, the utilities uij are revealed,
for all i ∈ [n]. The on-line algorithm must assign an irrevocable price to each

600 Spyros Angelopoulos et al.

good at the time of its appearance, that is the price of goods cannot be modified
throughout the algorithm’s execution1.

We motivate our definition of a deviation-from-equilibrium of an on-line algo-
rithm. When considering approximation algorithms for a maximization problem
which achieves a value v while the optimal value is τ , we either say the approx-
imation ratio is k = τ/v or, when v approaches τ , e.g. in the case of a PTAS,
we rather consider that minimal ε for which v ≥ (1 − ε)τ . A similar situation
arises here. We define the deviation-from-equilibrium of an on-line algorithm as
the smallest k for which the prices set by the algorithm are (1−1/k)-equilibrium
prices.

Additional Definitions. A good j is called uniform if for every two agents
i, i′, uij = ui′j . A set of goods is called monotone if for every two goods j, j′ and
every two agents i, i′, we have uij ≤ uij′ ⇒ ui′j ≤ ui′j′ . The definition asserts
that the ordering of monotone goods by utility is the same for every agent. The
aspect ratio of the market is defined as maxi,j,j′

uij

uij′
. The good j that maximizes

the ratio uij/pj is called the best good for agent i.

3 Deterministic Algorithms

Theorem 1. There exists a deterministic on-line algorithm for the problem with
deviation-from-equilibrium O(min{

√
m,n}), for individual (and therefore also

for global) clearance. Furthermore, this bound is tight.

Proof. Upper Bound. We consider individual clearance, which clearly implies
global clearance with the same guarantees. First, we provide some intuition
behind the assignment of prices. If the price of each good is set as high as E
(recall that E is the total money of all agents), then clearly there is an allocation
in which every agent gets as much utility as from its optimal bundle; however
at most one unit of good is allocated, and we are far from market clearance. On
the other extreme, if the prices are very low, e.g., E/m, then all goods can be
allocated, however there will be contention between agents for goods that are
important to a large subset of agents. We reconcile the two extremes by assigning
prices as follows: the price of the j-th good, for all j ≤ n2 is set to E√

j
. For more

details see the full paper.

Lower Bound. The adversary will present to n agents, each having a unit
amount of money, a sequence of m uniform goods; that is, for every good j and
agent i, uij = uj . The intuition behind the adversarial input is that when the
algorithm considers a good of very high utility for all agents, then it has to set
a high price to it, otherwise there will be heavy contention between agents. By

1 Alternatively, one could assume a model in which agents appear on-line, each re-
vealing how much utility she can make from each good. Such a model would make
sense only if the price of every good is set before any allocation (even for the very
first agent) takes place. However, if prices are set, the problem is trivial to solve for
linear markets, by using linear programming.

On-Line Algorithms for Market Equilibria 601

providing a sequence of “progressively better” goods, in terms of their utility,
the adversary will force the algorithm to assign high prices to every good, which
implies poor market clearance. For more details see the full paper.

The upper bound of Theorem 1 is tight, provided that the aspect ratio of the
market is sufficiently high. What if the aspect ratio is bounded? The following
theorem builds upon the idea behind the lower-bound proof of Theorem 1. The
intuition here is that goods in the sequence become progressively better, but
only as much as possible given the bound on α.

Theorem 2. The deviation-from-equilibrium of every deterministic algorithm
for a market with aspect ratio α > 1 is in Ω(min{nb,

√
mb}), where b = βm(β−1)

βm+1−1 ,

and β = α
1
m .

Proof. We will consider global clearance; the lower bound then carries over to
individual clearance. As in the proof of Theorem 1 the adversary will present to
n agents, each having a unit amount of money, a sequence of m uniform goods
(we will denote by uj the utility of the j-th good in the sequence, with u1 = 1).
Every time the algorithm assigns a “low” price to good j < m, then good j+1 is
is such that uj+1 = β ·uj (hence if all j first goods were assigned low prices, then
uj+1 = βj). Otherwise, the adversary presents m− j goods, each of (low) utility
βj−m, and terminates the game. We will assume (without loss of generality) that
the algorithm knows m in advance, and that the deviation-from-equilibrium of
the algorithm, say k, for k ≥ 1 is a function of m, n, e and α only.

Consider good j in the sequence, assuming that no good in [j], with l ≤ m−1
has received a low price. We claim that if the price pj is “low” this provides a
lower bound to the deviation-from-equilibrium k by the following relaton.

βj ·min{1, 1
pj
} < k · (

∑j
l=1 β

l + (m− j)βj−m

n
). (2)

To see this, note that in such a case, the adversary will terminate the game
by providing m − j goods of utility βj−m. Then, for every allocation of the
m goods to agents, there exists one agent, say i, who will receive utility at
most (

∑j
l=1 β

l + (m− j)βj−m)/n. On the other hand, the optimal bundle for i
yields utility at least equal to the LHS of (2). Taking into account the fact that

βj∑
j

l=1
βl+(m−j)βj−m

≥ βm∑m

l=1
βl

= b, we conclude that, for the algorithm to have

deviation-from-equilibrium k, the price pj must not be low, namely it must be
such that

nmin{1, 1
pj
} · b ≤ k, (3)

If pj ≤ 1, (3) gives k ≥ nb. Otherwise, (3) implies that pj ≥ n
k b, for all j ∈ [m−1].

Hence at most (Ek)/(bn) + 1 = k/b + 1 goods can be allocated to agents, and
since we require that the algorithm has deviation-from-equilibrium k, it must be
that m

k/b+1 ≤ k, thus k ∈ Ω(
√
mb). Summarizing, k ∈ Ω(min{nb,

√
mb}).

602 Spyros Angelopoulos et al.

Theorem 2 demonstrates that when α is exponential onm, then the algorithm
used in the proof of Theorem 1 is asymptotically optimal.

It is worth mentioning that for the special case where all goods are identi-
cal (and hence the only information not known to the on-line algorithm is the
number of goods), a variant of this approach can be employed to show that
no deterministic algorithm has deviation-from-equilibrium better than a certain
constant bigger than 1. We omit the details.

4 Randomized Algorithms

A randomized on-line algorithm is an algorithm which assigns irrevocable prices
to goods according to a certain probability distribution. We start by stating pre-
cisely the definition of deviation-from-equilibrium of such an algorithm. Consider
an allocation of goods after the prices have been set. Let Fi denote the random
variable which is the utility agent i can make from this allocation. Let also Gi

denote the random variable that corresponds to the utility of the optimal bundle
for agent i. Last, define Hj to be the random variable which denotes how much of
good j was bought, and H =

∑
j Hj . Then, KG = max{maxi Gi/Fi,m/H} and

KI = max{maxi Gi/Fi,maxj 1/Hj} are the random variables that denote the
global and individual clearance respectively. Let kG = E[KG] and kI = E[KI]
be the corresponding expectations of these variables and they are the ones we
consider. We start with a negative result.

Theorem 3. The deviation-from-equilibrium of every randomized on-line algo-
rithm for markets with global clearance Ω(min{m 1

3
√
n}). For markets with in-

dividual clearance it is Ω(min{√m,n}).

Proof. Using Yao’s principle, we present a distribution on inputs on which every
deterministic algorithm has high expected deviation-from-equilibrium . Let Ij
be the input u1 << u2 << . . . << uj and uj+1, . . . , um = 0. Take input Ij for
j < m with probability 1

2m and Im with probability 1
2 + 1

2m . Let p1, p2, . . . , pm

be the algorithm answers to Im. There is a subtle point to note here: since Ij
and Im are consistent for the first j goods, it must be the case that prices set
by the algorithm for the input Ij are with agreement to those set for the input
Im, namely p1, . . . , pj. Arguments similar to the ones in 2 show that considering
agent j, at the event of input Ij we have the bound KG,KI ≥ n ·min{1, 1/pj},
and at the event of inout Im we have (from clearance constriants) that KG ≥ m/l
where l is the maximal number of goods totaling to at most n. So

kG = E[KG] ≥ max

{
n

2m

∑
i

min{1, 1/pj},
m

2l

}
.

We apply the first part of Lemma 1 to conclude kG ≥ 1
2 min{

√
n,m

1
3 }.

Considering KI , we notice that if the individual clearance is at most K, a
quantity of 1/K of each good must be purchased by the agents. This means that
1
K ·

∑
i pi ≤ E = n, and therefore we get

On-Line Algorithms for Market Equilibria 603

kI = E[KI] ≥ max

{
n

2m

∑
i

min{1, 1/pj},
∑

i pi

2n

}
.

By the second part of Lemma 1 we get kI = Ω(min{
√
m,n}).

Lemma 1. Let n,m be positive integer numbers, pi be nonnegative reals, and
l = l(p1, . . . , pm;n) is the maximal l such that the sum of the l smallest pi does
not exceed n. Then

max

{
n

m
·
∑

i

min{1, 1/pi},
m

l

}
≥ min{

√
n,m

1
3 },

and also

max

{
n

2m

∑
i

min{1, 1/pj},
∑

i pi

2n

}
= Ω{m1/2, n}.

Proof. Let S = {j : pj < 1} and L be the set if indices of the l smallest pi-s
(cutting ties arbitrarily). Further, let B = L \ S, s = |S| and b = |b|. Clearly
l = s+ b. Now,∑

i∈B

min{1, 1/pi} =
∑
i∈B

1/pi = b ·
∑

i∈B 1/pi

b
≥ b · b∑

i∈B pi
≥ b2/n.

The first inequality above is the Arithmetic-Harmonic-Mean inequality. So∑
i

min{1, 1/pi} ≥
∑
i∈S

min{1, 1/pi}+
∑
i∈B

min{1, 1/pi} ≥ s+ b2/n

and we get

max

{
n

m
·
∑

i

min{1, 1/pi},
m

l

}
≥ max

{
n

m
· (s+ b2/n),

m

s+ b

}
.

It is now enough to show that for every choice of nonnegative b and s the in-
equality
max

{
n
m · (s+ b2/n), m

s+b

}
≥ min{m 1

3 ,
√
n} holds. First assume s = 0. Here we

need to optimize max{b2/m,m/b} which is clearly at least m
1
3 . We now turn to

the case s > 0. We will use the simple inequality max
{

n
m · (s+ b2/n), m

s+b

}
≥

1
2

(
n
m · (s+ b2/n) + m

s+b

)
, and will now lower bound the latter expression. As-

sume b is fixed and we need to find that value of s minimizing the expression.
Easy calculus shows that s = m/

√
n − b is that value. We can safely assume

m/
√
n − b > 0 otherwise s = 0 would be the best choice which is a case we

already covered. Substituting for s we get

n

m
· (s+ b2/n) +

m

s+ b
≥ n

m
· (m/

√
n− b+ b2/n) +

√
n.

604 Spyros Angelopoulos et al.

Now we optimize over b and get that b = n/2 is the minimizing value for the
last expression. By the same argument we may assume here that n/2 ≤ m/

√
n.

We substitute b for n/2 and get

n

m
· (m/

√
n− b+ b2/n) +

√
n = 2

√
n− 1

4
n2/m ≥

√
n.

For the second part of the lemma, Using the same definition S = {j : pj < 1}
we get∑

i

min{1, 1/pi} =
∑
i∈S

min{1, 1/pi}+
∑
i/∈S

min{1, 1/pi} ≥ s+
∑
i/∈S

1/pi ≥

≥ s+
(m− s)2∑

i/∈S pi
= s+

(m− s)2

P
,

where s = |S| and P =
∑

i/∈S pi. Now

k ≥ 1
2

max

{
n

m

∑
i

min{1, 1/pj},
∑

i pi

n

}
≥ 1

4

(
n

m

∑
i

min{1, 1/pj}+
∑

i pi

n

)

≥ 1
4

(
n

m
(s+ (m− s)2/P) +

P

n

)
= Ω{m1/2, n}.

The last quantity is easily verified by checking separately for s < m/2 and for
s ≥ m/2.

Can we get a better upper bound by using randomization? The following re-
sult shows that for monotone goods the answer is positive. It should be noted that
the adversarial input of both our deterministic and randomized lower bounds
complies to the condition of monotonicity.

Theorem 4. For markets with monotone goods and global clearance, there
exists a randomized on-line algorithm with deviation-from-equilibrium
O(min{m1/3

√
logm,n}).

Proof. We first show how to get a O(min{m1/3 logm,n}) first. Let j̃ denote
2
log j�. The algorithm assigns prices to goods according to the following proba-
bility distribution. For every good j ≤ n3

pj =
{
E/j̃2/3 with probability 1/j̃1/3

E/j̃1/3 otherwise

We call a good cheap when it receives price E/j̃2/3 and expensive otherwise2.
Next, we set the prices of all goods j > n3, if any, to be arbitrarily low; we call
such goods free goods.
2 Note that by this definition there are cheap goods that cost more than expensive

ones.

On-Line Algorithms for Market Equilibria 605

First, we want to show that with this setting the market approximately clears.
Suppose first that m ≤ n3. Consider the set of goods B = {j : j̃ ≥ m/4} and let
Bc be the cheap goods in B. Clearly |B| ≥ m/2 and that E[|Bc|] ≥ |B|/(2m)

1
3 =

Ω(m2/3). Further, Chernoff bound guarantees that P[|Bc| ≤ 1
2E[|Bc|] =

exp(−Ω(m2/3)). Look at the following strategy. It is easy to see that agents can
allocate 1/4 of their money to buy Ω(m1/3) goods j for which m/8 ≤ j̃ < m/4,
as the prices for these goods is at most O(E/m1/3). Another 1/4 is used to buy
as many goods in Bc. Since prices there are O(E/m2/3) we can buy as many
as min{|Bc|,m2/3} such goods. We get that the number of goods that can be
bought g is Ω(m2/3) with probability 1 − exp(−Ω(m2/3)) and Ω(m1/3) other-
wise which gives E[m/g] = Ω(m1/3). In the case where m > n3 the agents can
still achieve an expected ratio of n3· 13 = n on the first n3 by exactly the same
argument, and then buy all m − n3 free goods at arbitrary low cost which can
only improve the ratio. Hence, we only need to be concerned about finding an
allocation that yields high utility to each agent. Since each agent spent at most
half of her money for the allocations above and since constant factors do not
affect our bounds, we may assume for simplicity that these allocations did not
cost money at all.

As was shown in Theorem 1, regardless of the prices a factor n of the per-
formance can always be guaranteed. We now get to the interesting part of the
theorem where m ≤ n3. Notice that we can think of the goods as organized in
bunches by their j̃ value. Namely the bunches are of size 1, 2, 4, . . . (with the ex-
ception of the last one which may be smaller). In the allocation we will describe,
every agent will spend at most a fraction of 1/w of her money, for some w > 1 to
a good that has price E/w. Whenever all agents comply to this restriction there
is no deficiency of the goods, or informally, there is no contention between agents
about any good, and we can consider the allocation of each agent individually.

Let ji be any of the best goods for agent i; recall that these are the good
maximizing the ratio utility per price. In the event where ji is an expensive good,
its price is at least E/m1/3. In this case agent i will spend ei/m

1/3 on buying ji
and so she receives at least 1/m1/3 of her optimal utility. Otherwise ji is a cheap
good. We now introduce some additional notation. Let ui be the utility of ji, bi
the bunch containing ji and Ci are the goods in bunch bi with utility at least ui.
Finally, let ti = min{|Ci|, Ti}, Si be the size of bunch bi and Ti = S

1/3
i . Agent

i spends ei/Ti on each of ti goods from Ci. Therefore the quantity of goods in
Ci which agent i gets is exactly ti · ei/Ti

E/Ti
= eiti/E, and since the goods in Ci

have at least utility ui we get a total utility of at least uieiti/E. On the other
hand, an upper bound to the optimal utility for agent i is uiei

E/T 2
i

Letting Ki be
the ratio between the utility from optimal bundle and utility from allocation for
i we get

Ki ≤
T 2

i eiui

eiuiti
= T 2

i /ti. (4)

At this point, we show that instead of considering the n different random vari-
ables Ki we can look at logm very related variables: For each bunch b let us
choose an ordering that is consistent with the utilities for all agents. In other

606 Spyros Angelopoulos et al.

words if j and j′ are goods in bunch b and uij > uij′ then good j appears be-
fore j′ in the ordering. Such ordering is possible thanks to the monotonicity of
goods. Let rb be the minimal ordinal of a cheap good according to the ordering.
As usual Sb is the size bunch b and Tb = S

1/3
b . Finally, let νb = min{rb, Tb}. It

is now easy to see that if bi = b then νb ≤ ti. Defining Lb = max{Ki : bi = b}
we now get that

Lb ≤ max
{i|bi=b}

T 2
i /ti ≤ T 2

b /νb.

The maximum ratio of optimal utility over utility through allocation over all
agents is now

max{m1/3,max
i

Ki} = max{m1/3,max
b

Lb} ≤ m1/3 +
∑

b

Lb.

and so E[K] ≤ m1/3 +
∑

b E[T 2
b /νb].

Lemma 2. Let S = {1, 2, . . . , s} and pick elements in S independently with
probability q = 1/T where T ≤ s. Let r be the minimal number picked or s if
none exists. Also, let ν = min{r, T }. Then E[1/ν] = logT/T .

Proof. As long as r ≤ T , it is distributed geometrically with parameter q. Now

E[1/ν] = P[r ≤ T] · E[1/ν|r ≤ T] + P[r > T] · E[1/ν|r > T] ≤

≤
T∑

r=1

q(1− q)r

r
+ 1/T ≤ qH(T) + 1/T ≤ O(log T/T).

Applying the lemma we get that E[1/νb] = O(log Tb/Tb). Summing up we have

E[K] ≤ m1/3 +
∑

b

E[T 2
b /νb] ≤ m1/3 +

∑
b

O(Tb logTb) = O(m1/3 logm).

To get the desired O(m1/3
√

logm) bound we notice the imbalance between the
two criteria for the equilibrium. We can multiply the prices of cheap goods by
a factor of

√
log j̃. Obviously the clearance does not deteriorates by more than

a factor of
√

logm. On the other hand, we get the improved upper bound for
Lb for the second criterion, Lb ≤ T 2

b /(
√

logSbνb). From this the improvement in
the bound follows easily.

5 Discussion and Future Work

In this work we formulate and address the problem of on-line equilibria in linear
Fisher markets with divisible goods. A number of unresolved issues remain;
these are not only of theoretical interest, but they relate to situations which
are expected to occur in practice. Among them we first distinguish the following
two: First, is it possible to show better (deterministic or randomized) upper
bounds for markets with subexponential aspect ratio α? Ideally, we would like
to provide an on-line algorithm, which has no knowledge of the aspect ratio of
the entire sequence, and whose deviation-from-equilibrium is a function of α.

On-Line Algorithms for Market Equilibria 607

Second, is it possible to remove the monotonicity condition from Theorem 4?
The result is meant to show that randomization is helpful when considering
global clearance, but we would like to extend it to capture more general markets.
We believe that an elaborate probabilistic argument will be needed to address
this issue.

A different extension deals with markets with indivisible goods. We have some
preliminary results for this type of markets. It is worth noting that here one has
to provide certain restrictions on the sequence of the goods the adversary will
provide, otherwise no on-line algorithm may achieve bounded deviation-from-
equilibrium . Note also that since an (exact) equilibrium does not necessarily
exist in this setting, we must relate to the best possible (approximate) equilib-
rium that an off-line algorithm can achieve.

As argued in the introduction, our work is motivated by dynamic markets,
where a cost is associated with any change in the price of an existing good. Our
on-line upper and lower bounds address the case in which the cost is infinite. But
what about other cost functions? For instance, suppose that the cost to change
a price is constant, and there is a strict bound on the total cost due to price
changes every time a good arrives. What is the best approximate equilibrium we
can guarantee in such a setting?

References

1. K. Arrow and G. Debreu. Existence of an equilibrium for a competitive economy.
Econometrica, 22:265–290,1954.

2. Avrim Blum and Tuomas Sandholm and Martin Zinkevich, Online algorithms for
market clearing, SODA ’02: Proceedings of the thirteenth annual ACM-SIAM sym-
posium on Discrete algorithms, 2002, pp 971–980

3. W.C. Brainard and H.E. Scarf. How to compute equilibrium prices in 1891. Cowles
Foundation Discussion Paper 1270, 2000.

4. N. Devanur, C. Papadimitriou, A. Saberi and V. Vazirani. Market equilibrium via
a primal-dual type algorithm. In Proceedings of the 43rd Annual IEEE Symposium
on Foundations of Computer Science, pp. 389–395, 2002.

5. X. Deng, C. Papadimitriou and S. Safra. On the complexity of equilibria. In Pro-
ceedings of the 34th Annual ACM Symposium on Theory of Computing, pp. 67–71,
2002.

6. N. Devanur and V. Vazirani. An improved approximation scheme for computing
market equilibrium. In Proceedings of the 23rd Foundations of Software Technology
and Theoretical Computer Science (FSTTCS), 2003.

7. Nikhil R. Devanur, Vijay V. Vazirani. Extensions of the spending constraint-model:
existence and uniqueness of equilibria (extended abstract). ACM Conference on
Electronic Commerce 2003: 202-203

8. K. Jain and M. Mahdian and A. Saberi. Approximating market equilibria. In Pro-
ceedings of the 6th Workshop on Approximation algorithms for Combinatorial
Optimization Problems (APPROX), 2003.

9. H.E. Scarf. The computation of Economic Equilibria (with collaboration of T.
Hansen). Cowles Foundation Monograph No. 24. Yale University Press, 1973.

10. L. Walras. Éléments d’économie politique pure; ou, théorie de la richesse sociale
(Elements of Pure Economics, or the theory of social wealth). Lausanne, Paris,
1874. (1899, 4th ed.; 1926 rev. ed. , 1954 Engl. transl.).

Interval Subset Sum
and Uniform-Price Auction Clearing�

Anshul Kothari1, Subhash Suri1, and Yunhong Zhou2

1 Computer Science Depart, University of California, Santa Barbara, CA 93106
{kothari,sur}@cs.ucsb.edu

2 HP Labs, 1501 Page Mill Rd, Palo Alto, CA 94304
yunhong.zhou@hp.com

Abstract. We study the interval subset sum problem (ISSP), a general-
ization of the classic subset-sum problem, where given a set of intervals,
the goal is to choose a set of integers, at most one from each interval,
whose sum best approximates a target integer T . For the cardinality con-
strained interval subset-sum problem (kISSP), at least kmin and at most
kmax integers must be selected. Our main result is a fully polynomial time
approximation scheme for ISSP, with time and space both O(n · 1/ε).
For kISSP, we present a 2-approximation with time O(n), and a FPTAS
with time O(n · kmax · 1/ε).

Our work is motivated by auction clearing for uniform-price multi-unit
auctions, which are increasingly used by security firms to allocate IPO
shares, by governments to sell treasury bills, and by corporations to
procure a large quantity of goods. These auctions use the uniform price
rule – the bids are used to determine who wins, but all winning bidders
receive the same price. For procurement auctions, a firm may even limit
the number of winning suppliers to the range [kmin, kmax]. We reduce
the auction clearing problem to ISSP, and use approximation schemes for
ISSP to solve the original problem. The cardinality constrained auction
clearing problem is reduced to kISSPand solved accordingly.

1 Introduction

We introduce the interval subset sum problem (ISSP), where given a set of inter-
vals [ai, bi], for nonnegative integers ai, bi, i = 1, 2, . . . , n, and a target integer T ,
the goal is to choose a set of integers, at most one from each interval, that best
approximates T . ISSP is very similar to the classical subset sum problem, with
each integer item replaced by an interval of integer values. By limiting ai = bi
for all i, ISSP degenerates into the subset sum problem. Because the subset sum
problem is NP-complete [7], it is easy to show that ISSP is also NP-complete. In
this paper we study the optimization version of ISSP, and present approximation
schemes for it.

� Kothari and Suri were partially supported by NSF grants CCR-9901958 and IIS-
0121562. Most of the work was done while Kothari was an intern at HP Labs.

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 608–620, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Interval Subset Sum and Uniform-Price Auction Clearing 609

ISSP is motivated by uniform-price multi-unit combinatorial auctions. In
many practical scenarios, additional requirements are imposed on the structure
of the optimal solution. A quite frequent and natural restriction concerns the
number of items included in an optimal solution. Therefore, we also consider the
cardinality constrained version of ISSP, where a feasible solution should contain
at most kmax integers and at least kmin integers. We call this the cardinality
constrained interval subset sum problem (kISSP) and will also present approxi-
mation algorithms for it.

1.1 Motivations

The problem we consider in this paper is motivated by single-item multi-unit
auctions, where the auctioneer wants to allocate multiple indistinguishable units
among a set of bidders, optimizing certain metrics. The metric can be revenue
maximization as in the case of forward auctions like IPO auctions, treasury auc-
tions etc or cost minimization as in the case of reverse auctions like procurement
auctions.

One of the most important aspects of any auction is bidding format or how
does a bidder express its bid. Traditionally, single item auctions have used point
bid format, where a bid is a pair (p, u), where p is the per unit price and u is
the number of units the bidder is interested in. The point bidding language is
very restrictive as the auctioneer can allocate exactly u units to the bidder or
nothing at all. In practice, a bidder might be satisfied with some thing close to
u. A more expressive bidding format is interval bids, where the bidder specifies
a range [u1, u2] such that he can be allocated any number of units in this range.
This type of bidding language was implicitly used by Google for its IPO auction.
In its prospectus [17] Google mentioned that a winning bid with asking quantity
u will be guaranteed to receive at least 80% of that number, i.e., any quantity
in the interval [0.8u, u].

Another important application of interval bids is procurement auctions used
by firms to procure raw materials. In these auctions, the suppliers wish to express
volume discounts in their bids: instead of offering a fixed price per unit, they
prefer a more expressive bidding language. The language most widely used has
the form of a piecewise constant curve. (See Figure 1.) Such a bid can be written
as a list of tuples 〈(u1, p1), (u2, p2), . . . , (um−1, pm−1), (um,∞)〉, where u1 < u2 <
. . . < um and p1 > p2 > . . . > pm−1. The procurement interpretation is that
price per unit is pi for any number of units in the range [ui, ui+1), and um is
the maximum number of units offered by this bid. As the quantity increases, the
unit price decreases (volume discount).

Procurement auctions usually have one additional side constraint. The buyer
wishes to control the number of different suppliers that win in the auction:
managing many different suppliers is costly, but too few suppliers expose the firm
to vulnerability in case of unforeseen events. Thus, the firm puts a constraint that
the number of winning suppliers be in the range [kmin, kmax], where kmin, kmax >
0 are integers.

610 Anshul Kothari, Subhash Suri, and Yunhong Zhou

p1

p2

u 2 u mu m−1
(p

er
 u

ni
t)

Pr
ic

e

A bid

Quantity (units)

pm−1

u 1

Fig. 1. A piecewise constant bid.

Another important aspect of a single-item multi-unit auction is clearing price.
There are two kinds of pricing rules: uniform and non-uniform. In this paper,
we consider the uniform-price rule: all winners receive the same per unit price.
The bids are used to determine who all win the auction and how many units
are allocated to them but all the winners receive a common per unit price. This
pricing rule has the advantage of being ex ante fair, and promotes goodwill
among auction participants. Auction sites like MobShop use such pricing rules
for group buying. For the non-uniform pricing rule, where different winners are
offered different prices, the auction problem translates into a generalized form
of the knapsack problem, which we have studied in a companion paper [11].

1.2 Related Work

The subset-sum problem is a special case of the 0-1 Knapsack problem where
item profits and item weights coincide. A large number of theoretical and prac-
tical papers have appeared on variants of knapsack problems. See Kellerer, Pfer-
schy and Pisinger [9] for an extensive treatment of knapsack problems. The
subset-sum problem is well-known to be NP-complete [7]. The classical dynamic
programming (DP) approach gives a pseudo-polynomial time algorithm with
running time O(nT). An optimal algorithm with improved complexity is due
to Pisinger [15]. The first fully polynomial time approximation scheme for the
subset-sum problem was suggested by Ibarra and Kim [6]. After a series of im-
provement, the best currently known result is by Kellerer et al [8]. The al-
gorithm finds an approximate solution with relative error less than ε in time
O(min{n · 1/ε, n+ 1/ε2 log(1/ε)}) and space O(n + 1/ε).

Cardinality constraints arise from column generations of cutting stock prob-
lems, and were originally studied by Gilmore and Gomory [5]. For the knapsack
problem with cardinality constraints, it is formally introduced by Caprara et
al. [1], where an upper bound kmax is given on the number of packed items.
Caprara et al. also study the cardinality constrained subset-sum problem, and it
runs in O(n ·1/ε · �) time and O(n+ �2/ε) space, where � = min{1/ε, kmax}. Our
work generalizes items into intervals, and considers both an upper bound (kmax)
and a lower bound (kmin) on the number of items selected, thus it demands extra
techniques to handle.

Interval Subset Sum and Uniform-Price Auction Clearing 611

There has been a flurry of research activities for large scale procurement in
recent years, inspired by the emergence of electronic commerce. In particular,
combinatorial auctions have been proposed as expressive, economically efficient,
and truthful mechanisms for resource distributions [10, 12, 14, 16]. The winner
determination problem in combinatorial auctions, unfortunately, is NP-complete
and inapproximable [13] in general. Consequently, there is enormous interest in
finding the right level of generality at which to address the problem. The setting
studied in our paper is eminently practical; for various reasons, firms tend to
conduct separate auctions for different goods, thus eliminating the main source
of complexity in combinatorial auctions. The other two sources (bounding the
numbers of winners, and the expressiveness of bidding language) remain, and
our work incorporates them both.

In procurement auctions, the work most similar to ours is [2–4]. The focus and
contributions of these papers, however, are very different from ours. For instance,
the procurement problem studied by Eso et al. [4] is similar to ours, but they
use a different volume discount model: the supplier asks for unit price p1 up to
some quantity q1; the discount is offered only for the additional units beyond
q1. We believe our model is more natural and commonly used. But the main
difference is that this paper contains no algorithmic results: it simply formulates
the problem as a general mixed integer linear program, and give some empirical
results on synthetic data. Davenport et al. [3] addresses double auctions, where
multiple buyers and sellers trade a divisible good , and its focus is also different: it
investigates the equilibrium prices using the demand and supply curves, whereas
our focus is on cost minimization for the buyer. Dailianas et al. [2] addresses
double auctions which has a more general discount model than ours but uses
heuristics to solve the optimization problem. These heuristics have no provable
theoretical performance guarantees.

The rest of the paper is organized as follows. We define ISSP and kISSP
formally and obtain a canonical solution structure for them in Section 2. We
present a FPTAS for ISSP in Section 3 and a FPTAS for kISSP in Section 4.
We transform the uniform-price multi-unit auction clearing problem into ISSP
(or kISSP) and use FPTAS for ISSP (or kISSP) to solve the original problem in
Section 5, and conclude in Section 6.

2 Definitions and Preliminaries

The decision problem of ISSP is the following: given a set of intervals [ai, bi]
where ai, bi are positive integers for i = 1, . . . , n, and a target integer T , decide
whether there exists a subset of integers, at most one from each interval, such
that their total sum equals to exactly T . ISSP is NP-complete as it contains the
classical subset sum problem as a special case (ai = bi for all i), which is one of
the earliest examples proved to be NP-complete. So we focus on the optimization
version of ISSP, and it has two variations: maximization and minimization. The
maximization problem is to choose a subset S′ whose elements sum up to at
most T while maximizing the sum of the subset. The minimization problem is

612 Anshul Kothari, Subhash Suri, and Yunhong Zhou

to choose a subset S′ whose elements sum up to at least T while minimizing the
subset sum. Formally these optimization versions are defined as following:

Instance: A set of intervals [ai, bi], for integers bi ≥ ai > 0, i = 1, 2, . . . , n, and
a target integer T .

ISSP (max): Determine a set of integers x1, x2, . . . , xn with
∑n

i=1 xi ≤ T such
that

∑n
i=1 xi is maximized, where xi > 0 implies that xi ∈ [ai, bi].

ISSP (min): Determine a set of integers x1, x2, . . . , xn with
∑n

i=1 xi ≥ T such
that

∑n
i=1 xi is minimized, where xi > 0 implies that xi ∈ [ai, bi].

For the cardinality constrained interval subset sum problem (kISSP), there
are also two optimization versions: maximization and minimization. The defini-
tions are identical to the definitions for the optimization models of ISSP, with
an extra cardinality constraint:

kmin ≤ |{xi | xi > 0}| ≤ kmax,

where |X | denotes the cardinality of set X .
Intuitively, the minimization version of ISSP (kISSP) corresponds to cost

minimization for reverse auctions, while the maximization version corresponds
to revenue maximization of forward auctions. The minimization version of ISSP
(kISSP) is highly similar to its corresponding maximization version in both com-
putational complexity and algorithmic details, thus we will focus only on the
maximization version during this paper. From now on, by default ISSP (kISSP)
denotes the maximization version of the corresponding optimization problem.

Our main results are fully polynomial time approximation schemes for both
ISSP and kISSP. The algorithm for ISSP produces a solution that is within
(1 + ε) of the optimal in O(n · 1/ε) time1. The cardinality constraints add a
multiplicative factor of kmax to the complexity, and kISSP can be solved in
O(n · kmax · 1/ε) time. Thus the time complexity of these algorithms for ISSP
and kISSP closely matches the time complexity for the best known algorithms
for their corresponding classical versions of the subset sum problem.

We begin our discussion by describing an important structural property of
the optimal solution, which is used by our algorithms.

2.1 A Canonical Optimal Solution

Consider a solution of ISSP (kISSP) x1, x2, . . . , xn. We call a non-zero element
xi an anchored element if xi = ai or xi = bi; that is, the element is the leftmost
or the rightmost point of its interval. Naturally, if xi = ai, we call it a left
anchor and if xi = bi, we call it a right anchor. A non-zero element xi that is
not anchored will be called midrange. We identify intervals with the same label
1 For a maximization problem, let A be output value of the algorithm and O be

the optimum value, a (1 + ε)-approximation guarantees that O ≤ A(1 + ε), i.e.,
A ≥ O/(1 + ε). In this paper, if A ≥ (1 − ε)O, we also consider it as a (1 + ε)-
approximation. These two definitions are asymptotically equivalent.

Interval Subset Sum and Uniform-Price Auction Clearing 613

as the label of the corresponding element; that is, if xi is left-anchored, then we
say that [ai, bi] is left-anchored etc. The following fact is straightforward.

Fact 1 There exists an optimal solution of ISSP (kISSP) with at most one
midrange element.

If an optimal solution contains only anchored elements, we can pick one of
the anchored elements as a proxy midrange element. Therefore, for the rest of the
discussion, we assume that the optimal solution has exactly a midrange element.
Our next lemma characterizes a property that will be a key to our algorithm. It
states that if we consider the input intervals in some arbitrary order, then there
exists an optimal solution such that the midrange element separates the right-
anchored intervals from the left-anchored intervals. Figure 2 shows an example
with 5 intervals, and target T = 385. A canonical solution is shown where [50, 65]
is the midrange interval, while [30, 38] is left-anchored, and [200, 300] is right-
anchored.

30 6550 70 200 300

Target = 385

38

4537

Fig. 2. A canonical optimal solution. Canonical solutions are not unique.

Lemma 1 (Canonical Solution). Consider the intervals {[ai, bi] | 1 ≤ i ≤ n}
in some arbitrary order. There exists an optimal solution of ISSP (kISSP) with
the following property: if xr is the midrange element in the solution, then all the
left-anchored intervals precede [ar, br], and all the right-anchored intervals follow
[ar, br].

3 Approximation Schemes for ISSP

In this sections we consider approximation algorithms for ISSP. We first give a
relatively simple algorithm, which gives a fully polynomial time approximation
scheme with running time O(n · 1/ε2). Then we use more involved analysis to
give another fully polynomial time approximation scheme with running time
O(n · 1/ε).

3.1 A Simpler FPTAS

We begin with some simple observations. If ai ≤ T ≤ bi then there is a trivial
solution using just this interval. If ai > T , then xi must be 0 and we can ignore
the interval [ai, bi]. Therefore, we assume that for all intervals, bi < T . Further-
more, the problem is non-trivial only if T <

∑n
i=1 bi. This follows because if

T ≥
∑n

i=1 bi, then the optimal solution is to choose xi = bi, for i = 1, . . . , n. If

614 Anshul Kothari, Subhash Suri, and Yunhong Zhou

∑n
i=1 ai ≤ T ≤

∑n
i=1 bi, then a solution with sum exactly T can be found easily

in O(n) time. Start by setting xi = ai, ∀i. For i = 1, 2, . . . , n, if we can increase
xi from ai to bi without violating the T bound, we set xi = bi. The first time we
reach an index j when increasing xj to bj makes

∑n
i=1 xi larger than T , we stop

and set xj = T −
∑

i�=j xi. Thus, we assume that T <
∑n

i=1 ai. In summary,
from now on we only consider the non-trivial case maxi bi < T <

∑
i ai.

Next we divide items into two types: small items and large items. Small items
are those such that ai ≤ εT , large items are all others. The crucial observation
here is that a relatively large ai makes the approximation problem difficult, and
it really doesn’t matter what bi is. The next lemma guarantees that we only
need to consider large items for the approximation algorithm:

Lemma 2. If we can compute an (1 + ε)-approximation for all the large items,
we can compute an (1+ε)-approximation for all the items with O(n) extra time.

According to Lemma 2, only large items need to be considered. Once we
obtain a good solution for large items, small items can be added to it afterwards.
So from now on we assume that all items are large. We are now ready to describe
a (1 + ε)-approximation algorithm with running time O(n/ε2). For simplicity of
exposition, we assume that 1/ε is an integer for the rest of the paper. We exploit
the structure of the canonical optimal solution and describe the algorithm in
three steps.

First, we scale all interval endpoints by a factor ε2T . Specifically, let a′i =⌊
ai/(ε2T)

⌋
, b′i =

⌊
bi/(ε2T)

⌋
, for each i. Thus a′i ≤ b′i ≤ 1/ε2. Now we only

consider subset sums for the scaled down values, with the upper bound 1/ε2.
Second, we use dynamic programming to build two sets of lists La(i), Lb(i)

for i = 1, . . . , n. List La(i) consists of all possible subset sums (≤ 1/ε2) for values
a′1, . . . , a

′
i, sorted in strictly increasing order. List Lb(i) consists of all possible

subset sums (≤ 1/ε2) for values b′i, . . . , b
′
n. We build list La(i) for i = 1, . . . , n

starting from i = 1. List La(1) consists of only one single element a′1. Once we
get list La(i− 1), we build La(i) as follows: Let Ltemp be the list by adding a′i
into each element of La(i − 1), and discarding all values exceeding 1/ε2. Ltemp

is also a sorted list. Let La(i) be the list by merging La(i− 1) and Ltemp. Since
each list has length bounded by 1/ε2, it takes O(1/ε2) time to build La(i) from
La(i− 1). Lb(i) is constructed similarly; we start with i = n and build Lb(i) by
using Lb(i + 1) and b′i. There are totally 2n lists, which takes O(n · 1/ε2) time
and space to build.

Third, for each possible midrange index r ∈ {1, . . . , n}, let V (r) denote

max{v1+x′r+v2 | v1∈La(r−1), v2∈Lb(r+1), x′r∈ [a′r , b
′
r], v1+x

′
r+v2 ≤ 1/ε2}.

According to Lemma 1, we only need to consider canonical solutions of the form
given by V (r), for some midrange index r. In the following we claim that V (r)
can be computed in linear time:

Claim. We can compute V (r) in O(1/ε2) time for a fixed r.

Interval Subset Sum and Uniform-Price Auction Clearing 615

If the claim is true, then we can compute all the V (r)’s for r = 1, . . . , n in time
O(n · 1/ε2), and the output will be max1≤r≤n V (r). In the following we show
how to prove the above claim.

Let v1 and v2 be generic entries in the lists La(r − 1) and Lb(r + 1) resp.
We call a pair (v1, v2) feasible iff v1 + v2 ≤ 1/ε2 − a′r. It is easy to see that to
compute V (r) we only need to consider feasible pairs.

Next, recall that both of the lists, La(r − 1) and Lb(r + 1), are sorted in
the ascending order. Now to compute V (r) we are going to do a linear walk on
these two lists: starting from the head of La(r− 1) and the tail of Lb(r+ 1). Let
v1 ∈ La(r− 1) and v2 ∈ Lb(r+ 1) be the current elements we are considering. If
(v1, v2) is not a feasible pair then we know that for any v′2 ≥ v2, (v1, v′2) is not
going to be feasible either. Therefore, we fix v1 and reduce v2 by moving one
step left. If (v1, v2) is feasible, then we do some extra processing: If v1 + v2 ≤
1/ε2 − b′r, there exists xr ∈ [a′r, b

′
r] such that v1 + v2 + xr = 1/ε2. In this case,

we have already obtained the optimal solution and stop. Otherwise, we keep
track of v1 + v2 + b′r as a candidate for V (r). Now we increase v1 by moving
one step right. Once we reach the end of any of the list, we exit and choose the
candidate solution with the maximum value. Given that we walk through these
two lists monotonically, the total time spent to compute V (r) will be bounded
by a constant factor of the maximum list length, which is O(1/ε2). Now we’re
ready to state our first theorem:

Theorem 2. The above algorithm computes a (1+ε)-approximation of ISSP in
time and space O(n · 1/ε2).

3.2 An Improved FPTAS

In this subsection we give an algorithm with improved time and space complexity.
Recall that we scale down all the intervals in the previous subsection. Scaling
will cause an error for each item value, thus the total aggregated error is large
afterwards. To get a better performance, we avoid scaling and use a technique
called relaxed dynamic programming (relaxed-DP). Relaxed-DP avoids scaling
and keeps the total error bounded by εT during the DP process. The basic idea
of relaxed-DP is based on Kellerer et al. [8].

Partition the space (0, T] into 1/ε intervals Bj = ((j − 1) · εT, j · εT] for
j = 1, . . . , 1/ε. The relaxed-DP will build two DP tables La(i, j) and Lb(i, j) for
i = 0, . . . , n and j = 1, . . . , 1/ε. Let’s describe La(i, j) in detail and Lb(i, j) is
built similarly.

For values a1, . . . , ai, there may be a lot of feasible subset sums falling into
the range Bj . To reduce time and space complexity, the algorithm will only
keep at most two possible values and store them in La(i, j). La(i, j) will either
be empty, or contain two of the possible subset sums v−ij , v

+
ij with v−ij ≤ v+

ij .
Intuitively, v−ij denotes one of the smallest subset sums in the interval Bj and
v+

ij denotes one of the largest subset sums in Bj . Initially La(0, j) is empty for
all j. For the dynamic programming step from i− 1 to i, let’s consider item ai.

616 Anshul Kothari, Subhash Suri, and Yunhong Zhou

Let Δ̃i be all the possible values of (ai + v−i−1,j), (ai + v+
i−1,j) in (0, T] for

j = 1, . . . , 1/ε. The cardinality of Δ̃i is ≤ 2/ε. For each possible value v ∈ Δ̃i,
find the corresponding interval Bj that it belongs to. If La(i, j) is empty, then
set v−ij = v+

ij = v. Otherwise, update La(i, j) as the following:

v−ij := min{v−ij , v}, v+
ij := max{v+

ij , v}.

It is easy to check that the step from i− 1 to i takes time O(1/ε) and the whole
process to build La(i, j) for all i, j can be done in time and space O(n · 1/ε).

For a fixed i, consider all the values v−ij , v
+
i,j for j = 1, . . . , 1/ε. There are

totally at most 2/ε of them and we relabel them as an ordered list va
i (1) <

· · · < va
i (λi), where λi ≤ 2/ε is the number of distinct values in La(i, .). For

convenience, we also use va
i (.) to denote the set containing all these λi elements.

Let Δi denote all the possible subset sums for elements a1, · · · , ai. The following
lemma shows that the sequence va

i (.) is an (εT)-approximation of Δi.

Lemma 3. Let va
i (0) = va

i (1)− εT , va
i (λi + 1) = va

i (λi) + εT . For each possible
subset sum δ ∈ Δi, there exists an index λ with va

i (λ) ≤ δ ≤ va
i (λ + 1) and

va
i (λ+ 1)− va

i (λ) ≤ εT .

The proof can be found in Kellerer et al. [8]. Similarly, Lb(i, j) is either empty
or contains at most two feasible subset sums over {bi, . . . , bn} in the range Bj .
As before, we can compute all the values Lb(i, j) in time O(n · 1/ε). And vb

i (.)
is an (εT)-approximation for the subset sums over bi, . . . , bn. We are now ready
to compute the final solution based on the canonical structure of the optimal
solution. Similar as in Section 3.1, for each possible midrange index r, let V (r)
denote

max{v1 + xr + v2 | v1 ∈ va
r−1(.), xr ∈ [ar, br], v2 ∈ vb

r+1(.), v1 + xr + v2 ≤ T }.

We claim that V (r) can be computed in O(1/ε) time for a fixed r. The claim
can be proved identically as Claim 3.1, with the only superficial difference that
here va

r−1(.), v
b
r+1(.) have their cardinalities bounded by 2/ε, while in Claim 3.1

La(r− 1), Lb(r+1) have their cardinalities bounded by 1/ε2. Because the claim
is true, we can compute all the V (r)’s for r = 1, . . . , n in time O(n · 1/ε). The
output of the algorithm will be max1≤r≤n V (r). Now we’re ready to state our
main result in this section:

Theorem 3. We can compute a (1 + ε)-approximation of ISSP in time and
space O(n · 1/ε).

4 Approximation Schemes for kISSP

In the cardinality constrained interval subset-sum problem (kISSP), two addi-
tional integers kmin and kmax are specified. The goal is to reach (approximate)
the target sum T using at least kmin and at most kmax (non-zero) elements. With
this additional constraint, even finding a simple 2-approximation is not trivial.
The following lemma describes such an algorithm.

Interval Subset Sum and Uniform-Price Auction Clearing 617

Lemma 4. A 2-approximation of kISSP can be computed in O(n) time and
space.

The fully polynomial time approximation scheme for kISSP is similar to the
improved FPTAS described in Section 3.2 for ISSP, as it also uses relaxed-
DP to improve its performance. Partition the space (0, T] into 1/ε intervals
Bj = ((j− 1) · εT, j · εT] for j = 1, . . . , 1/ε. The relaxed-DP technique will build
two DP tables La(i, j, k) and Lb(i, j, k) for indexes i = 0, . . . , n, j = 1, . . . , 1/ε,
and k = 1, . . . , kmax. Let’s describe La(i, j, k) in detail and Lb(i, j, k) is built
similarly.

Fix i, j, k as in their specified domains, La(i, j, k) will either be empty or
contains two possible subset sums over {a1, . . . , ai} in the rangeBj . These subset
sums should be the summation of exactly k (non-zero) values over a1, . . . , ai. If
La(i, j, k) �= ∅, then it contains v−ijk , v

+
ijk with v−ijk ≤ v+

ijk . Intuitively, v−ijk denotes
one of the smallest subset sums in the interval Bj with cardinality k, and v+

ijk

denotes one of the largest subset sums in Bj with cardinality k. By definition,
La(i, j, k) is empty if i < k as the total number of available values is less than k.
And La(0, j, k) is empty for any j, k. For the dynamic programming step from
i− 1 to i, let’s consider item ai.

For fixed i, k, let Δ̃ik be all the possible values of (ai + v−i−1,j,k−1), (ai +
v+

i−1,j,k−1) for j from 1 to 1/ε. There are at most 2/ε of them. For each possible
value v ∈ Δ̃ik, find the corresponding interval Bj that it belongs to. If La(i, j, k)
is empty, then set v−ijk = v+

ijk = v. Otherwise, update La(i, j, k) as the following:

v−ijk := min{v−ijk, v}, v+
ijk := max{v+

ijk, v}.

It is easy to check that the step from i − 1 to i takes time O(kmax · 1/ε) and
the whole process to build La(i, j, k) for all i, j, k can be done in time and space
O(nkmax · 1/ε).

For fixed i, k, we consider all the values v−ijk, v+
ijk for j = 1, . . . , 1/ε. There

are totally λik ≤ 2/ε distinct elements and we relabel them as va
ik(1) < · · · <

va
ik(λik). For convenience, we will also use va

ik(.) to denote the set containing
all these elements. Let Δik denote all the possible subset sums (with fixed car-
dinality k) of a1, · · · , ai. The following lemma shows that va

ik(.) is an (εT)-
approximation for Δik:

Lemma 5. Let va
ik(0) = va

ik(1) − εT , va
ik(λik + 1) = va

ik(λik) + εT . For each
possible subset sum δ ∈ Δik, there exists an index j with va

ik(j) ≤ δ ≤ va
ik(j+1)

and va
ik(j + 1)− va

ik(j) ≤ εT .

Similarly, we define and compute Lb(i, j, k) for all i, j, k and vb
ik(.) is an (εT)-

approximation for all subset sums over {bi, . . . , bn} with cardinality k. We are
now ready to compute the final solution based on the canonical structure of the
optimal solution. As in Section 3.2, we can define V (r, k1, k2) as the maximum
solution value with the form that v1 ∈ va

r−1,k1
(.), and v2 ∈ vb

r+1,k2
(.). This

straightforward implementation results in a multiplicative factor of k2
max for the

time complexity. A relatively involved technique can reduce the multiplicative

618 Anshul Kothari, Subhash Suri, and Yunhong Zhou

factor from k2
max to kmax, thus matches the time complexity of the best algorithm

for cardinality constrained subset sum problem. For details about how to improve
the time factor from O(k2

max) to O(kmax), see the proof of the following theorem,
which is also our main result in this section.

Theorem 4. We can compute a (1 + ε)-approximation of kISSP in time and
space O(n · kmax · 1/ε).

5 Application to Uniform-Price Auction Clearing

In this section we reduce the auction clearing problem for uniform-price multi-
unit auctions to ISSP (or kISSP), and use algorithms for ISSP (or kISSP) to
solve the auction clearing problem.

For forward auctions, assume that there are T units of a single type of goods
and the seller wants to maximize his revenue. There are n bidders, and the i-th
bidder submits a bid (pi, [ai, bi]) where pi denotes the unit price and [ai, bi] is
the desired quantity range. The clearing algorithm works as follows: For each
index i, find all the intervals Si = {[ai′ , bi′] | pi ≤ pi′}. Si makes an instance of
ISSP (or kISSP) with target T , and we apply FPTAS for ISSP (or kISSP) to
compute the maximum value Vi. Find index i such that piVi is maximized over
all the indexes, and pi will the clearing price. In summary, we have:

Corollary 1. For uniform-price multi-unit auctions with n bidders and each bid
has an interval quantity range, we can compute a (1 + ε)-approximation in time
O(n2 · 1/ε). If cardinality constraints are present, a (1 + ε)-approximation can
be obtained in time O(n2 · kmax · 1/ε).

For procurement auctions with the piecewise constant supply curve and
uniform-price model, similar results can be obtained. Observe that the uniform
price offered to all the winning suppliers is going to be one of the price levels
in the input functions. For each price level, we solve an instance of ISSP as fol-
lows: Consider a unit price p. Let ai(p) (resp. bi(p)) denote the minimum (resp.
maximum) number of units offered by i at price p or lower. These n intervals
[ai(p), bi(p)] form the input to ISSP, with target T . Since all winning suppliers
are paid the common price p, the total cost becomes pT (p), where T (p) is the
solution of the corresponding ISSP. Thus we should choose a price level p∗ such
that p∗T (p∗) is minimized. Therefore the procurement problem can be solved
by solving m instances of ISSP, where m is the total number of different price
levels in the input. When the number of suppliers must be bounded in the range
[kmin, kmax], we use kISSP. In summary, we have

Corollary 2. For procurement auctions with uniform-price rule and piecewise
constant supply curves for suppliers, we can compute a (1 + ε)-approximation
in time O(m2 · 1/ε). Here m is the total number of different price levels. If
cardinality constraints are present, a (1 + ε)-approximation can be obtained in
time O(m2 · kmax · 1/ε).

Interval Subset Sum and Uniform-Price Auction Clearing 619

6 Concluding Remarks

We gave a fully polynomial time approximation scheme for the interval subset
sum problem, a generalization of the classical subset sum problem. We also
presented a FPTAS to solve the cardinality constrained version of the problem.
Our algorithms for both ISSP and kISSP have the same asymptotic complexity
as the corresponding classical versions of the subset sum problem. The interval
subset-sum problem extends the subset-sum problem to intervals, and it finds
a natural application in uniform-price multi-unit auctions. With the advance of
auction design mechanism and practice, we foresee that bidder’s single quantity
bidding format will possibly be replaced by an interval quantity format. Under
such circumstance, it is likely for the interval subset sum algorithm to become
a useful subroutine for future auction clearing algorithms.

Due to space limit, we didn’t consider how to improve space complexity. It
is possible to improve the space bounds for our algorithms using standard tech-
niques such as balanced dynamic programming. Currently the auction clearing
algorithm invokes the ISSP (or kISSP) procedure O(n) times, so that its time
complexity is quadratic of n. Given that these ISSP (or kISSP) instances are
almost identical, is it possible to reduce the time complexity from O(n2) to
sub-quadratic, such as O(n logn)? We leave this as an open problem.

References

1. A. Caprara, H. Kellerer, U. Pferschy and D. Pisinger. Approximation algorithms for
knapsack problems with cardinality constraints. European Journal of Operational
Research, 123:333–345, 2000.

2. A. Dailianas, J. Sairamesh, V. Gottemukkala and A. Jhingran. Profit-driven match-
ing in e-marketplaces: Trading composable commodities. Agent Mediated Electronic
Commerce Workshop, 153–179, 1999.

3. A. Davenport, J. Kalagnanam and H.S. Lee. Computational aspects of clearing
continuous call double auctions with assignment constraints and indivisible de-
mand. Electronic Commerce Research, 1(3):221–238, 2001.

4. M. Eso et al. Bid evaluation in procurement auctions with piece-wise linear supply
curves. Technical Report RC 22219, IBM Research, 2001.

5. P.C. Gilmore and R.E. Gomory. A linear programming approach to the cutting
stock problem. Operations Research, 9:849-859, 1961.

6. O. Ibarra and C. E. Kim. Fast approximation algorithms for the knapsack and sum
of subset problems. JACM , 22:463–468, 1975.

7. R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller and J. W.
Thatcher, editors, Complexity of Computer Computations, 43:85–103, 1972.

8. H. Kellerer, R. Mansini, U. Pferschy and M.G. Speranza. An efficient fully poly-
nomial approximation scheme for the Subset-Sum Problem. Journal of Computer
and System Science, 66:349–370, 2003.

9. H. Kellerer, U. Pferschy and D. Pisinger. Knapsack Problems. Springer, 2004.
10. F. Kelly and R. Steinberg. A combinatorial auction with multiple winners for

universal services. Management Science, 46:586–596, 2000.
11. A. Kothari, D. Parkes and S. Suri. Approximately-strategyproof and tractable

multi-unit auctions. Decision Support Systems, 39(1):105-121, 2005.

620 Anshul Kothari, Subhash Suri, and Yunhong Zhou

12. N. Nisan and A. Ronen. Algorithmic mechanism design. STOC , 129–140, 1999.
13. L. I. O’Callaghan, D. Lehmann and Y. Shoham. Truth revelation in rapid, approx-

imately efficient combinatorial auctions. Proc. of ACM EC , 96–102, 1999.
14. A. Pekec, M. H. Rothkopf and R. M. Harstad. Computationally manageable com-

binatorial auctions. Management Science, 44:1131–1147, 1998.
15. D. Pisinger. Linear time algorithms for knapsack problems with bounded weight.

Journal of Algorithms, 33:1–14, 1999.
16. M. P. Wellman, W. E. Walsh and F. Ygge. Combinatorial auctions for supply chain

formation. Proc. of ACM EC , 260–269, 2000.
17. Google IPO Prospectus. https://www.ipo.google.com/data/prospectus.html.

Improved Algorithms for the K-Maximum Subarray
Problem for Small K

Sung E. Bae and Tadao Takaoka

Department of Computer Science and Software Engineering
University of Canterbury, Christchurch, New Zealand
{seb43,tad}@cosc.canterbury.ac.nz

Abstract. The maximum subarray problem for a one- or two-dimensional array
is to find the array portion that maiximizes the sum of array elements in it. The
K-maximum subarray problem is to find the K subarrays with largest sums. We
improve the time complexity for the one-dimensional case from O(min{K +
n log2 n, n

√
K}) for 0 ≤ K ≤ n(n − 1)/2 to O(n log K + K2) for K ≤ n.

The latter is better when K ≤ √
n log n. If we simply extend this result to the

two-dimensional case, we will have the complexity of O(n3 log K +K2n2). We
improve this complexity to O(n3) for K ≤ √

n.

1 Introduction

The maximum subarray problem was first described by Bentley in his literature Pro-
gramming Pearls [4, 5] as an example to discuss the efficiency of computer programs.
This problem determines an array portion that sums to the maximum value with re-
spect to all possible array portions within the input array. When the input array is two-
dimensional, we find a rectangular subarray with the largest possible sum.

If all elements of an array are non-negative, this problem is trivial, as the entire
array represents the solution. Similarly, if all elements are non-positive, the solution is
empty with value 0. So we consider a data set containing both positive and negative
values. In practice, a bitmap image has all non-negative pixel values. When the average
is subtracted from each pixel, we can apply the maximum subarray algorithm to find
the brightest area within the image.

For the one-dimensional case, we have an optimal linear time sequential solution.
A simple extension of this solution can solve the two-dimensional problem in O(m2n)
time for an m × n array (m ≤ n), which is cubic when m = n [4, 5]. In this paper, if
only n appears in complexities for the two-dimensional case, we assume m = n. The
sub-cubic time solution based on Takaoka’s sub-cubic distance matrix multiplication
algorithm [14] is given by Tamaki and Tokuyama [17], which is further simplified by
Takaoka [15]. In the context of parallel computations, time and cost optimal PRAM
and mesh algorithms for the one-dimensional case are described in [10]. For the two-
dimensional case, EREW PRAM solutions achieving O(log n) time with O(n3/ logn)
processors are given in [11, 18] and comparable result on interconnection networks
is given in [12]. The EREW PRAM version of the subcubic algorithm in [15, 17] is
given in [1], which also features a VLSI algorithm based on the technique introduced

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 621–631, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

622 Sung E. Bae and Tadao Takaoka

in Bentley’s paper. This VLSI algorithm for the maximum subarray problem achieves
T = m+ n− 2 steps, which is O(n) time using O(n2) sized hardware circuit.

Finding K maximum sums is a natural extension. This problem is discussed in [2]
and [3]. The former provides O(Kn) and O(Km2n) time solutions for the one- and
two-dimensional cases in the course of development of a systolic array algorithm of
O(n) time using O(n2) size hardware for the two-dimensional case. The latter brings
the worst case time down to O(min{K+n log2 n, n

√
K}) for a one-dimensional array.

This paper reviews the former solution and tunes it up for greater speed. Specifically
we achieve O(n logK +K2) time for the one-dimensional case. This is better than [3]
when K ≤

√
n logn.

If we use the above algorithm directly for the two-dimensional maximum subar-
ray problem with an (n, n)-array, we have O(n3 logK + n2K2) time complexity. We
improve this time complexity to O(n3 + n2K2), which is O(n3) when K ≤ √n.

A related topic is a similar problem with K disjoint subarrays, which may be more
practical in some applications. Within this category, we can define several problems, and
only the one-dimensional case received some attention, especially in bio-informatics.
Further discussion on a possible extension will be made in the section of concluding
remarks.

2 Review of the Maximum Subarray Problem

We give a two-dimensional array a[1..m, 1..n] as input data set. The maximum subarray
problem is to find a rectangular portion a[r1..r2, c1..c2] such that the sum of contained
elements should be greater than or equal to the sum of any other rectangular portions of
the data set. We suppose the upper-left corner has coordinates (1,1).

Example 1. : Let a be given by

a =

⎡⎢⎣−1 2 −3 5
2 −4 −6 −8
3 −2 9 −9
1 −3 5 −7

−4 −8
2 −5[

−1 10
8 −2

] 3 −3
4 1

−5 2
2 −6

⎤⎥⎦ The maximum subarray is the array
portion a[3..4, 5..6] surrounded by in-
ner brackets, whose sum is 15.

Bentley introduced Kadane’s algorithm that finds the maximum sum within a one-
dimensional array, whose time is linear [4], and extended it to two-dimensions.

We use another O(n) algorithm given in [2]. It has its central algorithmic concept
in the prefix sum. The prefix sums sum[1..n] of a one-dimensional array a[1..n] are
computed by

Algorithm 1 Prefix Sum

sum[0]←0;

for i←1 to n do sum[i]←sum[i-1]+a[i];

As sum[x] =
∑x

i=1 a[i], the sum of a[x..y] is computed by the subtraction of these
prefix sums such as:

y∑
i=x

a[i] = sum[y]− sum[x− 1]

Improved Algorithms for the K-Maximum Subarray Problem for Small K 623

To yield the maximum sum from a one-dimensional array, we have to find indices
x, y that maximize

∑y
i=x a[i]. The notations min and max are used for variables and

MAX and MIN are used for operations.
Let mini be the minimum prefix sum for an array portion a[1..i − 1]. Then the

following lemma is obvious.

Lemma 1. For all x, y ∈ [1..n], and x ≤ y,
MAX1≤x≤y≤n{

∑y

i=x
a[i]} = MAX1≤x≤y≤n{sum[y] − sum[x − 1]}

= MAX1≤y≤n{sum[y] − MIN1≤x≤y{sum[x − 1]}}= MAX1≤y≤n{sum[y] − miny}
Based on Lemma 1, we can design the following linear time algorithm that finds the
maximum sum in a one-dimensional array. Comments are given by //.

Algorithm 2 Maximum Sum in a one-dimensional array

min←0; //minimum prefix sum
M←0; //current maximum sum, initially 0 for empty subarray
sum[0]←0;

for i←1 to n do begin

sum[i]←sum[i-1]+a[i];

cand←sum[i]-min; //min=mini

M←MAX{M,cand};
min←MIN{min,sum[i]};//min=mini+1

end.

While we accumulate sum[i], the prefix sum, we also maintain min, the minimum of
the preceding prefix sums. By subtracting min from sum[i], we have a candidate for
the maximum sum. At the end, M is the maximum sum.

3 Finding the K Maximum Sums in O(Kn) Time

Based on the algorithm in Section 2, let us proceed to discuss theK-maximum subarray
problem, again for the one-dimensional case.

Instead of having a single variable that book-keeps the minimum prefix sum, we
maintain a list of K minimum prefix sums, sorted in non-decreasing order.

Letmini be the list ofK minimum prefix sums for a[1..i−1] given by {mini[1]· · · ,
mini[K]}, sorted in non-decreasing order. The initial value formini is given bymin =
{0,+∞· · · ,+∞}. We also maintain the list of candidate sums produced from sum[i],
sorted in non-decreasing order. This list candi is given by {sum[i]−mini[1], sum[i]−
mini[2]· · · ,sum[i]−mini[K]} . Let maxi be the list of K maximum sums for a[1..i].
This list is maintained inM in Algorithms 3 and 4 sorted in non-increasing order. When
the algorithm ends, M contains the final solution maxn. The merged list of two sorted
sequences x and y are denoted by merge(x, y). We have the following lemma.

Lemma 2. maxi+1 is the list of the K maximum elements of merge(maxi, candi+1)

Array names are used to denote sets, lists, etc. in the subsequent descriptions. We
maintain the list of K minimum prefix sums in min. Each time a prefix sum is com-
puted, we subtract these K minima from this prefix sum, and prepare a list cand of

624 Sung E. Bae and Tadao Takaoka

candidate K maximum values. These K values are merged with the current maximum
sums stored in M , from which we choose the largest K values. After this, we insert the
prefix sum to the list of K minimum prefix sums for the next iteration. When a new
entry is inserted, the list of K minimum prefix sums has K + 1 items. By discarding
the largest one, we keep the size of this list to be fixed at K . Of course, if this sum is
found to be greater than all current K minima, no insertion is made.

Note that we initialize the list of tentative solutions by M = {0,−∞· · · ,−∞}.
The line 8 in the algorithm preserves the loop-invariant from step i to step i + 1 as

stated in Lemma 2. At the end, M is the solution.

Algorithm 3 K maximum sums in a one-dimensional array

1: for k←1 to K do begin

2: min[k]←∞; M[k]←−∞;

3: end;

4: sum[0]←0; min[1]←0; M[1]←0;

5: for i←1 to n do begin

6: sum[i]←sum[i-1]+a[i];

7: for k←1 to K do cand[k]←sum[i]-min[k];

8: M←K largest elements of merge(M,cand);

9: insert sum[i] into min;
10: end.

At each iteration, it takes O(K) time for generating the candidate list, and O(K)
time for merging this list and the list of current maximum sums. Inserting a prefix sum
into the list of minimum prefix sums depends on what data structure is used. If it is
a simple array or list, the insertion takes O(K) time, which establishes O(K) overall
time for each iteration. Using an advanced data structure makes little significance at this
point due to line 7 and 8 where we anyway need to spend O(K) time generating the
candidate list and the list of K maximum sums at each iteration.

As we need to perform n iterations, the total time complexity is O(Kn). When
K = 1, this result is comparable to O(n) time of Kadane’s algorithm and Algorithm 2.

4 Improved Algorithm for K Maximum Sums for Small K

Previously, we generated the list of candidates by subtracting the K minimum prefix
sums from each prefix sum, which results in production of Kn candidates in total. K
maximum sums are basically selected from this pool of Kn candidates. It will now be
discussed that we do not need to generate such a number of candidates when K ≤ n.

Let us assume we have in mini[1..K] the list of K minimum prefix sums to be
subtracted from sum[i]. This list is sorted in non-decreasing order. In Algorithm 4,
mini is given by min at the end of the i-th iteration.

Let candi[k] = sum[i]−mini[k] for k = 1 · · · ,K . Asmini is sorted, the produced
list of candidates candi is sorted in non-increasing order, and has the first item candi[1]
being the largest candidate produced from sum[i].

We first produce n samples of cand1[1] · · · , candn[1] and let them be elements of a
list sample.

Improved Algorithms for the K-Maximum Subarray Problem for Small K 625

sample[i] = candi[1] = sum[i]−mini[1], (i = 1 · · · , n)

We then select K largest values of sample. Let us denote the list containing them
by Ksamples, which is sorted in non-increasing order, given by

Ksamples = {sample[x1], sample[x2] · · · , sample[xK]},
where x1 · · · , xK are the indices of those selected samples.

It is easily observed that if sample[w], the largest candidate produced from sum[w],
does not even qualify for Ksamples, no candidate produced from sum[w] can become
one of the final K maximum sums as we know there are already at least K sums greater
than or equal to them.

When Ksamples does not include sample[w], the full generation of candw[1..K]
is thus avoided. In such a case, we can skip to the next iteration saving O(K) time.
We generate candidates only from sum[xi], which produced selected candidates for
Ksamples.

4.1 Pre-process

We note that we do not need mini[1..K] for all i ∈ [1..n] before the sampling and
selection process. We only need mini[1] for i = 1 · · · , n.

During the pre-process, we traverse the input array a[1..n] and compute the prefix
sum sum[1..n] in O(n) time. Within this time frame, we find the minimum prefix sum
(mini[1] only) for each sum[i], asmini[1] is the minimum of sum[j] for 1 ≤ j ≤ i−1.
Full lists of K minimum prefix sums for each sum[i] are not produced during this pre-
process.

The K-th maximum of this sample is selected by a linear time selection algorithm.
Then we filter out values smaller than the K-th maximum, being left with the K largest
samples. We sort and store those samples in Ksamples. We can test whether an item
is in Ksamples by comparing it with sample[xK], the last element in the list.

4.2 Candidate Generation and Selection

Inside the “for” loop starting at line 10 there are two parts, Part I and Part II. We consider
time for each part separately.

Part I is for the generation of candi and maintaining the tentative solution set M .
The generation of candi is performed when the i-th sample is included in Ksamples.
Thus Part I is performed K times.

The following routine, Part II, is the insertion of prefix sum into the sorted list of
minimum prefix sums. Unlike Part I, all n prefix sums should be considered. We first
examine if a new prefix sum ever needs to be inserted, and if so we need to find an
appropriate position for the new entry in min. This min contains K minimum pre-
fix sums, and if there are more than K items, we may need to drop the largest item.
The choice of an appropriate data structure for min is important to determine the total
complexity. Besides min, all other lists, cand and M , may be simple one-dimensional
arrays. We assumemin[k] is the k-th smallest element ofminwhen min is regarded as
a set regardless of the actual data structure of min. We choose a 2-3 tree with level-link
as a suitable data structure.

626 Sung E. Bae and Tadao Takaoka

A 2-3 tree keeps all the leaf nodes sorted. A 2-3 tree with level-link described in [7]
has all the internal nodes at the same depth connected, enabling finger searches. Finger
search trees with constant update time are discussed in [6, 9], but they both require
logarithmic time for positioning and do not improve overall time complexity. Now we
analyze each part.

Part I. For Part I, generating the candidate list involves access to the list of minimum
prefix sums. If an ordinary 2-3 tree is used, accessing each ofmin[1..K] costsO(logK)
time. Since we need to access all min[1..K] sequentially to generate candidates, this
access cost seems rather expensive. However if a 2-3 tree with level-link is used, after
initial search for min[1] spending O(logK), subsequent elements are found in O(1)
time due to finger search. As actual generation of K candidates requires O(K) time,
this initial O(logK) access time is absorbed. The total time for Part I over K iterations
is therefore O(K2).

Part II. For Part II, finding position for a new entry and actual insertion is done in
O(logK) time. When there are more than K items, deletion of the largest item and
update of the tree costs another O(logK) time. For n iterations, the total time for Part
II is O(n logK).

Algorithm 4 Improved algorithm for K maximum sums in a one-dimensional array

//[INITIALIZATION]
1: for k←1 to K do begin min[k]←∞; M[k]←−∞; end;

2: sum[0]←0; min[1]←0; M[1]←0;

//[PRE-PROCESS]
3: for i←1 to n do begin

4: sum[i]←sum[i-1]+a[i];
//sample for initial K large values

5: sample[i]←sum[i]-min[1];

6: if sum[i] < min[1] then min[1]←sum[i];
7: end;

8: Ksamples←K largest sorted values of sample[1..n];

//[CANDIDATE GENERATION and SELECTION]
9: min[1]←0;

10: for i←1 to n do begin

11: if sum[i]-min[1] > sample[xK] then begin

//PART I: Generate cand and update M
12: for k←1 to K do cand[k]←sum[i]-min[k];

13: M←K largest values of merge(M,cand);
14: end;

//PART II: Update min
15: insert sum[i] into min;
16: end.

Improved Algorithms for the K-Maximum Subarray Problem for Small K 627

4.3 Total Time

Using the data structure for min described above, the overall time including Part I and
Part II is thusO(n logK+K2). The time for the preprocessing (sampling, selection and
screening) is O(n) which is absorbed. Compared with O(min{K + n log2 n, n

√
K})

time by [3], this algorithm is faster when K ≤
√
n logn.

We can organize the if-statement at line 11 into a while-statement. We keep com-
puting candidates as sum[i]−min[k] for k = 1, 2 · · · ,K , while the condition sum[i]−
min[k] > sample[xK] is satisfied, and only those candidates can be inserted into M
with unqualified sums being deleted from M . Also the right-hand side of the condition
can be replaced by the minimum of M instead of the fixed sample[xK]. This modifi-
cation can improve the average performance, but the worst case behavior is not clear at
present.

5 Speed-Up for Two Dimensions

If we use the algorithm in the previous section for an (n, n)-array, we have an
O(n3 logK) time algorithm. We speed up the algorithm for small K in the two-di-
mensional case based on the divide-and-conquer method. To remove the factor of logK
from the complexity, we do not maintain sorted order for K-tuples.

5.1 Generalization of Distance Matrix Multiplication

The distance matrix multiplication is to compute the following distance product C =
AB for two (n, n)-matrices A = [aij] and B = [bij] whose elements are real numbers.

cij = MINn
k=1{aik + bkj}, (i, j = 1 · · · , n) · · · (1)

The operation in the right-hand side of (1) is called distance matrix multiplication of
MIN-version, and A and B are called distance matrices in this context. If we use MAX
instead we call it the MAX-version.

Now we divide A, B, and C into (K,K)-submatrices for N = n/K as follows:⎛⎝ A1,1 · · · A1,N

· · ·
AN,1 · · · AN,N

⎞⎠⎛⎝ B1,1 · · · B1,N

· · ·
BN,1 · · · BN,N

⎞⎠ =

⎛⎝ C1,1 · · · C1,N

· · ·
CN,1 · · · CN,N

⎞⎠
Matrix C can be computed by

Cij = MINN
k=1{AikBkj}(i, j = 1 · · · , N) · · · (2)

where the product of submatrices is defined similarly to (1) and the MIN operation is
defined on submatrices by taking the MIN operation component-wise. Since compar-
isons and additions of distances are performed in a pair, we omit counting the number of
additions for measurement of the complexity. We have N3 multiplications of distance
matrices in (2).

628 Sung E. Bae and Tadao Takaoka

To prepare for the K-maximum subarray problem, we extend equation (1) in such
a way that cij is the K-tuple of K minima of {aik + bkj |k = 1 · · · , n}. We call this
definition K-distance matrix multiplication, or simply K-matrix multiplication.

Now we generalize the MIN and MAX operations on distance matrices. Let each
element of a distance matrix be aK-tuple of real numbers such as a = (a1 · · · , aK). The
MIN operation on the two K-tuples a and b is defined by MIN{a, b} = (c1 · · · , cK),
where (c1 · · · , cK) is the list of the K smallest elements of a ∪ b. If there are equal
values in a or b, the union operation here is for multisets. Similarly we can define
MAX{a, b} = a ∪ b − (c1 · · · , cK). The extended MIN and MAX operations can be
performed by taking the smaller half and larger half from a ∪ b, which can be done in
O(K) time with the median selection algorithm and filtering process in a similar way to
those described in Section 4.1. In the following we mainly describe the MIN-version.
The MAX-version can be defined symmetrically.

If each element of distance matrices A1 and A2 is a K-tuple, the MIN operation
on A1 and A2 is defined component-wise over corresponding K-tuples. To compute
K-matrix multiplication, where each element in (1) is a K-tuple, we use the extended
MIN operation in (2), where the elements of matrix AikBkj are K-tuples.

Let us rename Aik and Bkj in the above by A and B, and consider the multipli-
cation. This time we can return all {ai1 + b1j · · · , aiK + bKj} as candidate K-tuples,
taking O(K3) time, and use the extended MIN operations in (2). Then the time for N3

products in (2) is O((n/K)3K3) = O(n3). The time for extended MIN operations in
(2) is O(Nn2K) = O(n3). Thus the total time is O(n3) for K-matrix multiplication.

5.2 Application to the K-Maximum Subarray Problem

We review the divide-and-conquer approach given in [15]. Let a two-dimensional array
a[1..m, 1..n] of real numbers be given as input data. The maximum subarray problem
here is to maximize the sum of the array portion a[k..i, l..j], that is, to obtain such
indices (k, l) and (i, j).

We assume that m ≤ n without loss of generality. We also assume that m and n are
powers of 2. We will mention the general case of m and n later.

The central algorithmic concept in this section is again that of prefix sum. We use
distance matrix multiplications of both MIN and MAX versions in this section. We
compute the prefix sums s[i, j] for array portions of a[1..i, 1..j] for all i and j with the
boundary condition s[i, 0] = s[0, j] = 0. Obviously this can be done in O(mn) time.
The outer framework of the algorithm is given below. Note that the prefix sums once
computed are used throughout recursion.

Algorithm M: Maximum subarray
1. If the array becomes one element, return its value.
2. Otherwise, if m > n, rotate the array 90 degrees.
3. Thus we assume m ≤ n.
4. Let Aleft be the solution for the left half.
5. Let Aright be the solution for the right half.
6. Let Acolumn be the solution for the column-centered problem.
7. Let the solution be the maximum of those three.

Improved Algorithms for the K-Maximum Subarray Problem for Small K 629

Here the column-centered problem is to obtain an array portion that crosses over the
central vertical line with maximum sum, and can be solved in the following way.

Acolumn = MAXi−1,n/2−1,m,n
k=0,l=0,i=1,j=n/2+1{s[i, j]− s[i, l]− s[k, j] + s[k, l]}

In the above we first fix i and k, and maximize the above by changing l and j.
Then the above problem is equivalent to maximizing the following for i = 1 · · · ,m and
k = 0 · · · , i− 1.

Acolumn[i, k] = MAXn/2−1,n
l=0,j=n/2+1{−s[i, l] + s[k, l] + s[i, j]− s[k, j]}

Let s∗[i, j] = −s[j, i]. Then the above problem can further be converted into

Acolumn[i, k]=−MINn/2−1
l=0 {s[i, l]+s∗[l, k]}+MAXn

j=n/2+1{s[i, j]+s∗[j, k]} · · · (3)

The first part in the above is distance matrix multiplication of the MIN-version and
the second part is of the MAX-version. Let S1 and S2 be matrices whose (i, j) elements
are s[i, j− 1] and s[i, j+n/2] for i = 1 · · · ,m; j = 1 · · · , n/2. For an arbitrary matrix
T , let T ∗ be that obtained by negating and transposingT . As the range of k is [0 ..m−1]
in S∗

1 and S∗
2 , we shift it to [1..m]. Then the above can be computed by multiplying S1

and S∗
1 by the MIN-version and taking the lower triangle, multiplying S2 and S∗

2 by
the MAX-version and taking the lower triangle, and finally subtracting the former from
the latter and taking the maximum from the resulting triangle. We call the operation of
transforming a matrix into a triangle triangulation.

For simplicity, we apply the algorithm on a square array of size (n, n), where n is a
power of 2. Then all parameters m and n appearing through recursion in Algorithm M
are power of 2, where m = n or m = n/2. We observe the algorithm splits the array
vertically and then horizontally. We define the work of computing the three Acolumn’s
through this recursion of depth 2 to be the work at level 0. The algorithm will split the
array horizontally and then vertically through the next recursion of depth 2. We call this
level 1, etc.

Now let us analyze the time for the work at level 0. We can multiply (n, n/2) and
(n/2, n) matrices by 4 multiplications of size (n/2, n/2), and there are two such mul-
tiplications in (3). Let M(n) be the time for multiplying two (n/2, n/2) matrices. At
level 0, we obtain an Acolumn and two smaller Acolumn’s, spending 12M(n) compar-
isons. Thus we have the following recurrence for the total time T (n). The following
lemma is obvious.

T (1) = 0, T (n) = 4T (n/2) + 12M(n)

Lemma 3. Let c be an arbitrary constant such that c > 0. Suppose M(n) satisfies the
condition M(n) ≥ (4 + c)M(n/2). Then the above T (n) satisfies T (n) ≤ 12(1 +
4/c)M(n).

Clearly the complexity of O(n3) for M(n) satisfies the condition of the lemma
with some constant c > 0. Thus the maximum subarray problem can be solved inO(n3)
time. Since we take the maximum of several matrices component-wise in our algorithm,
we need an extra term of O(n2) in the recurrence to count the number of operations.
This term can be absorbed by slightly increasing 12, the coefficient of M(n).

630 Sung E. Bae and Tadao Takaoka

Suppose n is not given by a power of 2. By embedding the array a in an array of
size (n′,n′) such that n′ is the next power of 2 and the gap is filled with 0, we can solve
the original problem in the complexity of the same order. Similar considerations can be
made on K in the following.

Now we describe the K-maximum subarray problem. When the recursion hits a
(K,K) array, we select K largest sums from possible K4 subarrays. This can easily be
done by changing the top-left and bottom-right co-ordinates on the prefix sum array. Let
us call this algorithm Algorithm A. Suppose K is a power of 2. If not, we can choose
the next power of 2 for K . First we change line 1 in Algorithm M as follow:

1. If the array becomes K ×K , return the solution by Algorithm A.

Next we describe how to compute Acolumn at each recursion. We first define a − b
for two K-tuples, a and b, to be the K values that are made by subtracting elements
of b from those of a component-wise. To compute distance matrix multiplication by
S2S

∗
2 −S1S

∗
1 in (4), we use the K-matrix multiplication of MAX and MIN version. To

compute the subtraction, we follow the above operation of a−b component-wise. As we
assume K ≤ n, this complexity O(Kn2) of triangulation and subtraction is absorbed
in the main complexity. The initial condition for T becomes T (K) = O(K4). As there
are n/K×n/K subarrays at the bottom of recursion, the total time spent by Algorithm
A is O((n/K)2K4) = O(n2K2). If we use the O(n3) time algorithm for K-matrix
multiplication in Algorithm M, the total time before hitting the bottom of recursion is
O(n3). Thus the total time is O(n3 + n2K2). This time complexity is O(n3) when
K ≤

√
n. The K maximum sums can be sorted with additional O(K logK) time.

6 Concluding Remarks

In the previous section, we improved the complexity from O(n3 logK) to O(n3) for
small K . If we use a sub-cubic algorithm for DMM with time complexity

O(n3
√

log log n
log n) in [14], we can achieve a sub-cubic complexity for the the two-di-

mensional case for even smaller K ≤ O(
√

log n
log log n), using the same frame work of

divide-and-conquer and K-tuples. Recent developments for DMM [16, 19] can also be
incorporated. Details are omitted here.

If we find K-maximum subarray in a graphic image, those will heavily overlap.
That is, we will find many array portions that only slightly differ in co-ordinates. If
we are only interested in strictly disjoint portions, one way to solve this problem is
the following greedy method. When we find the maximum sum using Algorithm 2,
we replace the value of each cell comprising the maximum sum with −∞, and repeat
this algorithm. By repeating this process, we can find the second maximum sum, the
third, etc. For a one-dimensional array, as each run takes O(n) time, we can find the K-
maximum subarray in O(Kn) time. This is however solved in O(n) time [13]. We can
extend the O(Kn) time algorithm to two dimensions with O(Kn3) time. It remains to
be seen if we can extend the O(n) time algorithm to two dimensions with O(n3) time.

The sum of those maximum subarrays by this greedy method may not be the maxi-
mum of the total sum of K disjoint subarrays. This problem of minimizing the total sum

Improved Algorithms for the K-Maximum Subarray Problem for Small K 631

of K disjoint subarrays has been solved in linear time for the one-dimensional case in
[8]. To the authors’ knowledge, the two-dimensional case has not been solved.

References

1. Bae, S.E., Takaoka, T.: Parallel approaches to the maximum subarray problem. Japan-Korea
Workshop on Al. and Comp. (2003) 94–104

2. Bae, S.E., Takaoka, T.: Algorithms for the problem of K maximum sums and a VLSI algo-
rithm for the K maximum subarrays problem. ISPAN 2004 (2004) 247–253

3. Bengtsson, F., Chen, J.: Efficient algorithms for the k maximum sums. ISAAC 2004 LNCS,
Vol. 3341 Springer (2004) 137–148

4. Bentley, J.: Programming pearls: algorithm design techniques. Commun. ACM, Vol. 27(9)
(1984) 865–873

5. Bentley, J.: Programming pearls: perspective on performance. Commun. ACM, Vol. 27(11)
(1984) 1087–1092

6. Brodal, G.S.: Finger search trees with constant insertion time. SODA 1998 (1998) 540–549
7. Brown, M.R., Tarjan, R.E.: The design and analysis of a data structure for representing sorted

lists. SIAM Jour. on Comp., Vol. 9(3) (1980) 594–614
8. Csürös, M.: Algorithms for finding maxima-scoring segment sets. WABI 2004 LNCS,

Vol. 3240 Springer (2004) 62–73
9. Dietz, P.F., Raman, R.: A constant update time finger search tree. Inf. Process. Lett.,

Vol. 52(3) (1994) 147–154
10. Miller, R., Boxer, L.: Algorithms Sequential & Parallel- A Unified Approach. Prentice Hall,

(2000)
11. Perumalla, K., Deo, N.: Parallel algorithms for maximum subsequence and maximum sub-

array. Parallel Process. Lett., Vol. 5(3) (1995) 367–373
12. Qui, K., Akl, S.G.: Parallel maximum sum algorithms on intercommenction networks.

Queen’s Uni. Dept. of Com. and Info. Sci. Technical Report 99-431 (1999)
13. Ruzzo, W.L., Tompa, M.: A linear time algorithm for finding all maximal scoring subse-

quences. Intelligent Sys. in Molecular Biology (1999) 234–241
14. Takaoka, T.: A new upper bound on the complexity of the all pairs shortest paths problem.

Inf. Process. Lett., Vol. 43(4) (1992) 195–199
15. Takaoka, T.: Efficient algorithms for the maximum subarray problem by distance matrix

multiplication. Elec. Notes in Theoretical Computer Sci., Vol. 61 Elsevier (2002)
16. Takaoka, T.: A faster algorithm for the all-pairs shortest path problem and its application.

COCOON 2004, LNCS, Vol. 4106 Springer (2004) 278–289
17. Tamaki, H., Tokuyama, T: Algorithms for the maximum subarray problem based on matrix

multiplication. SODA 1998 (1998) 446–452
18. Wen, Z.: Fast parallel algorithms for the maximum sum problem. Parallel Computing,

Vol. 21(3) (1995) 461–466
19. Zwick, U.: A slightly improved sub-cubic algorithm for the all pairs shortest paths problem

with real edge lengths. ISAAC 2004, LNCS, Vol. 3341 Springer (2004) 921–932

Server Allocation Algorithms
for Tiered Systems�

Kamalika Chaudhuri1, Anshul Kothari2, Rudi Pendavingh3,
Ram Swaminathan4, Robert Tarjan4, and Yunhong Zhou4,��

1 Computer Science Division, University of California, Berkeley, CA 94720
2 Computer Science Depart, University of California, Santa Barbara, CA 93106

3 TU Eindhoven, Depart. of Math. and CS., Eindhoven, The Netherlands
4 HP Labs, 1501 Page Mill Rd, Palo Alto, CA 94304

yunhong.zhou@hp.com

Abstract. Many web-based systems have a tiered application architec-
ture, in which a request needs to transverse all the tiers before finishing
its processing. One of the most important QoS metrics for these appli-
cations is the expected response time for the user. Since the expected
response time in any tier depends upon the number of servers allocated
to this tier, and a request’s total response time is the sum of the response
times at all the tiers, many different configurations (number of servers
allocated to each tier) can satisfy the expected response time require-
ment. Naturally, one would like to find the configuration to minimize
the total system cost while satisfying the total response time require-
ment. This is modeled as a non-linear optimization problem using an
open-queuing network model of response time, which we call the server
allocation problem for tiered systems (SAPTS).
In this paper we study the computational complexity of SAPTS and
design efficient algorithms to solve it. For a variable number of tiers,
we show that the decision problem of SAPTS is NP-complete. Then we
design a simple two-approximation algorithm and a fully polynomial time
approximation scheme (FPTAS). If the number of tiers is a constant, we
show that SAPTS is polynomial-time solvable. Furthermore, we design a
fast polynomial-time exact algorithm to solve for the important two-tier
case. Most of our results extend to the general case where each tier has
an arbitrary response time function.

1 Introduction

The last few years have seen tremendous growth in the area of web based appli-
cations such as electronic commerce, web service and search engines. As these
applications are user oriented, their main objective is to keep their users satisfied
by meeting certain quality of service requirements. One of the most important
quality of service parameters for these applications is expected response time,
which is the total time it takes to process a user’s request.
� The work of Chaudhuri and Kothari were done while they were interns at HP Labs.

�� Corresponding author

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 632–643, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Server Allocation Algorithms for Tiered Systems 633

Many applications, especially web applications, have a tiered application ar-
chitecture, in which a user’s request is processed by multiple (levels of) servers.
For example, a typical web-service system consists of three tiers: web servers,
application servers and database servers. Within each tier, multiple machines
can be provisioned to share the incoming workload, which consists of a series
of different types of web requests. At each of the tiers, a user’s request is going
to suffer queuing delay and processing delay, and the expected response time
bounds the total delay suffered by a user.

Although three tiers are typical for a web-application architecture, it is pos-
sible for an application to have more tiers. Consider a typical search engine such
as Google [2]. The application server tier is actually very complex, and it consists
of multiple sub-tiers, doing things such as crawling, parsing, indexing, ranking,
and searching. If the service demand for one tier is very large, a few load balanc-
ing servers are placed in front of the tier to divide the load equally into multiple
sub-workloads, and together these load balancing servers act as one tier.

Our question is to allocate an adequate number of servers to each tier in order
to meet a certain service level requirement. Applications that allow different
number of machines at each tier are called horizontally scalable. We deal with
such a horizontally scalable system, in which the service level requirement is
expressed in terms of the average response time of the system. At each tier, the
queuing delay suffered by a request is a function of the number of servers in that
tier. One can reduce the total delay by increasing the number of servers; but
this also increases the total infrastructure cost. Thus, there is a tradeoff between
the infrastructure cost and the expected response time. This necessitates a tool,
which given the application’s workload and expected response time, finds a server
allocation (how many servers in each tier) with minimum cost.

Since the system response time is the sum of response times of each of the
tiers, the total response time requirement can be met by different configurations
(numbers of machines in each tier). The question, then, is to find a minimum
number of machines in total to meet the average response time requirement.
Realizing that machines at different tiers might be different and incur different
costs, the more general optimization problem is to minimize the total weighted
sum of servers, with the weights reflecting the “total cost of ownership” of servers
in different tiers.

In this paper, we model this problem as a non-linear integer optimization
problem, and call it the server allocation problem for tiered systems (SAPTS).
For the case where the system has a variable number of tiers, we first show
that the decision version of SAPTS is NP-complete. We then present a simple
two-approximation algorithm based on Lagrangian relaxation. Next, we present
a pseudo-polynomial-time algorithm and a fully polynomial time approximation
scheme (FPTAS). If the number of tiers is a constant, we show that the prob-
lem is polynomial-time solvable using a variant of Lenstra’s algorithm [11]. For
the important special case of two tiers, we design a fast polynomial-time exact
algorithm. We also generalize our results to arbitrary response time functions.

634 Kamalika Chaudhuri et al.

1.1 Related Work

The problem we consider in this paper is a continuation of TAO (web transac-
tion and optimization), a HP project focusing on developing metrics, models,
and infrastructures to effectively manage the performance of web applications.
See Garg et al. [5] for details on system performance modeling. Zhang et al. [13]
have modeled the server allocation problem as a non-linear integer optimiza-
tion problem and proposed a search heuristic to solve it optimally. The search
heuristic only considers optimal solutions and has exponential running time.

Our work is related to both capacity planning and resource allocation. Mena-
sce and Almeida [12] present general techniques of capacity planning for web
applications. For resource allocation, the ability to dynamically allocating com-
puting resources in a shared resource environment is essential of utility comput-
ing. Appleby et al. [1] describe various aspects of IBM’s Océano project which is
centered on SLA management for utility computing. A key problem with utility
computing is that the user needs are translated into a logical configuration, and
physical resources are then assigned to the logical configuration to satisfy the
resource requirements of the application. The problem addressed in this paper is
precisely to determine the optimal resource requirements of an application under
a workload in such a way that application SLAs are satisfied.

Zhu and Singhal [14] addressed the issue of allocating resources (machines)
in a tree-like topology of a data center, considering performance constraints such
as link bandwidth and switch capacity while minimizing communication traffic
among the assigned servers. They propose a mathematical optimization model
with binary variables for optimally configuring the topology. Our work differs
from [14] in several important ways. First, we consider only the average response
time performance measure. Second, our topology is a tiered structure compared
to an arbitrary tree topology. These simplifications allow us to devise efficient
algorithms to solve the server allocation problem.

Operations Researchers have studied resource allocation as an optimization
problem, and variations of knapsack problems have been proposed to solve this
problem. SAPTS is actually the dual of the non-linear knapsack problem. The
special case where hi = 1 for all i’s (servers cross tiers have identical costs) is
called the simple allocation problem and solved by Frederickson and Johnson [4]
in time O(k log(p/k)), where k is the number of tiers and p is the upper bound for
the number of total machines. For the general case where hi’s are arbitrary inte-
gers, Hochbaum [8] gives a FPTAS for it. However, both [4, 8] rely on the crucial
assumption that the response time functions are convex, in order to convert the
original problem into an equivalent selection problem or knapsack problem. Our
method converts the original problem into a multi-choice knapsack problem, and
so no convexity properties are needed for the response time functions.

The rest of the paper is organized as follows. We describe the response time
model in Section 2.1 and formulate the server allocation problem as a mathemat-
ical optimization problem in Section 2.2. In Section 3.1, we show that SAPTS
is NP-complete for variable number of tiers. We give a two-approximation algo-
rithm in Section 3.2, a pseudo-polynomial-time algorithm as well a FPTAS in

Server Allocation Algorithms for Tiered Systems 635

Section 3.3. We give a simple polynomial-time algorithm for the important two-
tier case in Section 4.1 and show that the problem is polynomial-time solvable
for constant number of tiers in Section 4.2. We discuss arbitrary response time
functions in Section 5 and conclude in Section 6.

2 Problem Formalization

We first describe the response time model, and then state SAPTS precisely using
this model.

2.1 The Response Time Model

One of the nice properties of tiered systems is that the delay suffered by a request
in a tier only depends upon the number of servers in that tier and is not affected
by the number of servers in any other tier. Therefore, one can compute a request’s
response time by computing the delays at individual tiers and summing them to
obtain the total response time.

To simplify our modeling effort for each tier, we assume that all servers in the
same tier are identical, and that the workload is shared approximately equally
among all the servers in the same tier. If the request arrival rate is λi for the i-th
tier with Ni servers, then each server has a request arrival rate of λi/Ni. Each
server is modeled as a processor sharing queue. The expected response time is
given by the expected time in system with an M/M/1 queuing model:

Ri(Ni) =
E[Si]

1− (λi

Ni
)E[Si]

, (1)

where E[Si] is the expected processing time (or service demand) of a request
on the critical resource (such as the CPU) at the i-th tier1. (For a reference to
general queuing theory and the above formula, see Kleinrock [10].) As discussed
before, the response time, R(N), for a k-tier application is the sum of the delays
at all the tiers. Therefore

R(N) =
k∑

i=1

Ri(Ni) =
k∑

i=1

E[Si]

1− λiE[Si]
Ni

, (2)

where N = (N1, N2, . . . , Nk). We refer to N as a configuration.

2.2 The Server Allocation Problem for Tiered Systems

From Eq. (2), it follows that there exist many system configurations that satisfy
the response time bound. Among these feasible allocations, one would like to find
the one with the minimum cost. This is formulated as an optimization problem:
1 E[Si] can be estimated from the measured utilization rate, ui, of the critical resource

as follows: E[Si] = ui/(λi/Ni).

636 Kamalika Chaudhuri et al.

min
Ni

k∑
i=1

hiNi (3)

s.t. R(N) =
k∑

i=1

E[Si]

1− λiE[Si]
Ni

≤ T0; (4)

Ni integer with Ni > λiE[Si], for i = 1, . . . , k,

where T0 is the required response time and the weights hi (all assumed to be
strictly positive) are the costs of servers in different tiers. Because

E[Si]

1− λiE[Si]
Ni

=
NiE[Si]

Ni − λiE[Si]
= E[Si] +

λiE[Si]2

Ni − λiE[Si]
, for all i,

the non-linear constraint (4) can be further simplified as follows:
k∑

i=1

λiE[Si]2

Ni − λiE[Si]
≤ T0 −

k∑
i=1

E[Si].

Let ai = λiE[Si]2, bi = λiE[Si] and T = T0 −
∑k

i=1 E[Si], then the response
time constraint becomes: k∑

i=1

ai

Ni − bi
≤ T. (5)

Given the optimization formulation of SAPTS, one can define the correspond-
ing decision problem (dSAPTS) as follows: for a given cost p, does there exist
an allocation N = (N1, . . . , Nk) such that,

k∑
i=1

hiNi ≤ p

k∑
i=1

ai

Ni − bi
≤ T

Ni integer with Ni > bi, for i = 1, . . . , k.

For simplicity, we assume that hi’s are positive integers for all i. However,
ai, bi are not necessarily integers. It is easy to see that if one can solve the decision
problem in polynomial time then the optimization problem can also be solved
in polynomial time by doing a binary search on possible values of p. Thus from
the computational complexity point of view, SAPTS is equivalent to dSAPTS.

3 Variable Number of Tiers

In this section, we present both approximate and exact algorithms for SAPTS
when the number of tiers is a variable. We first show in Section 3.1 that dSAPTS
is NP-complete if the number of tiers is a variable. Then in Section 3.2, we
give a simple two-approximation based on Lagrangian relaxation. In Section 3.3,
we first give a pseudo-polynomial time algorithm by converting SAPTS into a
multi-choice knapsack problem (MCKP), then use standard scaling techniques
to obtain a fully polynomial time approximation scheme.

Server Allocation Algorithms for Tiered Systems 637

3.1 NP-Completeness

Our first result shows that SAPTS is “hard” to solve optimally in polynomial
time when the number of tiers is a variable.

Theorem 1. The decision problem of SAPTS is NP-complete, assuming that
the number of tiers is a variable.

3.2 A Two Approximation Algorithm

In the previous section, we have shown that the server allocation problem is NP-
complete for arbitrary k. Given the hardness of computing the optimal solution
one would like to know if it is possible to compute a good approximate solu-
tion efficiently. It turns out that a fully polynomial time approximation scheme
(FPTAS) exists for our problem. Before presenting the relatively complex ap-
proximation scheme, we first give a simple approximation algorithm which runs
in linear time. Our simple approximation algorithm guarantees a worst-case per-
formance factor of two, and it will be used for the construction of our FPTAS
in Section 3.3.

By relaxing the constraint that Ni’s have to be integers, we can use the
Lagrangian multiplier method to compute a closed form solution for the relaxed
optimization problem. By rounding up the solution for the relaxed optimization
problem, we get an approximate solution with cost less than twice the minimum
cost. Consider the Lagrangian function where λ is the Lagrangian multiplier:

L(N1, N2, · · · , Nk, λ) =
k∑

i=1

hiNi + λ

(
k∑

i=1

ai

Ni − bi
− T

)
.

The optimal fractional value Nf
i has the following closed form (details of the

calculation omitted):

Nf
i = bi +

√
ai

hi
·
∑k

j=1

√
hjaj

T
, i = 1, . . . , k.

The optimal fractional solution Nf can be converted into a feasible two-
approximation directly. Let N r be the integer solution got by rounding up Nf .
Specifically,N r

i = �Nf
i �, for all i. BecauseN r

i ≥ Nf
i for all i,

∑k
i=1 ai/(N r

i −bi) ≤∑k
i=1 ai/(N

f
i −bi) = T . Therefore N r satisfies the total response time constraint

and N r is a feasible solution to SAPTS. Next, we show that the cost(N r) is
within twice of cost(N∗), where N∗ is an optimal integral solution. Because
N r

i = �Nf
i �, it is easy to see that 1 ≤ N r

i < Nf
i + 1, ∀ i. Therefore

cost(N r) =
k∑

i=1

hiN
r
i <

k∑
i=1

hi(N
f
i + 1) = cost(Nf) +

k∑
i=1

hi. (6)

Since Nf is the optimal fractional solution, its cost is no more than the cost
of the optimal integral solution N∗, i.e., cost(Nf) ≤ cost(N∗). Also, since any
optimal integral solution should at least contain one server in each of the tiers,
we have

∑
i hi ≤ cost(N∗). Eq. (6) together with the above two inequalities

implies that cost(N r) ≤ 2cost(N∗). In summary, we have the following theorem:

638 Kamalika Chaudhuri et al.

Theorem 2. For SAPTS with k tiers where k is an arbitrary integer variable,
we can compute a two-approximation in time O(k).

It is easy to construct pathological examples where the performance ratio of
the above algorithm versus the optimal is arbitrarily close to two, and so our
analysis is tight. However, in practice where T is small, we expect the algorithm
to work very well, with its performance ratio close to 1. This is because Eq. (6)
together with the fact cost(Nf) ≤ cost(N∗) leads to

cost(N r)
cost(N∗)

≤ cost(N r)
cost(Nf)

≤ 1 +
∑k

i=1 hi

cost(Nf)
.

When T approaches 0, cost(Nf) approaches∞, i.e., the above algorithm has
close-to-optimum cost when T is very small.

3.3 Pseudo-Polynomial-Time Algorithm and FPTAS

In this section, we present a pseudo-polynomial time algorithm as well as a
fully polynomial time approximation scheme. We start by transforming SAPTS
into an equivalent multiple-choice knapsack problem. By bounding the size of
each class of items, first we are able to give a pseudo-polynomial-time algorithm
for our problem. This solution in turn is adapted to design the FPTAS using
standard scaling techniques.

The multi-choice knapsack problem is a generalization of the ordinary knap-
sack problem, where there are m sets of items S1, . . . , Sm with |Si| = ni for all
i and

∑m
i=1 ni = n. Each item j ∈ Si consists of a weight wij and a profit pij ,

and we are given a knapsack with capacity W . The objective is to pick exactly
one item from each set, such that the profit sum is maximized and the weight
sum is bounded by the knapsack capacity W . It is well-known that MCKP is
NP-complete. An approximation algorithm with performance guarantee 5/4 is
given by Gens and Levner [6]. A pseudo-polynomial time algorithm using dy-
namic programming is easy to design. The first FPTAS for MCKP has been
given by Chandra, Hirschberg and Wong [3]. An improved FPTAS is given by
Kellerer et al. [9] using standard scaling with time complexity O(nm · 1/ε). See
[9] also for an extensive treatment of knapsack problems, including MCKP.

Given a SAPTS instance with k tiers, the multi-choice knapsack problem
consists of k sets of items S1, . . . , Sk. For an item j ∈ Si:

weight(j) =
ai

j − bi
, cost(j) = j · hi.

For the optimization problem of SAPTS, we don’t have any cost constraint,
thus any j > bi is a feasible item in Si. In order to bound the size of Si, we
bound the number of servers needed at each tier. Consider the response time
constraint:

ai

Ni − bi
≤

k∑
i=1

ai

Ni − bi
≤ T ⇒ Ni ≥ bi +

ai

T
≡ nl

i.

Server Allocation Algorithms for Tiered Systems 639

Thus, nl
i is a lower bound on the number of servers needed at the i-th tier.

Next, let us consider the two-approximation solution N r. Let Cr = cost(N r).
Since Cr is an upper bound on total cost of the optimal, we have:

hiNi +
∑
j|j �=i

hjn
l
j ≤

k∑
j=1

hjNj ≤ Cr ⇒ Ni ≤
Cr −

∑
j|j �=i hjn

l
j

hi
≡ nu

i .

Thus, nu
i is an upper bound on the number of servers needed at i-th tier.

Given nl
i and nu

i , we only need to consider item j ∈ Si satisfying �nl
i� ≤ j ≤

%nu
i &. Without loss of generality, we assume that nl

i and nu
i are both integers.

Otherwise we can always replace nl
i by �nl

i� and replace nu
i by %nu

i &. Therefore
now set Si has only nu

i −nl
i +1 elements. Next we describe a pseudo-polynomial

time algorithm to solve MCKP.
The multi-choice knapsack problem can be solved, in pseudo polynomial time,

by building a dynamic programming (DP) table. There are two ways to build
the dynamic programming table; either using the cost or using the weight. As
the weights of items in our case are not integers, and the costs are integers, we
build it using the cost. Let F (i, c) denote the minimum weight of items selected
from the first i item sets with total cost bounded by c. Following is the recursion
function to build the DP table F :

F (i, c) = min
j∈Si

{F (i− 1, c− cost(j)) + weight(j)}

From Theorem 2, Cr (the cost of N r) is within twice of cost(N∗), the opti-
mum cost. We restrict the size of the cost parameter (number of columns) of the
table to Cr. Thus, the total time taken to build the table is O(Cr ·

∑k
i=1(n

u
i −

nl
i + 1)). Once the table has been built, the optimal solution can be found by

going through the last row and choosing the minimum cost c, such that F (k, c)
is bounded by at most T . Thus, we have the following result:

Theorem 3. SAPTS is pseudo-polynomial-time solvable. The optimal solution
can be computed in time O(Cr ·

∑k
i=1(n

u
i − nl

i + 1)) = O(cost(N∗) ·
∑k

i=1(n
u
i −

nl
i + 1)).

The pseudo polynomial algorithm given above can be converted into a fully
polynomial time approximation scheme using cost scaling. The following theorem
is our main result in this section:

Theorem 4. For SAPTS with k tiers, we can compute a (1+ ε)-approximation
with time O(k3 · 1/ε2) and space O(k2 · 1/ε).

4 Constant Number of Tiers

We showed in Section 3.1 that SAPTS is NP-Hard for arbitrary number of tiers.
However, real world tiered systems are usually composed of only a small number
of tiers. For example, a typical ecommerce application has only three tiers: a
web server tier, an application server tier, and a database server tier. So it is
natural to ask if one could do better if the number of tiers is small.

640 Kamalika Chaudhuri et al.

4.1 A Polynomial Time Algorithm for Two Tiers

As before, in order to solve SAPTS optimally, it suffices to solve the decision
problem dSAPTS optimally. If the system has only two tiers, thus it suffices to
given an algorithm to determine, in polynomial time, whether the set

{(x1, x2) ∈ R2 | h1x1 + h2x2 ≤ p,
a1

x1 − b1
+

a2

x2 − b2
≤ T }

contains an integer vector, given positive integers h1, h2, p and nonnegative
reals a1, b1, a2, b2, T .

Let f : x .→ a1
x1−b1

+ a2
x2−b2

. Here’s the algorithm.

1 Compute the positive integers h′1, h′2 so that |h1h
′
2 − h2h

′
1| = 1;

2 repeat
3 Determine the point x∗ on L := {x ∈ R2 | hx = p} minimizing f(x);
4 If f(x∗) > T , return “no”;
5 Let x′, x′′ be the integer points on either side of x∗ on L;
6 If f(x′) ≤ T or f(x′′) ≤ T return “yes”;
7 Put h′ ← h′ − %< h, h′ >&h; if h′ ≤ 0, put h′ ← −h′;
8 Put p′ ← min{h′x′, h′x′′};
9 If p′ < min{h′x | hx ≤ p, f(x) ≤ T, x > b}, then return “no”;
10 Swap h and h′, put p← p′;
11 end repeat

Here x ∈ R2 is a column vector, h is the rowvector (h1, h2), h′ is the rowvector
(h′1, h′2), and < h, h′ > is their inner product.

Theorem 5. The above algorithm decides, given integers h1, h2, p and reals
a1, b1, a2, b2, T , whether

{(x1, x2) ∈ R2 | h1x1 + h2x2 ≤ p,
a1

x1 − b1
+

a2

x2 − b2
≤ T, x1 ≥ b1, x2 ≥ b2}

contains an integer vector, in O(log(h1)+ log(h2)) arithmetic operations on real
numbers and integers.

4.2 Lenstra’s Algorithm and Its Application to SAPTS

It turns out that it is indeed possible to solve SAPTS in polynomial time when
the number of tiers is a constant. This can be done by a variant of Lenstra’s
algorithm for solving integer linear programs with constant number of variables.
The details of the following theorem can be found in the book by Grőtschel,
László Lovász and Schrijver [7]:

Theorem 6. Suppose we have an k-dimensional convex body P described by a
separation oracle. If k is a constant, it is possible to determine in polynomial
time if there is an integer point inside P .

Given the polynomial-time equivalence of the optimization problem and the
decision problem, we show how to solve the decision version of SAPTS in this

Server Allocation Algorithms for Tiered Systems 641

subsection. The corresponding body P in SAPTS is formed by the surface∑k
i=1 ai/(Ni − bi) ≤ T and the hyperplane

∑k
i=1 hiNi ≤ p. If there is an in-

teger point inside P , there exists a solution for the decision problem of SAPTS
with cost ≤ p.

It is easy to see that the body P in our problem is convex. Designing a
separation oracle for our convex body P is easy; for a point that violates a
linear constraint, we take the same constraint as the separating hyperplane. For
a point o that violates a non-linear constraint, we draw a line between o and
some arbitrary point q inside P . Let r be the point where this line intersects
P ; the tangent at r to the non-linear constraint curve will be our separating
hyperplane. The following is therefore a corollary of Theorem 6.

Corollary 1. SAPTS with a constant number of tiers can be solved in polyno-
mial time.

5 Arbitrary Response Time Functions

As evidenced in [5], the response time model presented in Section 2.1 is a good
approximation of realistic system setups. However, different workload character-
istics and hardware configurations will result in different response time models.
Fortunately, our algorithms for SAPTS actually don’t depend on the specific
form of the response time functions. Therefore in this section we revisit SAPTS
with general response time functions, which we call gSAPTS.

As before, we assume that all servers in the same tier are identical and have
the same response time. If the request arrival rate is λi for the i-th tier with Ni

servers, then its response function becomes Ri(Ni, λi) = fi(Ni) for i = 1, . . . , k.
Let N = (N1, N2, . . . , Nk) and R(N) be the total response time for the tiered
system. As discussed before, R(N) is the sum of the delays at all the tiers, i.e.,
R(N) =

∑k
i=1 Ri(Ni, λi) =

∑k
i=1 fi(Ni). For a given T0, there exist multiple

server allocations that satisfy the response time bound. Among these feasible
configurations, one would like to find the one with the minimum cost. This is
formulated as the following optimization problem, which we call General Server
Allocation Problem for Tiered Systems (gSAPTS):

min
Ni

k∑
i=1

hiNi (7)

s.t.
k∑

i=1

fi(Ni) ≤ T0; (8)

Ni integers with Ni ≥ nl
i, for i = 1, . . . , k,

where T0 is the required response time and the weights hi (all assumed to be
strictly positive) are the costs of servers in different tiers. Function fi takes
positive integer domains with fi(Ni) <∞ for Ni ≥ nl

i and fi(Ni) = ∞ otherwise.
Here nl

i is a positive integer, with the trivial case nl
i = 1, for i = 1, . . . , k.

642 Kamalika Chaudhuri et al.

gSAPTS can be converted into MCKP similar as the case for SAPTS. Given
an instance of gSAPTS, the MCKP consists of k sets of items S1, S2, . . . , Sk. For
an item j ∈ Si, its weight and cost are:

weight(j) = fi(j), cost(j) = j · hi.

Here j ∈ Si is lower bounded by nl
i. The challenge is to come up with an upper

bound for the number of servers in the i-th tier, for all index i.
In the following we use cost doubling to determine the optimal cost value.

Initially we set C0 = 2
∑k

i=1 hin
l
i and nu

i = %C0/hi&, for i = 1, . . . , k. Now
each set Si has exactly nu

i − nl
i + 1 elements and we can run the DP-by-cost

procedure as described in Section 3.3 to compute the optimum solution for this
MCKP instance. If the procedure returns an optimal feasible solution, then we
return that solution and are done. Otherwise, the procedure will tell us that
there is no feasible solution for this MCKP instance. Now we double C0 by
setting C0 := 2C0 and repeat the above procedure. And the program ends at the
first time when the DP program returns an optimal feasible solution. Formally
the procedure is described below:

1 Let C0 = 2
∑k

i=1 hin
l
i .

2 Set nu
i = %C0/hi&, for i = 1, . . . , k.

3 Construct sets S1, . . . , Sk where
4 Si = {j | weight(j) = fi(j), cost(j) = j · hi, n

l
i ≤ j ≤ nu

i }.
5 Solve the multi-choice knapsack problem using DP-by-cost.
6 If DP-by-cost returns an optimal feasible solution, return the solution
7 and stop; else set C0 = 2C0, go back to step 2.

It is easy to verify the correctness of the algorithm. In terms of its running
time, it is dominated by the last run of the algorithm, where the value of C0 is
in the range of [cost(N∗), 2cost(N∗)), where N∗ is the minimum cost solution
for gSAPTS. We summary it as the following theorem:

Theorem 7. For arbitrary response time functions, we can solve gSAPTS in
time O(cost(N∗) ·

∑k
i=1(n

u
i − nl

i + 1)) where nu
i = %2cost(N∗)/hi& for all i, and

N∗ is the minimum cost integer solution.

For servers in tier i, it really doesn’t make economical sense to add more
servers if it results in prolonged response time. So it is natural to assume that
the response time function fi is monotone decreasing with Ni. By assuming fi’s
are monotone decreasing for all i, we can convert the above algorithm into an
approximation scheme using cost scaling as described in the proof of Theorem 4.
The following theorem summarizes this observation:

Theorem 8. If response time functions are monotone decreasing for all the
tiers, the above algorithm can be converted into an approximation scheme using
cost scaling. Specifically, we can compute an (1+ε)-approximation in time O(k3 ·
1/ε2 · log cost(N∗)) and space O(k2 · 1/ε).

Server Allocation Algorithms for Tiered Systems 643

6 Concluding Remarks

In this paper, we studied the server allocation problem for tiered systems, as
arisen out of resource allocation in a utility computing environment. We showed
that SAPTS is NP-Hard if the number of tiers is a variable and polynomial-time
solvable if the number of tiers is a constant. We presented both approximate
and exact algorithms to solve this problem. In particular, we presented a fast
polynomial-time algorithm to solve the important two-tier special case.

We leave with a few open problems: (i) Extend these algorithms to a more
general application architecture such as a DAG structure; (ii) Design simple
and efficient polynomial-time exact algorithms for the important 3-tier special
case; and (iii) Handle the case where there are (small) generations of machines
described by a (speed, cost) matrix.

Acknowledgements

We would like to thank the following people from HP Labs for their very helpful
feedbacks and suggestions: Alex Zhang, Terence Kelly, Cipriano (Pano) Santos
and Sharad Singhal.

References

1. K. Appleby, S. Fakhouri, L. Fong, G. Goldszmidt, and M. Kalantar. Océano – SLA-
based management of a computing utility. In Proc. 7th IFIP/IEEE Intl. Symp. on
Integrated Network Management, May 2001.

2. S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engine.
Computer Networks and ISDN Systems, 30:107–117, 1998.

3. A. Chandra, D. Hirschberg, and C. Wong. Approximate algorithms for some gen-
eralized knapsack problems. Theoretical Computer Science, 3:293–304, 1976.

4. G. N. Frederickson and D. B. Johnson. The complexity of selection and ranking in
x+y and matrices with sorted columns. Journal of Computer and System Sciences,
24(2):197–208, 1982.

5. P. K. Garg, M. Hao, C. Santos, H.-K. Tang, and A. Zhang. Web transaction analysis
and optimization (TAO). In Proceedings of the 3rd Workshop on Software and
Performance, pages 286–293, 2002.

6. G. Gens and E. Levner. Approximation algorithms for certain universal problems
in scheduling theory. Soviet J. of Computers & System Sciences, 6:31–36, 1978.

7. M. Grőtschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combinato-
rial Optimization. Springer-Verlag, 1988.

8. D. S. Hochbaum. A nonlinear knapsack problem. Operations Research Letters,
(17):103–110, 1995.

9. H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer, 2004.
10. L. Kleinrock. Queueing Systems, V.II: Computer Applications. Wiley, 1976.
11. H. W. Lenstra. Integer linear programming with a fixed number of variables. Math-

ematics of Operations Research, 8:538–548, 1983.
12. D. A. Menasce and V. A. Almeida. Capacity Planning for Web Performance.
13. A. Zhang et al. Optimal server resource allocation using an open queueing network

model of response time. Technical Report HPL-2002-301, HP Labs, 2002.
14. X. Zhu and S. Singhal. Optimal resource assignment in internet data centers. In

Proc. 9th MASCOTS, pages 61–69, Cincinnati, OH, August 15-18 2001.

An Improved Approximation Algorithm
for Uncapacitated Facility Location Problem

with Penalties�

Guang Xu and Jinhui Xu

Department of Computer Science and Engineering
Stete University of New York at Buffalo

Buffalo, New York 14260, USA

Abstract. In this paper, we consider an interesting variant of the facil-
ity location problem called uncapacitated facility location problem with
penalties (UFLWP for short) in which each client is either assigned to
an opened facility or rejected by paying a penalty. We present a 1.8526-
approximation algorithm for the UFLWP problem. Our algorithm first
enhances the primal-dual method for the UFLWP problem [3] so that
outliers can be recognized more efficiently, and then applies a local search
heuristic to further reduce the cost for serving those non-rejected clients.

Keywords: Algorithms; Approximation Algorithms; Facility Location
Problem; Outliers

1 Introduction

Facility location problem is a fundamental problem and has been extensively
studied in operations research and theoretical computer science [12]. Among all
its variants, the uncapacitated facility location problem has received significant
amount of attention and a number of efficient approaches have been discovered in
recent years [1, 2, 8, 13]. Such techniques could also be combined and extended to
achieve effective approximation algorithms for other variants of facility location
problem [4, 5, 7, 15].

In this paper, we study an interesting variant of the facility location problem
called uncapacitated facility location problem with penalties (UFLWP). The
uncapacitated facility location problem with penalties can be defined as follows.
We are given a bipartite graph G with bipartition (F , C), where F is the set
of candidate locations for opening facilities and C is the set of locations (called
clients) with demands for services. Each location i ∈ F is associated with a non-
negative opening cost fi, and each client j ∈ C is associated with two positive
numbers dj and pj specifying its demands and penalty, respectively. The de-
mands of client j could be either satisfied by assigning j to some opened facility
i by paying a connection cost djcij or rejected by paying a penalty pj , where cij
� This research was supported in part by an IBM faculty partnership award, and an

IRCAF award from SUNY Buffalo.

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 644–653, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

An Improved Approximation Algorithm 645

is the distance between i and j. The objective of the UFLWP problem is to de-
termine for each client whether its demands should be rejected or satisfied so as
to minimize the sum of the total penalties, connection costs and opening costs.
We assume that the distance function between clients and facilities is metric,
i.e., ∀i, i′ ∈ F , ∀j, j′ ∈ C, cij ≤ ci′j + cij′ + ci′j′ .

Three constant approximation algorithms were proposed for the UFLWP
problem [3, 9, 14]. In [3], Charikar et. al. achieved a 3-approximation algo-
rithm by using a primal-dual method. Later, Jain et. al. gave an improved 2-
approximation algorithm by applying an elegant dual fitting technique [9]. Both
algorithms can be viewed as primal-dual method based algorithms. Recently, Xu
and Xu showed that techniques from other categories are also capable of solv-
ing this problem and presented an LP rounding based (2 + 2/e)-approximation
algorithm [14]. The only known hardness result of the UFLWP problem is the
1.463-inapproximability result inherited from the uncapacitated facility location
problem [6]. There is a considerably large gap between the best known perfor-
mance ratio and the inapproximability result. Thus it would be very interesting
to know whether the performance ratio of the UFLWP problem can be further
improved. In this paper, we give an affirmative answer to this question by pre-
senting a 1.8526-approximation algorithm for the UFLWP problem.

The main difficulty of the UFLWP problem is due to the existence of penal-
ties which disturb the metric property of the cost function between clients and
facilities. Almost all existing quality-guaranteed algorithms for the facility loca-
tion problems assume metric property for their cost functions. To overcome the
difficulty introduced by the partial loss of metric property, we present in this pa-
per a two-phase combinatorial algorithm. Our algorithm first uses a primal-dual
method similar to the one in [3]. To avoid the large penalty on the performance
ratio caused by the primal-dual method in [3], our algorithm applies the primal-
dual method to a scaled instance of the problem so that outliers can be identified
more accurately. The resulting solution forms an initial solution to the UFLWP
problem. In the second phase, our algorithm iteratively refines the initial solution
by performing a greedy local search heuristic [1, 6, 10] to open more facilities for
those remaining clients so that the total facility cost and connection cost of the
initial solution is reduced. Comparing with existing approaches for the UFLWP
problem, our approach combines the power of the primal-dual method and local
search techniques and provides a better handling of the outliers. Further, our
algorithm is very simple, natural, and can be easily implemented.

2 Algorithm and Analysis

2.1 Integer Program, Linear Relaxation, and Dual

The following integer program (denoted as IP) is a natural formulation of the
UFLWP problem.

minimize
∑
i∈F

fiyi +
∑
i∈F

∑
j∈C

djcijxij +
∑
j∈C

pjzj (1)

646 Guang Xu and Jinhui Xu∑
i∈F

xij + zj ≥ 1, for each j ∈ C, (2)

xij ≤ yi, for each i ∈ F , j ∈ C, (3)
xij ∈ {0, 1}, for each i ∈ F , j ∈ C, (4)
yi ∈ {0, 1}, for each i ∈ F , (5)
zj ∈ {0, 1}, for each j ∈ C. (6)

Replacing Constraints (4), (5) and (6) in IP by Constraints xij ≥ 0, yi ≥ 0,
and zj ≥ 0 respectively, we obtain the relaxed linear program of the UFLWP
problem, denoted as LP-PRIMAL. The dual (denoted as LP-DUAL) of LP-
PRIMAL can be written as the following form after a simple scaling change.

maximize
∑
j∈C

djαj (7)

∑
j

βijdj ≤ fi for each i ∈ F , (8)

αj ≤ βij + cij for each i ∈ F , j ∈ C, (9)
αj ≤ pj

dj
for each j ∈ C, (10)

αj , βij ≥ 0 for each i ∈ F , j ∈ C, (11)

2.2 Primal-Dual Method

In [3], a primal-dual method has been used to achieve a 3-approximation algo-
rithm for the UFLWP problem. In this paper, we use a similar method to obtain
an initial solution to the UFLWP problem. For clarity and completeness, below
we sketch the main idea of this method.

The primal-dual method starts with a trivial feasible solution (α = 0, β = 0
) to the LP-Dual and grows all αj , j ∈ C at the same speed. Let τ be the
time. Whenever Constraint (10) becomes tight for client j, i.e., τ = pj

dj
, αj stops

growing. If Constraint (9) becomes tight (at time τ = cij) before Constraint (10)
for some client j, then βij starts to grow at the same speed in order to maintain
the feasibility of Constraint (9) until either Constraint (10) or Constraint (8)
becomes tight for some i ∈ F (i.e.,

∑
j djβij = fi, for some i ∈ F). After all αj

stop growing, a feasible dual solution (α, β) is obtained. An edge (i, j) is called
tight if αj = cij . An edge (i, j) is called special if βij > 0. If

∑
j djβij = fi

at time τi, the facility location i is called a paid for location and i is called a
connecting witness for all client locations j with positive βij . If αj stops growing
at time τ = cij for a paid for location i, i is also called the connecting witness of
client location j. A client location j is called a timeout vertex if αj reaches pj/dj

before it gets a connecting witness. Let Ft denote the set of paid for locations.
Consider the subgraph T of the input bipartite graph, which contains only the
special edges. Construct a graph H = (Ft, E), where edge (u, v) ∈ E if there is

An Improved Approximation Algorithm 647

a path of length at most 2 between u and v in graph T . Once H is constructed,
a maximal independent set of H is computed and the corresponding facilities
are opened at such locations. We say a client location j is directly connected
if either a facility is opened at one of its neighbors in graph H or a facility is
opened at i and edge (i, j) is a tight edge. All the remaining client locations are
called indirectly connected. A timeout client location j is rejected if and only if
j is indirectly connected. Let F be the facility cost, C be the connection cost,
P be the penalties of rejecting clients obtained by the primal-dual method. The
following lemma has been proved in [3].

Lemma 1. 3F + 3P + C ≤ 3
∑

j∈C αj .

2.3 Scaling and Primal-Dual Method

Let us take a closer look at the primal-dual method. If we directly run the primal-
dual method for the UFLWP problem, we will obtain a solution with facility
cost F , rejecting penalties P , and connection cost C satisfying 3F + 3P + C ≤
3
∑

j∈C αj . The fact that F has a coefficient 3 indicates that there is still some
room for extra facility cost in the primal dual method. Opening another set of
facilities with slightly larger facility cost may enable us to reduce the connection
cost and penalties and result in a solution with improved quality. Another set
of facilities with slightly larger facility cost can be taken into consideration by
scaling the facility cost and apply the primal dual method to the scaled instance.
Therefore, we have the following algorithm.

Let λ ∈ (1/3, 1) be a constant to be explicitly determined later.

1. For each facility location i ∈ F , the facility cost is scaled to f ′
i = λfi.

2. Apply the primal dual method on the scaled instance.

Let OPT = (x̄, ȳ, z̄) be an optimal solution to the integer program IP with
the original facility costs. And let F̄ , C̄, P̄ be the facility cost, connection cost,
and rejecting penalties of solution (x̄, ȳ, z̄).

Notice that the facility cost only appears in the objective function in the
linear program LP − PRIMAL. Thus, a feasible solution (x̄, ȳ, z̄) to LP −
PRIMAL with the original facility costs is also a feasible solution to LP −
PRIMAL with the scaled facility costs, and vice versa. Let F̄ ′, C̄′, P̄ ′ be the
facility cost, connection cost, and rejecting penalties of solution (x̄, ȳ, z̄) in the
scaled instance. It is easy to see that

F̄ ′ = λF̄ , C̄′ = C̄, P̄ ′ = P̄ . (12)

Let S = (x′, y′, z′) be the solution returned by the primal-dual method ap-
plied to the scaled instance. Let F ′, C′, P ′ be the facility cost, connection cost,
and rejecting penalties of solution in the scaled instance. Let F , C, P be the
facility cost,connection cost, and rejecting penalties of solution (x′, y′, z′) in the
original instance. It is easy to see that

F ′ = λF, P ′ = P,C′ = C. (13)

648 Guang Xu and Jinhui Xu

Lemma 2. 3λF + P + C ≤ 3(λF̄ + P̄ + C̄).

Proof. Let α′
j , j ∈ C be the resulted dual variables after applying the primal-dual

method to the scaled instance. From Lemma 1, we know that 3F ′ +C′ + 3P ′ ≤∑
j∈C α

′
j . From the weak duality theorem, we know that the primal objective

value of a feasible solution to the linear program LP −PRIMAL is no less than
any dual objective value. Thus, we have

∑
j∈C α

′
j ≤ F̄ ′+ P̄ ′+ C̄′. Combining the

above two inequalities, we have 3F ′ +C′ + 3P ′ ≤ 3(F̄ ′ + P̄ ′ + C̄′). Therefore we
have 3F ′ + P ′ + C′ ≤ 3(F̄ ′ + P̄ ′ + C̄′). The lemma follows if we plug equations
(12) and (13) into the above inequality.

2.4 Further Improvement by Local Search Technique

In this subsection, we will show how to further improve the quality of solution
S by iteratively adding facilities to the existing initial solution. From Lemmas 1
and 2 we know that, to further improve the performance ratio, we need to reduce
the connection cost (or equivalently increase the coefficient of C in the inequal-
ity 3F + 3P + C ≤ 3

∑
j∈C αj). To reach this goal, our main idea is to trade

connection cost with facility cost by iteratively opening more facilities. Clearly,
adding additional facilities into the solution of the scaled instance returned by
the primal-dual method increases the facility cost, and meanwhile decreases the
connection cost and rejecting penalties. Thus when the increase on the facil-
ity cost by adding some additional facilities is less than the decrease on the
connection cost and rejecting penalties, the quality of solution is improved and
consequently the performance ratio is reduced. Hence, to make this approach
work, we only need to answer the following questions.

1. What is the condition under which there will always exist some facility whose
addition to the solution improves the quality?

2. If multiple facilities exist for improving the quality of solution, what would
be the best order for selecting those facilities so as to minimize the total
cost?

3. What is the final performance ratio after adding all possible facilities?

Below we discuss our idea for each of the three questions. We start with
question 1. Let (x′, y′, z′) be the solution generated by the primal-dual method
on the scaled instance. Then we have the following lemma.

Lemma 3. If (C + P) ≤ (F̄ + P̄ + C̄), then (F + P + C) ≤ (2 − 1
3λ)F̄ + (1 +

2
3λ)(P̄ + C̄).

Proof. We rewrite the total cost (F + P + C) as 3λF+P+C
3λ + (1 − 1

3λ)(P + C).
If C + P ≤ F̄ + P̄ + C̄, we have (1 − 1

3λ)(P + C) ≤ (1 − 1
3λ)(F̄ + P̄ + C̄). By

Lemma 2, we have 3λF+P+C
3λ ≤ 3(λF̄+P̄+C̄)

3λ . Adding the above two inequalities
together, we have

(F + P + C) ≤ (2 − 1
3λ

)F̄ + (1 +
2
3λ

)(P̄ + C̄).

An Improved Approximation Algorithm 649

It is easy to see that the performance ratio could be better than 2 for some
λ > 1/3 if the inequality (C +P) ≤ (F̄ + C̄ + P̄) holds. In fact, the performance
ratio could even be 5/3 if set λ = 1. The best choice for λ depends also on other
cases.

Lemma 4. If there is a feasible solution S to the uncapacited facility location
problem with penalties with facility cost FS, rejecting penalties PS, and connec-
tion cost CS such that (PS + CS) > (F̄ + P̄ + C̄), then there exists a facility
whose addition to S improves the solution.

Proof. First for each client j, we add into both S and the optimal solution OPT
a dummy facility, ipenalty , with facility cost 0 and distance pj/dj . Let σ(j) and
σ̄(j) be j’s closest facility in S and OPT respectively. Note that σ(j) and σ̄(j)
might be ipenalty.

Let gain(i) be the change of the total cost caused by adding facility i into the
solution S. Below we first determine the value of gain(i). Clearly adding facility
i into the solution increases the facility cost by fi. For each client j connected
to a facility σ(j) in solution S, if cij ≤ cσ(j)j , we re-connect j to the newly
opened facility i and decrease the connection cost by dj(cσ(j)j − cij); Otherwise
the connection of j remains the same and has no change on the connection cost.
Since this is the best way to reconnect clients after the addition of facility i, we
have gain(i) =

∑
j∈C:cij≤cσ(j)j

dj(cσ(j)j − cij)− fi.

Next we show the existence of facility i with gain(i) > 0 when (PS + CS) >
(F̄ + P̄ + C̄). We prove this by comparing the above approach we used for
re-connecting clients to an added facility i with an imaginary approach which
relates the current solution S to an optimal solution OPT . In the imaginary
approach, for each added facility i to S, if i ∈ OPT , it re-connects a client j to
i if and only if σ̄(j) = i, regardless of the sign of cσ(j)j − cij . Thus, gain′(i) =∑

j∈C:σ̄(j)=i dj(cσ(j)j − cij)− fi for each i ∈ OPT .
We claim that gain(i) ≥ gain′(i) for each i ∈ OPT . This is because if

σ̄(j) = i and cσ(j)j − cij < 0, it contributes a negative term to gain′(i) and a
zero to gain(i). If σ̄(j) = i and cσ(j)j − cij ≥ 0, it contributes the same term to
both gain′(i) and gain(i). Also gain(i) may contain some positive terms from
those clients whose σ̄(j) is not equal to i. Thus, gain(i) contains more positive
terms and less negative terms than gain′(i). Therefore, gain(i) ≥ gain′(i) for
each i ∈ OPT .

Summing over all facilities in OPT , we have∑
i∈OPT gain(i) ≥

∑
i∈OPT gain′(i)

≥
∑

i∈OPT

∑
j∈C:σ̄(j)=i dj(cσ(j)j − cij)− fi

=
∑

j∈C djcσ(j)j −
∑

j∈C djcσ̄(j)j −
∑

i∈OPT fi

= CS + PS − C̄ − P̄ − F̄ .

Thus, we obtain the following estimation for gain(i)∑
i∈OPT

gain(i) ≥ CS + PS − C̄ − P̄ − F̄ . (14)

650 Guang Xu and Jinhui Xu

From the assumption of the lemma, we know that CS +PS − C̄− P̄ − F̄ > 0.
Hence, we have that

∑
i∈OPT gain(i) > 0 which implies that there is at least

one facility i with gain(i) > 0.

The above lemma tells us that we can always find a facility whose addition
to S improve the quality of solution unless PS +CS ≤ P̄ + C̄+ F̄ . This suggests
us to iteratively add unopened facility to the solution S so as to improve the
performance ratio.

Next we discuss our idea for Question 2. That is, when multiple facilities exist
for improving the quality of solution, what would be the order for adding them?
Since we also want to bound the facility cost when we are adding facilities, a
natural way is to consider the following simple greedy approach. The greedy ap-
proach considers the ratio of gain(i) over fi for each unopened facilities and adds
the one with the largest gain ratio (gain(i)/fi) first. As we will show later that
another advantage of using the greedy approach is that it enables us to derive a
good estimation for the cost of the final solution by using inequality (14). The
above local search heuristic can be summarized by the following pseudocode.
Greedy-Adding(S)
1 r ← 0
2 for each i ∈ F
3 do if gain(i)/fi > r
4 then r ← gain(i)/fi

5 candidate← i
6 if r > 0
7 then add candidate to S
8 Greedy-Adding(S)
9 else return

Next we discuss our idea for Question 3. The following lemma bounds the
total cost of the final solution after executing the above heuristic.

Lemma 5. Starting from a solution (x′, y′, z′) with C + P > C̄ + P̄ + F̄ , the
above greedy algorithm returns a solution with cost no more than F + F̄ + P̄ +
C̄ + F̄ ln(1 + (C + P − F̄ − P̄ − C̄)/F̄).

Proof. Let Ck, Pk, Fk be the connection cost, rejecting penalties, and facility
cost after finishing the kth iteration. Since we start with the solution (x′, y′, z′),
we have C0 = C, P0 = P , and F0 = F . Let m be the smallest integer such that
Cm + Pm ≤ C̄ + P̄ + F̄ .

By Lemma 4, we know that when the above algorithm stops, Ck + Pk ≤
C̄+P̄+F̄ , since otherwise there will be at least one facility i with gain(i)/fi > 0.
By the definition of m, we know that to prove this lemma, it is sufficient to show
Fm + Cm + Pm ≤ F + F̄ ln(1 + (C + P − F̄ − P̄ − C̄)/F̄) + F̄ + P̄ + C̄.

First we note that if C + P > C̄ + P̄ + F̄ , then F̄ > 0. This is because if
F̄ = 0, then C + P = C̄ + P̄ + F̄ . In this case, all clients are rejected.

By the definition of F̄ and inequality (14), we have
∑

i∈OPT fi = F̄ and∑
i∈OPT gain(i) ≥ P + C − F̄ − P̄ − C̄. By the pigeon hole principle, we know

An Improved Approximation Algorithm 651

that there exists at least one facility i ∈ OPT with gain(i)/fi > (Pk−1 +Ck−1−
F̄−P̄−C̄)/F̄ in the kth iteration. Since the greedy algorithm adds a facility with
the largest gain ratio among all facilities of F in the kth iteration for 1 ≤ k ≤ m,
in the k-th iteration the added facility has a gain ratio no less than (Pk−1+Ck−1−
F̄ − P̄ − C̄)/F̄ . That means (Ck−1 +Pk−1−Ck−Pk−Fk +Fk−1)/(Fk−Fk−1) ≥
(Pk−1 +Ck−1− F̄ − P̄ − C̄)/F̄ , for 1 ≤ k ≤ m. Rearranging the above inequality,
we have Fk − Fk−1 ≤ (Ck−1+Pk−1−Ck−Pk)

1+(Ck−1+Pk−1−C̄−P̄−F̄)/F̄
, 1 ≤ k ≤ m. Summing over all

1 ≤ k ≤ m, we obtain Fm − F0 ≤
∑

1≤k≤m
Ck−1+Pk−1−Ck−Pk

1+(Ck−1+Pk−1−C̄−P̄−F̄)/F̄
. Thus, we

have Fm + Cm + Pm ≤ F0 +
∑

1≤k≤m
Ck−1+Pk−1−Ck−Pk

1+(Ck−1+Pk−1−C̄−P̄−F̄)/F̄
+ Cm + Pm.

If we treat the right hand side of the above inequality as a function of variables
Cm and Pm and treat Ck, Pk, C̄, P̄ , and F̄ as constants for 1 ≤ k ≤ m − 1,
the right hand side is a linear function of Cm and Pm. And the term involving
Cm + Pm is (1 − 1

1+(Cm−1+Pm−1−C̄−P̄−F̄)/F̄
)(Cm + Pm). From the defination

of m, we know that Cm−1 + Pm−1 − C̄ − P̄ − F̄ > 0. Thus the coefficient of
Cm + Pm is positive and the right hand side assume its maximum value when
Cm + Pm = F̄ + C̄ + P̄ for all variables with Cm + Pm ≤ F̄ + C̄ + P̄ . Since we
only want to get an upper bound for Fm +Cm +Pm, we can just use the equality
Cm + Pm = F̄ + C̄ + P̄ .

We rewrite Ck−1+Pk−1−Ck−Pk

1+(Ck−1+Pk−1−C̄−P̄−F̄)/F̄
as F̄ (1− 1+(Ck+Pk−C̄−P̄−F̄)/F̄

1+(Ck−1+Pk−1−C̄−P̄−F̄)/F̄
). Us-

ing the inequality 1− x ≤ − lnx for x > 0, and replacing x by
1+(Ck+Pk−C̄−P̄−F̄)/F̄

1+(Ck−1+Pk−1−C̄−P̄−F̄)/F̄
, we have

1− 1+(Ck+Pk−C̄−P̄−F̄)/F̄

1+(Ck−1+Pk−1−C̄−P̄−F̄)/F̄
≤ − ln(1+(Ck+Pk−C̄−P̄−F̄)/F̄

1+(Ck−1+Pk−1−C̄−P̄−F̄)/F̄
)

= ln(1+(Ck−1+Pk−1−C̄−P̄−F̄)/F̄

1+(Ck+Pk−C̄−P̄−F̄)/F̄
).

Note that 1+(Ck−1+Pk−1−C̄−P̄−F̄)/F̄

1+(Ck+Pk−C̄−P̄−F̄)/F̄
is always positive since Ck + Pk > C̄ +

F̄ + P̄ for 1 ≤ k ≤ m−1 and we use equality Cm +Pm = C̄+ P̄ + F̄ . Combining
the above inequalities, we have

Fm − F0 ≤ F̄
∑m

k=1 ln(1+(Ck−1+Pk−1−C̄−P̄−F̄)/F̄

1+(Ck+Pk−C̄−P̄−F̄)/F̄
)

= F̄
∑m

k=1{ln(1 + (Ck−1 + Pk−1 − C̄ − P̄ − F̄)/F̄)
− ln(1 + (Ck + Pk − C̄ − P̄ − F̄)/F̄)}

≤ F̄ ln(1 + (C0 + P0 − C̄ − P̄ − F̄)/F̄)

where the last inequality is obtained by using the equality Cm+Pm = F̄+C̄+P̄ .
Hence, we have Fm + Pm + Cm ≤ F̄ ln(1 + (C0 + P0 − C̄ − P̄ − F̄)/F̄) + F0 +
Pm + Cm ≤ F̄ ln(1 + (C0 + P0 − C̄ − P̄ − F̄)/F̄) + F0 + C̄ + P̄ + F̄ , and the
lemma follows.

With the above lemma, we are ready to analyze the performance ratio of the
whole algorithm. Below is the two main steps of our algorithm.

1. Apply the primal-dual method on facility location problem with penalties
with the scaled facility cost. Let S be the returned solution.

652 Guang Xu and Jinhui Xu

2. Run the iterative greedy heuristic Greedy-Adding on S and return the ob-
tained solution.

Theorem 1. There is an O(n3)-time 1.8526-approximation algorithm for the
uncapacited facility location problem with penalties.

Proof. Let F be the facility cost, C be the connecting cost, and P be the rejecting
penalties of the solution S obtained in the first phase. Let F f be the facility cost,
Cf be the connecting cost, and P f be the rejecting penalties of the final solution.
Depending on the solution S, we have two cases to consider: (1) C+P ≤ F̄+C̄+P̄
(2) or C + P > F̄ + C̄ + P̄ .

In case (1), the total cost satisfies F +P +C ≤ (2− 1
3λ)F̄ + (1+ 2

3λ)(P̄ + C̄)
by the Lemma 3. The cost of the final solution after running Greedy-Adding on
S can not be worse than than (2− 1

3λ)F̄ + (1 + 2
3λ)(P̄ + C̄) since the algorithm

adds a facility with a positive gain in each iteration.
For case (2), Lemma 5 ensures that the total cost of the final solution pro-

duced by the greedy heuristic satisfies F f +P f +Cf ≤ F + F̄ + C̄+ P̄ + F̄ ln(1+
(C+P−F̄−P̄−C̄)/F̄). By Lemma 2, we know that C+P ≤ 3λF̄−3λF+3C̄+3P̄ .
Combining the two inequalities, we get that F f + P f +Cf ≤ F + F̄ + C̄ + P̄ +
F̄ ln((3λF̄ − 3λF + 2C̄ + 2P̄)/F̄). For any given instance, F̄ , C̄, and P̄ are fixed
and can be treated as constant (even though we do not know their values). The
right hand side of the above inequality can be viewed as a function of F which
achieves its maximum (1 + ln(3λ))F̄ + (1 + 2

3λ)(C̄ + P̄) at F = 2
3λ(C̄ + P̄).

Therefore, the cost of the final solution is bounded by

max{(2− 1
3λ

)F̄ + (1 +
2
3λ

)(P̄ + C̄), (1 + ln(3λ))F̄ + (1 +
2
3λ

)(C̄ + P̄)}

for both cases. Since 1 + ln(3λ) > 2− 1
3λ for λ > 1/3, we have

F f + Cf + P f ≤ (1 + ln(3λ))F̄ + (1 + 2
3λ)(C̄ + P̄)

≤ max{1 + ln(3λ), 1 + 2
3λ}(F̄ + C̄ + P̄).

Taking λ as the root of equation ln(3λ) = 2/3λ, which is λ 1 0.7192, the final
cost is bounded by 1.8526(F̄ + P̄ + C̄).

As for the running time, the primal dual method in the first phase takes
O(n2 logn) time [3], where n = |F| + |C|. The Greedy-Adding heuristic in the
second phase takes at most n iterations, and each iteration takes no more than
O(n2) time since each gain(i), i ∈ F can be computed in O(n) time. The total
running time is thus bounded by O(n3).

References

1. V. Arya, N. Garg, A. Meyerson, K. Munagala, and V. Pandit, “Local Search Heuris-
tics for k-median and Facility Location Problems,” Proc. 33rd ACM Symposium
on Theory of Computing, pages 21-29, 2001.

An Improved Approximation Algorithm 653

2. M. Charikar and S. Guha, “Improved combinatorial algorithms for facility location
and k-median problems,” Proc. 39th IEEE Symposium on Foundations of Com-
puter Science, pages 378-388, 1999.

3. M. Charikar, S. Khuller, D. Mount, and G. Narasimhan, “Algorithms for Facility
Location Problems with Outliers,” Proc. Symposium on Discrete Algorithms, pages
642-651, 2001.

4. F. Chudak and D. Shmoys, “Improved approximation algorithms for a capacitated
facility location problem,” Proc. 10th Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 875-876, 1999.

5. F. Chudak and D. P. Williamson, “Improved Approximation Algorithms for Capac-
itated Facility Location Problems,” Lecture Notes in Computer Science, Vol. 1610,
pages 99-113, 1999.

6. S. Guha and S. Khuller, “Greedy strikes back: Improved facility location algo-
rithms,” J. Algorithms, Vol. 31, No. 1, pages 228-248, 1999.

7. S. Guha and A. Meyerson and K. Munagala, “A constant factor approximation
algorithm for the fault-tolerant facility location problem,” J. Algorithms , Vol. 48,
No. 2, pages 429-440, 2003.

8. K. Jain, and V. Vazirzni, “Approximation Algorithms for Metric Facility Location
and k-Median Problems Using the Primal-Dual Schema and Lagrangian Relax-
ation,” J. ACM, Vol. 48, No. 2, pages 274-296, 2001.

9. K. Jain, M. Mahdian, E. Markakis, A. Saberi, and V. Vazirani, “Greedy facility
location algorithms analyzed using dual fitting with factor-revealing LP,” J. ACM,
Vol. 50, No. 6, pages 795-824, 2003.

10. M. R. Korupolu, C. G. Plaxton, and R. Rajaraman, “Analysis of a local search
heuristic for facility location problems,” Proc. 9th Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 1-10, 1998.

11. J. -H. Lin and J. S. Vitter, “ε-approximation with minimum packing constraint
violation,” Proceddings of the 24th Annual ACM Symposium on Theory of Com-
puting, pages 771-782, 1992.

12. D.B. Shmoys, “Approximation algorithms for facility location problem,” Approx-
imation Algorithms for Combinatorial Optimization, Lecture Notes in Computer
Science 1913, (K. Jansen and S. Khuller, eds.), Springer, Berlin, pages 27-33, 2000.

13. D. B. Shmoys, É. Tardos, and K. Aardal, “Approximation algorithms for facility
location problems,” Proc. 29th ACM Symposium on Theory of Computing, pages
265-274, 1997.

14. G. Xu and J. Xu, “An LP Rounding Algorithm for Approximating Uncapacitated
Facility Location Problem with Penalties,” Inform. Proc. Lett., Vol. 94, No. 3,
pages 119-123, 2005.

15. J. Zhang, “Approximating the two-level facility location problem via a quasi-greedy
approach,” Proc. 15th Annual ACM-SIAM Symposium on Discrete Algorithms ,
pages 808 - 817, 2004.

The Reverse Greedy Algorithm
for the Metric K-Median Problem

Marek Chrobak1,�, Claire Kenyon2, and Neal E. Young1

1 Department of Computer Science, University of California, Riverside, CA 92521
2 Computer Science Department, Brown University, Providence, RI 02912

Abstract. The Reverse Greedy algorithm (RGreedy) for the k-median
problem works as follows. It starts by placing facilities on all nodes. At
each step, it removes a facility to minimize the resulting total distance
from the customers to the remaining facilities. It stops when k facilities
remain. We prove that, if the distance function is metric, then the approx-
imation ratio of RGreedy is between Ω(log n/ log log n) and O(log n).

Keywords: Analysis of algorithms, approximation algorithms, online
algorithms.

1 Introduction

An instance of the metric k-median problem consists of a metric space X =
(X, c), where X is a set of points and c is a distance function (also called the
cost) that specifies the distance cxy ≥ 0 between any pair of nodes x, y ∈ X .
The distance function is reflexive, symmetric, and satisfies the triangle inequality.
Given a set of points F ⊆ X , the cost of F is defined by cost(F) =

∑
x∈X cxF ,

where cxF = minf∈F cxf for x ∈ X . Our objective is to find a k-element set
F ⊆ X that minimizes cost(F).

Intuitively, we think of F as a set of facilities and of cxF as the cost of serving
a customer at x using the facilities in F . Then cost(F) is the overall service cost
associated with F . The k-element set that achieves the minimum value of cost(F)
is called the k-median of X .

The k-median problem is a classical facility location problem and has a vast
literature. Here, we review only the work most directly related to this paper.
The problem is well known to be NP-hard, and extensive research has been done
on approximation algorithms for the metric version. Arya et al. [1] show that the
optimal solution can be approximated in polynomial time within ratio 3 + ε, for
any ε > 0, and this is the smallest approximation ratio known. Earlier, several
approximation algorithms with constant, but somewhat larger approximation
ratios appeared in the works by Charikar et al. [3], Charikar and Guha [2], and
Jain and Vazirani [8]. Jain et al. [7] show a lower bound of 1 + 2/e on the
approximation ratio for this problem (assuming P�=NP).

In the online version of the k-median problem, studied by Mettu and Plaxton
[10], the algorithm is not given k in advance. Instead, requests for additional
� Research supported by NSF Grant CCR-0208856.

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 654–660, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

The Reverse Greedy Algorithm for the Metric K-Median Problem 655

facilities arrive over time. When a request arrives, a new facility must be added to
the existing set. In other words, the algorithm computes an increasing sequence
of facility sets F1 ⊂ F2 ⊂ · · · ⊂ Fn, where |Fk| = k for all k. The algorithm
presented by Mettu and Plaxton [10] guarantees that cost(Fk) approximates the
optimal k-median cost within a constant factor (independent of k.) They also
show that in this online setting no algorithm can achieve approximation ratio
better than 2− 2/(n− 1).

The naive approach to the median problem is to use the greedy algorithm:
Start with F0 = ∅, and at each step k = 1, . . . , n, let Fk = Fk−1 ∪ {fk}, where
fk ∈ X −Fk−1 is chosen so that cost(Fk) is minimized. Clearly, this is an online
algorithm. It is not difficult to show, however, that its approximation ratio is
Ω(n).
Reverse Greedy. Amos Fiat [5] proposed the following alternative idea. In-
stead of starting with the empty set and adding facilities, start with all nodes
being facilities and remove them one by one in a greedy fashion. More for-
mally, Algorithm RGreedy works as follows: Initially, let Rn = X . At step
k = n, n − 1, . . . , 2, let Rk−1 = Rk − {rk}, where rk ∈ Rk is chosen so that
cost(Rk−1) is minimized. For the purpose of online computation, the sequence
of facilities can be precomputed and then produced in order (r1, r2, . . . , rn).

Fiat [5] asked whether RGreedy is an O(1)-approximation algorithm for
the metric k-median problem. In this note we present a nearly tight analysis of
RGreedy by showing that its approximation ratio is between Ω(log n/ log logn)
and O(log n). Thus, although its ratio is not constant, RGreedy performs much
better than the forward greedy algorithm.

2 The Upper Bound

Fix k and let M be the optimal k-median of X . Consider a step j of RGreedy
(when we remove rj), for j > k. Denote by Q the set of facilities in Rj that serve
M . More specifically, Q is the smallest subset of Rj such that cμQ = cμRj for all
μ ∈M . We estimate first the incremental cost in step j:

cost(Rj−1)− cost(Rj) ≤ min
r∈Rj−Q

cost(Rj − {r})− cost(Rj) (1)

≤ 1
|Rj −Q|

∑
r∈Rj−Q

[cost(Rj − {r})− cost(Rj)] (2)

≤ 1
j − k

∑
r∈Rj−Q

[cost(Rj − {r})− cost(Rj)] (3)

≤ 1
j − k

[cost(Q)− cost(Rj)] (4)

≤ 2
j − k

cost(M). (5)

The first inequality follows from the definition of Rj−1, in the second one we
estimate the minimum by the average, and the third one follows from |Q| ≤ k.
We now justify the two remaining inequalities.

656 Marek Chrobak, Claire Kenyon, and Neal E. Young

Inequality (4) is related to the the super-modularity property of the cost
function. We need to prove that∑

r∈R−Q

[cost(R− {r})− cost(R)] ≤ cost(Q)− cost(R),

where R = Rj . To this end, we examine the contribution of each x ∈ X to both
sides. The contribution of x to the right-hand side is exactly cxQ − cxR. On the
left-hand side, the contribution of x is positive only if cxQ > cxR and, if this is
so, then x contributes only to one term, namely the one for the r ∈ R−Q that
serves x in R (that is, cxr = cxR). Further, this contribution cannot be greater
than cxQ− cxR because Q ⊆ R−{r}. (Note that we do not use here any special
properties of Q and R. This inequality holds for any Q ⊂ R ⊆ X .)

We now prove (5). Denote again R = Rj . For any x ∈ X , choose r ∈ R and
μ ∈ M that serve x in R and M , respectively. In other words, cxR = cxr and
cxM = cxμ. We have cμr ≥ cμQ, by the definition of Q. Thus cxQ ≤ cxμ + cμQ ≤
cxμ + cμr ≤ 2cxμ + cxr = 2cxμ + cxR. Now (5) follows by summation over all
x ∈ X .

We have thus proved that cost(Rj−1) − cost(Rj) ≤ 2
j−k cost(M). Summing

up over j = n, n− 1, . . . , k + 1, we obtain our upper bound.

Theorem 1. The approximation ratio of Algorithm RGreedy in metric spaces
is at most 2Hn−k = O(log n).

3 The Lower Bound

In this section we construct an n-point metric space X where, for k = 1, the
ratio between the cost of the RGreedy’s facility set and the optimal cost is
Ω(log n/ log logn). (For general k, a lower bound of Ω(log(n/k)/ log log(n/k))
follows easily, by simply taking k copies of X .)

To simplify presentation, we allow distances between different points in X to
be 0. These distances can be changed to some appropriately small ε > 0 without
affecting the asymptotic ratio. Similarly, whenever convenient, we will break the
ties in RGreedy in our favor.

Let T̂ be a graph that consists of a tree T with root ρ and a node μ connected
to all leaves of T . T itself consists of h levels numbered 1, 2, . . . , h, with the leaves
at level 1 and the root ρ at level h. Each node at level j > 1 has (j+1)3 children
in level j − 1.

To construct X , for each node x of T at level j we create a cluster of wj = j!3

points (including x itself) at distance 0 from each other. Node μ is a 1-point
cluster. All other distances are defined by shortest-path lengths in T̂ .

First, we show that, for k = 1, RGreedy will end up with the facility at
ρ. Indeed, RGreedy will first remove all but one facility from each cluster.
Without loss of generality, let those remaining facilities be located at the nodes
of T̂ , and from now on we will think of wj as the weight of each node in layer j.
At the next step, we break ties so that RGreedy will remove the facility from μ.

The Reverse Greedy Algorithm for the Metric K-Median Problem 657

We claim that in any subsequent step t, if j is the first layer that has a
facility, then RGreedy has a facility on each node of T in layers j+1, . . . , h. To
prove it, we show that this invariant is preserved in one step. If a node x in layer
j has a facility then, by the invariant, this facility serves all the nodes in the
subtree Tx of T rooted at x, plus possibly μ (if x has the last facility in layer j.)
What facility will be removed by RGreedy at this step? The cost of removing
any facility from layers j + 1, . . . , h is at least wj+1. If we remove the facility
from x, all the nodes served by x can switch to the parent of x, so the increase
in cost is bounded by the total weight of Tx (possibly plus one, if x serves μ.)
Tx has (j + 1)!3/(i+ 1)!3 nodes in each layer i ≤ j. So the total weight of Tx is

w(Tx) =
j∑

i=1

wi · (j + 1)!3/(i+ 1)!3

= (j + 1)!3
j∑

i=1

(i+ 1)−3

< (j + 1)!3

= wj+1,

where the inequality above follows from
∑j

i=1(i + 1)−3 ≤
∑∞

i=2 i
−2 < 1. Thus

removing x increases the cost by at most w(Tx) + 1 ≤ wj+1, so RGreedy will
remove x or some other node from layer j in this step, as claimed. Therefore,
overall, after n− 1 steps, RGreedy will be left with the facility at ρ.

By the previous paragraph, the cardinality (total weight) of X is n = w(T)+
1 ≤ (h + 1)!3, so h = Ω(log n/ log logn). The optimal cost and the cost of
RGreedy are, respectively,

cost(μ) =
h∑

i=1

i · wi · (h+ 1)!3/(i+ 1)!3

= (h + 1)!3
h∑

i=1

i(i+ 1)−3

≤ (h + 1)!3
∞∑

i=2

i−2

< (h + 1)!3, and

cost(ρ) =
h∑

i=1

(h− i) · wi · (h+ 1)!3/(i+ 1)!3

= (h + 1)!3
h∑

i=1

(h− i)(i + 1)−3

≥ (h− 1)(h+ 1)!3/8,

where in the last step we estimate the sum by the first term. Thus the ratio is
cost(ρ)/cost(μ) ≥ (h− 1)/8 = Ω(log n/ log logn).

658 Marek Chrobak, Claire Kenyon, and Neal E. Young

In the argument above we considered only the case k = 1. More generally,
one might characterize the performance ratio of the algorithm as a function of
both n and k. Any lower bound for k = 1 implies a lower bound for larger k
by simply taking k (widely separated) copies of the metric space. Therefore we
obtain:

Theorem 2. The approximation ratio of Algorithm RGreedy in metric spaces
is not better than Ω(log(n/k)/ log log(n/k)).

4 Technical Observations

We have shown an O(log n) upper bound and an Ω(logn/ log logn) lower bound
on the approximation ratio of RGreedy for k-medians in metric spaces. Next
we make some observations about what it might take to improve our bounds.

Comments on the Upper Bound. We focus on the case k = 1. In the upper
bound proof in Section 2 we show that the incremental cost of RGreedy when
removing rj from Rj to obtain Rj−1 is at most 2cost(μ)/(j − 1). The proof of
that fact (inequalities (1) through (5)) uses very little information about the
structure of Rj . In fact, that proof shows that for any set R of size j,

min
r

cost(R− {r})− cost(R) ≤ 2cost(μ)
j − 1

. (6)

Next we describe a set R of size j in a metric space for which this latter bound
is tight. The metric space is defined by the following weighted graph:

x ix 2x 1 x j

.

2 2

y 1 y 2 y i y j

.

2 1

μ
1

(weight w)

R

11
1

The space has points μ, x1, . . . , xj , y1, . . . , yj , where the points xi have weights
w, for some large integer w. (In other words, each xi represents a cluster of w
points at distance 0 from each other.) All other points have weight 1. Point μ is
connected to each xi by an edge of length 1. Each xi is connected to yi by an
edge of length 1, and to each yl, for l �= i, by an edge of length 2.

For k = 1, the optimal cost is cost(μ) = j(w + 2). Now consider R =
{y1, . . . , yj}. Removing any yi ∈ R increases the cost by w ≈ cost(μ)/j. Thus,
for this example, inequality (6) is tight, up to a constant factor of about 2.

The Reverse Greedy Algorithm for the Metric K-Median Problem 659

Of course, RGreedy would not produce the particular set R assumed above
for Rj . Instead, RGreedy would leave a facility in each cluster xi. Also, this
example only shows a single iteration where the incremental cost matches the
upper bound. (It is possible to modify this example to show that this bound
can be tight in any constant number of steps, but the constant factor by which
the bound is off increases with the number of steps.) Nonetheless, the example
demonstrates that to improve the upper bound it is necessary to consider some
information about the structure of Rj (due to the previous steps of RGreedy).
Perhaps one could use an amortized analysis, bound the incremental cost of
groups of steps, or use an indirect charging scheme. It may also be possible to
use a better bound on cost(M) (e.g. by linear programming duality.)

Comments on the Lower Bound. We can show that the lower-bound construc-
tions similar to that in Section 3 are unlikely to give any improvement. The
formal statement of this claim is rather technical, and is included here only for
the benefit of readers who might be interested in continuing this work.

Fix a metric space X with n points. Let μ be the 1-median of X , and assume
(by scaling) that its cost is cost(μ) = n/2. Let B be the unit ball around μ, that
is the set of points at distance at most 1 from μ. Note that |B| ≥ n/2.

For i ≥ 1, define Qi to be the points x ∈ X such that i− 1 ≤ cxμ ≤ i, and
there is a time when x is used by RGreedy as a facility for some point in B.
(In particular, Q1 = B.) Let h be the maximum index for which Qh �= ∅. Define
ti to be the last time at which RGreedy had a facility in Q1 ∪ Q2 ∪ · · · ∪ Qi,
and let mi be the number of points served by Qi at time ti−6. (The value of 6
is not critical; any c ≥ 6 will work, with some minor modifications.)

Lemma 1. Suppose that
∑h

i=10 imi = O(n). Then, for k = 1, RGreedy’s
approximation ratio is O(log n/ log logn).

Proof sketch: We will show that h = O(log n/ log logn). Since the facility
computed by RGreedy at step n is at distance at most h from μ, this will
imply the lemma.

Consider any i ≤ h − 9. One can show that in steps ti, ti + 1, . . . , ti+3,
RGreedy’s cost to serve B increases by at least n/2, while all facilities that
serve B at steps ti + 1, . . . , ti+3 are in Qi+1 ∪ ... ∪ Qi+5. Thus, at some step t′

with ti ≤ t′ ≤ ti+3, RGreedy’s incremental cost is at least (n/2)/(1 + |Qi+1 ∪
Qi+2 ∪ · · · ∪Qi+5|).

Suppose Qi+9 �= ∅. Before step t′, deleting all facilities in Qi+9 would have
increased the cost by O(imi+9), so for some facility in Qi+9 its deletion would
have increased the cost by O(imi+9/|Qi+9|). Since RGreedy did not delete this
facility at time t′, we have (by this and the previous paragraph)

(n/2)/(1 + |Qi+1 ∪Qi+2 ∪ · · · ∪Qi+5|) = O(imi+9/|Qi+9|).

Rewriting and summing the above over i (including now those i for which Qi+9

is empty),

660 Marek Chrobak, Claire Kenyon, and Neal E. Young

h−9∑
i=1

|Qi+9|
1 + |Qi+1 ∪Qi+2 ∪ · · · ∪Qi+5|

= O
(1
n

h−9∑
i=1

imi+9

)

= O
(1
n

h∑
i=10

imi

)
= O(1).

From this and
∑h

i=1 |Qi| ≤ n one can show that h = O(log n/ log logn). �

Note that lemma applies to the space used in Section 3. In this case, each
set Qi consists of the nodes in T at level i, and mi = (h + 1)!3/(i + 1)3 is the
total weight of level i so, indeed,

∑h
i=1 imi = O(h!3) = O(n). When RGreedy

is applied in this space, at each time ti, the facilities that serve the nodes at
distance at most i from μ are concentrated in two layers. The lemma indicates
that in order to improve the bound, one needs to design an example where these
facilities are always distributed more or less uniformly across the remaining
facilities.

Acknowledgments

We would like to thank Amos Fiat, Christoph Dürr, Jason Hartline, Anna Karlin,
and John Noga for useful discussions.

References

1. V. Arya, N. Garg, R. Khandekar, K. Munagala, and V. Pandit. Local search heuris-
tic for k-median and facility location problems. In Proc. 33rd ACM Symposium on
Theory of Computing, pages 21–29, 2001.

2. M. Charikar and S. Guha. Improved combinatorial algorithms for the facility lo-
cation and k-median problems. In Proc. 40th IEEE Symposium on Foundations of
Computer Science, pages 378–388, 1999.

3. M. Charikar, S. Guha, E. Tardos, and D. B. Shmoys. A constant-factor approx-
imation algorithm for the k-median problem. In Proc. 31st ACM Symposium on
Theory of Computing, pages 1–10, 1999.

4. U. Feige. A threshold of ln n for approximating set cover. Journal of ACM,
45(4):634–652, 1998.

5. A. Fiat. Private communication.
6. D. S. Hochbaum. Heuristics for the fixed cost median problem. Mathematical Pro-

gramming, 22:148–162, 1982.
7. K. Jain, M. Mahdian, and A. Saberi. A new greedy approach for facility location

problems. In Proc. 34th ACM Symposium on Theory of Computing, pages 731–740,
2002.

8. K. Jain and V. V. Vazirani. Approximation algorithms for metric facility location
and k-median problems using the primal-dual schema and lagrangian relaxation.
Journal of ACM, 48:274–296, 2001.

9. J.-H. Lin and J. S. Vitter. e-approximations with minimum packing constraint
violation (extended abstract). In Proc. 24th ACM Symposium on Theory of Com-
puting, pages 771–782, 1992.

10. R. Mettu and C. Plaxton. The online median problem. SIAM Journal on Comput-
ing, 32:816–832, 2003.

11. N. E. Young. K-medians, facility location, and the Chernoff-Wald bound. In Proc.
11th ACM-SIAM Symposium on Discrete Algorithms, pages 86–95, 2000.

On Approximate Balanced Bi-clustering

Guoxuan Ma, Jiming Peng�, and Yu Wei

Department of Computing and Software McMaster University
Hamilton, Ontario L8S 4K1, Canada
{mag3,pengj,weiy3}@mcmaster.ca

Abstract. We consider the balanced bi-clustering problem for a given
data set, where the number of entities in each cluster is bounded, and its
special case where the number of entities in each cluster is fixed. Several
algorithms to attack these problems are proposed. In particular, a novel
and efficient heuristic, in which we first reformulate the constrained bi-
clustering problem into a quadratic programming(QP) problem and then
try to solve it by optimization technique, is proposed. We prove that our
algorithm can provide a 2-approximate solution to the original problem.
Promising numerical results are reported.

1 Introduction

In general, clustering refers to the problem of partitioning a given set S =
{s1, · · · , sn} into several groups based on some similarity measurement. Clus-
tering has many important applications in various areas such as image seg-
mentation, object recognition, information retrieval and market analysis [10].
Bi-clustering involves with partitioning the data set into two clusters. It is the
basis of the so-called hierarchical divisive clustering. Bi-clustering has been well-
studied by expertise in the communities of computational geometry and graph
theory [2, 5, 9, 11].

In many applications, finding clusters that satisfy user-specified constraints
is highly desirable. This leads to the so-called constrained clustering first intro-
duced in [3]. An important case of constraint-based clustering is the so-called
balanced clustering, where the size of each cluster is bounded. A special case of
balanced clustering is when the cardinality of every cluster is fixed. Both cases
have applications in market analysis and the design of wireless sensor networks.

Among various clustering methods, the classical K-Means is probably the
most popular and widely used. K-Means usually aims at minimizing the Sum-
of-Squared (MSSC) distance from each entity to its assigned cluster center

min
K∑

k=1

∑
si∈Ck

(si − ck)2 (1)

� This work was supported by the NSERC discovery grant # 249635-02 of Canada,
a PREA award of Ontario and the MITACS project “New Interior Point Methods
and Software for Convex Conic-Linear Optimization and Their Application to Solve
VLSI Circuit Layout Problems”.

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 661–670, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

662 Guoxuan Ma, Jiming Peng, and Yu Wei

where ck =
∑

i∈Ck
si/|Ck| is the centroid of cluster Ck and |Ck| is the cardinal-

ity of Ck. Although widely adopted in partitioning clustering, K-Means also has
some drawbacks. For example, in most cases K-means can not find the global
minimum of the measurement in the model, it is very sensitive to initializa-
tion methods and prone to be trapped at a local optimum. In case of balanced
clustering, the classical K-Means is not applicable.

In [4], Bradley et al proposed to use linear optimization technique to solve
the subproblem in their model for constrained K-Means. In the present paper, we
use the same theoretical framework as that in [4]. Nevertheless, by restricting us
to the balanced bi-clustering, we propose a simple heuristics to find the optimal
solution of the subproblem and show that our simple heuristics enjoys a lower
complexity than the approach in [4].

Secondly, we consider the issue of how to find an approximate solution to
the balanced bi-clustering. Our algorithm is based on a similar idea as in [5].
Further, for the special case where the sizes of cluster are fixed, we propose a
new method (Q-Means), which could not only give a 2-approximation bound
theoretically, but also enjoy a lower iteration bound than our algorithm for
general balanced bi-clustering. Our preliminary experiments show that our new
method outperforms the popular K-Means for the test problems in term of both
the running time and the quality of the solution.

The paper is organized as follows. In section 2, we first introduce the so-
called balanced bi-clustering problem and propose several algorithms, including
a heuristic and an approximation algorithm with an upper bound. In Section 3,
we focus on fixed size bi-clustering problem. We also construct an algorithm via
reformulating the problem to a Quadratic Programming(QP) problem. Prelimi-
nary computational results are reported in Section 4.

2 Algorithms for Balanced Bi-clustering

2.1 Improved Constrained K-Means Algorithm for Bi-clustering

Mathematically, balanced bi-clustering can be defined as the following con-
strained optimization problem:

min
xij

∑2
j=1

∑n
i=1 xij

∥∥∥∥si −
∑n

l=1
xljsl∑

n

l=1
xlj

∥∥∥∥2

(2)

S.T.
∑2

j=1 xij = 1 (i = 1, · · · , n) (3)∑n
i=1 xij ≥ τj (j = 1, 2) (4)

xij ≥ 0 (i = 1, · · · , n; j = 1, 2) (5)

The constrained K-Means algorithm proposed by Bradley et’al [4] can be de-
scribed as follows.

Constrained K-Means Algorithm
S.0 Initialization: t = 0, starting cluster centers ct1 and ct2 at iteration t;
S.1 Compute ct+1

1 and ct+1
2 at iteration t+ 1 in following 2 steps:

On Approximate Balanced Bi-clustering 663

1.1 Cluster Assignment: Given (ct1, ct2), solve the following subproblem
for xt

ij

min
xij

∑2
j=1

∑n
i=1 xij

∥∥si − ctj
∥∥2 (6)

S.T. constraints (3)-(5)

1.2 Cluster Update: Update Ct
1 and Ct

2 as follows:

ct+1
j =

⎧⎨⎩
∑

n

l=1
xljsl∑n

l=1
xlj

If
∑n

i=1 x
t
i,j > 0,

ctj Otherwise.
(7)

S.2 Stop when ct+1
j = ctj , j = 1, 2, otherwise increase t by 1 and go to step 1.

It has been showed in [4] that the constrained K-Means will eventually ter-
minate in a finite number of iterations at a cluster assignment that is locally
optimal such that xij ∈ {0, 1}. The time complexity of this algorithm depends
on the algorithm that is chosen for the sub-problem (6). In [4], fast network
simplex algorithms are suggested for solving the subproblem, which enjoys an
O(n log2 n) complexity according to [1].

In the sequel, we propose a simple heuristic for the balanced bi-clustering
problem. Given ct1 and ct2, a partition of the date set, Ct

1 and Ct
2, is derived.

If Ct
1 and Ct

2 satisfy the constraints in (6), then we are done; Otherwise, we
can use the following rounding procedure to extract a solution that satisfies
the constraints in (6). Without loss of gentility, suppose we need to move some
entities from C1 to C2:

Rounding Procedure 1
(1) For every si ∈ C1

Evaluate the function f(si) = ‖si − c2‖ − ‖si − c1‖ for si;
(2) Sort all the entities based on f(si), move (|C1| − τ1) entities which have the

least value of f(si) to C2 to satisfy the constraints.

This procedure is essentially a greedy algorithm with a O(n log n) complexity.
We now claim that the rounding procedure 1 provides us a partitioning that
satisfies the constraints in (6), which is an optimal solution to (6). To see this,
suppose to the contrary that the solution provided by the rounding procedure is
not optimal. Then, we can reduce the objective function in (6) by moving some
entities from C2 to C1, or swapping two entities in C1 and C2. This is definitely
impossible as either moving one entity from C2 to C1 or swapping two entities
in C1 and C2 will lead to an increase of the objective function.

Therefore, by using the rounding procedure 1 to solve the subproblem (6),
we can improve the constrained K-Means for balanced bi-clustering slightly. The
complexity of this algorithm is O(Tn logn), where T is the times that we run
the algorithm.

664 Guoxuan Ma, Jiming Peng, and Yu Wei

In what follows, we introduce another rounding procedure. Note that if we
move an entity si from C1 to C2, the centroids of these two clusters after the
movement will be changed to [13]

c1 ←
|C1|c1 − si

|C1| − 1
; c2 ←

|C2|c2 + si

|C2|+ 1
. (8)

Correspondingly, the objective function value becomes

v(si) =
|C2|

|C2|+ 1
‖c2 − si‖2 −

|C1|
|C1| − 1

‖c1 − si‖2 , si ∈ C1. (9)

Using the above relations, we obtain the following rounding procedure.

Rounding Procedure 2
Repeat:

For every si ∈ C1, calculate v(si) by (9);
Move the entity with minimal v(si) from C1 to C2, and update the cluster
centroids by (8);

Until the constraints in (2) are satisfied.

The complexity of this procedure is O(n2). The rounding procedure 2 can
also be applied after the constrained K-Means with rounding procedure 1 stops.
In such a situation, the rounding procedure 2 serves as a local search procedure
to further reduce the objective function. This two-phase heuristic is similar to
HK-Means [7] for unconstrained clustering.

2.2 An Approximation Algorithm

In the sequel, we consider an approximation algorithm for the balanced case.
Our algorithm follows a similar idea as in [5] for problem (1). Let us consider
the following partitioning problem:

min
C1,C2,c1∈C1,c2∈C2

∑
si∈C1

‖si − c1‖2 +
∑

si∈C2
‖si − c2‖2

S.T. |C1| ≥ τ1, |C2| ≥ τ2 (τ1 + τ2 ≤ n). (10)

In other words, we impose the requirement that the centroids of the two clusters
must be chosen from entities in the corresponding clusters. We have

Lemma 1. The constrained bi-clustering problem (10) for n entities in any fixed
dimension d can be solved in O(n3 logn) time.

Proof. We can enumerate all pair of entities in the data set as the (c1, c2) in
(10). For every fixed pair of (c1, c2), we can use the step 1 in Algorithm 3 to find
a solution for problem (10). Since every run of such a procedure takes O(n log n)
time and in total we have n(n− 1)/2 pairs, the constrained problem (10) can be
solved in O(n3 logn) time.

On Approximate Balanced Bi-clustering 665

Lemma 2. Given a data set S with si ∈ !d, centered at c = 1
n

∑
si∈S si. If a

vector s ∈ !d satisfies

‖s− c‖ ≤ ‖si − c‖, ∀i = 1, · · · , n,

then we have ∑
si∈S

‖si − s‖2 ≤ 2
∑
si∈S

‖si − c‖2.

Proof. It is straightforward to see that∑
si∈S

‖si − s‖2 =
∑
si∈S

‖si − c+ c− s‖2

=
∑
si∈S

‖si − c‖2 + |S|‖c− s‖2 +
∑
si∈S

(si − c)T (c− s)

=
∑
si∈S

‖si − c‖2 + |S|‖c− s‖2 ≤ 2
∑
si∈S

‖si − c‖2,

where the last inequality follows from the assumption in the lemma.

A direct consequence of the above lemma is

Lemma 3. The sum-of-squared error at the optimal solution of the constrained
problem (10) is at most twice as large as the sum-of-squared error at the optimal
solution of problem (2).

Proof. Let {(c1, C1), (c2, C2)} be an optimum solution of (2). For such a fixed
partition (C1, C2), we consider the following minimization problems

min
s∈Ci

‖s− ci‖ i = 1, 2. (11)

Denote the solutions of the above two problems by c′1 and c′2 respectively. From
Lemma 2, we obtain∑

s∈C1

‖c′1 − s‖2 +
∑
s∈C2

‖c′2 − s‖2 ≤ 2
∑
s∈C1

‖c1 − s‖2 + 2
∑
s∈C2

‖c2 − s‖2 (12)

Recall the fact that the partition (C1, C2) satisfy the constraints in problem (2)
and thus (c′1, C1, c

′
2, C2) is also a feasible solution of problem (10). This implies

that the sum-of-squared error of the optimal solution to problem (10) is less than
or equal to the sum-of-squared error based on the centers obtained by solving
problem (11), which further concludes the lemma.

Based on the above analysis, we propose the following algorithm.

Algorithm 1: Approximation Algorithm for Balance Bi-clustering
(1) For every pair of (c1, c2) where c1, c2 ∈ S

Use (c1, c2) as the starting centers and apply the rounding procedure 1
to solve problem (2).

666 Guoxuan Ma, Jiming Peng, and Yu Wei

(2) Output the bipartition with smallest sum-of-squares error as a solution.

Combining Lemma 1 and Lemma 3, we have

Theorem 4. For a given set of n entities, Algorithm 1 can provides a 2-appro-
ximate solution to problem (2), and the time complexity of the algorithm is
O(n3 logn).

3 Approximation Method to Fixed Size Bi-clustering

In this section, we consider the fixed size bi-clustering problem defined by

min
C1,C2

∑
si∈C1

‖si − c1‖2 +
∑

si∈C2
‖si − c2‖2

S.T. |C1|
|C2| = R (R ≥ 1) (13)

Here c1 and c2 are the geometry center of C1 and C2, respectively. For a given
data set S, let us denote its centroid by c̄, i.e., c̄ = 1

n

∑n
i=1 si. Suppose that

we partition S into two clusters (c1, C1), (c2, C2). W. l. o. g., we assume |C1| ≥
|C2| > 0. It is easy to see that (1−t)c1+tc2 = c̄ for some t ∈ (0, 1

2], or equivalently

c2 = c1 +Q(c̄− c1), Q =
1
t
. (14)

It follows:

‖si − c2‖2 = ‖si − c1‖2 +Q2‖c̄− c1‖2 − 2Q(si − c1)T (c̄− c1) (15)

For every entity si, let us define an indicator function

φ(c1, si) = Q2‖c̄− c1‖2 − 2Q(si − c1)T (c̄− c1)

Consequently, we have ‖si − c2‖2 = ‖si − c1‖2 + φ(c1, si). Using this notation,
we can rewrite the MSSC model as the following bilevel optimization problem

min
c1,Q

n∑
i=1

(‖si − c1‖2 + min{0, φ(c1, si)}).

For a given cluster center c1 and fixed Q, we can determine the cluster that each
entity belongs to by its indicator function φ(c1, si). If φ(c1, si) ≥ 0, then si ∈ C1;
otherwise, si ∈ C2. Let us define the active index set I = {i : φ(c1, si) < 0}.
Then the MSSC model can be transformed into a quadratic programming(QP)
problem:

min
c1

n∑
i=1

‖si − c1‖2 +
∑
i∈I

φ(c1, si). (16)

From our above discussion, it becomes clear that solving problem (16) equals
to assigning entities to two clusters whose centroids are c1 and c1 + Q(c̄ − c1),
respectively. On the other hand, given a partition (c1, C1), (c2, C2), one has

c̄ =
|C1|
n

c1 +
|C2|
n

c2

On Approximate Balanced Bi-clustering 667

For problem (13), since |C1|
|C2| = R, we have Q = R+1. This implies if we know the

cardinalities of the clusters at a solution, then we can decide what should be the
value of the parameter Q used in problem (16). However, the parameter Q in the
model (QP) can not determine precisely the sizes of two clusters. Nevertheless,
we still expect that Q can help us to control the relative cardinality of the two
clusters. This inspires us to propose the so-called Q-Means method described as
follows:

Algorithm 2: Q-Means Algorithm

S.0 Given size ratio requirement R (R ≥ 1);
S.1 Initialization: Choose an entity in the space as the starting center of cluster

C1, say c1. Set Q = R+ 1, i = 1, ci1 = c1.
S.2 Iteration:

Identify the active set I = {i : φ(ci1, si) ≤ 0};
Solve problem (16) for ci+1

1 based on the current active index set I. Goto
Step 2 if ci1 �= ci+1

1 ;
S.3 Rounding: Use the rounding procedure 1 or 2 to find a solution that satisfies

the size ratio constraint.
S.4 Alternation: Set Q = 1− 1/(R+ 1), repeat step 2 and step 3.
S.5 Output: Output the better one from the two solutions obtained from these

two procedures as the final solution.

In principle, Q-Means is a heuristic similar to K-Means. We iteratively reduce
the objective function until convergence and then use a rounding procedure to
find a solution that satisfies the constraint. Similar to K-means, Q-means is also
very sensitive to the choice of initial starting entity and also very easy to be
trapped in some local optimum after a few iterations. The complexity of Q-
Means is O(Tn logn) if the rounding procedure 1 is applied, where T is the
maximal number of iterations in running the algorithm. Alternatively, if we use
rounding procedure 2 in Algorithm 2, then it will lead to a complexity of O(Tn2).

On the other hand, to get a good approximation solution, we employ the idea
described in section 2.2. However, in the special case of (13), we just need to try
every entity in the set as the starting center used in the Q-Means algorithm and
then compute another center via the relation (14). This reduces the complexity
of the whole procedure from O(n2) to O(n) of enumerating all possible starting
entities for the bi-clustering problems.

Algorithm 3: Revised Q-Means

S.1 Try every entity in the data set as the starting center in Algorithm 2;
S.2 Output the best bipartition (C∗

1 , C
∗
2) as a solution.

The complexity of this algorithm is O(n2 logn) if rounding procedure 1 is used
in every run of Q-Means, and O(n3) if rounding procedure 2 is used. In what
follows we derive an upper bound for the solution produced by the revised Q-
Means algorithm.

668 Guoxuan Ma, Jiming Peng, and Yu Wei

Theorem 5. The sum-of-squared error of the solution derived by the revised
Q-Means is at most twice as large as the sum-of-squared error of the optimum
solution of problem (13).

Proof. Let {(c1, C1), (c2, C2)} be the optimal solution of the problem (13). Let
us denote the solutions of the problems (11) by c′1 and c′2 respectively. Define

c∗1 :=
n

|C2|
c̄−Rc′1 = c2 +R(c1 − c′1),

c∗2 :=
n

|C1|
c̄− 1

R
c′2 = c1 +

1
R

(c2 − c′2).

It follows

‖c∗1 − c2‖ = R‖c1 − c′1‖, ‖c∗2 − c1‖ =
1
R
‖c2 − c′2‖.

From the above two relations, we must have either

‖c∗1 − c2‖ ≤ ‖c′2 − c2‖, (17)
or ‖c∗2 − c1‖ ≤ ‖c′1 − c1‖. (18)

W. l. o. g., we assume inequality (17) holds. By Lemma 2, we have

SSE :=
∑

si∈C1

‖si−c′1‖2 +
∑

si∈C2

‖si−c∗1‖2 ≤ 2
∑

si∈C1

‖si−c1‖2 +2
∑

si∈C2

‖si−c2‖2.

Recall the fact that the pair (c′1, c
∗
1) had been used in the revised K-Means as the

starting centers for two clusters. Therefore, the sum-of-square error provided by
the final output from the algorithm must be less than or equal to SSE. Similarly,
we can derive the same conclusion when inequality (18) holds. This finishes the
proof of the theorem.

4 Computational Results

In this section, we present some preliminary computational results to illustrate
the performance of the revised Q-Means, compared with the improved con-
strained K-Means. The performance of two rounding procedures is compared
as well. The data sets that we used in the experiments include a synthetic data
set and some well-known benchmarks in machine learning literature.

For fairness, we use the same starting strategy for the two algorithms, i.e.,
for both K-Means and Q-Means, we enumerate all the entities as one of the
centroid and calculate the other one according to the size ratio constraint as we
described in the procedure of Q-Means. Also, the same rounding procedure is
applied in both K-Means and Q-Means. The running time and solution quality
of two algorithms are compared.

We mention that all the tests in the current work are performed on a personal
computer with a Pentium 4 1700 MHz Processor, with a 256M memory, the CPU
time is in seconds.

On Approximate Balanced Bi-clustering 669

We first use a random generator to produce various two-dimensional synthetic
data sets approximately in the mixture Gaussian distribution [8], which are
recognized as one of best test beds for MSSC clustering. Four data sets containing
4000 entities in [0,0] × [1,1] plane, are generated for our experiments, S01 with
v = 0.05, r = 0.0, S02 with v = 0.10, r = 0.2, S03 with v = 0.10, r = 0.4, S04
with v = 0.15, r = 0.4. (v means variance and r stands for noise level.)

The following result is obtained by using rounding procedure 1 in both algo-
rithms, the size ratio is fixed as 1:3 for these four data sets.

data set v r K-Means (CPU time) Q-Means (CPU time)

S01 0.05 0.0 9.121028 (14.432218) 9.121028 (9.513855)

S02 0.10 0.2 165.422969 (61.143902) 165.422969 (33.010462)

S03 0.10 0.4 280.028264 (80.566430) 280.028264 (38.851260)

S04 0.15 0.4 281.542429 (109.471963) 281.044463 (42.279831)

The numerical result based on rounding procedure 2 is reported below.

data set v r K-Means(CPU time) Q-Means(CPU time)

S01 0.05 0.0 9.121028 (13.834134) 9.121028 (8.171109)

S02 0.10 0.2 165.354702 (117.635497) 165.354702 (93.065645)

S03 0.10 0.4 278.773878 (287.669128) 278.769649 (242.697759)

S04 0.15 0.4 279.253263 (340.284469) 279.207675 (272.663927)

We have also tested the Q-Means algorithm on the the following test prob-
lems in literature. The first problem is relatively small, therefore, the rounding
procedure 2 is used. For the second data set, which is relatively large, we apply
the rounding procedure 1 instead.

– Soybean Data Set (large) from the UCI Machine Learning Repository1,
see also [12]. This data set has 307 instances and each instance has 35 nor-
malized attributes.

The Soybean Data (large)

size ratio K-Means (CPU time) Q-Means (CPU time)

1:1 4558.433495 (4.225763) 4558.433495 (1.594678)

1:2 4517.974430 (3.419375) 4517.974430 (1.409188)

1:3 4478.362896 (0.897566) 4478.362896 (0.326273)

1:4 4543.901639 (0.331163) 4543.901639 (0.085307)

– Spam E-mail Database created by M. Hopkins et al. It has 4601 samples,
57 attributes (we remove the last boolean attribute which indicates whether
the e-mail was consider spam or not). We obtain the following result for this
data set:

Spam E-mail Database
size ratio K-Means (CPU time) Q-Means (CPU time)

1:1 1609292966.72 (2060.0481) 1586877787.41 (301.9538)

1:2 1405187739.99 (1807.5085) 1404622481.26 (334.4043)

1:3 1276474668.00 (1800.1751) 1276437654.01 (334.0490)

1:4 1276437654.01 (1565.5531) 1187542869.25 (311.2299)

1 http://www.ics.uci.edu/˜mlearn/MLRepository.html

670 Guoxuan Ma, Jiming Peng, and Yu Wei

The above table illustrates that if only rounding procedure 1 is used and the
data set is large, then the difference between K-Means and Q-Means might be
substantial.

It should be pointed out that for the first experiment, since rounding proce-
dure 2 is applied, most CPU time is spent on the rounding process, therefore,
the difference between K-Means and Q-Means is not that significant compared
with the case when rounding procedure 1 is applied.

From the above experiments we can conclude that, at least for these data sets,
Q-Means has outperformed regular K-Means in terms of both running time and
solution quality. This is not surprising, as we pointed out earlier, besides reducing
the complexity of enumerating all the entities, Q-Means uses the constraint to
guide the search process rather than to satisfy the constraint passively as in the
rounding K-Means.

References

1. Aggarwal. C, Kaplan, H., Orlin J. and Tarjan. R, A Faster Primal Network Simplex
Algorithm. Operations Research Center, Massachusetts Institute of Technology.
OR 315-96. (1996)

2. Asano, T. Effective Use of Geometry properties for clustering. JCDCG’98, LNCS
1763, (2000) 30-46

3. Batagelj, V. and Ferligoj, A. Constrained Clustering Problems. Proc. of IFCS’98.
(1998)

4. Bradley, P., Bennet, K. and Demiriz, A., Constrained K-Means Clustering. MSR-
TR-2000-65, Microsoft Research. (2000)

5. Hasegawa, S., Imai, H., Inaba, M. Efficient Algorithms for Variance-Based k-
clustering. First Pacific Conf. on Comp. Graph. and Appl. (1993)

6. Hansen, P. and Jaumard, B. Clustering analysis and mathematical programming.
Math. Prog. B., 79(1997) 191-215

7. Hansen, P. and Mladenovic, N. J-means: a new local search heuristic for minimum
sum-of-squares clustering. Pattern Recog., 34(2001) 405-413

8. He, J., Lan, M., Tan, C., Sung, S. and Low, H. Initialization of clusters refinement
algorithms: a review and comparative study. International Joint Conf. on Neural
Networks, IJCNN, (2004) 25-29

9. Inaba, M., Katoh, N. and Imai, H. Applications of Weighted Voronoi Diagrams
and Randomization to Variance-Based k-clustering. Proc. of 10th ACM Symp. on
Comp. Geo., (1994) 332-339

10. Jain, A.K., Murty, N.M. and Flynn, P.J.(1999) Data Clustering: A Review. ACM
Comput. Surveys, 31(1999) 264-323

11. Matoušek, J.(2000) On Approximate Geometric k-clustering. Dis. and Comput.
Geo., 24(2000) 61-84

12. Michalski, R.S. and Chilausky, R.L. Learning by being told and learning from ex-
amples: An experimental comparison of the two methods of knowledge acquisition
in the context of developing an expert system for soybean disease diagnosis. Inter-
national Journal of Policy Analysis and Information Systems, 4(2), 1980 125-161

13. Späth, H. Cluster analysis Algorithms for Data Reduction and Classification of
Objects, John Wiley and Sons, Ellis Horwood Ltd, (1980)

14. Tung, A., Ng, R., Lakshmanan, L. and Han, J.,(2001) Constraint-Based Clustering
in Large Databases. Proc. of the 8th Inter. Conf. on Database Theory, (2001) 405-
419

Toroidal Grids Are Anti-magic

Tao-Ming Wang

Department of Mathematics
Tung-Hai University, Taichung, Taiwan 40704, R.O.C.

wang@mail.thu.edu.tw

Abstract. An anti-magic labeling of a finite simple undirected graph
with p vertices and q edges is a bijection from the set of edges to the
integers {1, ..., q} such that all p vertex sums are pairwise distinct, where
the vertex sum on a vertex is the sum of labels of all edges incident to
such vertex. A graph is called anti-magic if it has an anti-magic labeling.
Hartsfield and Ringel [3] conjectured that all connected graphs except K2

are anti-magic. Recently, N. Alon et al [1] showed that this conjecture is
true for p-vertex graphs with minimum degree Ω(log p). They also proved
that complete partite graphs except K2 and graphs with maximum de-
gree at least p − 2 are anti-magic. In this article, some new classes of
anti-magic graphs are constructed through Cartesian products. Among
others, the toroidal grids Cm ×Cn(the Cartesian product of two cycles),
and the higher dimensional toroidal grids Cm1 × Cm2 × × Cmt , are
shown to be anti-magic. Moreover, the more general result is also proved
to be true: H×Cn (hence Cn×H) is anti-magic, where H is an anti-magic
k-regular graph, where k > 1.

1 Introduction

All graphs in this paper are finite undirected simple graphs with no loops. In
1989, Hartsfield and Ringel[3] introduced the concept so called anti-magic graph.
An anti-magic labeling of a graph G = (V,E) with p vertices and q edges is a
bijection f :E → {1, ..., q} such that the induced vertex sum f+:V → Z+ is
injective, where f+(u) =

∑
{f(uv)|uv ∈ E}. A graph is called anti-magic if

it has an anti-magic labeling. Hartsfield and Ringel showed that paths, cycles,
complete graphs Kp (p > 2) are anti-magic. They conjectured that all trees
except K2 are anti-magic. Further, every connected graph besides K2 is anti-
magic. These two conjectures are unsettled. Recently, Alon et al [1] validated
that the last conjecture is true for all graphs with p (> 4) vertices and minimum
degree Ω(log p). They also proved that if G is a graph with p (> 4) vertices and
Δ(G) > p− 2, then G is anti-magic, and that all complete partite graphs except
K2 are anti-magic.

In this paper we consider the anti-magicness of Cartesian products of graphs.
Using these constructions we may construct new classes of anti-magic graphs.
For more conjectures and open problems on anti-magic graphs and various graph
labeling problems, please see the dynamic survey article of Gallian [2].

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 671–679, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

672 Tao-Ming Wang

2 Anti-magic Labelings of Toroidal Grids

The Cartesian product G1 ×G2 of two graphs G1 = (V1, E1) and G2 = (V2, E2)
is the graph with vertex set V1×V2, and u = (u1, u2) is adjacent with v = (v1, v2)
whenever u1 = v1 and u2v2 ∈ E2, or, u2 = v2 and u1v1 ∈ E1. A toroidal grid
graph is the Cartesian product of two cycles. Before we state the main result
about the anti-magic labelings of toroidal grid graphs, let us first put two lemmas
which will show the anti-magicness of paths and cycles:

Lemma 1. All paths Pm+1 are anti-magic for integers m ≥ 2.

Proof:
Suppose the vertex set is {v1,, vm+1} and the edge set is particularly

arranged to be {vivi+2|i = 1,,m− 1} ∪ {vmvm+1}. And an anti-magic edge
labeling can be assigned as f(vivi+2) = i, for 1 ≤ i ≤ m−1, and f(vmvm+1) = m.
Note that the edge labeling induces the following ordering on vertices as

f+(v1) < f+(v2) < < f+(vm+1)

since the vertex sums are

f+(vi) =

⎧⎨⎩
i if i = 1, 2;
2i− 2 if i = 3, ...,m;
2m− 1 if i = m+ 1.

Q.E.D.

Note that the anti-magic labeling of Cm can be easily deduced from that of
Pm+1 by ”identifying” vertices v1 and v2 in above proof. Hence we have:

Lemma 2. All cycles Cm are anti-magic for integers m ≥ 3.

Proof:
In the proof of last lemma by identifying v1 and v2, and moving the index

of the rest vertices 1 forward in Pm+1, we have the vertex set {v1,, vm}
and the edge set {v1v2, v1v3} ∪ {vivi+2|i = 2,,m− 2} ∪ {vm−1vm} for Cm.
And an anti-magic edge labeling can be assigned as f(v1v2) = 1, f(v1v3) = 2,
f(vivi+2) = i + 1, for 2 ≤ i ≤ m− 2, and f(vm−1vm) = m. Note that the edge
labeling induces the following ordering on vertices as

f+(v1) < f+(v2) < < f+(vm)

since the vertex sums are

f+(vi) =

⎧⎨⎩
3 if i = 1;
2i if i = 2, ...,m− 1;
2m− 1 if i = m.

Q.E.D.

Theorem 1. The toroidal grid graphs Cm × Cn are anti-magic for integers
m,n ≥ 3.

Toroidal Grids Are Anti-magic 673

Proof:
Let f :E(Cm×Cn) → {1, 2, ..., 2mn} be an edge labeling of Cm×Cn, and the

induced vertex sum at the vertex (u, v) is f+(u, v) =
∑

f((u, v), (y, z)), where
the sum is running over all vertices (y, z) adjacent to (u, v) in Cm×Cn. Note that
in the product graph Cm × Cn, at each vertex (u, v) the edges incident to such
vertex can be partitioned into two parts, one part is contained in one copy of Cm

component, and the other part is contained in another copy of Cn component.
Hence then in Cm×Cn, let s and t be the restriction of f+ on Cm component and
Cn component respectively, i.e., s(u, v) =

∑
f((u, v), (y, v)), where the sum is

running over all vertices y adjacent to u in Cm, and t(u, v) =
∑

f((u, v), (u, z)),
where the sum is running over all vertices z adjacent to v in Cn. Therefore
f+(u, v) = s(u, v) + t(u, v).

Now we claim that we can label the edges in Cm × Cn so that

f+(u1, v1) < f+(u2, v1) < < f+(um, v1) <

f+(u1, v2) < f+(u2, v2) < < f+(um, v2) <

...

f+(u1, vn) < f+(u2, vn) < < f+(um, vn)

and hence we have an anti-magic edge labeling.
It is well known that all cycles are anti-magic (Lemma 2). On each Cm

component and Cn component, we may fix anti-magic labelings L1:E(Cm) →
{1, 2, ...,m}, and L2:E(Cn) → {1, 2, ..., n}, which induce the distinct vertex
sums, hence strict orderings, on vertex sums of Cm and Cn respectively (see
Figure 1). Without loss of generality, we may rename the vertices of Cm and
Cn such that s(u1, v) < s(u2, v) < < s(um, v) for each v ∈ V (Cn), and
t(u, v1) < t(u, v2) < < t(u, vn) for each u ∈ V (Cm).

To show the above claim, for the first step we label the edges on the i-
th Cm component of Cm × Cn with vertices (u1, vi), (u2, vi),, (um, vi), for
i = 1, 2,, n. Using the fixed edge labeling for the i-th Cm component, where
i = 1, 2,, n, and

1, 2, ..,m, (edge labels for 1st Cm component)

m+ 1,m+ 2,, 2m, (edge labels for 2nd Cm component)

..

(n− 1)m+ 1, (n− 1)m+ 2,, nm (edge labels for n-th Cm component)

then we have

s(u1, v1) < s(u2, v1) < < s(um, v1) <

s(u1, v2) < s(u2, v2) < < s(um, v2) <

...

s(u1, vn) < s(u2, vn) < < s(um, vn)

674 Tao-Ming Wang

Fig. 1. Fixed anti-magic labels of Cm and Cn

Note first that it is obviously s(u1, vi) < s(u2, vi) < < s(um, vi) for
i = 1, 2,, n. On the other hand, s(um, vi) < s(u1, vi+1) for i = 1, 2,, n−1,
since among two groups of numbers (i − 1)m + 1, (i − 1)m + 2,, im and
im+ 1, im+ 2,, (i + 1)m, adding any two in first group is always less than
adding any two in the second group.

After labeling edges along Cm components as above, we continue the edge
labeling along the second components, i.e., the Cn components. The following
consecutive edge labeling is consisting of mixture of two orderings. The first is
the fixed edge labeling order on Cn with either the usual order (U) which induces
the strict ordering on vertices t(v1) < t(v2) < < t(vn) (Figure 1), or the
reversed order (R) on vertices (u1, vi), (u2, vi),, (um, vi), i = 1, 2,, n, and
the second is the fixed vertex ordering u1, u2,, um on Cm. The labeling goes
like the following (see Figure 4 as an example):

nm+ 1, nm+ 2,, (n+ 1)m− 1, (n+ 1)m, (in usual order)

(n + 2)m, (n+ 2)m− 1, ..., (n+ 1)m+ 2, (n+ 1)m+ 1, (in reversed order)

(n + 3)m, (n+ 3)m− 1, ..., (n+ 2)m+ 2, (n+ 2)m+ 1, (in reversed order)

...

etc.
and naturally we have the following three cases (see Figure 2) for finishing

the labeling:

Case 1. n is even

The above edge labeling creates constant vertex sum along each Cn compo-
nent of each vertex: t(u1, vj) = t(u2, vj) = = t(um, vj), for 1 ≤ j ≤ n. Note
that t(um, vi) < t(u1, vi+1), for i = 1, 2,, n−1, since t(u1, vi+1) = t(um, vi+1)
and t(um, vi) < t(um, vi+1), for i = 1, 2,, n− 1.

Toroidal Grids Are Anti-magic 675

Fig. 2. Anti-magic labelings of cycles in usual(U) order, and in reversed(R) order

Case 2. n ≡ 1 (mod 4)

We have constant vertex sum along each Cn component of each vertex:
t(u1, vj) = t(u2, vj) = = t(um, vj), for 1 ≤ j ≤ n− 1. Note that t(um, vi) <
t(u1, vi+1), for i = 1, 2,, n−2, since t(u1, vi+1) = t(um, vi+1) and t(um, vi) <
t(um, vi+1), for i = 1, 2,, n − 2. As for j = n, both edges at each of the
vertices (u1, vn), (u2, vn),, (um, vn) are assigned in the same usual order.
Thus t(u1, vn) < t(u2, vn) < < t(um, vn). At vertices (um, vn−1) and
(u1, vn), we see that t(um, vn−1) < t(u1, vn), since t(u1, vn−1) = t(um, vn−1)
and t(um, vn−1) < t(um, vn). The reason why t(um, vn−1) < t(um, vn) is that for
vertices (um, vn−1) and (um, vn), they share one edge label, and the other edge
label of (um, vn−1) is less than that of (um, vn).

Case 3. n ≡ 3 (mod 4)

Similar to the above case, except j = n, we have t(u1, vj) = t(u2, vj) =
...... = t(um, vj), for 1 ≤ j ≤ n − 1. As for j = n, both edges at each of the
vertices (u1, vn), (u2, vn),, (um, vn) are assigned the same reversed order, and
we modify it to switch the usual order to reversed one, and switch the reversed
order to the usual one (see Figure 3). Then it reduces to the situation similar to
case 2.

Therefore in each of above three cases, we have

t(u1, v1) ≤ t(u2, v1) ≤ ≤ t(um, v1) ≤

t(u1, v2) ≤ t(u2, v2) ≤ ≤ t(um, v2) ≤
...

t(u1, vn) ≤ t(u2, vn) ≤ ≤ t(um, vn)

676 Tao-Ming Wang

Fig. 3. Modification of the labeling of Cn in case n ≡ 3 (mod 4)

Fig. 4. An Example of Anti-Magic Labeling of Cm × Cn

Thus along with the previous observations on vertex sums restricted on s, we
have that

f+(u1, v1) < f+(u2, v1) < < f+(um, v1) <

f+(u1, v2) < f+(u2, v2) < < f+(um, v2) <

...

f+(u1, vn) < f+(u2, vn) < < f+(um, vn)

and the vertex sums are hence distinct, therefore the toroidal grids Cm×Cn

are anti-magic for m,n ≥ 3, as desired. Q.E.D

Please see an explicit example (figure 4) of an anti-magic labeling for Cm×Cn.

Notice that cycles are special cases of regular graphs, therefore it is natural
to consider the more general situation using regular graphs instead of cycles.

Toroidal Grids Are Anti-magic 677

The above result can be generalized to the following in a quite straightforward
fashion:

Theorem 2. H ×Cn (hence Cn ×H) is anti-magic, where H is an anti-magic
k-regular graph (k > 1) on m vertices, and Cn is a cycle on n vertices for n ≥ 3.

Proof:
We will show H × Cn, the Cartesian product of H and Cn, is anti-magic

for integers m,n ≥ 3. Let f+ : V (H × Cn) → N be the vertex sum induced
from the edge labeling f : E(H × Cn) → {1, 2,,mn(1 + k/2)} on H × Cn,
i.e., f+(u, v) =

∑
f((u, v), (y, z)), where the sum is running over all vertices

(y, z) adjacent to (u, v) in H × Cn. Note that in the product graph H × Cn, at
each vertex (u, v) the edges incident to such vertex can be partitioned into two
parts, one part is contained in one copy of H component, and the other part
is contained in one copy of Cn component. Hence then in H × Cn, let s and t
be the restriction of f+ on H component and Cn component respectively, i.e.,
s(u, v) =

∑
f((u, v), (y, v)), where the sum is running over all vertices y adjacent

to u in H , and t(u, v) =
∑

f((u, v), (u, z)), where the sum is running over all
vertices z adjacent to v in Cn. Therefore f+(u, v) = s(u, v) + t(u, v).

Now we claim that we can label the edges in H × Cn so that

f+(u1, v1) < f+(u2, v1) < < f+(um, v1) <

f+(u1, v2) < f+(u2, v2) < < f+(um, v2) <

...

f+(u1, vn) < f+(u2, vn) < < f+(um, vn)

Since H and Cn are anti-magic, on each H component and Cn component,
we may fix anti-magic labelings 1, 2,, mk

2 , and 1, 2,, n, which induce the
distinct vertex sums, hence strict orderings, on vertex sums of H and Cn respec-
tively (see Figure 1). Without loss of generality, we may rename the vertices of H
and Cn such that s(u1) < s(u2) < < s(um) and t(v1) < t(v2) < < t(vn),
where s and t, by abusing the language, are the vertex sums induced from the
edge labelings of H and Cn respectively.

To show the above claim, for the first step we label the edges of each H
component of H×Cn (with vertices (u1, vi), (u2, vi),, (um, vi) for the i-th H
component, i = 1, 2,, n) using the fixed edge labeling as follows:

1, 2, ..,m,

m+ 1,m+ 2,, 2m,

...

(n− 1)m+ 1, (n− 1)m+ 2,, nm

then we have

678 Tao-Ming Wang

s(u1, v1) < s(u2, v1) < < s(um, v1) <

s(u1, v2) < s(u2, v2) < < s(um, v2) <

...

s(u1, vn) < s(u2, vn) < < s(um, vn)

Note first that it is obviously s(u1, vi) < s(u2, vi) < < s(um, vi) for
i = 1, 2,, n. On the other hand, s(um, vi) < s(u1, vi+1) for i = 1, 2,, n−1,
since H is regular, and among two groups of numbers (i− 1)m + 1, (i− 1)m+
2,, im and im+1, im+2,, (i+1)m, adding any k numbers in first group
is always less than adding any k numbers in the second group.

After labeling edges along H components as above, we continue the edge
labeling along the second components, i.e., the Cn component, exactly as in the
proof of previous theorem.

Therefore we have

t(u1, v1) ≤ t(u2, v1) ≤ ≤ t(um, v1) ≤

t(u1, v2) ≤ t(u2, v2) ≤ ≤ t(um, v2) ≤
...

t(u1, vn) ≤ t(u2, vn) ≤ ≤ t(um, vn)

Thus along with the previous observations on vertex sums restricted on s, we
have that

f+(u1, v1) < f+(u2, v1) < < f+(um, v1) <

f+(u1, v2) < f+(u2, v2) < < f+(um, v2) <

...

f+(u1, vn) < f+(u2, vn) < < f+(um, vn)

and the vertex sums are hence distinct, therefore H × Cn is anti-magic for
n ≥ 3 and H is an anti-magic k-regular graph (k > 1) as desired. Q.E.D

Corollary 1. The higher dimensional toroidal grid graph Cm1×Cm2×......×Cmt

is anti-magic, where the integers m1,m2,,mt ≥ 3, and t ≥ 2.

Proof:
Note that Cm1 ×Cm2 ××Cmt−1 is regular and anti-magic by induction

and Theorem 2. And the Corollary follows. Q.E.D

3 Future Studies

To conclude the article, the following are two similar open problems related to
the current article for further exploration, among others:

1. All prism graphs Cm × Pn are anti-magic.
2. All lattice grid graphs Pm × Pn are anti-magic.

Toroidal Grids Are Anti-magic 679

References

1. N. Alon, G. Kaplan, A. Lev, Y. Roditty and R. Yuster, Dense graphs are anti-magic,
Journal of Graph Theory, 47(2004), pp. 297-309.

2. J.A. Gallian, A dynamic survey of graph labeling, The Electronic J. of Combin.,
(2001), DS6, pp. 1-79.

3. N. Hartsfield and G. Ringel, Pearls in Graph Theory, Academic Press Inc., Boston,
1990 (Revised version, 1994), pp.108-109.

Optimally Balanced Forward Degree Sequence

Xiaomin Chen, Mario Szegedy, and Lei Wang

Department of Computer Science, Rutgers University

Abstract. Forward degree seqences, arising from orderings of the ver-
tices in a graph, carry a lot of vital information about the graph. In
this paper, we focus our work on two special classes of forward degree
sequences, which we named balanced and strongly balanced. Our main
result is to prove that any chordal graph has a strongly balanced for-
ward degree sequence and any graph with all degrees at most 3 has a
balanced forward degree sequence. Moreover, we show that the (strongly)
balanced forward degree sequence can be computed in polynomial time
in the above cases.

1 Introduction

A company has two open positions. On the waiting list there are n almost equally
good candidates. Some pairs of the candidates can work together, some pairs can
not. These pairs are known to the company. Most likely a person will accept
the offer as soon as he gets it. It is also possible that he gets some better job
and turns our offer down. We want to offer these candidates one at a time and
get an immediate response. The goal is to maximize the likelihood of hiring two
candidates that can work together. In what order the company should give the
offers to the candidates?

Questions of this kind and its variants are the starting point of our research
in this article. We refer to these problems as offer rejection problem. Our goal is
to find the best strategy dealing with the possible rejections.

In search for answers to the offer rejection problem, we studied a subject that
is interesting of its own right, namely, the forward degree sequences of graphs. A
forward degree sequence arises from an ordering σ of the vertices of a graph. We
eliminate the vertices according to this ordering, and the forward degree dσ

v of a
vertex v is its degree in the remaining graph when we eliminate it.

The idea of forward degree sequences is related to two classical topics in
graph theory, namely, the degree sequence and vertex elimination order. The
degree sequences of graphs are well characterized in [2], [3], and [4]. The vertex
elimination order gives a nice characterization of chordal graphs. (See [7].) The
forward degree sequences we define and study here arise from very different
questions and are of different nature.

There are several nice connections between the offer rejection problem and
the forward degree sequences. However, in this paper we focus ourselves to the
pure graph-theoretical study of forward degree sequences. We mention one of

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 680–689, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Optimally Balanced Forward Degree Sequence 681

the connections here. We associate to each forward degree sequence a polyno-
mial Pσ(z) =

∑
v∈V zdσ

v . We find that the offer rejection problem with rejection
probability q is equivalent to the problem of finding the σ which minimizes
Pσ(1/q) in the graph with edges represent pairs that can not work together.
We will define an ordering σ to be more balanced than τ if Pσ(1/q) ≤ Pτ (1/q)
for all probability q. A related notion we define is strongly balanced. It is an in-
teresting combinatorial question whether a graph has a most balanced (strongly
balanced) forward degree sequence. We prove that this includes some nice classes
of graphs. For example, chordal graphs and 3-regular graphs, where we also give
polynomial time algorithm to find the most balanced sequences.

The forward degree sequences carry a lot of information of their graphs. One
may easily express some usual graph parameters in terms of properties about the
forward degree sequences. (See Section 2.) In Section 3 we define some new graph
parameters based on the forward degree sequences. These parameters, besides
their close relation to the offer rejection problem, are of pure graph-theoretic
interest as well. One of the interesting problems that remains open is how to
compute some of the parameters in polynomial time. Our main result, states
that every 3-regular graph has a most balanced forward degree sequence, gives
some new insight to the graph isomorphism problem ([5] and [6]).

1.1 Notations

All the graphs we consider in this article are undirected simple graphs. For any
graph G, E(G) is the set of edges in G, V (G) is the set of vertices in G. The
complement of G is denoted by G. For any S ⊆ V , G[S] is the subgraph of G
induced by S. For any v ∈ V , the degree of v in G is denoted by dG

v and the
neighbors of v denoted by NG(v). The induced subgraph of G by deleting v is
denoted by G − v. If x, y ∈ V , and xy is an edge in G, G − xy is the graph G
with edge xy deleted. If xy is not an edge in G, G + xy is the graph gotten by
adding the edge xy to G.

Let S = (s1, · · · , sn) be a sequence. We denote by S(i) the i-th element of S.
The concateneation of S and a new element, (s1, · · · , sn, v), is denoted by (S, v);
and the concateneation of a new element and S, (v, s1, · · · , sn), is denoted by
(v, S); S[i ↔ j] is the sequence we get from S by exchanging the elements on
the i-th position and the j-th position. We view a permutation on an n element
set as a sequence of length n.

If S is a sequence of integers, we denote by NS(k) the number of occurrences
of k in S; and denote by Ŝ the sorted list of S in non-increasing order. We define
the lexicographical order. If S1 and S2 are two sequences of integers, S1 ≤lex S2

if S1 = S2 or there is an i such that S1(i) < S2(i) and S1(j) = S2(j) for all
j < i.

2 Forward Degree Sequences

Definition 1. Given a graph G and a permutation σ on the vertex set V (G),
the forward degree of vertex v = σ(i), denoted dσ

v , is its degree in the induced

682 Xiaomin Chen, Mario Szegedy, and Lei Wang

subgraph G′ = G[{σ(i), σ(i+1), · · · , σ(n)}]. The forward degree sequence induced
by σ, denoted Sσ, is the sequence (dσ

σ(1), . . . , d
σ
σ(n)).

Definition 2. For any sequence S of n non-negative integers, define PS to be
the polynomial PS(z) =

∑n
i=1 z

S(i) =
∑∞

k=0 NS(k)zk. Given a graph G = (V,E)
and a permutation σ of its vertices, the forward degree sequence polynomial
induced by σ is Pσ(z) := PSσ (z) =

∑
v∈V zdσ

v =
∑∞

k=0 NSσ(k)zk.

Any two forward degree sequences π and σ of G have the same length (the
number of vertices in G) and the same sum (the number of edges in G). It follows
that Pπ(1) = Pσ(1) and the derivatives P ′

π(1) = P ′
σ(1). So we have

Proposition 1 For any two forward degree sequences π and σ of G, the poly-
nomial Pπ − Pσ is a multiple of (z − 1)2.

The forward degree sequences of G carrie a lot of graph theoretic informations
about G. We start as a warm up by presenting a lemma where the forward degree
sequences are related to the structure of the graph.

Suppose a graph G has k connected components and σ is any permutation on
vertices, then NSσ(0) ≥ k since the last vertex from each component in the order
always has forward degree 0. Actually we can construct an ordering where the
forward degree sequence contains exactly k zeros. The following lemma, which
is a slightly stronger statement, can be easily proved.

Lemma 1. If G is a connected graph and v is any vertex in G, then there is a
permutation σ on the vertices of G such that NSσ(0) = 1 and the last vertex in
the permutation is v.

Definition 3. Let G = (V,E) be a graph, we define SG to be the set of all the
forward degree sequences, i.e., SG = {Sσ : σ is a permutation of vertices in G}.
Define ŜG to be the set {Ŝ : S ∈ SG}. Define PG to be the set of all the forward
degree sequence polynomials.

One can easily see that SG contains the information of many properties of
G, such as the maximum degree, the minimum degree, the number of connected
components, the size of the largest clique, the size of the largest independent
set, and the girth.

3 Balanced and Strongly Balanced Sequences

For any integers n,m ≥ 0, let Ŝn,m be the set of all non-increasing, non-negative
integer sequences of length n and the sum of elements m. We define a relation
on Ŝn,m: S1�S2 if PS1(z) ≤ PS2(z) for all z ≥ 1. It is easy to check � is a partial
order on the ordered sequences. If S1�S2, we also write PS1�PS2 . Thus we view
� as a partial order on corresponding polynomials.

Let G be a graph with n vertices and m edges, we have the induced partial
orders (ŜG,�) and (PG,�). Moreover, for any two orderings σ and π of vertices,

Optimally Balanced Forward Degree Sequence 683

we write σ�π and Sσ�Sπ if Ŝσ�Ŝπ, this is equivalent to Pσ�Pπ. � is no longer
a partial order on all the permutations or on all the forward degree sequences of
G, but it is still transitive and reflexisive. We have an equivalence relation σ ∼ π
if σ�π and π�σ. (Similarly for the forward degree sequences.)

Definition 4. A graph G is called balanced if there exist a minimum element
in (ŜG,�). The class of all the balanced graphs is denoted by B.

For any permutation σ, we call σ and Sσ � minimal if Ŝσ is minimal. If
there exists a permutation of vertices σ such that σ�π for any permutation π of
vertices, we call σ a � minimum ordering of G, and Sσ a � minimum forward
degree sequence.

Let S be a sequence in Ŝn,m. If a and b both appears in S and a ≥ b+ 2, the
concentration operation (a, b) → (a − 1, b + 1) is performed by changing one a
and one b to an a−1 and a b+1, then sort the sequence in non-increasing order.
We define S1�SS2 if we can get S1 from S2 by 0 or more steps of concentration.
In this case we also write PS1�SPS2 . If σ and π are two permutations on the
vertices of a graph G, we write σ�Sπ and Sσ�SSπ if Ŝσ�SŜπ (and Pσ�SPπ).
It is easy to see S1�S2 if S1�SS2; � are partial orders on Ŝn,m, ŜG, and PG.

Definition 5. A graph G is called strongly balanced if there exist a minimum
element in (ŜG,�S). The class of all the strongly balanced graphs is denoted by
BS.

If G is strongly balanced, any permutation σ which Ŝσ is minimum is called
a �S minimum ordering, Sσ is called a �S minimum forward degree sequence,
or a most strongly balanced forward degree sequence; if Ŝσ is �S minimal, we also
call σ or Sσ �S minimal.

As an example, we note that every tree has a most strongly balanced forward
degree sequence (1, 1, · · · , 1, 0), which is �S minimum even in the whole Ŝn,n−1.
Similarly, every forest is in BS . (See Corollary 1 for a generalization of this fact.)

There are several characterizations of the relation �S . We give one of them
below.

Proposition 2 Let S1 and S2 be two sequences in Ŝn,m. S1�SS2 if and only
if PS2 − PS1 = (z − 1)2Q where Q is a polynomial in z with positive integer
coefficients.

S
¯
ketch of Proof. The only if part is trivial. The if part may be proved by induction

on the sum of coefficients in Q. The key obeservation is that for any “segment”
(a, b) in Q (b ≤ a and the coefficient of zi in Q is positive for each b ≤ i ≤ a,
while the coefficient of za+1 and zb−1 are both 0), we could change S2 to S′ by
(a+ 2, b)→ (a+ 1, b+ 1) and PS′ − PS1 = (z − 1)2Q′, where Q′ = Q(z)− (zb +
. . .+ za) is positive. ��

Given a graph G, let S∗ be the lexicographically smallest sequence in ŜG.
When z is big enough, PS∗(z) < PS(z) for any other S ∈ ŜG. Therefore, if G ∈ B
or G ∈ BS , we must have S∗ as the minimum sequence. From S∗ we define some
interesting graph parameters.

684 Xiaomin Chen, Mario Szegedy, and Lei Wang

Definition 6. Let G be a graph and S∗ be the smallest lexicographical sequence
in ŜG. Define m(G) := S∗(1), i.e., the largest forward degree in S∗. Define
Nk(G) := NS∗(k) to be the number of occurrences of k in S∗. And define
N(G) := Nm(G)(G) = NS∗(m(G)).

Let G be a graph and G′ be a subgraph of G, then m(G′) ≤ m(G). Moreover,
if v is a vertex in G with the minimum degree, and G′ = G − v, then m(G) =
max{dv,m(G′)}. From these observations, we see that m(G) is computable in
polynomial time by the following algorithm: We start from the empty sequence;
find a vertex v in G with the smallest degree; put v as the next element in our
sequence and delete v from G. Iterate this until G is empty. Thus we get an
ordering of the vertices and a forward degree sequence. We claim m(G) is the
largest number in the sequence.

If G ∈ BS , the most strongly balanced forward degree sequence must be S∗.
In finding S∗, we are trying to minimize the number of occurrences of m(G) in
a forward degree sequence. On the other hand, it is easy to see that the most
strongly balanced sequence must contain as few 0’s as possible, so the number of
0’s in the sequence is exactly the number of connected components in G. With
these observations, we can show there are graphs not in BS and not even in B.

4 Graphs Inside B or BS

4.1 Closure Properties

From a graph in BS (or B), we may construct new graphs in the same class by
adding a vertex in some manner. The proofs of the following two propositions
are easy shifting arguments.

Proposition 3 If G = (V,E) ∈ B and G′ = (V ∪ {v}, E ∪ {vw|w ∈ V }), then
G′ ∈ B. Moreover, if G ∈ BS, then G′ ∈ BS. If σ is a � (�S) minimum ordering
of the vertices of G, then σ′ = (σ, v) is � (�S) minimum for G′.

Proposition 4 If G = (V,E) ∈ B, K is a clique in G, and G′ = (V ∪ {v}, E ∪
{vw|w ∈ K}), then G′ ∈ B. Moreover, if G ∈ BS, then G′ ∈ BS. If σ is a � (�S)
minimum ordering of the vertices of G, then σ′ = (v, σ) is � (�S) minimum for
G′.

Proposition 4 immediately gives the fact that there is a most strongly bal-
anced sequence for any chordal graph.

Corollary 1. The family of chordal graphs is contained in BS. Let G be a
chordal graph. All simplicial elimination orderings of G give the same multi-
set of the forward degree sequences.

Proposition 5 If G = (V,E) ∈ BS, x and y are two connected vertices in G,
and G′ = (V ∪{v}, E ∪{vx, vy}), then G′ ∈ BS. If σ is a �S minimum ordering
of the vertices of G, then σ′ = (v, σ) is �S minimum for G′.

Optimally Balanced Forward Degree Sequence 685

Proof. Without loss of generality, we may assume G is connected. Therefore, the
number 0 appears exactly once in the forward degree sequence induced by σ.
Clearly Pσ′(z) = P (z) + z2.

Consider any ordering π′ of G′. Without loss of generality, x comes before y
in π′. By deleting v in π′ we get π, an ordering of G. Pπ(z)−P (z) = (z−1)2Q(z),
where Q is a polynomial in z with positive integer coefficients. Let a = dπ

x and
b = dπ

y .
Based on the position of v, x, and y in π′, we have 3 cases.

(a) If v comes before x and y, then dσ
v = 2 and dσ

w = dσ′

w for any w in G. So
Pπ′(z) = Pπ(z) + z2. Pπ′(z)− Pσ′(z) = Pπ(z)− P (z) = (z − 1)2Q(z).
(b) If v comes between x and y, Pπ′(z) = Pπ(z) + z + za+1 − za. Pπ′(z) −
Pσ′ (z) = Pπ(z)− P (z) + z − z2 + za+1 − za = (z − 1)2Q(z) + (z − 1)(za − z). If
a �= 0, (Pπ′(z)−Pσ′(z))/(z−1)2 is a polynomial with positive integer coefficients.
Otherwise, x has forward degree 0 in π, yet x is not the last vertex. So π contains
at least 2 vertices of forward degree 0. So the constant term of Q is positive, and
Pπ′(z) − Pσ′(z) = (z − 1)2(Q(z)− 1), where all the coefficients of Q(z)− 1 are
positive integers.
(c) If v comes after x and y, Pπ′(z) = Pπ(z) + 1 + za+1 − za + zb+1 − zb.
Pπ′(z)−Pσ′(z) = (z− 1)2Q(z)+ (z− 1)(za− z+ zb− 1). The analysis is exactly
the same as in the previous case.

In each case, (Pπ′ − Pσ′)/(z − 1)2 has positive coefficients, by proposition 2,
σ′ is �S minimum for G′. ��

4.2 Graphs with Low Degrees

We denote by Dk the class of graphs with all degrees at most k: Dk = {G :
Δ(G) ≤ k}. Any graph D2 is a disjoint union of paths and cycles. By the
propositions in Section 4.1, D2 ⊂ BS. There are examples shown that D3 �⊆ BS

and D4 �⊆ B. In the rest of this section we prove that D3 ⊂ B.

Biconnectivity and Block Structures. Recall some definitions and facts
about the biconnected graphs and blocks. A graph is called biconnected if it is
connected, has at least 3 vertices and contains no cut point. A maximal connected
subgraph that has no cut point is called a block. In the standard approach the
blocks is a partition of the edges of a graph. Blocks form a cactus-like structure
and the so called block-cutpoint graph is a tree. In our approach we use an
essentially same yet slightly different decomposition. We are going to partition
the vertices.

Definition 7. Given a graph G. A maximal biconnected subgraph of G is called
a cluster. A vertex which does not belong to any biconnected subgraph is called a
router. A room is either a cluster or a router.

Clearly, a router is a vertex that does not belong to any cycle. Either it is
an isolated point, or every block containing it is a bridge. Let G be a graph in
D3, let R1 and R2 be any two distinct rooms in G, it follows from the standard

686 Xiaomin Chen, Mario Szegedy, and Lei Wang

properties of the block decomposition of a graph (See [1] and [7]) that R1 and
R2 do not share any common vertex, and here is at most one edge in G between
the vertex set of R1 and the vertex set of R2. Thus, for graphs in D3, the rooms
is a partition of vertices. we can define a super graph as

Definition 8. Let G ∈ D3 with rooms R1, · · · , Rk, the building map GR is the
graph with vertex set {R1, · · · , Rk} and RiRj is an edge in GS if and only if
there is an edge between Ri and Rj in G.

For any G ∈ D3, the graph GS is a forest. The number of connected compo-
nents in GS is the number of connected components in G.

Biconnected Graph in D3. If G is a connected graph in Dd, and there is at
least one vertex with degree smaller than d, then we can always find a forward
degree sequence without any forward degree d. Indeed, we can pick any vertex of
degree less than d, and notice that in the new graph there is at least one vertex
of degree less than d in each of its connected component. Thus we have,

Proposition 6 For any connected graph G with maximum degree d and mini-
mum degree less than d, we have m(G) < d.

Corollary 2. For any d-regular graph G, m(G) = d and N(G) equals the num-
ber of connected components in G.

For the biconnected graphs in D3, we have a similar yet stronger statement.
In the proof of the next Lemma and in the rest of this section, we call a forward
degree sequence (an ordering of vertices) x-y-good if it starts with x, ends with
y, avoids any 3, and contains only one 0.

Lemma 2. Suppose G = (V,E) is a biconnected graph in D3. For any vs ∈ V
such that dG

vs
= 2 and any vf ∈ V −vs, there exists an ordering of vertices σ such

that it starts with vs, ends with vf , and the forward degree sequence obtained by
σ on G satisfies NSσ(3) = 0 and NSσ(0) = 1, i.e., it avoids 3 and contains only
one 0.

Proof. The proof is by induction on n, the number of vertices in G. The base
case, when n = 3, is trivial. For n greater than 3, G′ = G − vs is a connected
graph in D3 with n − 1 vertices. Suppose x and y are the two neighbors of vs,
in G′ we have 1 ≤ dG′

x , dG′

y ≤ 2. We discuss two possible cases.
1. G′ is biconnected.

In this case, dG′

x = dG′

y = 2 and at least one of them, say x, is not vf .
σ = (vs, σ

′) is vs-vf -good in G , where σ′ is x-vf -good in G′.
2. G′ is not biconnected.

In this case, there should exist vc which is a cut point ofG′. Since the degree of
vs in G is 2 and G is biconnected, G′−vc has exactly two connected components,
say, H1 = (V1, E1) and H2 = (V2, E2), and vs has neighbor in both components.
We assume x ∈ V1 and y ∈ V2.

Optimally Balanced Forward Degree Sequence 687

Based on H1 and H2, we define two new graphs. G1 = G[V1∪{vc, vs}]+vsvc,
G2 = G[V2 ∪{vc, vs}]+ vsvc. It is easy to show that they are biconnected graphs
in D3 with at least three and less than n vertices, and vs is a degree 2 vertex in
both G1 and G2.

Now we construct a vs-vf -good ordering in G. Without loss of generality, vf

is in G1. By induction, there is a vs-vf -good ordering (vs, σ1, vf) in G1, and a
vs-vc-good ordering (vs, σ2, vc) in G2. Let σ = (vs, σ2, σ1, vf). It is routine to
check that σ is vs-vf -good in G. ��

We prove that a vs-vf -good forward degree sequence, for any vs and vf with
the degree of vs being 2, is a most strongly balanced sequence for the graph.

Corollary 3. Any biconnected graph with maximum degree 3 and minimum de-
gree less than 3 belongs to the class BS.

Proof. Let σ be a vs-vf -good ordering for any vs and vf with the degree of vs

being 2. Consider any other ordering π and the maximum number d appearing
in Sπ.

Since the graph is biconnected, d > 1. If d = 2, then Pπ(z) − Pσ(z) =
(z − 1)2c for some integer c. Since Sσ contains only one 0, the constant term of
Pπ(z)−Pσ(z) is non-negative. If d = 3, then Pπ(z)−Pσ(z) = (z−1)2(az+b) for
some integer a > 0 and b. Again, since Sσ contains only one 0, the constant term
of Pπ(z)− Pσ(z) is non-negative. In either case, σ�Sπ by Proposition 2. ��

In the proof of Lemma 2, we actually outlined an algorithm to find a good
sequence. The complexity of the algorithm is easily analyzed. We have

Proposition 7 Given any biconnected graph with n vertices, and with maximum
degree 3 and minimum degree less than 3, the most strongly balanced (ordered)
forward degree sequence is computable in O(n3) time.

B Contains D3.

Lemma 3. Any connected graph G with maximum degree 3 and minimum degree
less than 3 belongs to the class B. Moreover, the � minimum forward degree
sequence is computable in polynomial time.

Proof. We call a vertex loose if its degree is less than 3. We analyze the clusters
in G and the building map GS . We call a cluster R bad if it is a leaf in GS and
all its vertices has degree 3 in G. Let b be the number of bad clusters.

If we want to avoid the forward degree 3, each of the bad clusters contributes
at least one 0. Thus, in any forward degree sequence of G that avoids 3, the
number of 0’s is at least max{1, b}.

On the other hand, we can always find a forward degree sequence of G that
avoids 3 and contains max{1, b} 0’s: Pick any loose vertex x and find its room
Rr. We view GS as a rooted tree with root Rr. For any leaf L which is not a
bad cluster, by Lemma 2, we can eliminate it without producing any 3 or 0, or
changing the number of bad clusters. We repeat this until all the leaves are bad.
Now, we find an order from the root down to the leaves. We start from x. For

688 Xiaomin Chen, Mario Szegedy, and Lei Wang

any non-leaf room R, we start from a loose vertex, and eliminate its vertices
according to the ordering provided by Lemma 2 which ends in any of its ports to
R’s children of R. Thus we do not have any forward degree 3 or 0, and created a
loose vertex for each of R’s children. Finally we have d leaves in GS , accordingly
d connected components in G each has a loose vertex. By Lemma 2, we finish
by d orderings containing one 0 each.

clusters without loose vertices

bad clusters

clusters with loose vertices

routers

Fig. 1. The good leaves are treated bottom up, then the non-leaf nodes are treated top
down.

Now we finish the proof of Lemma 3 by showing that any such sequence σ is
� minimum for G. We prove this by induction on the size of G. The base case is
trivial. Assume for any graph with less vertices there is a � minimum ordering
that has as few 0’s as possible under the condition that 3 does not appear.

Consider any other ordering π. We consider two cases.
1. π avoids the forward degree 3. Then, Pπ(z)−Pσ(z) = (z−1)2c for some integer
c. Because σ has the fewest number of 0’s among all forward degree sequence
without 3, c ≥ 0 and hence σ�π.
2. 3 appears in π as the forward degree for some v. We may assume it appears
as the beginning and, by the inductive hypothesis, π = (v, π′), where π′ is the �
minimum sequence of G− v. So, 3 appears exactly once in Sπ. Pπ(z)− Pσ(z) =
(z − 1)2(z − c) for some integer c.

Our goal is to show that c ≤ 1, equivalently, NSπ′ (0) ≥ NSσ(0) − 1. If
there is no bad clusters in G, then NSσ(0) = 1 thus NSπ′ (0) ≥ NSσ(0) − 1.
Otherwise, there are b ≥ 1 bad clusters. G − v contains at least b − 1 bad
clusters, NSπ′ (0) ≥ b− 1 = NSσ (0)− 1.

The procedure we outlined in this proof gives a best forward degree sequence
in polynomial time, provided the algorithm in Proposition 7 as a sub-routine. ��

Now we are ready to prove our main result in this section.

Theorem 1 Any graph with all degrees at most 3 has � minimum forward de-
gree sequence; and there is a polynomial time algorithm computes the � minimum
forward degree sequence. Especially, the class of 3-regular graphs is contained
in B.

Optimally Balanced Forward Degree Sequence 689

Proof. We may assume the graph G is connected. If there is a vertex with degree
less than 3, the statement is true by Lemma 3. Otherwise, G is 3-regular, with
vertices v1, v2, · · ·, vn. Let Gi = G − vi, each connected component of Gi has
a vertex of degree less than 3. Therefore, by Lemma 3, there is a � minimum
forward degree sequence σ′

i for Gi. Let σi = (vi, σ
′
i), then Pσi(z) = z3 + Pσ′

i
(z).

For any ordering (vi, σ
′), (vi, σ

′
i)�(vi, σ

′). So we only need to show that there
is a � minimum polynomial among Pσ1 , · · ·, Pσn .

Actually � is a linear order on the set of {Pσi : 1 ≤ i ≤ n}. For any i and j,
being the � minimum sequences, Sσ′

i
and Sσ′

j
do not contain any forward degree

larger than 2. So,

Pσ′
i
(z)− Pσ′

j
(z) = Pσi(z)− Pσj (z) = (z − 1)2c

for some integer c. That is, they are � (�S) comparable. ��

5 Conclusion

In this paper we have defined and studied forward degree sequences and their
associated polynomials. In particular, the properties of (strongly) balanced for-
ward degree sequences are investigated. Our proof shows that any chordal graph
has a strongly balanced forward degree sequence and any graph with all degrees
at most 3 has a balanced forward degree sequence. Moreover, these (strongly)
balanced forward degree sequences can be computed in polynomial time. Our re-
sults might bring a new clue for graph problems related to vertex ordering, such
as graph isomorphism, because a (strongly) balance forward degree sequence is
an optimal vertex ordering. Our work could be extended by finding more classes
of graphs which are (strongly) balanced. Also, it is still open that whether some
of the graph invariants derived naturally from forward degree sequence, such as
N(G), are polynomial time computable.

References

1. B. Bollobás, Modern Graph Theory, Springer-Verlag, New York (1998).
2. P. Erdos and T. Gallai, Graphs with Prescribed Degrees of Vertices, Mat. Lapok. 11,

pp264-274, (1960).
3. S. Hakimi, On the Realizability of a Set of Integers as Degrees of the Vertices of a

Graph, SIAM J. Appl. Math. 10, pp496-506, (1962).
4. V. Havel, A Remark on the Existence of Finite Graphs, Casopis Pest. Mat. 80,

pp477-480, (1955).
5. C. M. Hoffmann, Group-theoretic algorithms and graph isomorphism, volume 136 of

Lecture Notes in Computer Science, Springer-Verlag Inc., New York, (1982).
6. E. M. Luks, Isomorphism of bounded valence can be tested in polynomial time,

Proc. of the 21st Annual Symposium on Foundations of Computing, pp42-49. IEEE,
(1980).

7. D. B. West, Introduction to Graph Theory, Prentice Hall, New Jersey (1996).

Conditionally Critical Indecomposable Graphs

Chandan K. Dubey1, Shashank K. Mehta1,�, and Jitender S. Deogun2

1 Indian Institute of Technology, Kanpur – 208016, India
{cdubey,skmehta}@cse.iitk.ac.in

2 University of Nebraska-Lincoln, Lincoln, NE 68588-0115, USA
deogun@cse.unl.edu

Abstract. Let X be a subset of vertices of an undirected graph G =
(V, E). G is X-critical if it is indecomposable and its induced subgraph on
X vertices is also indecomposable, but all induced subgraphs on V −{w}
are decomposable for all w ∈ V −X. We present two results in this paper.
The first result states that if G is X-critical, then for every w ∈ V −{x},
G[V −{w}] has a unique non-trivial module and its cardinality is either
2 or |V | − 2. The second result is that the vertices of V − X can be
paired up as (a1, b1), . . . , (ak, bk) such that induced subgraphs on subset
V − {aj1 , bj1 , . . . , ajs , bjs} are also X-critical for any collection of pairs
{(aj1 , bj1), . . . , (ajs , bjs)}.

1 Introduction

A module (or interval) of an undirected graph G = (V,E) is a subset of vertices,
M ⊆ V such that for any a, b ∈M and c ∈ V −M edge (a, c) ∈ E if and only if
edge (b, c) ∈ E. Singleton sets and the entire vertex set are modules vacuously,
and therefore are called trivial modules. A graph is said to be indecomposable
when it does not contain a non-trivial module.

Some recent works have studied how indecomposability is inherited by in-
duced subgraphs. Here we mention two papers which were the prime motivation
for the current work. Schmerl and Trotter [1] studied critically indecomposable
graphs. These graphs are such that any induced subgraph on one fewer vertex
is decomposable. The study showed that the family of bipartite graphs on ver-
tex set {u1, . . . , um} ∪ {v1, . . . , vm} where each uj is adjacent to vk for k ≥ j
are critically indecomposable. The only other graphs which are also critically
indecomposable are the complement of these graphs.

Cournier and Ille [2] have studied criticality from a different perspective.
They define minimality by requiring that every proper subgraph of indecompos-
able graph G must be decomposable if it properly contains an indecomposable
subgraph of G[X].

Pierre Ille [3] has shown that if G is indecomposable and has an induced
indecomposable subgraph on vertex set X , then there is a set Y containing

� Partly supported by Ministry of Human Resource Development, Government of India
under grant no. MHRD/CD/20030320

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 690–700, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Conditionally Critical Indecomposable Graphs 691

X and |Y | = |V | − 2 such that G[Y] is also indecomposable, subject to some
minimal conditions on the sizes of X and V −X .

In this work we generalize the notion of critical indecomposability of [1]
inspired by [3]. Let X be a subset of vertices of G. Then G is X-critically inde-
composable if G and its induced subgraph on X are indecomposable but every
induced subgraph on V − {w}, w ∈ V −X , is decomposable. For simplicity we
will refer to this property by X-ci. The critically indecomposable graphs defined
by Schmerl and Trotter [1] are ∅-ci. We also show that the vertices of V −X in
an X-ci graph can be paired up such that the reduced graph after the deletion
of any collection of these pairs is also X-critical.

2 Critical Indecomposability and Related Notions

Notation In this paper G will denote a graph with vertex set V and edge set E.
If Y is a subset of V , then G[Y] will denote the induced subgraph of G on vertex
set Y . Symmetric 0-1 matrix e will represent adjacency. So euv = 1 if and only
if edge (u, v) belongs to E. Throughout the paper we will deal with undirected
graphs although the proofs can be easily adapted for directed graphs.

A property of modules trivially deducible from the definition is as follows.

Proposition 1. (i) M is a module of G and Y ⊆ V . Then M ∩ Y is a module
of G[Y].
(ii) If M1 and M2 are modules of G such that M1 ∩ M2 is non-empty then
M1 ∪M2 is also a module of G.

We reproduce here a basic result from [1, 4] which is used in the current
work.

Theorem 1. [1, 4] Let G = (V,E) be an indecomposable graph with an indecom-
posable subgraph G[X] s.t. 3 ≤ |X | ≤ |V | − 2. Then there is an indecomposable
subgraph G[Y] s.t. X ⊂ Y ⊆ V and |Y | = |X |+ 2.

Definition 1. G = (V,E) is said to be marginally decomposable if (i) there is
only one module in the graph, and (ii) the size (vertex cardinality) of the module
is either 2 or |V | − 1.

Next we define a notion which is more stringent than X-criticality.

Definition 2. Graph G has an indecomposable subgraph G[X]. Then G is said
to be X-stably-indecomposable (in short X-si) if (i) G is indecomposable, and
(ii) G[V − {w}] is marginally decomposable for all w ∈ V −X.

It is obvious that every X-si subgraph is X-ci. In the sequel we will show
that the two concepts are equivalent.

Lemma 1. Let Y be a subset of 4 or more vertices of G and x ∈ Y . Then
(a) if G[Y − {x}] is indecomposable and G[Y] is decomposable, then G[Y] is
marginally decomposable.

692 Chandan K. Dubey, Shashank K. Mehta, and Jitender S. Deogun

(b) if G[Y − {x}] is indecomposable and G[Y] is marginally decomposable, then
the module of G[Y] is either Y − {x} or {x, y} for some y ∈ Y − {x}.
(c) G[Y] is marginally decomposable with the module Y − {x} or {x, y} where
y ∈ Y − {x}, then G[Y − {x}] is indecomposable.

Proof. (a) Let M be a non-trivial module of G[Y]. G[Y −{x}] is indecomposable
so M ′ = M ∩ (Y − {x}) must be a trivial module of G[Y − {x}]. Thus M ′ can
be either {y} or Y − {x}, for some y ∈ Y − {x}. Therefore M will be {x, y} or
Y − {x}, since it is a non-trivial module of G[Y]. Next we show that at most
one M is possible.

Let M1 and M2 are modules of G[Y]. There are two cases to be considered:
(i) M1 = {x, y1},M2 = {x, y2} and (ii) M1 = {x, y},M2 = Y − {x}. In case (i)
{y1, y2} is a module of G[Y − {x}] and in case (ii) Y − {x, y} is a module of
G[Y −{x}]. In each case the module is non-trivial so it contradicts the fact that
G[Y − {x}] is indecomposable.

(b) This claim is established in part (a).
(c) Consider the case where {x, y} is the module of G[Y]. Assume that M is

a module of G[Y −{x}]. If y ∈M then M ∪{x} is a module of G[Y]. Uniqueness
requires that M ∪ {x} = {y, x} thus M = {y}, i.e., M is trivial. If y /∈M , then
M is also a module of G[Y]. In this case uniqueness requires that M = {x, y}
which is not possible since y /∈M .

Next consider the case of module Y − {x}. In this case x is either connected
to all vertices of Y −{x} or not connected to any. If M is a module of G[Y −{x}],
then it must also be a module of G[Y]. Thus M = Y − {x}, but this is a trivial
module of G[Y − {x}].

Lemma 2. G = (V,E) is X-ci with |X | ≥ 3, and G′ = G[V − {a, b}] is inde-
composable for some a, b ∈ V −X. Then G[V − {a, b}] is also X-ci.

Proof. Suppose G′ is not X-ci. So there exists c ∈ V − X − {a, b} such that
G[V − {a, b, c}] is also indecomposable. Since |V − {a, b, c}| ≥ |X | ≥ 3, we can
use Theorem 1 to deduce that there are u, v in {a, b, c} such that G[V −{a, b, c}∪
{u, v}] is indecomposable. This graph is G′′ = G[V − {w}] where w is one of
a, b, c. On the contrary, by definition of X-ci, G′′ is decomposable.

Definition 3. If G is X-ci and a, b ∈ V − X such that G[V − {a, b}] is also
X-ci then the unordered pair (a, b) will be called a locked pair of G. Indeed it
depends on X.

Lemma 3. Let G = (V,E) is X-ci with V −X non-empty and |X | ≥ 3. Then
G has a locked pair.

Proof. Consider the indecomposable subgraph G[X]. From Theorem 1 we know
that there is an indecomposable subgraphG[Y] such thatX ⊂ Y and |Y | = |X |+
2. Repeating the argument we find that there is an indecomposable subgraph
G[V ′] such that X ⊆ V ′ and 1 ≤ |V −V ′| ≤ 2. But |V −V ′| cannot be 1 since G
is X-ci and V ′ contains X . Suppose V ′ = V −{a, b}. From lemma 2 we conclude
that (a, b) is a locked pair in G.

Conditionally Critical Indecomposable Graphs 693

An X-ci subgraph cannot have vertex cardinality equal to |X | + 1 because
of criticality condition. Combining this fact with lemma 3 leads to the following
corollary.

Corollary 1. G = (V,E) is an X-ci graph with |X | ≥ 3 then |V −X | = 2k for
some k ≥ 0.

Consider an indecomposable subgraph G[Y]. We can partition the vertices of
V −Y as follows. Let x ∈ V −Y . If G[Y ∪{x}] is indecomposable then x will be
said to belong to class G[Y]-Ext (extension). In case G[Y ∪{x}] is decomposable
then from lemma 1 there are two possibilities: Y is a module or {x, y} is module
in G[Y ∪ {x}]. In the former case x belongs to G[Y]-Dom (dominator) and in
the latter case it belongs to G[Y]-Equi (equivalent). This terminology is adopted
from [5], [6].

Let G be an X-ci graph and (a, b) be a locked pair. G[V −{a}] and G[V −{b}]
are decomposable so neither vertex can belong to G[V − {a, b}]-Ext. Further,
both vertices cannot belong to G[V − {a, b}]-Dom because that would imply
that V − {a, b} is a module of G which is absurd since G is indecomposable.

Proposition 2. Let (a, b) be a locked-pair in an X-ci graph G = (V,E). Then
either (i) both a and b are in class G[V − {a, b}]-Equi or (ii) one each is in
G[V − {a, b}]-Equi and G[V − {a, b}]-Dom.

3 Critical Is Stable

The main goal of this section is to prove that X-ci and X-si are equivalent.
Every X-si is trivially X-ci so we only need to prove that X-ci implies X-si
property. We shall establish this result by induction. Suppose G is X-ci and
(a, b) is a locked pair. In Lemma 5 and 6 we will show that if all X-ci subgraphs
of G[V −{a, b}] are also X-si, then G is X-si. We begin with a supporting result.

Lemma 4. G = (V,E) is X-ci and G[V −{a, b}] is X-si for some a, b ∈ V −X.
If a ∈ G[V − {a, b}]-Dom and b ∈ G[V − {a, b}]-Equi with {b, p} as the unique
module of G[V −{a}] and if p /∈ X, then G[V −{p}] is marginally decomposable
and its module is {a, u} where u is some vertex in V − {a, b, p}.

Proof. By definition a ∈ G[V − {a, b}]-Dom means V − {a, b} is a module of
G[V − {b}]. Thus eax′ = eax′′ for any x′, x′′ ∈ V − {a, b}. But V − {a, b} cannot
be a module of the entire graph G because G is indecomposable, therefore we
must have eax �= eab for x ∈ V − {a, b}.

Let M be a non-trivial module of G[V − {p}]. Then due to stable indecom-
posability of G[V −{a, b}] and p not in X , |M ∩ (V −{a, b, p})| must be 0, 1, 2,
|V | − 4, or |V | − 3.

If a and b both belong to M , then M∪{p} will become a non-trivial module of
G, because {b, p} is a module of G[V −{a}], i.e., b and p have same connectivity
with V − {a, b, p}. If neither of the two vertices belong to M , then it is also
a non-trivial module of G. b ∈ M but a /∈ M is not possible since eax �= eab.

694 Chandan K. Dubey, Shashank K. Mehta, and Jitender S. Deogun

At last suppose a ∈ M but b /∈ M . Consider M − {a}. It is in V − {a, b} so a
has same connectivity with entire M − {a}. Besides, {b, p} being a module of
G[V − {a}], all elements of M − {a} have same connectivity with p because it
is so with b. It implies that M − {a} is a module of G, contradicting the fact
that G is indecomposable. Therefore such case also cannot occur if M −{a} is a
non-trivial module. These considerations imply that the only possible modules
of G[V − {p}] are of the form {a, u}, where u ∈ V − {a, b, p}

To complete the proof we will show that G[V − {p}] cannot have more than
one non-trivial module. Let {a, u1} and {a, u2} be two of its modules. Using the
fact that p and b are similarly connected to all vertices V − {a, b, p} we find
that {u1, u2} is a module of G[V − {a, b}], which is not possible because it is
indecomposable.

Corollary 2. G = (V,E) is X-ci and G[V − {a, b}] is X-si for some a, b ∈
V −X. If a ∈ G[V − {a, b}]-Dom and b ∈ G[V − {a, b}]-Equi with {b, p} as the
unique module of G[V −{a}] and p /∈ X, then the only module of G[V −{a, b, p}]
is V − {a, b, p, u} where u is some vertex of V − {a, b, p}.

Proof. From the lemma we know that the modules of G[V −{p}] are of the form
{a, u} for some u ∈ V − {a, b, p}. Therefore u, like a, is either adjacent to all
vertices of V − {a, b, p, u} or not adjacent to all of V − {a, b, p, u}.

Lemma 5. G = (V,E) is X-ci with |X | ≥ 3 and |V | > 6. If (a, b) is a locked
pair with a ∈ G[V − {a, b}]-Dom and b ∈ G[V − {a, b}]-Equi. If every X-ci
subgraph of G[V − {a, b}], including itself, is X-si, then G is X-si.

Proof. Let p ∈ V − {a, b} such that {b, p} is the unique module of marginally
decomposable graph G[V − {a}].

To prove the claim we have to show that G[V − {w}] is marginally decom-
posable for all w ∈ V −X . We partition the cases into three categories.

(I) Cases of w = a and w = b:
G being X-ci, G[V −{a}] and G[V −{b}] are decomposable. Since G[V −{a, b}]
is indecomposable, from lemma 1(a) we conclude that G[V −{a}] and G[V −{b}]
are both marginally indecomposable.

(II) Case of w = p when p /∈ X :
Observe that V − {a, b} contains X and graph G[V − {a, p}] is isomorphic to
G[V − {a, b}] so it is also X-ci. G is X-ci so from lemma 1(a) we deduce that
G[V − {p}] is also marginally decomposable.

(III) Case of w ∈ V − {a, b, p}:
As a is given to be G[V − {a, b}]-Dom, it is either adjacent to all vertices of
V − {a, b} or not adjacent to all vertices of V − {a, b}. The reasoning remains
same for both the cases. Therefore for simplification we shall assume that a is
adjacent to all vertices of V − {a, b}. Since G is indecomposable, a and b must
not be adjacent otherwise G[V − {a}] will be a module of G.

Let M be a module of G[V − {w}]. Since G[V − {a, b}] is X-si, |M ∩ (V −
{a, b, w})| can be 0,1,2,|V | − 4 or |V | − 3. Further, a belongs to G[V − {a, b}]-
Dom so M cannot contain b without containing a. Subject to these conditions we

Conditionally Critical Indecomposable Graphs 695

consider all the possible values of M . We show some values of M are impossible
because either it leads to structural inconsistency, or it requires G[V −{a, b, w}]
to have more than one non-trivial modules, which is not possible for a marginally
decomposable graph.

For the rest of the cases it will be shown that M ′, the module of G[V −
{a, b, w}], is uniquely determined by M . For each possible M the corresponding
M ′ will be different. This will imply that G[V − {w}] has unique module for a
given w since G[V −{a, b, w}] has a unique module. Due to explicit construction
of all possible M we will be able to verify that every feasible M has cardinality
2 or |V |−2. In the following cases v, u will denote some vertices in V −{a, b, w}.
In the following we take a group of values for M and describe its consequence.
(i) {a, b}, {a, p}, {a, b, p}: Then V − {a, b, p, w} is a module of G[V − {a, b, w}].
(ii) {a, v}, {a, v, u}: Since eab = 0, evb = 0. But eap = 1 so evp = 1. Since {b, p}
is a module of G[V − {a}], evp = 1 implies that evb = 1. Hence contradiction.
(iii) {v, u}: Then {v, u} is also a module of G[V − {a, b, w}].
(iv) {a, b, v, u}: Not possible because {v, u} and {v, u, p} are both modules of
G[V − {a, b, w}]. Here {v, u, p} is a non-trivial module since |V | > 6.
(v) {p, v}: Then {p, v} is also a module of G[V − {a, b, w}].
(vi) {a, p, v}, {a, b, v}, {a, b, v, p}: Not possible since {v, p} and V −{a, b, w, v, p}
are both modules of G[V −{a, b, w}]. Here again the second is a non-trivial mod-
ule since |V | > 6.
(vii) V − {a, b, v, w}, V − {b, v, w}: not possible since V − {a, b, v, w} and V −
{a, b, v, w, p} are modules of G[V − {a, b, w}]. Module V − {a, b, v, w, p} is non-
trivial as shown in case (vi).
(viii) V − {v, w}: here V − {a, b, v, w} is a module of G[V − {a, b, w}].
(ix) V − {b, w}, V − {p, w}, V − {a, b, w}, V − {a, b, p, w}: Then V − {a, b, p, w}
is the module of G[V − {a, b, w}]
(x) V −{b, p, w}: Let v ∈ V −{a, b, p, w}. Since eab = 0, evb is also 0. But eap = 1
so evp = 1. This contradicts the fact that {b, p} is a module of G[V − {a}].

To summarize, we must have module M ′ of G[V −{a, b, w}] whenever G[V −
{w}] has module M :
(i) M ′ = V − {a, b, p, w}: for M = {a, b}, {a, p}, {a, b, p}, V − {a, b, p, w}, V −
{p, w}, V − {a, b, w}, V − {b, w},
(ii) M ′ = V − {a, b, v, w}: for M = V − {v, w},
(iii) M ′ = {v, u}: for M = {v, u},
(iv) M ′ = {p, v}: for M = {p, v}.

Next we will show that M ′ = V − {a, b, p, w} is impossible so the first case
cannot occur.

If V − {a, b, p, w} is a module of G[V − {a, b, w}], then from Lemma 1(c)
G[V − {a, b, p, w}] is indecomposable. Observe that p /∈ X otherwise X − {p}
would be a module of G[X], which is indecomposable. By choice, w /∈ X so
X ⊆ V − {a, b, p, w}. From Lemma 2, G[V − {a, b, p, w}] is X-ci, i.e., {p, w} is a
locked pair ofG[V −{a, b}]. Since G[V −{a, b, p, w}] is a subgraph ofG[V −{a, b}],
it is X-si. Since p is in G[V −{a, b, p, w}]-Dom, w belongs to G[V −{a, b, p, w}]-

696 Chandan K. Dubey, Shashank K. Mehta, and Jitender S. Deogun

Equi. Therefore G[V − {a, b, p}] has module {w, v} for some v. From Corollary
2 only possible module of G[V − {a, b, p}] is V − {a, b, p, u} for some u. This is
not possible because |V − {a, b, p, u}| > 2 so V − {a, b, p, u} �= {w, v}.

This leaves only three possibilities for the modules of G[V − {w}]: M =
V − {v, w}, M = {v, u} and M = {p, v}. But in each case different module for
G[V − {a, b, w}] must exist. Since G[V − {a, b}] is X-si, G[V − {a, b, w}] can
have only one module. This forces G[V − {u}] to have only one of the three
possible modules for a fixed w. Besides, in each case the module of G[V − {w}]
has cardinality of 2 or |V | − 2. Thus G[V − {w}] is marginally decomposable.

Table 1 shows the possible modules M of G[V −{w}] and the implied modules
M ′ of G[V − {a, b, w}] for all w ∈ V .

Table 1. Case of a ∈ G[V − {a, b}]-Dom, b ∈ G[V − {a, b}]-Equi

w M M′ Remark

a {b, p} M ′ can’t exist as w /∈ V − {a, b}
b V − {a, b} M ′ can’t exist as w /∈ V − {a, b}
p {p, b} is the module of V − {a}

{a, u} V − {a, b, u, p} u is some vertex of V − {a, b, p}
w for any w in V − {a, b, p}

V − {v, w} V − {a, b, v, w} v is some vertex of V − {a, b, p,w}
{v, u} {v, u} v, u are some vertices of V − {a, b, p, w}
{v, p} {v, p} v is some vertex of V − {a, b, p,w}

In the following lemma we consider the case when both, a and b, are in
G[V − {a, b}]-Equi.

Lemma 6. G = (V,E) is X-ci with |X | ≥ 3 and |V | > 6. If (a, b) is a locked
pair with a and b both in G[V − {a, b}]-Equi. If G[V − {a, b}] is X-si, then G is
X-si.

Proof. a and b are in G[V − {a, b}]-Equi so there exist q, p ∈ V − {a, b} such
that {a, q} is the module of G[V − {b}] and {b, p} is the module of G[V − {a}].
Further p and q must be distinct because otherwise {a, b, p} will be a module of
G, which is an indecomposable graph.

We need to show that G[V − {w}] is also marginally decomposable for all
w ∈ V −X .

(I) Cases of w = a and w = b: Same as case (I) of Lemma 5.
(II) Cases of w = p when p /∈ X and w = q when q /∈ X :

{b, p} is a module (to be precise, the only module) of G[V −{a}] so G[V −{a, p}]
is isomorphic to G[V − {a, b}]. Therefore the former is also X-ci. From Lemma
1, G[V − {a, p} ∪ {a}] = G[V − {p}] is marginally decomposable with module
V − {a, p} or {a, u} for some u ∈ V − {a, p}. We refine this claim as follows.

If {a, b}] is a module of G[V − {p}], then {p, q} is a module of G[V − {a, b}]
which contradicts the fact that G[V − {a, b}] is X-ci. Also {a, q} cannot be a
module of G[V − {p}] because eab �= eqb. So the module of G[V − {p}] is either
V − {a, p} or {a, u} for some u ∈ V − {a, b, p, q}. Case of w = q is similar.

Conditionally Critical Indecomposable Graphs 697

Before proceeding to the last case where w ∈ V − {a, b, p, q} we establish a
useful result.

Claim {p, q} is not the module of G[V −{a, b, w}] for any w ∈ V −{a, b, p, q}.
Proof Assuming the contrary let {p, q} be the module of G[V −{a, b, w}] for

some w. Both p and q cannot be inside X otherwise {p, q} would be a module
of G[X]. Let p ∈ V −X . From part (II) the only module of G[V − {p}] is either
V − {a, p} or {a, u} where u ∈ V − {a, b, p, q}. Therefore either V − {a, b, p, q}
or {q, u} is a module of G[V − {a, b, p}]. Besides, it is the unique module since
G[V − {a, b, p}] is marginally decomposable.

Case: {q, u} is the module in G[V − {a, b, p}]
If u �= w, {p, q} be the module of G[V − {a, b, w}] and {q, u} is the module

in G[V −{a, b, p}] implies {p, q, u} is also a module of G[V −{a, b, w}]. But this
is not possible because G[V − {a, b, w}] is marginally decomposable. If u = w,
then {p, q, u} is a module (nontrivial because |V | > 6) of G[V − {a, b}] which is
also not possible as it is an indecomposable graph.

Case: V − {a, b, p, q} is the module in G[V − {a, b, p}]
In this case V −{a, b, p, q, w} should be the module of the marginally decom-

posable graph G[V − {a, b, w}] (as {p, q} is a module of G[V − {a, b, w}]) which
is impossible because |V | > 6 so V − {a, b, p, q, w} is non-trivial and {p, q} is
another module.

End of Proof of the Claim

Now we resume the proof of the lemma.
(III) Case of w ∈ V − {a, b, p, q}:

If M is a module of G[V − {w}], then M ∩ (V − {a, b, w}) must be either a
trivial module or that of size 2 or |V | − 4 because G[V −{a, b, w}] is marginally
decomposable.

Without loss of generality let us assume that eab = 0. Therefore eap = 1 since
otherwise {b, p} will become a module in G, which is indecomposable. Similarly
ebq = 1. Since {a, q} is a module in G[V − {b}], epq = 1.

Observe that eab �= eqb so M cannot contain a and q without containing b.
Similarly it cannot contain b, p without containing a.

Under the constraints mentioned above, only following values of M are left
to be considered. Here u, v are some vertices in V − {a, b, p, q}. We will exploit
the symmetry between pair (a, q) and (b, p) to reduce the cases.
(i) {a, b}, {a, p}, {a, b, p}, {p, q}, {a, b, p, q}: Then {p, q} must be a module of
G[V − {a, b, w}] which is contrary to the above mentioned claim.
(ii) {a, u}: Then {q, u} is a module of G[V −{a, b, w}]. This implies that epu = 1
because epq = 1. But epu = ebu so ebu = 1, while eba = 0 so {a, u} cannot be a
module in G[V − {w}].
(iii) {q, u}: then it is also a module of G[V − {a, b, w}].
(iv) {q, u, b}, {q, u, a, b}: Not possible because {p, q, u} is a module of G[V −
{a, b, w}] with cardinality different form 2 and |V | − 4.
(v) {u, v}: It is also the module of G[V − {a, b, w}].
(vi) {u, v, a}: Not possible since {u, v, q} (improper cardinality) is module of
G[V − {a, b, w}].

698 Chandan K. Dubey, Shashank K. Mehta, and Jitender S. Deogun

(vii) {u, v, a, b}: Not possible since {u, v, q, p} (improper cardinality) is module
of G[V − {a, b, w}].
(viii) V −{a, b, u, w}: Not possible because V −{a, b, p, u, w} and V −{a, b, q, u, w}
are both modules (nontrivial because |V | > 6) of G[V − {a, b, w}].
(ix) V − {u,w}: Then V − {a, b, u, w} is a module of G[V − {a, b, w}].
(x) V −{a, b, w}, V −{a, b, p, w}, V −{b, w, q}: Then V −{a, b, p, q, w} should be
a module of G[V − {a, b, w}] which is impossible due to its size.
(xi) V −{b, w, u}: Again this is impossible because it implies that V−{a, b, p, u, w}
is a module of G[V − {a, b, w}] and its size is improper.
(xii) V − {w, p}: Then V − {a, b, p, w} will be the module of G[V − {a, b, w}].

The summary of feasible cases is as follows. G[V −{a, b, w}] must have module
M ′ whenever G[V − {w}] has module M :
(i) M ′ = {q, u} for M = {q, u},
(ii) M ′ = {p, u} for M = {p, u},
(iii) M ′ = {u, v} for M = {u, v},
(iv) M ′ = V − {a, b, u, w} for M = V − {u,w}
(v) M ′ = V − {a, b, w, p} for M = V − {w, p}
(vi) M ′ = V − {a, b, w, q} for M = V − {w, q}.

If G[V −{w}] had more than one (non-trivial) module, then G[V −{a, b, w}]
will have to have more than one (non-trivial) module which is not possible.
Besides each module has cardinality 2 or |V | − 2 so G[V − {w}] is marginally
decomposable for each w.

Table 2 shows all the possible modules,M , of G[V −{w}] and implied module,
M ′, of G[V − {a, b, w}] in the corresponding case.

Table 2. Case of a and b both in G[V − {a, b}]-Equi

w M M′ Remark

a {b, p} M ′ can’t exist as w /∈ V − {a, b}
b {a, q} M ′ can’t exist as w /∈ V − {a, b}
p {a, u} {q, u} u is some vertex of V − {a, b, p, q}

V − {a, p} V − {a, b, q, p}
q {b, u} {p, u} u is some vertex of V − {a, b, p, q}

V − {b, q} V − {a, b, q, p}
w for any w in V − {a, b, p, q}

V − {x, w} V − {a, b, x,w} x is some vertex of V − {a, b, w}
{v, x} {v, x} x is some vertices of V − {a, b, w}

and v is some vertex of V − {a, b, p, q, x,w}

The main result of this section follows.

Theorem 2. Let G = (V,E) is X-ci graph with |X | ≥ 3. Then G is X-si.

Proof. Let Y be a variables that denotes a subset of V such that G[Y] is X-ci.
We will prove that G[Y] is X-si for all Y by induction on the size of Y −X .

As a base case we will consider Y such that |Y − X | ≤ 3. From Corollary
1 we know that |Y −X | cannot be odd. The case of |Y − X | = 0 is vacuously

Conditionally Critical Indecomposable Graphs 699

true. If |Y −X | = 2 then let Y = X ∪ {a, b}. From lemma 1(a), G[X ∪ {a}] and
G[X ∪ {b}] are marginally decomposable so G[Y] is X-si.

Now we consider the induction step. From hypothesis every X-ci subgraph
with upto k more vertices than |X |, is X-si. Due to the base case analysis k is
no smaller than 3. Now consider Y s.t. |Y −X | = k + 1. Since X ≥ 3, |Y | > 6.
Lemmas 3, 5, 6, and Proposition 2 lead to the conclusion that G[Y] is X-si. So
from induction principle G[Y] is X-si for all Y .

4 A Commutative Elimination Sequence

Proposition 3. G is X-ci graph. Then (a, b) is a locked pair of G iff a, b ∈
V −X and the (unique) module of G[V − {b}] is V − {a, b} or {a, q} for some
q ∈ V − {a, b}.

Proof. (if) This is the consequence of Proposition 1(c). (only if) From tables 1,
2 we know that only possible module in G[V − {b}] can be either V − {a, b} or
{a, q}.

Lemma 7. G is X-ci. (a, b) and (c, d) are locked pairs in G with no common
vertex. Then (a, b) is also a locked pair in G[V − {c, d}]

Proof. At least one of a and b is in G[V −{a, b}]-Equi. Without loss of generality
assume that {a, q} is the module of G[V − {b}]. If q /∈ {c, d}, then {a, q} is
the module in G[V − {b, c, d}]. From Proposition 3, (a, b) is a locked pair in
G[V − {c, d}].

Now consider the case q ∈ {c, d}. Without loss of generality q = c. Consider
the module of G[V − {d}]. From Proposition 3, it is either V − {c, d} or {c, e}
for some e ∈ V − {c, d}. In the former case V − {c, d, a, b} is a module of G[V −
{c, d, b}] (because {a, c} is a module of G[V − {b}]) so (a, b) is a locked pair in
G[V − {c, d}].

The latter case is as follows. {a, c} is the module in G[V − {b}], {c, e} is
the module in G[V − {d}]. If e = a then {a, c} will be a module of G which
is not possible. If e = b then {a, b, c} will be a module of G[V − {d}] which is
not possible since G[V − {d}] is marginally decomposable. Thus we find that
e ∈ V − {a, b, c, d}. Then {a, e} is the module of G[V − {c, d, b}]. Once again
(a, b) is a locked pair in G[V − {c, d}].

From Corollary 1 we know that in an X-ci graph V −X has even number of
vertices, say 2k. If these vertices can be partitioned into k 2-tuples such that each
tuple is a locked pair of the graph then such a collection is called a commutative
elimination sequence.

Lemma 8. Let G be X-ci and (a, b) be a locked pair in it. If G[V − {a, b}] has
a commutative elimination sequence, then so does G.

Proof. Suppose E′ is a commutative elimination sequence of G[V − {a, b}]. We
will first show that at most one locked pair in E′ may not remain a locked pair
of G.

700 Chandan K. Dubey, Shashank K. Mehta, and Jitender S. Deogun

Consider any locked pair (c, d) ∈ E′ in which at least one vertex w is such that
{w, a} is not a module in G[V − {b}] and {w, b} is not a module in G[V − {a}].
Let v be the other vertex of {c, d}. The module M ′ of G[V − {a, b, w}] must be
either V −{a, b, w, v} or {v, x} for some x because G[V −{a, b, w}] is marginally
decomposable. From tables 1, 2 we find that the module M of G[V −{w}] should
be M ′ ∪ {a, b} if M ′ = V − {a, b, w, v} and M = M ′ if M ′ = {v, x}. Thus M is
either V − {w, v} or {v, x}.

From Proposition 3 we deduce that (w, v) (which is same as (c, d)) remains
a locked pair in G. If all pairs on E′ are found to remain locked pairs in G, then
E = E′ ∪ {(a, b)} is a commutative elimination sequence of G.

In case all locked pairs of G[V − {a, b}] are not locked pairs of G then the
exception must be only one pairs (p, q) where {a, q} is the module of G[V −{b}]
and {b, p} is the module of G[V − {a}]. From Table 2, if {q, u} is the module of
G[V −{a, b, p}], then {a, u} is the module of G[V − {p}]. Thus (a, p) is a locked
pair of G. Similar argument shows that (b, q) is a locked pair of G. In this case
E = E′ − {(p, q)} ∪ {(a, p), (b, q)} is a commutative elimination sequence.

Vacuously, the subgraph G[X] of X-ci G has a commutative elimination
sequence. By induction and using lemma 8 we have a trivial conclusion that
every X-ci graph has a commutative elimination sequence. Now from lemma 7
we have the following theorem.

Theorem 3. If G is X-ci, then vertices of V −X can be partitioned into pairs
(a1, b1), . . . , (ak, bk) such that for any permutation j1, . . . jk of 1, . . . , k, G[V −
{aj1 , bj1 , . . . , ajs , bjs}] is also X-ci.

References

1. Schmerl, J.H., Trotter, W.T.: Critically indecomposable partially ordered sets,
graphs, tournaments and other binary relational structures. Discrete Mathematics
113 (1995) 191–205

2. Cournier, A., Ille, P.: Minimal indecomposable graphs. Discrete Mathematics 183
(1998) 61–80

3. Ille, P.: Indecomposable graphs. Discrete Mathematics 173 (1997) 71–78
4. Ehrenfeucht, A., Rozenberg, G.: Primitivity is hereditry for 2-structures. Theoritical

Computer Science 3 (1990) 343–358
5. Spinrad, J.: p4-trees and substitution decomposition. Discrete Applied Math. 39

(1992) 263–291
6. Cournier, A., Michel, H.: An efficient algorithm to recognize prime undirected

graphs. Lecture Notes in Computer Science 657 (1992) 212–224

A Tight Analysis
of the Maximal Matching Heuristic

Jean Cardinal1, Martine Labbé1, Stefan Langerman1,�,
Eythan Levy1,��, and Hadrien Mélot2

1 Université Libre de Bruxelles, Brussels, Belgium
{jcardin,mlabbe,slanger,elevy}@ulb.ac.be

2 Université de Mons-Hainaut, Belgium
hadrien.melot@umh.ac.be

Abstract. We study the worst-case performance of the maximal match-
ing heuristic applied to the Minimum Vertex Cover and Minimum
Maximal Matching problems, through a careful analysis of tight ex-
amples. We show that the tight worst-case approximation ratio is asymp-
totic to min{2, 1/(1−√

1 − ε)} for graphs with an average degree at least
εn and to min{2, 1/ε} for graphs with a minimum degree at least εn.

1 Introduction

The maximal matching heuristic is a textbook algorithm that provides a 2-
approximation for the Minimum Vertex Cover and Minimum Maximal
Matching problems, two classical NP-hard problems [8]. It is perhaps one of
the simplest and best-known approximation algorithms. It consists in finding a
collection of disjoint edges (a matching) that is maximal (with respect to edge
inclusion) by iteratively removing adjacent vertices until no more edges are left
in the graph. Tightness of the 2-approximation is witnessed by a number of ex-
amples, for instance by the family of complete bipartite graphs in the case of
Minimum Vertex Cover. This paper addresses the question of expressing the
approximation ratio in a finer way, as a function of well-chosen graph param-
eters. We show that density parameters are good candidates for this purpose.
Actually, the approximation ratio of the maximal matching heuristic is strictly
less than 2 for graphs with a sufficiently high number of edges or sufficiently high
minimum degree. We characterize precisely the asymptotic approximation ratio
as a function of these parameters, together with tight examples. This is, to our
knowledge, the tightest analysis ever done of this algorithm. This study shows
that even simple heuristics might deserve nontrivial analyses. It was initiated
using GraPHedron, a newly developed software for the investigation of relations
between graph invariants (see [4] and [16]).

In the Minimum Vertex Cover problem, one is asked to find a minimum
cardinality set of vertices that contains at least one endpoint of each edge of
� Chercheur qualifié du F.N.R.S.

�� Corresponding author.

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 701–709, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

702 Jean Cardinal et al.

the graph. One can easily see that the set of endpoints of a maximal matching
indeed contains at least one endpoint of each edge, and that the optimal solution
– since it must contain a least one vertex of each edge of the matching – has size
not less than half the size of this set, hence the 2-approximation.

The minimum vertex cover problem is thus 2-approximable using the max-
imal matching heuristic, but no polynomial time algorithm with constant ap-
proximation ratio better than 2 is known. The problem is further known to be
APX-complete [18] and not approximable within a factor of 7/6 [11]. Monien
and Speckenmeyer [17] and Bar-Yehuda and Even [1] provide algorithms that
achieves a ratio of (2 − (ln lnn)/ lnn), where n is the number of vertices in the
graph. Karakostas [14] later reduced the approximation ratio to 2−Θ(1/

√
logn).

For graphs with maximum degree Δ, Halperin [9] provides an aproximation al-
gorithm with a ratio of 2−(1−o(1))2 ln lnΔ/ lnΔ. The problem has further been
studied under the hypothesis that the input graph is dense. We say that a graph
G is weakly ε-dense if its average degree is at least εn, i.e. if m ≥ εn2/2, with
m being the number of edges in the graph, and strongly ε-dense if its minimum
degre is at least εn. It has been shown [5] that the Minimum Vertex Cover
problem restricted to strongly ε-dense graphs is APX-complete. Eremeev [7]
shows that it is NP-hard to approximate the minimum vertex cover within a ra-
tio less than (7 + ε)/(6 + 2ε) in strongly ε-dense graphs. Nagamochi and Ibaraki
([12]) provide an approximation algorithm with a ratio of 2− 8m/(13n2 + 8m),
where m is the number of edges in the graph. This algorithm can also be seen as
an approximation algorithm that achieves an approximation ratio that is asymp-
totic to 2−4ε/(13+4ε) for weakly ε-dense graphs. Karpinski and Zelikovsky [15]
propose an algorithm that achieves a better ratio of 2/(2 −

√
1− ε) for weakly

ε-dense graphs, and a ratio of 2/(1+ ε) for strongly ε-dense graphs. Finally, Ima-
mura and Iwama [13] recently proposed a randomized approximation algorithm
which, with high probability, yields an approximation factor of 2/(1 + γ(G)),
where γ(G) is a function of the maximum and the average degree, and runs in
polynomial time if Δ, the maximum degree of the graph, is Ω(n log logn/ logn).

In the Minimum Maximal Matching problem, one is asked to find a max-
imal matching of minimum cardinality, i.e. a minimum-cardinality set of disjoint
edges that cannot be augmented. It is fairly easy to see that any maximal match-
ing has a size that is at most twice the size of the minimum maximal matching.
Much less is known about the minimum maximal matching problem than about
the minimum vertex cover problem. Chleb̀ık and Chleb̀ıková [3] do nevertheless
show that it is NP-hard to approximate the problem within a constant factor
better than 7/6.

Our Results. We study the worst-case approximation ratio of the maximal
matching heuristic for the Minimum Vertex Cover and Minimum Maximal
Matching problems in weakly and strongly ε-dense graphs. For both problems
in weakly ε-dense graphs, we characterize the exact worst-case approximation ra-
tio as a function of ε and obtain a function that is asymptotic to 2 when ε ≤ 3/4
and to 1/(1 −

√
1− ε) otherwise. In the case of strongly ε-dense graphs, again

we characterize the exact worst-case approximation ratio as a function of ε and

A Tight Analysis of the Maximal Matching Heuristic 703

obtain a function that is asymptotic to 2 when ε ≤ 1/2 and to 1/ε otherwise.
It is interesting to compare the approximation ratios we obtain for Minimum
Vertex Cover with the ones obtained by Zelikovsky and Karpinski: we note
that in both the weakly and the strongly ε-dense cases the ratios differ only by
one unit in the numerator and one in the denominator. The tight bounds we ob-
tain for the Minimum Vertex Cover problem are greater than those that were
obtained using more sophisticated approximation algorithms [12, 15]. We never-
theless believe that a tight worst-case study of the classical heuristic is interesting
as a point of comparison to the ratios obtained by other algorithms for the same
problem, or by the same heuristic applied to other problems. On the other hand,
the approximation ratios obtained for Minimum Maximal Matching are, to
the best of our knowledge, the best ones known for this problem since it does
not seem to have been studied under density constraints yet. Finally, the results
obtained for this problem are also valid for a variant problem, namely the Min-
imum Edge Dominating Set problem since, as noted by by Yannakakis and
Gavril [19], both problems always admit optimal solutions of the same size, and
an optimal solution to one can always be transformed into an optimal solution
to the other in polynomial time.

Section 2 is devoted to graph-theoretic preliminaries. In section 3 we study
the worst-case aproximation ratio for the Minimum Vertex Cover problem in
weakly and strongly ε-dense graphs. The same kind of analysis is performed for
Minimum Maximal Matching in section 4. Full proofs are omitted through
lack of space and can be found in [2].

2 Preliminaries

In the sequel we shall use the classical definition of a simple, loopless, undirected
graph G = (V,E), with vertex set V and edge set E. We denote by Gn,m the
set of all non isomorphic graphs having n vertices and m edges. We use n(G) to
denote |V |, m(G) to denote |E| and δ(G) for the minimum degree of G. We also
use the classical notions of complete graph, empty graph, independent set, clique,
complete bipartite graph Ka,b, matching, perfect matching and augmenting path.
Readers that are not familiar with these are referred to standard graph theory
texts such as Diestel [6]. The join of two graphs G1 and G2 with vertex sets
respectively V1 and V2 is the graph having V1 ∪ V2 as vertex set and containing
all edges of G1, G2, and all edges between vertices in V1 and V2. We denote
by τ(G) the size of a minimum cardinality vertex cover of G, by ν(G) the size
of a maximum cardinality matching of G, and by μ(G) the size of a minimum
maximal matching of G.

We shall make extensive use of the following family of graphs, that arise
as extremal graphs for several graph invariants (see [10] and [4]). A complete
split graph Ψn,α with 1 ≤ α ≤ n − 1, is a graph that can be decomposed in an
independent set of size α and a clique of size n − α, with each vertex of the
independent set being adjacent to each vertex in the clique.

Our proofs make use of the following basic results on the values of invariants
of complete split graphs.

704 Jean Cardinal et al.

Lemma 2.1. m(Ψn,α) =
(
n
2

)
−
(
α
2

)
= (n− α)(n + α− 1)/2.

Lemma 2.2. ν(Ψn,α) =

{
%n

2 & if α ≤ n/2,
n− α otherwise.

Lemma 2.3. τ(Ψn,α) = n− α.

Note that τ(Ψn,α) = n−α is obtained only by choosing all vertices in the clique
as a vertex cover.

Lemma 2.4. μ(Ψn,α) = �n−α
2 �.

The following two simple properties shall also be useful.

Lemma 2.5. For any graph G, we have τ(G) ≥ δ(G).

Lemma 2.6. For any graph G, we have μ(G) ≥
⌈

δ(G)
2

⌉
.

3 Minimum Vertex Cover

We analyze the worst-case behavior of the maximal matching heuristic when
applied to the Minimum Vertex Cover problem. We first consider weakly
ε-dense graphs, which amounts to express the approximation ratio as a function
of the number of edges.

3.1 Approximation Ratio vs Number of Edges

Lemma 3.1. Let n and m be positive integers such that m(Ψn,α+1) < m ≤
m(Ψn,α) for some α. The minimum value of τ(G) attained by a graph G in Gn,m

is τ(Ψn,α) = n− α.

Sketch of the proof. The proof is in two steps: we first show by contradiction that
a graph G in Gn,m cannot have τ(G) < τ(Ψn,α), and second, by construction,
that there exists a graph G in Gn,m having τ(G) = τ(Ψn,α). ��

Lemma 3.2. Let n and m be positive integers such that m(Ψn,α+1) < m ≤
m(Ψn,α) for some α. There exists a graph G in Gn,m such that τ(G) = τ(Ψn,α)
and ν(G) = ν(Ψn,α).

Sketch of the proof. A graph satisfying the required conditions is given by the
removal of m(Ψn,α) −m edges from the edges joining the clique and the inde-
pendent set of Ψn,α. This graph can be shown to satisfy the required conditions
by the use of classical tools, among wich Hall’s condition on perfect matchings
(see [6]). ��

Using Lemmata 3.1 and 3.2 to maximize the numerator and minimize the
denominator of the ratio, we obtain Theorem 3.1:

A Tight Analysis of the Maximal Matching Heuristic 705

Theorem 3.1. Let β(G) be the worst-case approximation ratio for graph G. Let
β(m,n) be the worst approximation ratio attained by a graph in Gn,m. We have:

β(m,n) = β(Ψn,α∗(m,n)) =

{
2 if α∗(m,n) > n/2,

2�n
2 �

n−α∗(m,n) otherwise,

where α∗(m,n) =
⌊
1/2 +

√
n(n− 1) + 1/4− 2m

⌋
is the integer value α such

that m(Ψn,α+1) < m ≤ m(Ψn,α).

The above theorem gives a tight upper bound on the approximation ratio of
the maximal matching heuristic to the minimum vertex cover problem in graphs
of n vertices and m edges, in the form of a discrete step function of m. The
function equals 2 when α > n/2 and begins to decrease afterwards.

Corollary 3.1. Let β̃(ε, n) be the worst approximation ratio attained by a graph
with n vertices and an average degree at least εn. We have:

lim
n→∞

β̃(ε, n) =

{
2 if ε ≤ 3/4,

1
1−

√
1−ε

otherwise .

Sketch of the proof. The corollary follows from expressing β̃(ε, n) as β(�εn2/2�, n)
and studying the asymptotics of this expression. ��

This asymptotic result is to be compared with the results of [12] and [15]
quoted in the introduction (see figure 1).

3.2 Approximation Ratio vs Minimum Degree

Let An,α be the set of all graphs of minimum degree n−α that can be expressed
as the join of an independent set of order α and a graph of order n − α. Note
that An,α contains Ψn,α.

Lemma 3.3. For all G ∈ An,α we have ν(G) =

{
n− α if α ≥ n/2,
%n

2 & otherwise.

Sketch of the proof. When α ≥ n/2, the result is straightforward. When α <
n/2, through a careful analysis of the configurations and degrees of unmatched
vertices, we show that any non-perfect matching can be augmented. ��

Lemma 3.4. For all G ∈ An,α we have τ(G) = n− α. Furthermore, among all
graphs with n vertices and minimum degree n − α, this value of τ is minimal,
and is attained only by graphs in An,α.

Sketch of the proof. The proof follows from a direct application of Lemma 2.5
and simple graph-theoretic arguments. ��
Theorem 3.2 follows from Lemmata 3.3 and 3.4:

706 Jean Cardinal et al.

Theorem 3.2. Let γ(δ, n) be the worst approximation ratio attained by a graph
with n vertices and minimum degree δ. We have:

γ(δ, n) =

{
2 if δ ≤ n

2 ,
2
δ %

n
2 & otherwise.

Furthermore, the only graphs that maximize the approximation ratio among all
graphs with n vertices and a minimum degree of n−α when δ > n/2 are in An,α.

Corollary 3.2. Let γ̃(ε, n) be the worst approximation ratio attained by a graph
with n vertices and minimum degree at least εn. We have:

lim
n→∞

γ̃(ε, n) =

{
2 if ε ≤ 1/2,
1
ε otherwise .

This asymptotic result is again to be compared with the result of [15] quoted in
the introduction (see figure 1).

 1

 2

 0 0.2 0.4 0.6 0.8 1

ap
pr

ox
im

at
io

n
ra

tio

density

maximal matching
Nagamochi-Ibaraki

Karpinski-Zelikovsky

(a) weakly ε-dense

 1

 2

 0 0.2 0.4 0.6 0.8 1

ap
pr

ox
im

at
io

n
ra

tio

density

maximal matching
Karpinski-Zelikovsky

(b) strongly ε-dense

Fig. 1. A comparison of the approximation ratios for Minimum Vertex Cover.

4 Minimum Maximal Matching

In this section we show that the analysis proposed for Minimum Vertex Cover
can be performed for Minimum Maximal Matching as well.

4.1 Approximation Ratio vs Number of Edges

The proof of the following lemma is straightforward and omitted.

Lemma 4.1. For any fixed k, the only graph G with n vertices that maximizes
the number of edges among all graphs having μ(G) = k is Ψn,n−2k.

Lemma 4.2. Let n and m be positive integers such that m(Ψn,α+1) < m ≤
m(Ψn,α) for some α. The minimum value for μ(G) attained by a graph G in
Gn,m is μ(Ψn,α) = �n−α

2 �.

A Tight Analysis of the Maximal Matching Heuristic 707

Sketch of the proof. Using arguments similar to those used in the proofs of
Lemmata 3.1 and 3.2, we first show, using Lemma 4.1, that a graph in Gn,m

cannot have a maximal matching of size less than μ(Ψn,α), and then that the
value μ(Ψn,α) is indeed attained by some graph in Gn,m. ��

Lemma 4.3. Let n and m be positive integers such that m(Ψn,α+1) < m ≤
m(Ψn,α) for some α. There exists a graph G in Gn,m such that μ(G) = μ(Ψn,α)
and ν(G) = ν(Ψn,α).

Sketch of the proof. The graphs described in the proof of Lemma 3.2 can easily
be shown to satisfy μ(G) = μ(Ψn,α) and ν(G) = ν(Ψn,α). ��

Using Lemmata 4.2 and 4.3 to maximize the numerator and minimize the
denominator of the ratio, we obtain Theorem 4.1:

Theorem 4.1. Let ρ(G) be the worst approximation ratio for graph G. Let
ρ(m,n) be the worst approximation ratio attained by a graph in Gn,m. For each
n,m we have:

ρ(m,n) = ρ(Ψn,α∗(m,n)) =

⎧⎨⎩2 if α∗(m,n) > n/2 + 1,
�n

2 �⌈
n−α∗(m,n)

2

⌉ otherwise.

Corollary 4.1. Let ρ̃(ε, n) be the worst approximation ratio attained by a graph
with n vertices and an average degree at least εn. We have:

lim
n→∞

ρ̃(ε, n) =

{
2 if ε ≤ 3/4,

1
1−

√
1−ε

otherwise.

4.2 Approximation Ratio vs Minimum Degree

Let Bn,δ be the set of graphs of order n having minimum degree δ and a maximal
matching of size �δ/2�. Note that Bn,δ = An,n−δ when δ is even.

Lemma 4.4. Each graph in Bn,δ with �δ/2� > n/4 has a perfect matching.

Sketch of the proof. As in the proof of Lemma 3.3, we show that any non-
perfect matching in our graph can be augmented, using a careful analysis of the
configuration and degrees of the vertices. ��
Theorem 4.2 follows directly from Lemmata 2.6 and 4.4:

Theorem 4.2. Let σ(δ, n) be the worst approximation ratio attained by a graph
with n vertices and minimum degree δ. We have:

σ(δ, n) =

{
2 if �δ/2� ≤ n/4
�n/2�

δ/2� otherwise.

Furthermore, when �δ/2� > n/4, Bn,δ is the exact set of graphs that maximize
the ratio among all graphs with n vertices and minimum degree δ.

708 Jean Cardinal et al.

Corollary 4.2. Let σ̃(ε, n) be the worst approximation ratio attained by a graph
with n vertices and minimum degree at least εn. We have:

lim
n→∞

σ̃(ε, n) =

{
2 if ε ≤ 1/2,
1
ε otherwise.

References

1. R. Bar-Yehuda and S.Even. A local-ratio theorem for approximating the weighted
vertex cover problem. Ann. Discrete Math., 25:27–45, 1985.

2. J. Cardinal, M. Labbé, S. Langerman, E. Levy, and H. Mélot. A tight analysis of the
maximal matching heuristic. Technical Report 545, Université Libre de Bruxelles,
2005. Available at http://www.ulb.ac.be/di/publications.

3. M. Chleb̀ık and J. Chleb̀ıková. Approximation hardness of minimum edge domi-
nating set and minimum maximal matching. In Proceedings of 14th International
Symposium on Algorithms and Computation (ISAAC), Lecture Notes in Computer
Science. Springer–Verlag, 2003.

4. J. Christophe, S. Dewez, J. Doignon, S. Elloumi, G. Fasbender, P. Grégoire,
D. Huygens, M. Labbé, H. Mélot, and H. Yaman. Linear inequalities among graph
invariants: using GraPHedron to uncover optimal relationships. Submitted. Avail-
able at http://www.optimization-online.org/DB HTML/2004/09/964.html, 2004.

5. A. Clementi and L. Trevisan. Improved non-approximability results for vertex cover
problems with density constraints. Theoretical Computer Science, 225(1–2):113–
128, 1999.

6. R. Diestel. Graph Theory, Second Edition. Springer-Verlag, 2000.
7. A.V. Eremeev. On some approximation algorithms for dense vertex cover problem.

In Proceedings of SOR. Springer–Verlag, 1999.
8. M. R. Garey and D. S. Johnson. Computers and intractability. A guide to the

theory of NP-completeness. Freeman and Company, 1979.
9. E. Halperin. Improved approximation algorithms for the vertex cover problem in

graphs and hypergraphs. Siam Journal on Computing, 31:1608–1623, 2002.
10. P. Hansen and H. Mélot. Variable neighborhood search for extremal graphs 9.

Bounding the irregularity of a graph. To appear in S. Fajtlowicz et al. (Eds.),
Graphs and Discovery, DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, (forthcoming), Providence, American Mathematical Society.

11. J. Hastad. Some optimal inapproximability results. In Proceedings of the Twenty-
Ninth Annual ACM Symposium on Theory of Computing, pages 1–10, 1997.

12. T. Ibaraki and H. Nagamochi. An approximation of the minimum vertex cover in
a graph. Japan J. Indust. Appl. Math., 16:369–375, 1999.

13. T. Imamura and K. Iwama. Approximating vertex cover on dense graphs. In Pro-
ceedings of the 16th ACM-SIAM Symposium on Discrete Algorithms (SODA), 2005.

14. G. Karakostas. A better approximation ratio for the vertex cover problem. ECCC
Report TR04-084, 2004.

15. M. Karpinski and A. Zelikovsky. Approximating dense cases of covering problems.
In P. Pardalos and D. Du, editors, Proceedings of the DIMACS Workshop on Net-
work Design: Connectivity and Facilites Location, volume 40 of DIMACS series in
Disc. Math. and Theor. Comp. Sci., pages 169–178, 1997.

16. H. Mélot. Facets defining inequalities among graph invariants: the system GraPHe-
dron. In preparation.

A Tight Analysis of the Maximal Matching Heuristic 709

17. B. Monien and E. Speckenmeyer. Ramsey numbers and an approximation algo-
rithm for the vertex cover problem. Acta Inf., 22:115–123, 1985.

18. C. H. Papadimitriou and M. Yannakakis. Optimization, approximation, and com-
plexity classes. J. Comput. System. Sci., 43(3):425–440, 1991.

19. M. Yannakakis and F. Gavril. Edge dominating sets in graphs. SIAM J. Appl.
Math., 38(3):364–372, 1980.

New Streaming Algorithms
for Counting Triangles in Graphs

Hossein Jowhari and Mohammad Ghodsi

Computer Engineering Department
Sharif University of Technology, Tehran, Iran
jowhari@ce.sharif.edu, ghodsi@sharif.edu

Abstract. We present three streaming algorithms that (ε, δ)− approx-
imate1 the number of triangles in graphs. Similar to the previous algo-
rithms [3], the space usage of presented algorithms are inversely propor-
tional to the number of triangles while, for some families of graphs, the
space usage is improved. We also prove a lower bound, based on the num-
ber of triangles, which indicates that our first algorithm behaves almost
optimally on graphs with constant degrees.

1 Introduction

In this paper, we present streaming algorithms for counting triangles in massive
graphs. In other words, let G = (V,E) be an undirected graph with n vertices
and m edges and let t be the number of triangles in G. we are interested in
algorithms with sublinear space usage for (ε, δ)−approximating t while G is
presented to the algorithm as a stream of edges. By sublinear space usage, we
mean algorithms that use o(m) bit space, and by stream of edges, we mean a
sequence of edges that is an arbitrary permutation of E. In addition to the space
usage, we restrict the algorithms to have only O(1) passes over the stream and
o(m) per-edge processing time.

Bar-Yossef et al in [3] showed that every algorithm that decides the existence
of a triangle, with probability at least 99/100, needs at least Ω(n2) bit space.
This fact results in a lower bound of Ω(n2) for (ε, δ)−approximating t in general
graphs, but Bar-Yossef et al showed that for graphs with considerably large
number of triangles, it is possible to gain sublinear space. In other words, let Ti

be the number of vertex triples that induce a subgraph with i edges in G. Based
on this definition, T3 = t. For T3 > 0, they obtained a streaming algorithm with
O(1/ε3. log 1/δ.((T1 + T2 + T3)/T3)3. logn) space. Since (T1+T2+T3) = Θ(mn),
having an appropriate lower bound for T3, one can use o(m) space on graphs
with m2/3n = o(T3).

Our Contribution. We present three streaming algorithms for (ε, δ)-approxi-
mating T3. Let d be the maximum degree and let Ci be the number of cycles

1 Let ε, δ > 0 and let T3 be the number of triangles. With probability at least 1 − δ,
the algorithm outputs T ′

3 such that (1 − ε)T3 ≤ T ′
3 ≤ (1 + ε)T3.

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 710–716, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

New Streaming Algorithms for Counting Triangles in Graphs 711

of length i in the input graph. The first algorithm uses O(1/ε2. log(1/δ).(md2)
/T3. logn) space and per-edge processing time and makes one pass over the
stream (Theorem 1). The second algorithm uses O(1/ε2. log(1/δ).(m3 +mC4 +
C6+T3

2)/T3
2. logn) space and per-edge processing time with one pass (Theorem

2) and the third algorithm uses O(n + 1/ε2. log(1/δ).(T2 + T3)/T3. logn) while
making three passes over the stream (Theorem 3). The first and second algorithm
use the method of Alon et al in [2] and the third algorithm utilizes sampling to
reduce the space usage. We also prove a lower bound of Ω(n/T3) that indicates
that our first algorithm behaves almost optimally when d is a constant (Theorem
4).

Related Work. After the seminal paper by Alon et al [2], Henzinger et al [7] for-
malized the streaming model and proved lower bounds for some graph problems.
According to our knowledge, there are few attempts for solving graph problems
in the streaming model. Recently, authors in [5, 6] have presented streaming
algorithm for some graph problems such as maximum weighted matching and
shortest path. In fact, most of the results for graph problems are impossibility
results [4–7].

2 Algorithms

First, we define some notations. For undirected graph G = (V,E), let n,m and
d be the number of vertices, edges and maximum degree respectively. Let Υ be
the set of all vertex triples of G. We partition Υ to four parts Υi, i = 0, . . . , 3,
where Υi is the set of triples that induces a subgraph in G with i total edges and
let Ti = |Υi|. For j = 4, . . . , n, let Cj be the number of cycles of length j in G .

2.1 One-Pass Algorithms

Here we present two algorithm that uses the method of Alon et al [2]. We define
random variable X such that E(X) = T3. By taking the average of an appro-
priate number of independent instances of X , we can reduce the variance so
that by using Chebyshev’s Inequality, we can obtain an approximation for T3

with relative error at most ε. Hence, the space usage of the algorithm depend on
V ar(X) and the space requirements for computing the random variable X .

First Estimator. The random variable X is computed as follows. Choose an
edge (u, v), randomly and uniformly from the edges in the stream. Count the
number of common neighbors of vertices u and v in the rest of the stream. Let
c be the value of this counter at the end of the stream. We define X = mc.

Now, we compute the expectation and variance of X . Suppose we have an
ordering on the triangles. For i-th triangle, we define indicator random variable
Zi as follows.

Zi =
{

1, if i-th triangle has been counted
0, otherwise

712 Hossein Jowhari and Mohammad Ghodsi

By above definition, X = m(
∑T3

i=1 Zi), and by the linearity of expectation,
E(X) = m(

∑T3
i=1 E(Zi)). Since the probability of counting a specified triangle

is 1/m, we have E(Zi) = 1/m, and consequently, E(X) = m× (T3× 1/m) = T3.
By definition of the variance,

V ar(X) = m2(V ar(
T3∑
i=1

Zi) +
∑
i�=j

Cov(Zi, Zj)).

We bound Cov(Zi, Zj) by E(ZiZj). ZiZj equals to 1 only when Ti and Tj have
a common edge that has been picked by the algorithm. The probability of this
event is 1/m and since there are at most d − 1 triangles with a common edge,
we have

V ar(X) ≤ m2(
1
m

(T3 + (d− 2).T3)) ≤ m(d− 1)T3.

Now let Y be the average of s = 8 1
ε2

md
T3

parallel instances of X . By Cheby-
shev’s Inequality,

Pr(|Y − T3| ≥ εT3) <
V ar(Y)
ε2E2(Y)

=
V ar(X)/s
ε2T3

2 <
1
8
.

Now for obtaining a (ε, δ)-approximation, we run O(log 1
δ) independent es-

timators, each one succeeding to obtain an ε-relative approximation of T with
probability at least 7

8 . We need O(d. log n) space for computing the random
variable X and hence, the following result is obtained.

Theorem 1. For ε, δ > 0, there is a streaming algorithm that outputs an (ε, δ)-
approximation of T3, with T3 > 0, using O(1/ε2. log(1/δ).(md2

T3
). logn) bit space

and per-edge processing time.

The space usage gets sublinear when d2 = o(T3) and close to optimal when d
is a constant (see Theorem 3). However the algorithm uses O(d. log n) bit space
for computing the random variable that is poor for graphs with large degree.
For our second estimator, we use a random variable that can be computed in
O(log n) bit space.

Second Estimator. To compute the estimator, we need a family of uniform ±1-
valued random vectors of length n, which are 12-wise independent. As indicated
in [2], this family can be constructed explicitly using the parity check matrices of
BCH codes. These matrices can be constructed with only O(log n) bits (see [1]
for the details). We pick a random vector v from this family (uniformly). Now,
as the stream passes, we compute Z =

∑
(i,j)∈E v(i)v(j). At the end of stream,

we define X = 1
6Z

3.
We now compute E(X). Based on the definition,

E(X) =
1
6
E((

∑
(i,j)∈E

v(i)v(j))3).

New Streaming Algorithms for Counting Triangles in Graphs 713

61

1

1

1

2

1
1

1 1

1
1

1 1

1
1

11

3

1
1

1

2

2

2

1

1

1

1

1

1

Fig. 1. Subgraphs that increase the variance of the second estimator

Consider that after expanding, each term in the summation corresponds to a
specific subgraph of the input graph. By linearity of expectation and regarding
the facts that E(v2k+1(i)) = 0 and v(i)’s are 12-wise independent, the terms
that have a variable with an odd power are evaluated to zero. Therefore, only
the terms in form of 6v2(i)v2(j)v2(k) are remained. These terms correspond to
the triangles and thus,

E(X) =
1
6
(6× T3) = T3.

For variance, we have

V ar(X) = E(X2)− E2(X) =
1
36

(E((
∑

(i,j)∈E

v(i)v(j))6)− T 2
3).

Similar to the computation of expectation, after expanding, we identify terms
which are product of variables with an even power. The different subgraphs that
correspond to the terms with an even power are depicted in Fig. 1. Note that
the weight of edge (ui, uj) in each subgraph equals to the power of (v(ui)v(uj))
in the corresponding term. For each subgraph, the sum of the weight of edges,
incident on each vertex, is even. Therefore according to the figure,

V ar(X) =
1
36

(m+ 120C4 + 720T3
2 + 360mC4 + 720C6 + 90m3)− T3

2

≤ 20(T3
2 +mC4 + C6 +m3).

Similar to the previous algorithm, we run s = 160 1
ε2 ((mC4 + C6 + m3)

/T3
2 + 1) parallel and independent instances of X and then we take the av-

erage of them. Let Y be the average. By Chebyshev’s Inequality,

Pr(|Y − T3| ≥ εT3) <
V ar(Y)
ε2E2(Y)

=
V ar(X)/s
ε2T3

2 <
1
8
.

As usual, by taking the median of O(log 1/δ) independent and parallel in-
stances of Y , an (ε, δ)−approximation is obtained.

714 Hossein Jowhari and Mohammad Ghodsi

Theorem 2. For ε, δ > 0, there is a streaming algorithm that outputs an (ε, δ)-
approximation of T3, with T3>0, using O(1/ε2. log(1/δ).(m3+mC4+C6

T 2
3

)+1). logn)
bit space and per-edge processing time.

2.2 Three-Pass Algorithm

A naive sampling algorithm, that picks samples of vertex triples, should pick at
least O(1/ε2. log(1/δ).(T0+T1+T2+T3

T3
)) random vertex triples. Here, we show how

to decrease the number of required samples. The idea is to avoid sampling from
triples in Υ0 and Υ1 by having the degrees of vertices.

Let di be degree of vertex ui and let D =
∑n

i=1(
di
2). For picking a random

triple, first we pick a vertex randomly while a vertex with degree di is picked with
probability (di

2)/D. Then, from neighbors of the picked vertex, we pick a pair of
vertices randomly and uniformly. let a be the picked triple. Since D = T2 + 3T3,
it is easy to see that

Pr(a ∈ Υ3) =
3T3

T2 + 3T3
.

If we pick the triples based on the above procedure,O(1/ε2. log(1/δ).(T2+3T3
T3

))
random triples suffices to (ε, δ)−approximate |Υ3|. Now we show how to imple-
ment the above sampling procedure with three passes over the stream. In the
first pass, we compute di for each ui. Then we pick the first vertex of the random
triples. Let si be the number of occurrences of ui in the sample set. In the second
pass, for i = 1, . . . , n, we pick si random pairs from neighbors of ui. The random
pairs and the starting vertex form the triples of the sample set. Finally, in the
third pass, we determine the number of triangles in the sample set.

Theorem 3. For ε, δ > 0, there is a streaming algorithm that uses three passes
over the stream and produces an (ε, δ)-approximation of T3, with T3 > 0, using
O(n + 1

ε2 . log 1
δ .(

T2
T3

+ 1). logn) bit space and per-edge processing time.

3 Lower Bound

For lower bound, we use reduction to the Bit-Vector Disjointness problem in
the communication complexity. In this problem, two parties A and B, each
one has a binary vector with length of n. A and B want to devise an efficient
communication protocol to decide whether their binary vectors are disjoint or
not. Our lower bounds are based on a result obtained by Kalyanasundaram
and Schnitger [8]. They showed that the length of any communication protocol,
succeeding in distinguishing disjoint binary vectors with probability more than
1
2 , must be at least Ω(n) bits. Since the course of the communication is not
restricted, the lower bound also holds for streaming algorithms with constant
number of passes.

Theorem 4. For ε < 1/3, δ < 1/2, every streaming algorithms that output an
(ε, δ)-approximation of T3, with T3 > 0, requires at least Ω(n/T3) bit space.

New Streaming Algorithms for Counting Triangles in Graphs 715

Proof. We represent a pair of binary vectors by an undirected graph so that
disjoint binary vectors can be distinguishable via approximating the number of
triangles in the graph. Assume T3 is even and divides n. Let G1, G2 and G3

be n-vertex graphs, such that G1 and G2 has T3/2 number of triangles and G3

with no edges. In each graph, we partition the set of vertices into n/T3 equal-size
parts. For j = 1, · · · , n/T3, let Pij be the partitions in Gi. Suppose we have an
ordering on the set of vertices in each partition. For k = 1, · · · , T3, let vijk be
the k-th vertex in partition Pij . Consider the binary vectors B1 and B2, both
with length of n/T3 . For each j, we add the following edges.

1. For k = 1, · · · , T3, add an edge between v1jk and v2jk.
2. If B1(j) = 1, for k = 1, · · · , T3, add an edge between v1jk and v3jk.
3. If B2(j) = 1, For k = 1, · · · , T3, add an edge between v2jk and v3jk .

Let G be the resulted graph. It is easy to see that if B1 and B2 are disjoint,
number of triangles in G would be T3, otherwise number of triangles would be at
least 2T3. By using an approximation algorithm with relative error less than 1/3,
we can distinguish between graphs with T3 triangles and ones with at least 2T3

triangles. Consequently, we can distinguish disjoint bit-vectors by this algorithm.
This completes the proof.

4 Summary

In this paper, we presented three streaming algorithms for counting triangles in
graphs with T3 > 0. In the following table, for each algorithm, we have shown
when the space usage gets sublinear.

Algorithm Sublinear space

Naive Sampling n3. log n/m = o(T3)

[3] m2/3n. log n = o(T3)

1st Alg. d2. log n = o(T3)

2nd Alg. max{m,
√

C4, C6/m}. log n = o(T3)

3rd Alg. (3 passes) max{n, T2/T3}. log n = o(T3)

However, due to the high dependency of the parameters in the space usage,
a clear evaluation and comparison of the algorithms are still unknown to us.
We presented a lower bound of Ω(n/T3) that only helps in evaluating the first
algorithm. A clear lower bound based on the terms T3 and T2 will be more useful
to evaluate the algorithms. We guess a lower bound of Ω(T2/T3) could exist.

References

1. N. Alon, L. Babai, A. Atai. A fast and simple randomized algorithm for maximum
indepedent set problem. J. Algorithms 7(1986), 567-583.

2. N. Alon, Y. Matias, M. Szegedy. The space complexity of approximating the frequency
moments. STOC 96.

716 Hossein Jowhari and Mohammad Ghodsi

3. Z. Bar-Yossef, R. Kumar, S. Sivakumar. Reduction in streaming algorithms with an
application of counting triangles in graphs. SODA 2002.

4. A.L Buchsbaum, R. Gianvarlo, and J.R Westbrook. On finding common neighbor-
hoods in massive graphs. Thoretical Computer Science, 299 (1-3):707-718, 2003.

5. J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and J. Zhang, Graph distances in
streaming model; the value of space. Yale University Technical Report. 2004.

6. J. Feigenbaum, S.Kannan, A. McGregor, S. Suri, and J. Zhang, On graph prob-
lems in a semi-streaming model. To appear in the 31st International Colloquium on
Automata, Languages and Programming, 2004.

7. M. R. Henzinger, P. Raghavan, and S. Rajagopalan, Computing on data streams,
Technical Report 1998-001, DEC Systems Research Center .1998.

8. B. Kalyanasundaram and G. Schnitger, The probabilistic communication complexity
of set intersection. SIAM Journal on Discrete Mathematics, 5 545-557, 1990.

A New Approach and Faster Exact Methods
for the Maximum Common Subgraph Problem�

W. Henry Suters1,��, Faisal N. Abu-Khzam2,��, Yun Zhang3,
Christopher T. Symons4, Nagiza F. Samatova4,���, and Michael A. Langston3,� � �

1 Department of Mathematics and Computer Science, Carson-Newman College
CN Box 71958, Jefferson City, TN 37760, USA

2 Division of Computer Science and Mathematics, Lebanese American University
Beirut, Lebanon

3 Department of Computer Science, University of Tennessee
Knoxville, TN 37996–3450, USA

4 Computer Science and Mathematics Division, Oak Ridge National Laboratory
P.O. Box 2008, Oak Ridge, TN 37831–6367, USA

Abstract. The Maximum Common Subgraph (MCS) problem appears in many
guises and in a wide variety of applications. The usual goal is to take as inputs
two graphs, of order m and n, respectively, and find the largest induced subgraph
contained in both of them. MCS is frequently solved by reduction to the problem
of finding a maximum clique in the order mn association graph, which is a par-
ticular form of product graph built from the inputs. In this paper a new algorithm,
termed “clique branching,” is proposed that exploits a special structure inherent in
the association graph. This structure contains a large number of naturally-ordered
cliques that are present in the association graph’s complement. A detailed anal-
ysis shows that the proposed algorithm requires O((m + 1)n) time, which is a
superior worst-case bound to those known for previously-analyzed algorithms in
the setting of the MCS problem.

1 Introduction

A popular metric for the similarity of two graphs is the size of their Maximum Common
Subgraph (MCS), which is most frequently defined as the largest graph isomorphic to
some induced subgraph in each of them. Deciding MCS is NP-complete. It has been
studied in bioinformatics [23], chemistry [18, 21], pattern recognition [7, 17], and an
assortment of other application areas. A vast literature exists for approximating the size
of an MCS. Notably, it is NP-hard to guarantee solutions even within |V |ε, where
ε > 0 and |V | is the size of the MCS [13]. Here we focus on exact MCS algorithms.

� Research sponsored by the Laboratory Directed Research and Development Program of Oak
Ridge National Laboratory, managed by UT-Battelle, LLC, for the U. S. Department of En-
ergy under Contract DE–AC05–00OR22725, by the U.S. National Science Foundation un-
der grant CCR–0311500, by the Office of Naval Research under grant N00014–01–1–0608,
and by the U.S. Department of Energy’s Genomes to Life program under the ORNL-PNNL
project “Exploratory Data Intensive Computing for Complex Biological Systems.”

�� These two authors contributed equally to this work.
��� Communicating authors: samatovan@ornl.gov, langston@cs.utk.edu

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 717–727, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

718 W. Henry Suters et al.

These can be roughly classified into three main categories: clique-based methods, non-
clique-based backtracking strategies, and various other techniques.

Clique-based methods are the most widely used in the literature. These depend on
finding a maximum clique in the association graph [5, 16]. We will define this and other
terms in the sequel. Let us just say for now that the association graph is a particular
form of product graph built from the two original input graphs. Many clique-based
algorithms employ maximal clique enumeration procedures [6, 14, 21], and so are not
particularly well suited for maximum clique finding. The general purpose maximum
clique algorithm of [22] has a time complexity of O(1.19 mn), where m and n denote
the respective sizes of the input graphs. An example of a non-clique-based backtracking
strategy is that of [19], which was developed over two decades ago but rarely used today.
In fact it is known to perform well only on graphs of small size [10]. An improved
backtracking algorithm has recently been proposed with time complexity O(m n+1n)
[15]. Other techniques include algorithms designed for special classes of inputs. One
example of this is the dynamic programming approach of [4], which has been proposed
for “almost trees of bounded degree.” Other methods rely on a set of known graphs
against which matching is to be performed [8, 20]. For more information we refer the
interested reader to [9, 21].

In this paper, we present and analyze a new clique-based algorithm for the exact
MCS problem. To solve clique on the association graph, we actually exploit a special
clique structure that we have identified as inherent in the complement of the association
graph. There we employ a tree search technique designed to branch on this structure.
The resultant “clique branching” algorithm is used to solve vertex cover in the comple-
ment and hence clique in the association graph itself. Conceptually, a similar algorithm
could be developed to solve the clique problem directly. The two algorithms explore
essentially the same search tree. Vertex cover, however, tends to have better reduction
rules that allow us to prune the search tree at lower levels and yield faster run times. The
algorithm presented here requires O((m+ 1) n) time, which (with inputs of course set
to ensure that m is at least as large as n) is a better asymptotic worst-case bound than
the O(m n+1n) limit of [15] and those known for other previously-analyzed algorithms
in the setting of the MCS problem.

2 The Association Graph and Its Properties

All graphs are assumed to be simple, finite, and undirected. Two graphs, G1 and G2,
are said to be isomorphic if there is a one-to-one correspondence between their vertex
sets that preserves adjacency.M is a maximum common subgraph (MCS) ofG1 and G2

if M has the largest number of vertices of any graph isomorphic to induced subgraphs
of G1 and G2. MCS is sometimes referred to a bit more precisely as the maximum
common induced subgraph (MCIS) problem. Note that an MCS needs to be neither
unique nor connected.

Given two undirected graphs G1 = (V1, E1) and G2 = (V2, E2), the association
graph G = (V,E) is an undirected graph defined on the vertex set V = V1 × V2 with
two vertices (u1, v1) and (u2, v2) being adjacent whenever:

u1 �= u2 and v1 �= v2, and
either ((u1, u2) ∈ E1 and (v1, v2) ∈ E2) or ((u1, u2) /∈ E1 and (v1, v2) /∈ E2).

A New Approach and Faster Exact Methods 719

From this point on, we denote by G1 and G2 the two input graphs of MCS. More-
over, we shall assume that n = |V1| ≤ |V2| = m. We know from the definition of
the association graph that two vertices (u1, v1) and (u2, v2) are adjacent in G only if
u1 �= u2 and v1 �= v2. In other words, any two vertices (ui, vj), (ui, vk) are not adja-
cent ∀ui ∈ V1 and vj , vk ∈ V2, and any two vertices (ui, vj), (uk, vj) are not adjacent
for ∀vj ∈ V2 and ui, uk ∈ V1. Therefore, we have the following theorem.

Theorem 1. If two graphs G1 = (V1, E1) and G2 = (V2, E2) are used to create an
association graph then, for any u ∈ V1 and any v ∈ V2, each of the sets {u} × V2 and
V1 × {v} forms a clique in the complement of the association graph.

Proof. Let |V1| = n and |V2| = m. Let us view V = V1×V2 in tabular form as shown.

V1 × V2 v1 v2 · · · vm

u1 (u1, v1) (u1, v2) · · · (u1, vm)
u2 (u2, v1) (u2, v2) · · · (u2, vm)
...

...
...

. . .
...

un (un, v1) (un, v2) · · · (un, vm)

Then, because of the first two conditions of the definition of the association graph, G,
for ∀ui ∈ V1, the set of vertices (ui, v1), . . . , (ui, vm) in G forms an independent set,
and for ∀vj ∈ V2, the set of vertices (u1, vj), . . . , (un, vj) in G also forms an indepen-
dent set. Thus, in the complement graph, each row and column of the table will form a
clique.

Let k be the size of a common subgraph of G1 and G2. We can restrict our search
for a minimum vertex cover in the complement ofG to covers with sizes that are at least
nm−n and at most nm− k. Because the maximum value of k is unknown upfront, its
lower bound could be the size of any common subgraph that is trivially found (e.g. the
graph with the minimum of the sizes of two independent sets of G1 and G2 or induced
paths of equal size).

Theorem 2. Let k be the size of any common subgraph of G1 and G2, and let G be
their association graph. Then any vertex cover of the complement of G must contain at
least nm−min{n,m} and at most nm− k vertices.

Proof. Let H1 and H2 be subgraphs of G1 and G2 that are isomorphic. If |H1| =
|H2| = k, then the ordered pairs of the set {(u, v) : u ∈ H1 and v ∈ H2} form a clique
of size k in G. So the complement of G has an independent set of size k. This proves
the claim that any vertex cover of the complement of G has at most mn− k vertices.

For the lower bound, we know the size of the MCS is bounded above by min{n,m},
which implies the size of the maximum clique of the association graph G does not
exceed min{n,m}. This implies any vertex cover of the complement of G has at least
(nm−min{n,m}) vertices.

720 W. Henry Suters et al.

3 A Structural Decomposition Algorithm

In order to motivate our approach it is important to observe that, for a clique of size k,
any vertex cover must have at least k−1 vertices. Moreover, if any one of the vertices is
excluded from the vertex cover, all of its neighbors must be included. In the complement
of the association graph, each vertex (u, v) is involved in at least two cliques that only
overlap at this vertex. The two cliques correspond to the row and column that intersect
at (u, v) in the aforementioned table.

We shall refer to these two cliques by the row-clique and the column-clique of
(u, v). If (u, v) is to be excluded from the cover, then all vertices in both of these
cliques must be included in the cover. Moreover, any other vertices that are adjacent
to this vertex will also be included in the cover. This means the size of the problem is
greatly reduced when we decide to exclude a vertex from the vertex cover.

We show that our vertex cover branching algorithm (to follow) can do at least as
well as any other known algorithm for MCS. For this purpose, we present vertex cover
branching in a way that makes use of the presence of row-cliques and column-cliques
in the complement of the association graph.

The idea is that when we attempt to find a vertex cover, we can select at most one
vertex from each clique to be excluded from the cover. Thus, in a row-clique of size m,
there arem+1 possible choices for any vertex cover;m choices each of which excludes
one of the vertices, and the remaining choice that includes all the vertices. This forms
the basis for our clique branching algorithm.

Theorem 3. The clique branching algorithm, CliqueBranch(G,n), produces a minimum
vertex cover of the complement of the association graph G.

Proof. We walk through the rows of the aforementioned table, branching at each row.
Since a row represents a clique, we could select either to exclude exactly one of its ver-
tices from the vertex cover or to include all of them. We cannot, however, choose a ver-
tex that belongs to a column from which a vertex was selected at a previous branching
since each column also represents a clique. The clique branching algorithm examines
all possible vertex covers that satisfy these conditions and selects the one with mini-
mum size, thus it produces a minimum vertex cover.

In order to get a rough estimate of the complexity of the algorithm, consider the
vertex table established in Theorem 1. Branching on the cliques represented by each
row, we have two possibilities. If no vertex is excluded from the cover then we have
identifiedm vertices as belonging to the vertex cover. If we select to exclude a particular
vertex (u, v), then this vertex will have at least m + n − 2 neighbors that must be
included in the cover; there are m− 1 other vertices in the same row-clique and n− 1
other vertices in the same column-clique of (u, v).

We can branch recursively until we arrive at the final row of the matrix. Since there
will be n levels of branching, each with at most m+ 1 possible paths, this produces an
algorithm that is at most O((m + 1) n). This bound is not tight, since once we select a
vertex to exclude, its neighbors cannot be selected for a similar role in a later branching.
Thus, for subsequent branchings, there will be fewer than m+ 1 choices.

A New Approach and Faster Exact Methods 721

algorithm CliqueBranch(G,n)

Input: the complement of the association graph G created from two graphs
G1 and G2 of sizes n and m respectively

Output: a minimum vertex cover of the association graph’s complement

begin
MinimumCover = G
CurrentCover= G
NumberExcluded = 0
ExcludeColumns = ∅
i = 1
Branch(i)
output MinimumCover

end

function Branch(i)
begin

if i > n then
if |CurrentCover| < |MinimumCover| then

MinimumCover = CurrentCover
else

NumberExcluded = NumberExcluded + 1
loop over all vj ∈ V2 where j /∈ ExcludedColumns

if (ui, vj) has a neighbor (uk, vl) /∈ CurrentCover then
do nothing

else
add j to ExcludedColumns
remove (ui, vj) from CurrentCover
Branch (i + 1)
remove j from ExcludedColumns
add (ui, vj) to CurrentCover

NumberExcluded = NumberExcluded - 1
Branch (i + 1)

end

Moreover, the number of neighbors of a vertex is more than the number of vertices in
its corresponding row and column cliques. This is guaranteed by the following lemma.
A formal proof of the computational complexity will be shown in Section 4.

Lemma 1. Let (u, v) denote a vertex of the complement of the association graph of G1

and G2. If the neighborhood of (u, v) is confined to its row-clique and column-clique,
then u and v are either both isolated or both connected to all the vertices in each of G1

and G2, respectively.

Proof. Assume the neighborhood condition as stated (and u′ �= u and v′ �= v). Then
(u, v) is connected to all vertices (u′, v′) in the association graph of G1 and G2. As-
sume u is neither isolated nor connected to all vertices. Then we can find u′ and u”

722 W. Henry Suters et al.

such that (u, u′) is an edge of G1 while (u, u”) is not an edge. If v has an edge (v, v′)
(or a non-edge (v, v”)) then (u, v) is not joined to (u”, v′) (or (u, v) is not joined to
(u′, v”)). This is a contradiction. So our assumption about u (neither isolated nor con-
nected to all vertices) is wrong. The same argument proves that if v is not isolated, then
it’s connected to all vertices of G2.

Thus, if such a pair of vertices (u, v) is found in G1 × G2, they are associated
together as part of any common subgraph. Moreover, we could detect their presence
in the original graphs without searching the association graph. As a pre-processing rule
applied prior to any branching step, we could therefore detect the presence of such pairs
and reduce the problem size by not including them in the vertex cover.

a b

c d

e f

g

G1 G2

be

ce

de

be

ce

de

ae ∉ VC

af ∉ VC

ag ∉ VC

{ae, af, ag}
⊂ VCThe complement of the association

graph built from G1 and G2

∅be ∉ VC

bf ∉ VC

bg ∉ VC

{be, bf, bg}
⊂ VC

ae af ag

be bf bg

ce cf cg

de df dg

bf bg

cf cg

df dg

bf bg

cf cg

df dg

be

ce

de

cf cg

df dg

ce

de

cf

df

cg

dg

VC = {ae, af, ag, bf,
bg, ce, de, cf, cg, df,
dg}, a valid but not
optimal solution

Fig. 1. An example of the clique branching algorithm.

Figure 1 shows an example of the clique branching algorithm applied to two graphs
G1 and G2, where |V1| = 4 and |V2| = 3. The complement of the association graph
has 12 vertices and can be listed as a 4 × 3 array. Starting from the first row, there are
3 + 1 = 4 choices (branches). Three of these select a single vertex to be excluded from
the cover. The fourth branch does not exclude any vertices. For the first three branches
(selecting one), the remaining graphs are much smaller than the original complement
graph. This is especially true for the latter two branches. Taking the second branch as an
example, excluding vertex af from the cover forces vertices bf, cf, df , in its column,
ae, ag, in its row, and bg, cg, dg, in its neighborhood, into the cover. This leaves a graph
containing only the three vertices be, ce, de. The next step along this branch will have
only two choices: excluding or including vertex be. The fourth branch, which excludes
no vertices from the first row, still reduces the graph by including all vertices in the first
row in the cover, resulting in a 3 × 3 array remaining. The next step of this worst-case
branch would still have 3 + 1 = 4 choices.

A New Approach and Faster Exact Methods 723

4 Complexity Analysis

The following theorem is used to determine the complexity of the clique branching
algorithm.

Theorem 4. The complexity of performing the clique branching algorithm on the as-
sociation graph constructed from two graphs of sizes n and m is

n∑
i=0

m!
(m− n+ i)!

(
n
i

)
. (1)

Proof. Let R(m,n) be the computational complexity of processing an n×m array of
vertices. The first branching will eliminate one row of the array, resulting in (n − 1)
rows remaining. Also, there are (m + 1) possible paths at this branching. There are m
paths, each selects a vertex to exclude from the vertex cover, which also eliminates a
column from future consideration, resulting in (m − 1) remaining columns. The final
path does not exclude any vertices from the cover, resulting in m remaining columns.
These observations result in the following recurrence relation.

R(m,n) = mR(m− 1, n− 1) +R(m,n− 1) (2)

with initial condition R(j, 0) = 1, for 0 ≤ j ≤ m.
We next need to demonstrate that the formula

R(m,n) =
k∑

i=0

m!
(m− k + i)!

(
k
i

)
R(m− k + i, n− k), for 0 ≤ k ≤ n (3)

satisfies the recurrence relation.
We do inductively. First, if k = 0 observe that

k∑
i=0

m!
(m− k + i)!

(
k
i

)
R(m− k + i, n− k) = R(m,n).

Next, we need to show that

R(m,n) =
k∑

i=0

m!
(m− k + i)!

(
k
i

)
R(m− k + i, n− k) (4)

implies

R(m,n) =
k+1∑
i=0

m!
(m− (k + 1) + i)!

(
k + 1
i

)
R(m− (k + 1) + i, n− (k + 1)). (5)

Notice that the recurrence relation (Equation 2) implies that

R(m−k+i, n−k) = (m−k+i)R(m−k+i−1, n−k−1)+R(m−k+i, n−k−1). (6)

724 W. Henry Suters et al.

Combining Equation 6 with the induction hypothesis (Equation 4), we see that

R(m,n) =
k∑

i=0

m!
(m− k + i)!

(
k
i

)
[(m− k + i)R(m− k + i− 1, n− k − 1)

+R(m− k + i, n− k − 1)]

=
k∑

i=0

m!
(m− k + i− 1)!

(
k
i

)
R(m− k + i− 1, n− k − 1)

+
k∑

i=0

m!
(m− k + i)!

(
k
i

)
R(m− k + i, n− k − 1).

As long as k + 1 ≤ n we define l = k + 1, re-index the second sum, pull the first
term from the first sum and the last term from the second sum to get

R(m,n) =
m!

(m− l)!
R(m− l, n− l)

+
k−1∑
i=1

m!
(m− l + i)!

[(
l − 1
i

)
+
(
l − 1
i− 1

)]
R(m− l + i, n− l)

+R(m,n− l).

Since

(
l − 1
i

)
+
(
l − 1
i− 1

)
=
(
l
i

)
we can include the first and last terms to show

R(m,n) =
l∑

i=0

m!
(m− l + i)!

(
l
i

)
R(m− l + i, n− l),

which is equivalent to Equation 5. This completes the inductive argument.

We now let k = n to show that

R(m,n) =
n∑

i=0

m!
(m− n + i)!

(
n
i

)
R(m− n+ i, 0).

Using the initial condition, this shows that

R(m,n) =
n∑

i=0

m!
(m− n+ i)!

(
n
i

)
.

In general, m!
(m−n+i)! is much smaller than mn−i. Also, there are likely to be fewer

than m + 1 branches at many levels, because some potential branches would result in
more neighbors being excluded from the vertex cover. This is guaranteed by Lemma 1.
Thus, we expect the performance to be much better than (m+ 1)n.

A New Approach and Faster Exact Methods 725

5 Remarks

It is well-known that association graphs can be used to reduce MCS to the maximum
clique problem. The main contribution of this paper has been a careful analysis of a
clique-branching algorithm designed to exploit the structure implicit in the comple-
ment of the association graph. The results presented here are highly theoretical, and
provide only an asymptotic upper bound on run times. Experimental comparisons with
other methods are now underway in order to gauge expected performance. It is not clear
whether direct maximum clique algorithms that operate on the association graph itself
can do better than our clique-branching approach. We do know, however, that any such
algorithm should not do worse than the time bound we derive in Equation 1, at least
as long as it performs a standard form of vertex branching. To illustrate, consider re-
cursive backtracking algorithms such as that of [22]. The following branching method
is employed: at each node of the search tree, a highest-degree vertex v is selected and
two possible choices are explored: either v is in the clique or it is not. When v is added
to the clique, all vertices not adjacent to it are eliminated. Thus, the problem size may
be reduced considerably in this case. When v is not added to the clique, v alone can of
course be deleted.

In the association graph, a vertex (u, v) ∈ V where u ∈ V1, v ∈ V2 is a member
of an independent set containing all vertices whose first component is u. It is also a
member of another independent set consisting of all vertices whose second component
is v. Therefore, when using a maximum-clique algorithm, if (u, v) is added to a (po-
tential maximum) clique, then all such vertices are deleted. So the following recursive
equation holds for the run time T (nm):

T (nm) = T ((n− 1)(m− 1)) + T (nm− 1).

And by Lemma 1, we know the equation can be made better since there must be other
neighbors of the vertex (u, v). The second term of the above equation can be expended
as follows:

T (nm− 1) ≤ T ((m− 1)(n− 1)) + T (nm− 2).

Combining the above two equations, we get

T (nm) ≤ 2T ((n− 1)(m− 1)) + T (nm− 2),

which leads to

T (nm) ≤ mT ((n− 1)(m− 1)) + T (nm−m).

This is equivalent to equation 2. Thus, maximum clique algorithms could achieve per-
formance similar to that of our clique branching method. If we were to analyze (blindly)
the run time of maximum-clique methods, without accounting for the number of ver-
tices that are eliminated at each branching step, the best known algorithm would be
assumed to take a running time of O(2

nm
4) [22].

We often solve maximum clique by reducing it to the minimum vertex cover prob-
lem, simply because a clique in a graph is the complement of a vertex cover in its

726 W. Henry Suters et al.

complement. Recent efficient vertex cover algorithms based on the theory of fixed-
parameter tractability [11] have proved very useful, especially when the size of the
clique is large [2]. Such algorithms target the parameterized version of a problem. A
natural parameter that we could associate with the input of MCS is the size of the com-
mon subgraph. In other words, the parameterized MCS problem (k-MCS) can be posed
as follows:

Given: A pair of graphs, G1 and G2, and a positive integer k.
Question: Do G1 and G2 have a common (induced) subgraph whose order is at
least k?

Let G be the association graph of G1 and G2. The search for a common subgraph
of size k (or more) is equivalent to the search for a k-clique in G. Thus, as noted ear-
lier, we look for a vertex cover of size nm− k in the complement of G. Since k is not
larger than n, the size of the sought cover is bounded below by nm −

√
nm, which is

huge when compared to nm. So the use of fixed-parameter vertex cover algorithms may
seem not feasible for k-MCS. This is also supported by the fact that MCS is W[1]-hard
[11]. Nevertheless, our algorithm is a straightforward branching approach that achieves
the best current running time for MCS. The advantage of using parameterized vertex
cover algorithms (rather than direct clique algorithms) is mainly due to two observa-
tions. First, vertex cover branching uses the same universal strategy: if a vertex is not
in the cover, then all its neighbors must be in the cover. So the two algorithms explore
essentially the same search space. Second, when the degree of each vertex in the com-
plement graph drops below a certain constant c (due to the continual removal of vertices
during branching), the resulting graph must have a vertex cover whose size is smaller
than c−1

c of the resulting graph size. (This being true since a graph of maximum degree
c has an independent set of size at least 1/c of the graph size). Thus, parameterized
vertex cover techniques, such as preprocessing and kernelization [1, 3], may be applied
together with branching to reduce the size of the search space and produce better run
times. Finally, for completeness it is probably worth pointing out that, if one is deal-
ing with labeled graphs, then MCS is potentially an easier problem. Simpler maximum
clique algorithms are often used on labeled and other restricted types of association
graphs [7, 12] to achieve better performance.

References

1. F. N. Abu-Khzam, R. L. Collins, M. R. Fellows, M. A. Langston, W. H. Suters, and C. T.
Symons. Kernelization algorithms for the vertex cover problem: Theory and experiments. In
Proceedings, Workshop on Algorithm Engineering and Experiments (ALENEX), 2004.

2. F. N. Abu-Khzam, M. A. Langston, and P. Shanbhag. Scalable parallel algorithms for dif-
ficult combinatorial problems: A case study in optimization. In Proceedings, International
Conference on Parallel and Distributed Computing and Systems (PDCS), pages 563-568,
2003.

3. F. N. Abu-Khzam, M. A. Langston, and W. H. Suters. Effective vertex cover kernelization:
A tale of two algorithms. In Proceedings, ACS/IEEE International Conference on Computer
Systems and Applications (AICCSA), 2005.

A New Approach and Faster Exact Methods 727

4. T. Akutsu. A polynomial time algorithm for finding a largest common subgraph of almost
trees of bounded degree. IEICE Trans. Fundamentals, E76-A:1488-1493, 1993.

5. I. Bomze, M. Budinich, P. Pardalos, and M. Pelillo. The maximum clique problem. In D. Z.
Du and P. M. Pardalos, editors, Handbook of Combinatorial Optimization, volume 4. Boston
MA: Kluwer Academic Publishers, 1999.

6. C. Bron and J. Kerbosch. Finding all cliques of an undirected graph. Communications of the
ACM, 16:575-577, 1973.

7. H. Bunke, P. Foggia, C. Guidobaldi, C. Sansone, and M. Vento. A comparison of algorithms
for maximum common subgraph on randomly connected graphs. In Proc. IAPR Workshop
on Structural and Syntactic Pattern Recognition, 2002.

8. K. Shearer H. Bunke and S. Venkatesh. Video indexing and similarity retrieval by largest
common subgraph detection using decision trees. Pattern Recognition, 34:1075-1091, 2001.

9. D. Conte, P. Foggia, C. Sansone, and M. Vento. Thirty years of graph matching in pat-
tern recognition. International Journal of Pattern Recognition and Artificial Intelligence,
18(3):265-298, 2004.

10. D. Conte, C. Guidobaldi, and C. Sansone. A comparison of three maximum common sub-
graph algorithms on a large database of labeled graphs. In E. Hancock and M. Vento, editors,
IAPR Workshop GbRPR 2003, LNCS 2726, pages 130-141, 2003.

11. R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer-Verlag, 1999.
12. P.J. Durand, R. Pasari, J.W. Baker, and Chun che Tsai. An efficient algorithm for similarity

analysis of molecules. Internet Journal of Chemistry, 2, 1999.
13. V. Kann. On the approximability of the maximum common subgraph problem. In STACS

’92: Proceedings of the 9th Annual Symposium on Theoretical Aspects of Computer Science,
pages 377-388. Springer-Verlag, 1992.

14. I. Koch. Enumerating all connected maximal common subgraphs in two graphs. Theoretical
Computer Science, 250:1-30, 2001.

15. E. B. Krissinel and K. Henrick. Common subgraph isomorphism detection by backtracking
search. Software Practice and Experience, 34:591-607, 2004.

16. G. Levi. A note on the derivation of maximal common subgraphs of two directed or undi-
rected graphs. Calcolo, 9:341-352, 1972.

17. A. Massaro and M. Pelillo. Matching graphs by pivoting. Pattern Recognition Letters,
24(8):1099-1106, 2003.

18. J. McGregor and P.Willett. Use of a maximal common subgraph algorithm in the automatic
identification of the ostensible bond changes occurring in chemical reactions. Journal of
Chemical Information and Computer Science, 21:137-140, 1981.

19. J. J. McGregor. Backtrack search algorithms and the maximal common subgraph problem.
Software Practice and Experience, 12:23-34, 1982.

20. B. T. Messmer. Efficient Graph Matching Algorithms for Preprocessed Model Graphs. Phd,
University of Bern, 1995.

21. J.W. Raymond and P.Willett. Maximum common subgraph isomorphism algorithms for the
matching of chemical structures. Journal of Computer-Aided Molecular Design, 16:521-
533, 2002.

22. J. M. Robson. Finding a maximum independent set in time O(2n/4). Technical Report 1251-
01, Universite Bordeaux I, LaBRI, 2001.

23. A. Yamaguchi, K. F. Aoki, and H. Mamitsuka. Finding the maximum common subgraph of
a partial k-tree and a graph with a polynomially bounded number of spanning trees. Infor-
mation Processing Letters, 92(2):57-63, 2004.

On the Power of Lookahead
in On-Line Vehicle Routing Problems

Extended Abstract

Luca Allulli, Giorgio Ausiello�, and Luigi Laura

Dip. di Informatica e Sistemistica
Università di Roma “La Sapienza”
Via Salaria, 113 - 00198 Roma Italy

{allulli,ausiello,laura}@dis.uniroma1.it

Abstract. Vehicle Routing Problems are generalizations of the well
known Traveling Salesman Problem; we focus on the on-line version of
these problems, where requests are not known in advance and arrive over
time. We introduce a model of lookeahead for this class of problems, the
time lookahead Δ, which allows an on-line algorithm to foresee all the
requests that will be released during next Δ time units. We present lower
and upper bounds on the competitive ratio of known and studied vari-
ants of the OlTsp; we compare these results with the ones from the
literature. Our results show that the effectiveness of lookahead varies
significantly as we consider different problems.

1 Introduction

In the classical Traveling Salesman Problem (Tsp) the goal is to visit a set of
cities minimizing the traveled distance [10]. In this paper we deal with on-line
variants of Tsp, in which each request comes with a release time, and cannot
be served before it. These problems are collectively known as On-line Vehicle
Routing Problems (OlVrps).

OlVrps model many real-world problems. For such problems an on-line
algorithm, that becomes aware of the requests over time, is required to serve
such requests at its best, although, clearly, in such a situation of uncertainty
the optimal solution cannot in general be achieved. In order to evaluate the
quality of the solution produced by an on-line algorithm we use competitive
analysis. Competitive analysis was formally introduced by Sleator and Tarjan in
[17], though the underlying idea was already used by Graham [8]. We say that
an on-line algorithm A is ρ-competitive (ρ ∈ R+) if, for any input instance σ,
A(σ) ≤ ρ · OPT(σ); we denote by A(σ) and OPT(σ) the cost, on input σ, of the
solution found by A and of the optimal solution, respectively. See also [6] for an
overview of competitive analysis and on-line algorithms.

Many OlVrps have been studied using competitive analysis. Yet, compet-
itive analysis has been criticized for being too strict, since it is often possible
� Work partially supported by the MIUR-PRIN ALGO-NEXT project.

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 728–736, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

On the Power of Lookahead in On-Line Vehicle Routing Problems 729

to build up pathological input instances that only an off-line server (intuitively
called “adversary”) can serve effectively, thanks to its clairvoyance. In order
to limit, in some way, the power of the off-line adversary, restricted types of
adversary have been proposed (see [5, 12, 13]).

In this paper we explore the influence of lookahead on several OlVrps. It
is interesting, from both theoretical and practical points of view, to evaluate
the improvement that we can achieve, in terms of competitiveness, if we allow
on-line algorithms to foresee some future requests. The influence of lookahead on
the competitive ratio of on-line algorithms was first studied by Chung et al. for
the dynamic location problem [7], and then analyzed in many other problems,
among which we cite scheduling, paging, list-update, bin packing and various
graph problems [1, 2, 9, 11, 16]. Concerning OlVrps, we define two kinds of
lookahead: time lookahead and request lookahead. An online algorithm has time
lookahead Δ if it is able to foresee all requests that will be released during the
next Δ time units; it has request lookahead k if it can foresee the next k requests
that will be released. The scope of our investigation is twofold. On the one hand,
lookahead is a feature that, to some extent, can be easily implemented in real-
world applications of routing algorithms; for example, a radio-taxi service could
require customers to book rides in advance. Furthermore, lookahead can be used
to limit the power of the adversary in a natural and parametric way, since it
compels the adversary to disclose in advance to the on-line algorithm some of
the future requests. In this paper we deal with time lookahead; some results
about request lookahead can be found in [3].

Our results show that the effectiveness of lookahead varies significantly as we
consider different variants of the problems, and only in some cases it is worthy to
adopt it (see also [15]). For the classical HTsp, that is the problem in which the
server is forced to return to the origin at the end of the tour, we found a lower
bound of 2 and a matching upper bound, but these results hold also without
lookahead (see [4]). If we consider the Nomadic version of the problem, in which
the costraint of ending the tour in the origin is dropped, lookahead proves to be
usuful, and we can show better bounds than the ones in [14]. Moreover, if we focus
on problems where the underlying metric space is the (limited) real line, we see
that lookahead and the bounds are reciprocally related, and the competitiveness
tends to 1 when lookahead increases. We also considered the Net latency Tsp
(NlTrp), where the objective function is the sum of the serving time of each
request minus its release time, for which no competitive algorithm exists. Indeed
for this problem no algorithm is competitive even if it is provided with a quite
large amount of time lookahead (namely Δ ∈ [0, 2D[, being D the diameter
of the metric space), in any metric space; moreover, no competitive algorithm
exists at all in metric spaces that are isomorphic to open sets of Rd, d ≥ 2.

The remainder of this paper is organized as follows. Next section introduces
the basic definitions. In Section 3 we show lower bounds on the competitive ratio
of algorithms endowed with lookahead, while in Section 4 we present algorithms
that successfully exploit lookahead. Section 5 presents our conclusions.

730 Luca Allulli, Giorgio Ausiello, and Luigi Laura

2 Preliminaries

In an instance of an Online Traveling Salesman Problem we are given a metric
space M = (X, d), where X is a set of points and d is a distance function
on X , with a distinguished point O ∈ X , the origin; and a set of requests
σ = {σ1, . . . , σn}. Each request consists of a pair σi = (xi, ti) ∈ X ×R+

0 , where
xi is the position of σi, and ti is its release time. A server is located in the origin
at time 0, and thereafter moves in the metric space, at most at unit speed, in
order to serve all the requests, i.e. to visit each point xi where a request is placed,
not earlier than the release time ti of the request. The additional constraint
can be required that the server return to the origin after having served all the
requests. The goal of the server is to find a feasible schedule that minimizes an
objective function, which in some way measures the quality of the schedule. Many
objective functions have been proposed in literature. In this paper we deal with
some of the most important ones: the completion time, i.e. the time when the
server completes its service; the net latency, i.e. the sum of the times each request
has to wait to be served minus its release time, namely

∑n
i=0(τi − ti), where τi

is the time instant when request σi is served; and the latency, i.e. the sum of the
serving times for each request,

∑n
i=0 τi. The variant where we aim at minimizing

the completion time with the additional constraint that the server return to the
origin after the service is referred to as the Homing Traveling Salesman Problem
(HTsp); if we do not require the additional constraint, then we get the Nomadic
Traveling Salesman Problem. If the server has to minimize the net latency we
deal with the Net Latency Traveling Repairman Problem (NlTrp); the last
variant we consider is the Latency Traveling Repairman Problem (LTrp), where
the objective function is the latency.

3 Lower Bounds

In this section we give lower bounds on the competitive ratio of algorithms with
lookahead for OlVrps.

The first theorem shows a general lower bound of 2 for both the HTsp and
the NTsp, for any value of time lookahead. It extends the validity of the lower
bound of 2 for the HTsp without lookahead, first presented by Ausiello et al. [4],
and later alternatively proved by Lipmann [14]. We draw inspiration from the
proof by Lipmann. Notice that Ausiello et al. [4] also presented a 2-competitive
algorithm for the HTsp without lookahead: this means that lookahead cannot
improve the competitive ratio of algorithms for the HTsp in general metric
spaces.

Theorem 1. No deterministic algorithm for the HTsp or the NTsp can achieve
a competitive ratio better than 2, even when time lookahead is provided.

Proof. Consider a spider graph G = (V, E) with N + 1 nodes: a central node v0
and N peripheral nodes v1, . . . , vN . Each peripheral node vi is connected to the

On the Power of Lookahead in On-Line Vehicle Routing Problems 731

central node by an edge ei = {v0, vi} having length 1/2. Let A be any algorithm
for the HTsp or the NTsp on G with time lookahead Δ.

At time Δ, N requests are presented, one in each peripheral node. Let tstop =
Δ+N − 1. For any time t ≤ tstop, if A serves one request in vertex vi at time t,
then a new request is presented in the same vertex vi at time t+Δ; A can see it
immediately according to its lookahead. Thus, at any time t ≤ tstop, A is aware
of exactly N requests that either have been released but not served or will be
released in the future. In particular, at time tstop, A must still serve N requests,
and cannot finish before time tstop +N − 1 = Δ+ 2N − 2.

On the other hand, an off-line adversary can complete its service not later
than time 2Δ+N . In fact it can serve requests in the following order: first the
requests in vertices that are not touched by A before time tstop, if any; then,
all the other requests, visiting peripheral vertices once and in the same order A
visits them for the last time. This way, giving to the off-line adversary a delay of
at least Δ over A, it can serve the newly presented requests in every peripheral
vertex along with the old ones. Thus the adversary finishes not later than time
(1/2 + 2Δ) + (N − 1) + 1/2: the first term is a time sufficient to reach the first
request and to gain a delay of Δ over A; the second term is a time sufficient to
serve all the requests, and the last term is a time sufficient to return home, if
the problem is the HTsp.

The lower bound on the competitive ratio

A(σ)
OPT(σ)

≥ 2N +Δ− 2
N + 2Δ

can be rendered arbitrarily close to 2 by choosing a sufficiently large value for N .

Let us now consider the objective function of net latency, for which no com-
petitive algorithm without lookahead exists. The following theorem shows that,
in general, time lookahead does not help.

Theorem 2. Let Ω be a open set of Rk, k ≥ 2; let A be an online algorithm
for the NlTrp on Ω with time lookahead Δ. Then, for all Δ ∈ R+, A is not
competitive for the NlTrp in Ω.

Proof. (Sketch) We will refer to the online algorithm as A, to the adversary as
B. Without loss of generality we suppose that Ω ⊆ R2.

We construct a grid G of 2N points such that, in order to visit any subset
of G with N points, a minimum time of Δ is needed. The adversary releases
some starting requests, consisting of at least one request in each point of G.
Furthermore, the adversary selects a subset G− ⊂ G containig N points, and
forces A to serve requests in G− first, in such a way that otherwise A cannot be
competitive. This is achieved by suitably tuning the number of requests released
in each point of G. While A serves the starting requests in G−, B serves all the
other starting requests; afterwards, B begins to follow A with a delay of Δ. In
the meanwhile, new requests are generated: if A serves some requests at time
t, then B releases a new request in the same point at time t + Δ. B is able to

732 Luca Allulli, Giorgio Ausiello, and Luigi Laura

serve each new request on the fly, at no cost. On the other hand, at any time t
there are always requests in 2N points that either have been released but not
served by A, or will be released soon, not later than time t+Δ. During the next
Δ time units A will be able to serve requests in at most N of these 2N points.
Consequently it will be late on at least N requests, paying some cost for serving
them. By iterating this procedure, B can force A to pay an arbitrarily large cost.
Since B pays only a fixed cost in order to serve the starting requests, we get the
lower bound.

The technique we used to prove the last theorem is based on the bi-dimensio-
nal density of R2, which makes it possible to force the on-line algorithm to
take an arbitrarily long tour in order to serve all requests, independently from
the diameter of the metric space. In other kinds of metric spaces, such as uni-
dimensional or discrete spaces, the same technique cannot be used. Anyway, we
now show that no algorithm can be competitive in any metric space, even with
time lookahead Δ, if Δ is less than two times the diameter of the metric space.
This is still quite a large amount of lookahead for many real world applications.

Theorem 3. Let M = (X, d) be any metric space with diameter D, and A any
algorithm for the NlTrp on M with time lookahead Δ. If Δ < 2D, then A is
not competitive.

Proof. (Sketch) We denote by B the off-line adversary. B releases requests in
two points, P and Q, that are “far enough”: think, for example, of two points
whose distance is exactly D, if they exist. At the beginning, only two requests
are presented, one in P and one in Q. Every time t A serves a request, a new
request is released in the same point at time t+Δ. Then A can always see one
request in P and one request in Q, either released but not served or that will
be released soon. Assume, without loss of generality, that A is located in P at
time t. If A moves to Q, serves the other request and comes back to P , the new
request in P will be released before A comes back, because 2D > Δ: then A will
serve the new request late. Otherwise, if A waits in P for the new request to be
released, it will serve the pending request in Q late. In any cases, A will have to
pay some finite cost. By iterating this trick a suitable number of times, B will
charge A an arbitrarily large cost.

On the other hand, B at the beginning serves the request not served by A
as the first one, and afterwards follows A with an exact delay1 of Δ; this delay
allows B to serve all the newly released requests on the fly. Thus, B pays only a
finite cost for serving the first two requests.

4 Algorithms

In this section we describe algorithms which make use of time lookahead and
have a lower competitive ratio than their counterparts without lookahead.
1 We need the technical assumption Δ > D, which obviously does not alter the gen-

erality of our theorem.

On the Power of Lookahead in On-Line Vehicle Routing Problems 733

We begin with the NTsp. For this problem, in the general limited metric
space we match the lower bound of 2 (Theorem 1) using a time lookahead of
Δ = D, where D is the diameter of the metric space. More specifically, when
Δ varies from 0 to D, the competitive ratio continuously decreases from 1 +

√
2

(the current best upper bound without lookahead [14]) and 2. Our algorithm is
a natural extension of the algorithm ReturnHomeα, presented in [14].

Algorithm 4 (ReturnHomeα with time lookahead Δ) At every time t ∈ R+, al-
gorithm ReturnHomeα (RHα) either is idle or is following a tour T . RHα is a
parametric algorithm, with parameter α ∈]0, 1]. If at time t RHα is following a
tour T , then it stays within a distance of αt from the origin (ball-constraint).
In particular, RHα moves at full speed as long as the ball-constraint is satisfied;
otherwise it regulates its speed to the maximum amount while still respecting the
ball-constraint.

Initially, RHα is idle. Independently of its current state, as soon as RHα

foresees a new request according to its lookahead, it immediately returns to the
origin, and waits for the new request to be actually released. Then, it begins
to follow the minimum-length tour T over all the released but not yet served
requests.

Theorem 5. ReturnHomeα with lookahead Δ = δD is a ρα-competitive algo-
rithm for the NTsp in any metric space with diameter D, where

ρα = max
{

1
α
, 2 + α

1− δ

1 + αδ

}
.

This value is minimized when α = δ−2+
√

δ2+8
2(δ+1) .

Proof. We distinguish two cases, depending on whether the server has to regu-
late its speed during the last tour, i.e. the tour scheduled after the last request
is released.

Case 1. The server must regulate its speed during the last tour.
Let σr = (xr , tr) be the last request that forces RHα to regulate its speed. Since
RHα regulates its speed only when it is necessary, σr is served at time xr

α . There-
after, RHα completes the optimum tour at full speed: let |Tr| be the length of
the remaining part of the tour. We have that RHα(σ) = xr

α + |Tr| ≤ 1
α (xr + |Tr|).

On the other hand, the off-line adversary pays at least xr + |Tr| to get to xr and
serve the remaining requests. Therefore: RHα(σ)

OPT(σ) ≤
1
α .

Case 2. The server does not regulate its speed during the last tour.
Assume that the last request is released at time t+ δD; it is foreseen by RHα at
time t, thanks to its lookahead. RHα will immediately come back to the origin,
and will start following the optimal tour T at the first time tstart ≥ t + δD
when the server is in the origin. The completion time of RHα is thus RHα(σ) =
tstart + |T |. Now we give two lower bounds on the optimal cost. Since the off-line
adversary must visit all the requests, it pays at least |T |. Since it must serve the

734 Luca Allulli, Giorgio Ausiello, and Luigi Laura

last request not earlier than its release time, it pays at least t+ δD. Hence, the
competitive ratio of RHα can be bounded by:

RHα(σ)
OPT(σ)

=
tstart + |T |
OPT(σ)

≤ tstart

t+ δD
+
|T |
|T | =

tstart

t+ δD
+ 1.

In the following, we show that tstart

t+δD ≤ 1 + α 1−δ
1+αδ . We distinguish three

subcases, considering how much time has elapsed since time 0. Intuitively, if few
time has elapsed, then the server is near the origin and can quickly return home;
if much time has elapsed, then tstart is comparable to t+ δ, because the metric
space is limited and RHα cannot be “too far” from the origin. The worst subcase
is in the middle.

– If αt ≤ δD, then RHα is near the origin so that it can return home not later
than time t+ δD, when the request is released. Thus tstart = t+ δD, and so
tstart

t+δD = 1.
– If δD < αt ≤ D, then tstart ≤ t + αt. Thus tstart

t+δD ≤ t+αt
t+δD ; it is easy to see

that the latter quantity is monotonically increasing in t when αt ∈]δD, D];
hence it reaches the maximum value of 1 + α 1−δ

1+αδ when αt = D.
– If αt > D, we use the fact that tstart ≤ t+D, because the metric space has

diameter D. Thus tstart

t+δD ≤ t+D
t+δD ; it is easy to see that the latter quantity is

monothonically decreasing in t when αt ∈ [D,+∞[. As before, it reaches the
maximum value of 1 + α 1−δ

1+αδ when αt = D.

From Case 1 and Case 2 we infer that

RHα(σ)
OPT(σ)

≤ max
{

1
α
, 2 + α

1− δ

1 + αδ

}
.

It is easy to see that, for any fixed value of δ ∈ [0, 1], this quantity is mini-
mized by choosing α = δ−2+

√
δ2+8

2(δ+1) .

For the metric space of the limited line (i.e. the segment), better algorithms
exist. In the following we present an algorithm for the NTsp whose competitive
ratio tends to 1 when Δ increases.

Algorithm 6 (Optimize Earlier Requests Only) At time 0, algorithm Optimize
Earlier Requests Only (OERO) foresees all the requests that will be released up
to time Δ. It computes the optimal schedule over these requests, and begins to
follow it. After time Δ, if new requests are released, then Optimize Earlier Re-
quests Only switches to another mode, even if it has not completed the scheduled
tour. It begins to sweep the segment backwards and forwards, serving all the
requests it encounters.

Theorem 7. Optimize Earlier Requests Only with time lookahead Δ = δD is a
(1 + 2/δ)-competitive algorithm for the NTsp defined on a segment with length
D.

On the Power of Lookahead in On-Line Vehicle Routing Problems 735

Proof. Let σ be the input instance. If no requests are released after time Δ,
OERO is clearly 1-competitive. Otherwise, we have that OPT(σ) ≥ δD. Let
σ∗ = (x∗, t∗) be the last request served by OERO. Since after time Δ an ac-
tive request waits at most 2D time units before being served, we have that
OERO(σ) ≤ t∗ + 2D. Obviously OPT(σ) ≥ t∗. Then we obtain OERO(σ) ≤
OPT(σ) + (2/δ)OPT(σ) = (1 + 2/δ)OPT(σ).

OERO can be modified in order to work for the HTsp and the LTrp, yielding
the same competitive ratio. The proof in the case of the HTsp is very similar to
that for the NTsp; in the case of the LTrp the proof is slightly different because
it is necessary to sum the contributions of the single requests. In this extended
abstract we omit both these proofs; they can be found in [3].

5 Conclusions

In this paper we defined a model of lookahead for OlVrps. We showed that the
effectiveness of lookahead is closely related to the specific problem considered,
thus providing a new perspective on the problem itself. Nevertheless, intuition
suggests that it should always be possible to improve the empirical performance
of algorithms for OlVrps using lookahead; an experimental evidence confirming
such intuition is presented in [3].

It is noteworthy to mention that, in general, lookahead makes more difficult
the task of providing lower bounds. Usually, looking at the competitive analysis
as a game between the on-line player and an evil adversary, the latter can place
request because it knows which future decisions will be taken by the on-line
algorithm; if we add lookahead to the game, these decisions depend, in turn, on
the requests: we have a mutual dependency that makes the analysis task more
complex.

Finally, it would be interesting to discover whether competitive algorithms
with lookahead exist for two prominent objective functions: the net latency in
uni-dimensional spaces when Δ ≥ 2D, and the maximum flow time (see [13]).

References

1. S. Albers. On the influence of lookahead in competitive paging algorithms. Algo-
rithmica, 18(3):283–305, 1997.

2. S. Albers. A competitive analysis of the list update problem with lookahead. Theor.
Comput. Sci., 197(1-2):95–109, 1998.

3. L. Allulli, G. Ausiello, and L. Laura. On the power of lookahead in on-line vehicle
routing problems. TR-02-05, DIS, Università di Roma “La Sapienza”.

4. G. Ausiello, E. Feuerstein, S. Leonardi, L. Stougie, and M. Talamo. Algorithms for
the on-line travelling salesman. Algorithmica, 29(4):560–581, 2001.

5. M. Blom, S. O. Krumke, W. E. de Paepe, and L. Stougie. The online-TSP against
fair adversaries. INFORMS Journal on Computing, 13:138–148, 2001.

6. A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cam-
bridge University Press, 1998.

736 Luca Allulli, Giorgio Ausiello, and Luigi Laura

7. F. R. K. Chung, R. L. Graham, and M. E. Saks. A dynamic location problem for
graphs. Combinatorica, 9(2):111–131, 1989.

8. R. L. Graham. Bounds for certain multiprocessing anomalies. Bell System Techni-
cal Journal, 45:1563–1581, 1966.

9. E. F. Grove. Online bin packing with lookahead. In SODA ’95: Proceedings of
the sixth annual ACM-SIAM symposium on Discrete algorithms, pages 430–436.
Society for Industrial and Applied Mathematics, 1995.

10. G. Gutin and A. P. Punnen, editors. The Traveling Salesman Problem and its
Variations. Kluwer, Dordrecht, The Nederlands, 2002.

11. S. Irani. Coloring inductive graphs on-line. Algorithmica, 11(1):53–72, 1994.
12. B. Kalyanasundaram and K. Pruhs. Speed is as powerful as clairvoyance [schedul-

ing problems]. In FOCS ’95: Proceedings of the 36th Annual Symposium on Foun-
dations of Computer Science (FOCS’95), page 214. IEEE Computer Society, 1995.

13. S. O. Krumke, L. Laura, M. Lipmann, A. Marchetti-Spaccamela, W. E. de Paepe,
D. Poensgen, and L. Stougie. Non-abusiveness helps: an O(1)-competitive algo-
rithm for minimizing the maximum flow time in the online traveling salesman
problem. In APPROX, pages 200–214, 2002.

14. M. Lipmann. On-Line Routing. PhD thesis, Technical University of Eindhoven,
2003.

15. M. Lipmann, X. Lu, W. de Paepe, R. Sitters, and L. Stougie. On-line dial-a-ride
problems under a restricted information model. In Proc. 10th European Symp. on
Algorithms (ESA), pages 674–685, 2002.

16. R. Motwani, V. Saraswat, and E. Torng. Online scheduling with lookahead: Mul-
tipass assembly lines. INFORMS J. on Computing, 10(3):331–340, 1998.

17. D. Sleator and R. E. Tarjan. Amortized efficiency of list update and paging rules.
Communications of the ACM, 28(2):202–208, 1985.

Efficient Algorithms
for Simplifying Flow Networks�

Ewa Misio�lek1 and Danny Z. Chen2

1 Mathematics Department, Saint Mary’s College, Notre Dame, IN 46556, USA
2 Department of Computer Science and Engineering, University of Notre Dame

Notre Dame, IN 46556, USA

Abstract. Computing flows in a network is a fundamental graph the-
ory problem with numerous applications. In this paper, we present two
algorithms for simplifying a flow network G = (V, E), i.e., detecting and
removing from G all edges (and vertices) that have no impact on any
source-to-sink flow in G. Such network simplification can reduce the size
of the network and hence the amount of computation performed by max-
imum flow algorithms. For the undirected network case, we present the
first linear time algorithm. For the directed network case, we present an
O(|E| ∗ (|V | + |E|)) time algorithm, an improvement over the previous
best O(|V |+ |E|2 log |V |) time solution. Both of our algorithms are quite
simple.

1 Introduction

Computing flows in a network G = (V,E) (i.e., a graph) is one of the most
fundamental problems in graph theory and has numerous applications in the
real world. Its goal is to find a flow with certain specific characteristics that can
travel from the starting node (source) to the destination node (sink) along the
edges of the network under specified constraints, e.g., limited edge capacity, cost,
etc. Flow problems are of great importance in areas such as computer networks,
computer vision, combinatorial optimization, and transportation. Many other
key theoretical problems, such as minimum cut and bipartite matching, can be
formulated as network flow problems. For an extensive survey of flow problems,
algorithms, and their applications, see [2, 8, 9, 12].

Because of the wide-range applications of flow problems, it is important to
make the algorithms for them run as fast as possible. Since flow networks can be
of a very large size, and the time bounds of most flow algorithms are polynomials
of rather “high” degrees (i.e., super-linear in both |E| and |V |), it is highly de-
sirable to reduce, as much as possible, the size of the input network by removing
some or even all edges (and vertices) without affecting the resulting flow. In this
paper, we consider the problem of reducing the size of a flow network G = (V,E)

� This research was supported in part by the National Science Foundation under Grant
CCR-9988468 and by a Summer Graduate Research Fellowship of the Center for
Applied Mathematics of the University of Notre Dame.

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 737–746, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

738 Ewa Misio�lek and Danny Z. Chen

x

C

ts .
.

.
.

..
v.s t

. .

e

w

(a) (b)

Fig. 1. (a) The undirected edges on the cycle C are useless. (b) The directed edge e is
useless.

by detecting and removing all edges (and vertices) that do not contribute to any
source-to-sink flow under all possible edge capacity assignments in G. This is
called the flow network simplification problem. The edges removed by such a
simplification are called useless edges in G.

Definition 1. Given a network G = (V,E, s, t), where s is the source vertex
and t is the sink vertex, an edge e ∈ E is said to be useful if there exists an
assignment of edge capacities in G such that an s-to-t flow uses e. Any edge of
G that is not useful is said to be useless.

Such a network G = (V,E, s, t) is called a flow network (or flow graph). By
the above definition, useless edges are those that cannot be used by any s-to-t
flow under all possible assignments of edge capacities in G. Some obvious useless
edges are those that are unreachable from the source s and those that cannot
reach the sink t. For example, consider the two networks in Figure 1. Note that
all edges on the cycle C in Figure 1(a) are useless since any s-to-t flow through
these edges is “blocked” at the vertex x. These edges thus cannot contribute to
any s-to-t flow. Similarly, the edge e in the directed network in Figure 1(b) is
useless.

Hence, the flow network simplification problem can be defined as follows:
Given a flow network G = (V,E, s, t), where s is the source vertex and t is the
sink vertex, remove all useless edges in G.

To the best of our knowledge, the only result on this problem was due to
Biedl, Brejová, and Vinař [4]. The authors considered only directed networks
and presented two algorithms, one for planar directed graphs and the other for
general directed graphs. On the case of general directed networks, they proved
that the problem of removing all useless edges is NP-complete. After relaxing
the definition of useless edges, they gave an O(|V |+ |E|2 log |V |) time algorithm
for removing only some of the useless edges. For the planar directed network
case, they provided an O(|V |2) time algorithm for removing all useless edges.

We are not aware of any published result on the simplification of undirected
flow networks.

Flow problems can be generalized to multi-terminal or multi-commodity flows
where multiple sources and sinks (the terminals) and several commodities are
allowed. The simplification of such networks is not considered here, but it seems

Efficient Algorithms for Simplifying Flow Networks 739

t

.

.s

.

.
.

.
...

.

.
.

..

.
. .

. .

.
.
.

.
.

.

.

s

t

.

. .

.
.
.

.
.

.

.

s

t

F G

b c

a

A

B

E

C
D

.
.

.
.

.
.
..C D

B

E

G

b

a

c

.

A=S

F=T

.

.

.

(a) (b) (c) (d)

Fig. 2. All dashed edges are useless. (a) A tree. (b) A non-tree graph. (c) The graph
in (b) with its biconnected components A, B, . . . , G and articulations points a, b, and
c. (d) The block-cutpoint-tree for the graph in (b).

a natural extension of this work. Here, we concentrate on the problem of simpli-
fying single-source, single-sink networks.

Obviously, it is impractical to eliminate useless edges by computing all pos-
sible s-to-t flows in G and identifying which edges get involved in none of all
such flows. The following characterization, proven by Biedl, Brejová, and Vinař
[4], is helpful to the development of a more efficient simplification algorithm.

Lemma 1 ([4]). Given a flow network G = (V,E, s, t), an edge e ∈ E is useful
if and only if there exists a simple path in G from s to t (called an (s, t)-path)
that contains e.

In this paper, we present what we believe is the first optimal algorithm for
simplifying undirected flow networks. Our algorithm removes all useless edges
from an undirected network in O(|V |+ |E|) time. We also improve the algorithm
of Biedl, Brejová, and Vinař [4] for removing a special class of useless edges from a
general directed network. We reduce their O(|V |+|E|2 log |V |) time bound [4] by
a factor of log |V |, by replacing the main part of their algorithm by an algorithm
for finding a dominance tree in a directed graph [3]. Both of our algorithms are
actually quite simple.

The rest of the paper is organized as follows. Section 2 presents the algorithm
for simplifying undirected networks. Section 3 gives our improvement over the
algorithm in [4] for the directed network case. Section 4 concludes the paper.

2 Simplifying Undirected Networks

In this section, we present a linear time algorithm for simplifying an undirected
flow network G = (V,E, s, t). First, consider the graph in Figure 2(a). Since this
graph is a tree, the task of removing all useless edges is straightforward: We
simply find the unique simple path between s and t, and remove all edges that
do not belong to this path. But in a general undirected network (e.g., see Figure
2(b)), such an (s, t)-path is not unique in the graph, so the solution becomes less
obvious. Our idea is to reduce the problem on a general undirected graph to that
on a tree. Without loss of generality (WLOG), we assume that G is connected.

740 Ewa Misio�lek and Danny Z. Chen

Since every useful edge belongs to at least one simple (s, t)-path, all useless
edges must belong to some “parts” of G such that each such part shares ex-
actly one vertex with the set of all simple (s, t)-paths in G. Thus, to identify
all useless edges, we consider a graph decomposition, namely, the decomposi-
tion of G into its biconnected components. A useful observation is that for any
biconnected component in G, either all its edges are useful, and we call such a
component a useful biconnected component, or all its edges are useless, and we
call such a component a useless biconnected component. This observation enables
us to reduce the problem of searching for useless edges to the problem of search-
ing for useless biconnected components. We will model the latter problem by a
tree H(G), called the block-cutpoint-tree [10], defined on the biconnected com-
ponents of G. The block-cutpoint-tree H(G) represents the relationship among
the biconnected components and articulations points in G, and helps make our
simplification problem substantially easier.

2.1 Biconnected Components

Computing the biconnected components of an undirected graph is one of the
most basic problems in graph theory [1, 7, 13].

We establish that for any biconnected component, all edges in the component
are either useful or useless. This will allow us to search for useless biconnected
components (i.e., sets of edges) instead of individual useless edges.

Lemma 2. If an undirected flow network G is biconnected, then all edges in G
are useful.

Proof. Let e be any edge in G. We will show that there exists a simple path
in G between s and t containing e. WLOG, suppose that G contains an edge f
connecting s and t. If there is no such f , then we can add it to G, and G will
remain biconnected. Since G is biconnected, it must contain a simple cycle that
includes both e and f . Removing f from this cycle yields a simple path between
s and t that includes e, which proves that e is useful. ��

Lemma 3. For any biconnected component B of an undirected flow network G,
either all edges of B are useful or all of them are useless.

Proof. If B = G, then by Lemma 2, B contains only useful edges. Assume
B �= G. We need to show that B cannot contain both useful and useless edges.
Actually, we will show that if there exists one useful edge e in B, then all edges
of B must be useful. Let e be a useful edge in B and let f be any other edge in
B. Since e is useful, there exists a simple (s, t)-path Pe containing e. Let x and
y be respectively the first and last vertices on Pe that belong to B. Since Pe is
simple, we must have x �= y. Let Ps,x and Py,t be the simple sub-paths of Pe

from s to x and from y to t, respectively. As in the proof of Lemma 2, we can
use the edge (x, y). If G does not contain such an edge, then WLOG we can add
(x, y) to B. In this way, we obtain a simple path Pf in B from x to y containing
f . Concatenating Ps,x, Pf , and Py,t gives a simple (s, t)-path containing f , thus
proving that f is useful. ��

Efficient Algorithms for Simplifying Flow Networks 741

2.2 Block-Cutpoint-Tree

The block-cutpoint-tree of G represents the decomposition of G into its bicon-
nected components. It was first introduced by Harary and Prins [10].

Definition 2. The block-cutpoint-tree of G is a graph H(G) that contains a
vertex bi for each biconnected component Bi and a vertex vi for each articulation
point ai of G. An edge (vi, bi) is put in H(G) if and only if ai is an articulation
point belonging to the biconnected component Bi.

Harary and Prins [10] showed that if G is connected, then H(G) is a tree;
otherwise, it is a forest. Since we assume that G is connected, the graphH(G) for
G is a tree. Figure 2(b) shows an undirected graphG, Figure 2(c) the biconnected
components of G, and Figure 2(d) the block-cutpoint-tree H(G) of G. Let the
nodes S and T in H(G) represent the biconnected components of G containing
s and t, respectively. Note that it is possible to have S = T . The unique simple
path between S and T in H(G) is denoted by P . Observe that every simple path
between s and t in G is mapped to P in H(G).

We will show below that the useless nodes in H(G) correspond to the useless
biconnected components of G.

Lemma 4. A biconnected component Bi of G is useless if and only if the node
bi in H(G) corresponding to Bi is useless in H(G).

Proof. First, assume bi is useless in H(G). If Bi is not useless in G, then it must
contain an edge e which lies on some simple path between s and t in G. This
path is mapped to the (unique) simple path P between S and T in H(G). It
thus follows that P contains bi as a vertex, a contradiction with the assumption
that bi is useless in H(G).

Suppose now that Bi is useless in G. If bi is not useless in H(G), then bi must
belong to P . But this implies that Bi contains at least one useful edge since a
simple path between s and t in G must go through Bi. By Lemma 3, Bi must
be useful, a contradiction. ��

2.3 Our Algorithm

Based on the above lemmas, we can now simplify an undirected flow network G
as follows.

1. Decompose G into biconnected components and construct the corresponding
block-cutpoint-tree H(G);

2. simplify H(G) using a single depth-first search to identify the unique simple
path P between S and T in H(G); useful biconnected components of G are
represented by the vertices of H(G) lying on the simple path P ;

3. remove all biconnected components of G that do not correspond to any
vertices of H(G) on the path P .

The correctness of the above algorithm follows from Lemma 4. It is easy to
show that every step of the algorithm takes O(|V | + |E|) time. Since there are
only a constant number of steps, the total time for simplifying an undirected
flow graph is O(|V |+ |E|).

742 Ewa Misio�lek and Danny Z. Chen

v.s t

. .

e

w

v

w

e

.

.
ts

.

.
e f

ts

(a) (b) (c)

Fig. 3. (a) Edge e is useless but not s-or-t-useless. (b) Edge e is s-useless since all
directed paths from s to v use w. (c) Removing the t-useless edge f creates a new
s-useless edge e.

3 Simplifying General Directed Networks

In this section, we focus on dealing with the case of directed flow networks. Note
that if a directed flow networkG = (V,E, s, t) is acyclic, then it is easy to remove
all useless edges from G: Those are the edges that are not reachable from s and
those that cannot reach t. All edges that both are reachable from s and can reach
t are useful (since G is acyclic, such edges are all on some simple paths from s to
t in G). Removing all useless edges from a directed acyclic flow network G can
be easily done in O(|V | + |E|) time, by performing depth-first search. Further,
for a general directed flow network G = (V,E, s, t) (which may contain cycles),
it is straightforward to remove all (useless) edges that are not reachable from s
and those that cannot reach t, in O(|V | + |E|) time. In addition, determining
whether a directed graph is acyclic can be done in linear time [1, 7, 13]. Hence,
WLOG we assume that the given directed flow network G contains cycles, and
every edge e of G lies on a certain (possibly non-simple) directed path from s to
t.

Biedl, Brejová, and Vinař showed that the problem of simplifying a general
directed flow network is NP-complete [4]. They also considered a modified prob-
lem: simplifying a directed flow network by removing only certain special useless
edges called s-useless and t-useless edges [4]. According to their definition, an
edge e = (v, w) in G is s-useless if no path in G from s to w containing e is
simple (e.g., see Figure 3(b)). Similarly, an edge e = (v, w) is t-useless if no path
in G from v to t containing e is simple. We say that e is s-or-t-useless if it is
s-useless, t-useless, or both. Observe that there can be useless edges that are not
s-or-t-useless (e.g., see Figure 3(a)). Such edges will not necessarily be removed
in the modified problem.

It is sufficient for us to show the details on how to remove s-useless edges (re-
moving t-useless edges is done in a similar way). The following characterization
of s-useless edges serves as a basis for the algorithm of Biedl et al. [4].

Lemma 5 ([4]). Let G = (V,E, s, t) be a directed flow network each of whose
edges belongs to some (possibly non-simple) path from s to t. An edge e = (v, w)
in G is s-useless if and only if all paths from s to v in G contain w. Equivalently,
e = (v, w) is s-useful if and only if there exists a simple (s, v)-path in G that
does not contain w.

Efficient Algorithms for Simplifying Flow Networks 743

The algorithm of Biedl et al. [4] proceeds iteratively, as follows: (1) remove
all s-useless edges in G; (2) reverse the directions of all edges and remove all t-
useless edges in G using the same method as for the s-useless edge case. However,
removing s-useless edges may give rise to new t-useless edges, and vice versa (e.g.,
see Figure 3(c)). Thus, repeated iterations, each consisting of steps (1) and (2)
above, are performed until all s-or-t-useless edges are eliminated. In the worst
case, the number of repeated iterations can be O(|E|). The algorithm in [4] makes
use of several data structures such as interval trees [7] and dynamic trees [15],
and performs three depth-first search traversals of the graph in each iteration.
The time bound for each iteration is O(|E| log |V |). Therefore, the total time of
the algorithm in [4] is O(|V |+ |E|2 log |V |).

We present a somewhat different and simpler method that takes only O(|E|)
time per iteration. Our approach also uses the characterization of s-useless edges
in Lemma 5 and is based on the concept of dominance among vertices in directed
graphs.

3.1 Dominance and s-Useless Edges

The concept of dominance among vertices in a directed graph has been studied
quite extensively in the area of compilers [6]. The following definition and lemma
are standard.

Definition 3. Let G = (V,E, s, t) be a directed flow network, and v and w be
two distinct vertices in G. If every path from s to v in G passes through w, then
we say that w dominates v.

Lemma 6. Let G = (V,E, s, t) be a directed flow network. For any three distinct
vertices v, w, and u in G, the following holds.
1. If v dominates w and w dominates u, then v dominates u.
2. If vertices w and u both dominate v, then either u dominates w or w dominates
u.

The above statements define a unique tree structure D(G) = (VD, ED, s)
rooted at s on G. This tree can be constructed in linear time using, for example,
the algorithm of Alstrup et al. [3].

Definition 4. Let G = (V,E, s, t) be a directed flow network. The tree D(G) =
(VD, ED, s), called the dominance tree of G, is defined as follows: VD ⊆ V , every
edge (v, w) ∈ ED represents the relation of v immediately dominating w in G,
and D(G) is rooted at s.

Using the dominance tree D(G), we can determine which edges of G are
s-useless. The following lemma is useful.

Lemma 7. Let G = (V,E, s, t) be a directed flow network. An edge e = (v, w)
in G is s-useless if and only if w dominates v.

Proof. The proof follows directly from Definition 3 and Lemma 5. ��

744 Ewa Misio�lek and Danny Z. Chen

It turns out that we only need to check, using D(G), the edges of G for the
following relation: Whether the dominance relation holds for both end vertices
of each edge in D(G). The following lemma states this assertion.

Lemma 8. Let e = (v, w) be an edge of a directed flow network G = (V,E, s, t).
If v or w does not belong to the dominance tree D(G) (i.e., v �∈ VD or w �∈ VD),
then e is s-useful.

Proof. If v does not belong to D(G), then v is not dominated by any other vertex
in V . In particular, v is not dominated by w, and thus there is a simple path
from s to v not containing w. Therefore, e = (v, w) is s-useful. On the other
hand, if w does not belong to D(G), then w does not dominate any other vertex
in G. In particular, w does not dominate v, and again there is a simple path
from s to v not containing w, proving that e = (v, w) is s-useful. ��

Lemma 8 shows that a necessary condition for an edge e = (v, w) to be
s-useless is that both of its end vertices belong to D(G). However, edges with
both end vertices in D(G) need not be s-useless. The next lemma specifies the
sufficient condition.

Lemma 9. Let G = (V,E, s, t) be a directed flow network, and w and v be two
distinct vertices in G. Then w dominates v if and only if both v and w belong to
VD and w is a proper ancestor of v in D(G).

Proof. The proof follows immediately from Lemma 6. ��

Thus, to determine whether an edge e = (v, w) with both of its end vertices
in D(G) is s-useless, it suffices to check whether w is a proper ancestor of v
in the tree D(G). In the worst case, we may need to check for O(|E|) edges in
each iteration of our algorithm. In order for the time bound of every iteration
to be O(|E|) time, the checking on each edge must be done in O(1) time. These
checkings can be carried out by using the lowest common ancestor queries on
D(G) [11, 14].

The next definition is included for completeness.

Definition 5. Let T = (VT , ET , s) be a tree rooted at s, and v1 and v2 be two
arbitrary vertices in VT . A vertex w is called the lowest common ancestor of v1
and v2 if w is an ancestor of both v1 and v2 in T and no proper descendant of
w is an ancestor of both v1 and v2 in T .

The lowest common ancestor of vertices v1 and v2 is denoted by LCA(v1, v2).
Note that if v1 is an ancestor of v2 in T , then LCA(v1, v2) = v1. It is well
known that any rooted tree T can be preprocessed in linear time to build a
data structure, which enables each lowest common ancestor query on T to be
performed in O(1) time [11, 14].

Efficient Algorithms for Simplifying Flow Networks 745

3.2 Our Algorithm

Our algorithm consists of a series of iterations, each removing all s-useless and
t-useless edges found in the version of the graph for the corresponding iteration.
The elimination of t-useless edges in each iteration is done by the same proce-
dure as for s-useless edges, except that it is performed on a graph in which the
directions of all edges and the roles of the two vertices s and t are reversed. Note
that removing s-useless edges in the graph may create new t-useless edges, and
vice versa [4]. The iterative process continues as long as new s-or-t-useless edges
are generated in the graph by the previous iteration.

Each iteration of the algorithm performs the following steps for removing
s-useless edges.

1. Construct the dominance tree D(G′) for the current version G′ of the graph
(initially, G′ = G), and the LCA data structure for D(G′);

2. for each edge (v, w) in G′ with both end vertices in D(G′), perform the query
LCA(v, w) to determine whether the vertex w dominates the vertex v in G′

(for an edge (v, w) in G′, if LCA(v, w) = w in D(G′), then w dominates v in
G′ and (v, w) is s-useless; in all other cases, (v, w) is s-useful in the current
graph G′);

3. remove from G′ all edges determined to be s-useless in Step 2.

The algorithm terminates if in Step 2 of the above iteration procedure, no
s-or-t-useless edges are found.

The correctness of the algorithm follows from Lemmas 7, 8, and 9. In each
iteration, the construction of the dominance tree D(G′) takes O(|E|) time. The
construction of the LCA data structure for D(G′) takes O(|V |) time. Checking
which edges are s-or-t-useful takes O(|E|) time (O(1) time per edge, with one
LCA query for every edge in G′). Hence, each iteration runs in O(|V |+ |E|) time.
Since as many as O(|E|) iterations may be needed to remove all s-or-t-useless
edges [4], the total time of our algorithm is O(|E| ∗ (|V |+ |E|)).

4 Conclusion

We have presented two algorithms for simplifying flow networks. These algo-
rithms remove edges that cannot contribute to any source-to-sink flow in the
given network. Since such simplification may lead to a considerable reduction in
the computation time of flows, our results are useful in the applied settings of
flow algorithms.

While the case on undirected networks has been solved optimally, the case on
directed networks may be further improved. The simplification of planar directed
graphs is polynomial time solvable, which was shown by Biedl et al. [4] using an
O(|V |2) time algorithm. A motivation for considering the planar directed graph
case was due to a result of Weihe [16], in which he proposed anO(|V | log |V |) time
maximum flow algorithm for planar directed graphs. Weihe’s algorithm requires
that the input graph contains no useless edges. So far, however, no O(|V | log |V |)

746 Ewa Misio�lek and Danny Z. Chen

time algorithm for removing all useless edges in planar directed graphs is known
[5]. The quadratic time bound of Biedl et al.’s algorithm [4] does not satisfy
the need of Weihe’s maximum flow algorithm [16]. It is thus desirable to design
an O(|V | log |V |) time algorithm for simplifying planar directed networks. If
all useless edges in planar directed networks can be removed in O(|V | log |V |)
time, then Weihe’s algorithm will be the first O(|V | log |V |) time maximum flow
solution for planar directed graphs.

Developing a provably good polynomial time approximation algorithm for
simplifying general directed flow networks is also an interesting problem.

References

1. A.V. Aho, J.E. Hopcroft, and J.D. Ullman, The Design and Analysis of Computer
Algorithms, Addison-Wesley, 1974.

2. R. Ahuja, T. Magnanti, J. Orlin, Network Flows: Theory, Algorithms and Appli-
cations, Prentice Hall, 1993.

3. S. Alstrup, D. Harel, P. Lauridsen, and M. Thorup, Dominators in linear time,
SIAM Journal on Computing, 28(6):2117-2132, 1999.

4. T. Biedl, B. Brejová, and T. Vinař, Simplifying flow networks, Proc. 25th Intl.
Symposium on Mathematical Foundations of Computer Science, Lecture Notes in
Computer Science, Vol. 1893, pp. 202-211, 2000.

5. B. Brejová and T. Vinař, Weihe’s algorithm for maximum flow in planar graphs
(project report), University of Waterloo, Course CS760K, 1999.

6. K. Cooper, T. Harvey, and K. Kennedy, A simple, fast dominance algorithm, Softw.
Pract. Exper., 4:1-10, 2001.

7. T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, Introduction to Algo-
rithms, McGraw-Hill, 2nd ed., 2001.

8. L.R. Ford and D.R. Fulkerson, Flows in Networks, Princeton University Press,
Princeton, NJ, 1962.

9. A. Goldberg, Recent developments in maximum flow algorithms, Technical Report
#98-045, NEC Research Institute, 1998.

10. F. Harary and G. Prins, The block-cutpoint-tree of a graph, Publ. Math. Debrecen,
13:103-107, 1966.

11. D. Harel and R.E. Tarjan, Fast algorithms for finding nearest common ancestors,
SIAM J. Comput., 13:338-355, 1984.

12. E.L. Lawler, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart,
and Winston, 1976.

13. U. Manber, Introduction to Algorithms, A Creative Approach, Addison-Wesley,
1989.

14. B. Schieber and U. Vishkin, On finding lowest common ancestors: Simplification
and parallelization, SIAM Journal on Computing, 17(6):1253–1262, 1988.

15. D.D. Sleator and R.E. Tarjan, A data structure for dynamic trees, Journal of
Computer and System Sciences, 26(3):362-391, 1983.

16. K. Weihe, Maximum (s,t)-flows in planar networks in O(|V | log |V |) time, Journal
of Computer and System Sciences, 55(3):454-475, 1997.

Approximation Algorithms
for the b-Edge Dominating Set Problem

and Its Related Problems

Takuro Fukunaga and Hiroshi Nagamochi

Department of Applied Mathematics and Physics
Graduate School of Informatics, Kyoto University

{takuro,nag}@amp.i.kyoto-u.ac.jp

Abstract. The edge dominating set problem is one of the fundamen-
tal covering problems in the field of combinatorial optimization. In this
paper, we consider the b-edge dominating set problem, a generalized ver-
sion of the edge dominating set problem. In this version, we are given a
simple undirected graph G = (V, E) and a demand vector b ∈ ZE

+. A set
F of edges in G is called a b-edge dominating set if each edge e ∈ E is
adjacent to at least b(e) edges in F , where we allow F to contain multi-
ple copies of edges in E. Given a cost vector w ∈ QE

+, the problem asks
to find a minimum cost of a b-edge dominating set. We first show that
there is a 8

3
-approximation algorithm for this problem. We then consider

approximation algorithms for other related problems.

1 Introduction

Let G = (V,E) be a simple undirected graph. Moreover, let Z+, Q+ and R+

denote the sets of nonnegative integers, rational numbers and real numbers,
respectively. We say that an edge e = (u, v) dominates edges incident to u and
v, and define an edge dominating set (EDS) to be a set F of edges such that each
edge in E is dominated by at least one edge in F . Given a cost vector w ∈ QE

+

together with G, the EDS problem asks to find an EDS with the minimum cost.
The problem with a cost vector w with w(e) = 1, e ∈ E is called the cardinality
case; otherwise the problem is called the cost case. The EDS problem is one
of the fundamental covering problems in the field of combinatorial optimization
and has some useful applications [1, 11].

It is known that the cardinality case of the EDS problem is NP-hard even for
some restricted classes of graphs such as planar or bipartite graphs of maximum
degree 3 [11]. For the cardinality case of the EDS, an arbitrary algorithm that
outputs a maximal matching is a 2-approximation algorithm [2, 6].

Carr et al. [2] presented a 2.1-approximation algorithm for the cost case of
the EDS problem. This algorithm first constructs an instance of the minimum
cost edge cover problem from the original instance and then finds an optimal
edge cover in the resulting instance. A key property for this method is that an
edge cover in the resulting instance is also an EDS for the original instance and

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 747–756, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

748 Takuro Fukunaga and Hiroshi Nagamochi

that its cost is at most 2.1 times of the minimum cost of an EDS in the original
instance. The property is proved based on a relation between the fractional
EDS polyhedron and the edge cover polyhedron. The former is a polyhedron
containing all incidence vectors of EDSs, which may not be the convex hull of
these vectors. In contrast the edge cover polyhedron is the convex hull of all
incidence vectors of edge covers, which is shown to be an integer polyhedron
[10]. Afterward by using a refined EDS polyhedron, Fujito and Nagamochi [4]
gave a 2-approximation algorithm to the cost case of the EDS problem. Moreover,
Könemann et al. proposed 3-approximation algorithms for two related problems;
they ask to find a minimum cost EDS which forms a tree/tours [7]. Note that,
in the above algorithms, a linear program relaxation of the integer program
formulation is used, but an output solution is not constructed directly from
solutions of the linear program or its dual problem.

In this paper, we consider the following three natural extensions of the EDS
or the edge cover, which will be expected to allow more flexible modelings in
practice.

– The b-edge dominating set (b-EDS) problem, a capacitated version of the
EDS. Given a graph G = (V,E), a demand vector b ∈ ZE

+ and a cost vector
w ∈ QE

+, the problem asks to find a minimum cost b-EDS, where a set F of
edges in G is called a b-EDS if each e ∈ E is adjacent to at least b(e) edges
in F (we allow F to contain multiple copies of edges in E).

– The EDS problem in hypergraphs (HEDS problem), an extension of the EDS.
Given a hypergraph H = (V,E) and a cost vector w ∈ QE

+, the problem asks
to find a minimum cost hyperedge set F such that each hyperedge e ∈ E is
either contained in F or adjacent to a hyperedge in F .

– The b-edge cover with degree constraints over subsets, an extension of the
edge cover. Given a graph G = (V,E), a cost vector w ∈ QE

+, a family
S ⊆ 2V of vertex sets, and a capacity vector b ∈ ZS

+, the problem asks to
find a minimum cost edge set F such that the sum of degrees in graph (V, F)
over S ∈ S is at least b(S), where F can contain multiple copies of edges.

In this paper, we present approximation algorithms for the above problems
by investigating polyhedral structures of the convex hulls of their feasible so-
lutions. As a result, we show that the b-EDS is approximable within a factor
of 2

(
1 + 1

2�3β/2�+1

)
(≤ 8

3), where β = mine∈E,b(e) �=0 b(e) while the HEDS and
the b-edge cover with degree constraints over subsets are approximable within
factors of kθk, and 4

3h, respectively, where k is the maximum size of hyperedges
in H , θk denotes the k-th harmonic number and h is the maximum cardinality
of S ∈ S.

The paper is organized as follows. Section 2 introduces some notations. Sec-
tions 3, 4 and 5, respectively, describe formulations of the b-EDS problem, the
HEDS problem and the b-edge cover with degree constraints over subsets and
present approximation algorithms for these problems by investigating their poly-
hedral structures.

Approximation Algorithms for the b-Edge Dominating Set Problem 749

2 Preliminaries

We denote by θk ∈ Q+ the k-th harmonic number
∑k

i=1
1
i . Let G = (V,E)

denote a simple undirected graph with a vertex set V and an edge set E. An
edge e = (u, v) ∈ E in G is defined as a pair of distinct vertices u and v. Let
H = (V,E) denote a hypergraph, where an edge is defined by a set of two or
more vertices and an edge in H may be called a hyperedge. For a vertex v, δ(v)
denotes the set of edges incident to v. For an edge e, δ(e) denotes the set of edges
incident to vertices contained in e, i.e., δ(e) = {e′ ∈ E| e∩ e′ �= φ}. For a subset
S ⊆ V , δ(S) denotes the set of edges e = (u, v) with u ∈ S and v ∈ V − S, and
E[S] denotes the set of edges contained in S, i.e., E[S] = {e ∈ E| e ⊆ S}. Let
x be an |E|-dimensional nonnegative real vector, i.e., x ∈ RE

+. We indicate the
entry in x corresponding to an edge e by x(e). For a subset F of E, we denote
x(F) =

∑
e∈F x(e). For an edge set F such that each edge e′ ∈ F corresponds to

an edge e ∈ E, x 〈F 〉 ∈ RF
+ denotes a projection of x to F , i.e., x 〈F 〉 (e′) = x(e)

for all e′ ∈ F .

3 b-EDS Problem

3.1 b-Edge Cover Problem and b-Edge Cover Polyhedron

For a graph G = (V,E), a demand vector b ∈ ZE
+, and a cost vector w ∈ QE

+, an
integer program of the b-EDS is given as

minimize wTx
subject to x(δ(e)) ≥ b(e) for each e ∈ E,

x ∈ ZE
+.

(1)

A vector x ∈ ZE
+ satisfying (2) is called a b-EDS.

We now review some results on the b-edge cover problem, which is another
important covering problem. This problem consists of a simple undirected graph
G = (V,E), a demand vector b ∈ ZV

+ defined on V and a cost vector w ∈ QE
+.

An integer vector x ∈ ZE
+ is called a b-edge cover if x(δ(v)) ≥ b(v) for each

v ∈ V . The objective of the b-edge cover problem is to find a minimum cost
b-edge cover, which is formulated as

minimize wTx
subject to x(δ(v)) ≥ b(v) for each v ∈ V ,

x ∈ ZE
+.

(2)

There exists a polynomial time algorithm for this problem [9]. Furthermore, we
know that this problem has an equivalent linear program formulation, where
convex hull of all feasible solutions is characterized by the following set of in-
equalities:

(a) x(e) ≥ 0 for each e ∈ E,
(b) x(δ(v)) ≥ b(v) for each v ∈ V ,
(c) x(E[U]) + x(δ(U)) ≥

⌈
b(U)

2

⌉
for each U ⊆ V with odd b(U).

750 Takuro Fukunaga and Hiroshi Nagamochi

Let EC(G, b) denote the polyhedron represented by these inequalities. It is
proven that EC(G, b) is an integer polyhedron [10], i.e., its extreme points are
all integer vectors.

3.2 Approximation Algorithm

To approximate the b-EDS problem, we use its LP relaxation. The set EDS(G, b)
of all feasible solutions of the relaxed problem is defined by the set of vectors
x ∈ RE

+ such that
(d) x(e) ≥ 0 for each e ∈ E,
(e) x(δ(e)) ≥ b(e) for each e ∈ E.

In general, EDS(G, b) is not an integer polyhedron, implying that any minimum
cost vector x∗ in EDS(G, b) may not be integer solutions. The cost of an optimal
solution in EDS(G, b) is a lower bound on the minimum cost of a given instance
(G, b, w). Given an instance (G, b, w) of the b-EDS problem, we first construct
constructs an instance of the b-edge cover and then computes an optimal solution
as an approximate solution to the input instance. The algorithm is described as
follows.

Algorithm DOMINATE
Input: A simple undirected graph G = (V,E), a demand vector b ∈ ZE

+, and a
cost vector w ∈ QE

+.
Output: A b-EDS to instance (G, b, w).
Step 1: Compute an optimal solution x∗ ∈ RE

+ to the linear program that
minimizes minwTx subject to x ∈ EDS(G, b).

Step 2: For each edge e = (u, v) ∈ E, let b′x∗(u, e) := b(e) and b′x∗(v, e) := 0 if
x∗(δ(u)) ≥ x∗(δ(v)), and let b′x∗(u, e) := 0 and b′x∗(v, e) := b(e) otherwise.

Step 3: For each vertex v ∈ V , let b̃x∗(v) := maxe∈δ(v) b
′
x∗(v, e).

Step 4: Compute a minimum cost b̃x∗-edge cover x̄ ∈ ZE
+ for G and w, and

output x̄ as a b-EDS to (G, b, w).

Note that x̄ ∈ EC(G, b̃x∗), i.e., x̄ is a b̃x∗-edge cover in G. We first show that
x̄ is a b-EDS. For each e = (u, v) ∈ E, b̃x∗(u) ≥ b(e) or b̃x∗(v) ≥ b(e) holds. Then

x̄(δ(e)) ≥ max{x̄(δ(u)), x̄(δ(v))} ≥ max{b̃x∗(u), b̃x∗(v)} ≥ b(e)

holds. Hence, x̄ is a b-EDS and algorithm DOMINATE outputs a feasible so-
lution. We then analyze the approximation factor of algorithm DOMINATE
by establishing a relation between EDS(G, b) and EC(G, b̃x∗). In the following
discussion, we suppose that b(e) ≥ 1 for at least one edge e ∈ E because, if
b(e) = 0 for all edges e ∈ E, DOMINATE apparently outputs the optimal solu-
tion x̄ = 0E .

Lemma 1. Let x be a vector in EDS(G, b), and b̃x ∈ ZV
+ be a vector constructed

from x by Step 3 of algorithm DOMINATE. Then vector 2x ∈ RE
+ satisfies

conditions (a) and (b) for EC(G, b̃x).

Approximation Algorithms for the b-Edge Dominating Set Problem 751

Proof. Let x ∈ EDS(G, b). Then vector 2x satisfies condition (a) for EC(G, b̃x)
because x ∈ RE

+ holds by (d) for EDS(G, b). We now show that 2x satisfies (b),
i.e., 2x(δ(v)) ≥ b̃x(v) for all v ∈ V . Let v be a vertex in V . Then there is an
edge e = (u, v) ∈ E such that b̃x(v) = b′x(v, e). If b′x(v, e) = 0, then we have
2x(δ(v)) ≥ 0 = b̃x(v) since x ∈ RE

+ holds. Therefore, let us assume b′x(v, e) > 0.
Then b′x(v, e) = b(e) and x(δ(v)) ≥ x(δ(u)) hold. Now x(δ(e)) ≥ b(e) holds by
(e) for EDS(G, b), which implies x(δ(v)) + x(δ(u)) ≥ b(e) + x(e) holds. Then we
have

2x(δ(v)) ≥ x(δ(u)) + x(δ(v)) ≥ b(e) + x(e) ≥ b(e) = b′x(v, e) = b̃x(v).

Therefore, (b) also holds for 2x. ��

Lemma 2. For a simple undirected graph G = (V,E) and a demand vector
b ∈ ZV

+, let β = minv∈V,b(v) �=0 b(v). Then, for any vector x′ ∈ RE
+ satisfying

conditions (a) and (b) for EC(G, b), vector

y =
(

1 +
1

2 %3β/2&+ 1

)
x′ ∈ RE

+

satisfies condition (c) for EC(G, b).

Proof. Let U be a subset of V such that b(U) is odd. It suffices to show that

y(E[U]) + y(δ(U)) ≥
⌈
b(U)

2

⌉
(3)

holds. If U contains a vertex v such that b(v) = 0, then (3) follows induc-
tively from that y(E[U ′]) + y(δ(U ′)) ≥

⌈
b(U ′)

2

⌉
for U ′ = U\{v} since y(E[U]) +

y(δ(U)) ≥ y(E[U ′])+y(δ(U ′)) and b(U) = b(U ′) hold. Hence we assume without
loss of generality that b(v) ≥ β for all v ∈ U . Moreover, if |U | = 1, then (c) is
implied by (b) since for U = {v}, y(E[U]) + y(δ(U)) = y(δ(v)) ≥ x′(δ(v)) ≥
b(v) ≥

⌈
b(v)
2

⌉
. We now consider the case of |U | = 2. Let U = {v1, v2}. Since

b(U) = b(v1) + b(v2) is odd, b(v1) �= b(v2) holds, where we assume without loss
of generality b(v1) > b(v2). Then⌈

b(U)
2

⌉
=
⌈
b(v1) + b(v2)

2

⌉
≤ b(v1).

We have
x′(E[U]) + x′(δ(U)) ≥ x′(δ(v1))

because E[U]∪ δ(U) ⊇ δ(v1). Since x′ satisfies x′(δ(v1)) ≥ b(v1) by (b), we have

y(E[U]) + y(δ(U)) ≥ x′(E[U]) + x′(δ(U))

≥ x′(δ(v1)) ≥ b(v1) ≥
⌈
b(v1) + b(v2)

2

⌉
=
⌈
b(U)

2

⌉
.

752 Takuro Fukunaga and Hiroshi Nagamochi

In what follows, we assume that |U | ≥ 3 and b(v) ≥ β for all v ∈ U .
Since x′(δ(v)) ≥ b(v) holds for all v ∈ U by (b) for EC(G, b), we have

2x′(E[U]) + x′(δ(U)) =
∑
v∈U

x′(δ(v)) ≥ b(U),

for which it holds

x′(E[U]) + x′(δ(U)) ≥ b(U) + x′(δ(U))
2

≥ b(U)
2

.

To show (3), we only have to prove that

�b(U)/2�
b(U)/2

= 1 +
1

b(U)
≤ 1 +

1
2 %3β/2&+ 1

,

or equivalently
b(U) ≥ 2 %3β/2&+ 1. (4)

From the assumption, b(U) ≥ 3β holds. Moreover, since b(U) is odd, b(U) ≥
3β + 1 if 3β is even. This implies (4). ��
Theorem 1. Let β = mine∈E,b(e) �=0 b(e). Algorithm DOMINATE delivers an
approximate solution of a cost within a factor of

ρ = 2
(

1 +
1

2 %3β/2&+ 1

)(
≤ 8

3

)
to the b-EDS problem.

Proof. Let x̄ ∈ ZE
+ be a vector obtained by algorithm DOMINATE. We have al-

ready observed that x̄ is a b-EDS to (G, b, w). We show that x̄ is a ρ-approximate
solution. We denote by OPT the minimum cost of a b-EDS for (G, b, w). Let
x∗ ∈ RE

+ be a vector computed in Step 1 of DOMINATE. Since EDS(G, b) con-
tains a minimum cost b-EDS, which minimizes wTx∗ over EDS(G, b), it holds
wTx∗ ≤ OPT. By Lemma 1, vector 2x∗ satisfies conditions (a) and (b) for
EC(G, b̃x∗). Since b(e) ≥ β for all e ∈ E such that b(e) �= 0, we see that
b̃x∗(v) ≥ β or b̃x∗(v) = 0 holds for each v ∈ V . Therefore, from Lemma 2,
we have ρx ∈ EC(G, b̃x∗). Since algorithm DOMINATE outputs a solution x̄ of
the minimum cost over all vectors in EC(G, b̃x∗), we have wT x̄ ≤ ρwTx∗, from
which it follows wT x̄ ≤ ρOPT, as required. ��

We have an instance that indicates that the analysis of Theorem 1 is tight in
the case of β = 1 (the detail is omitted due to the space limitation). Moreover,
algorithm DOMINATE achieves a better approximation factor when the edge
set E contains no edge e with b(e) = 0 as follows.

Theorem 2. For a demand vector b ∈ ZE
+ such that β = mine∈E b(e) ≥ 1,

algorithm DOMINATE delivers an approximate solution of a cost within a factor
of

ρ = 2
(

1 +
1

4β + 1

)(
≤ 12

5

)
to the b-EDS problem.

Approximation Algorithms for the b-Edge Dominating Set Problem 753

Proof. Omitted due to the space limitation. ��

In the rest of this section, we investigate the approximation guarantee of
DOMINATE in some more restricted cases. We first consider the case of bipartite
graphs.

Theorem 3. DOMINATE is a 2-approximation algorithm for the b-EDS prob-
lem in bipartite graphs.

Proof. For bipartite graphs, the edge cover polytopes are determined by only
inequalities (a) and (b) [10]. Hence the theorem follows from Lemma 1. ��

When b takes the same value for all edges, we show that a better guarantee
can be derived as follows.

Lemma 3. Let x ∈ RE
+ be a vector in EDS(G, b). If b(e) = β ≥ 1 for all e ∈ E,

then ρx belongs to EC(G, b̃x), where ρ = 2.1 for β = 1 and ρ = 2 for β ≥ 2.

Proof. Omitted due to the space limitation. ��

Lemma 3 directly implies the following theorem.

Theorem 4. Suppose that b(e) = β for all e ∈ E. Then algorithm DOMINATE
delivers an approximate solution of a cost within a factor of 2.1 if β = 1 or a
factor of 2 if β ≥ 2.

4 Hyperedge Dominating Set Problem

Given a hypergraph H = (V,E) and a cost vector w ∈ QE
+, the problem is

formulated as
minimize wTx
subject to x(δ(e)) ≥ 1 for each e ∈ E,

x ∈ ZE
+.

(5)

An HEDS is defined as a vector x ∈ ZE
+ such that x(δ(e)) ≥ 1 for each e ∈ E. In

addition, we call the LP relaxation of the HEDS problem the fractional HEDS
problem and its feasible solution a fractional HEDS.

To obtain an approximate solution to the HEDS problem, we transform an
instance of the HEDS problem to an instance of the set cover problem. The set
cover problem is considered as a hypergraph version of the edge cover problem.
A hyperedge set F ⊆ E is called a set cover of hypergraph H = (V,E) if
∪e∈F e = V and the set cover problem asks to find a minimum cost set cover.
Given a hypergraph H = (V,E) and a cost vector w ∈ QE

+, the formulation of
the set cover problem is given as follows.

minimize wTx
subject to x(δ(v)) ≥ 1 for each v ∈ V ,

x ∈ ZE
+.

(6)

754 Takuro Fukunaga and Hiroshi Nagamochi

Note that this problem is proven to be NP-hard [5]. Moreover, the LP relaxation
of the set cover problem is called the fractional set cover problem and its feasible
solution is called a fractional set cover. It is known that a simple greedy algorithm
finds an approximate solution for the set cover problem, and that the cost of the
solution is bounded in terms of the minimum cost of a fractional set cover, as
described in the following theorem.

Theorem 5. [3, 8] Let w ∈ QE
+ be a given cost vector, x̂ be a minimum cost

fractional set cover for a hypergraph H = (V,E), and k be the maximum size of
a hyperedge in H. Then a set cover whose cost is at most θkw

T x̂ can be obtained
in polynomial time.

Since the HEDS problem is a subclass of the set cover problem, the HEDS
problem can be reduced to the set cover problem directly. Let (H = (V,E), w) be
a given instance of the HEDS problem. Construct a hypergraph H ′ = (V ′, E′)
such that its vertex set V ′ consists of vertices v′e corresponding to its edges
e ∈ E and edge set E′ consists of e′e = {v′e′′ |e′′ ∈ δ(e)} corresponding to δ(e). A
component of the cost vector w′(e′e) is set to be w(e). Then, it is easy to see that
a set cover for (H ′, w′) gives an HEDS for (H,w) of same cost and vice versa.
Let d be the maximum size of a hyperedge in E′, i.e., the maximum size of δ(e)
for each e ∈ E, where d = O(|V |k) holds for the maximum size k of a hyperedge
in H . By Theorem 5, this direct reduction gives a θd-approximation algorithm
for the HEDS problem. Note that θd = O(k log |V |).

In our algorithm, we transform an instance of the HEDS problem into an
instance of the set cover problem. The algorithm is described as follows.

Algorithm HYPER
Input: A hypergraph H = (V,E) and a cost vector w ∈ QE

+.
Output: An HEDS for H .
Step 1: Find a minimum cost solution x∗ ∈ RE to the fractional HEDS problem

for (H,w).
Step 2: Let V ′ := {v ∈ V | x∗(δ(v)) = maxu∈e x

∗(δ(u)) for some e ∈ E}, E′ :=
{e ∩ V ′ | e ∈ E}, and w′ := w 〈E′〉 ∈ QE′

+ .
Step 3: Find a set cover x̄ for hypergraph Hx∗ = (V ′, E′) such that w′T x̄ is at

most θk times the minimum cost of a fractional set cover, and output x̄ 〈E〉
as an HEDS for H .

To prove that the approximation factor of algorithm HYPER is kθk by using
Theorem 5, we show that for a vector x∗ obtained in Step 1, vector kx∗ is a
fractional set cover to (Hx∗ , w′).

Lemma 4. Let x ∈ RE be a fractional HEDS for a hypergraph H = (V,E),
Hx = (V ′, E′) be a hypergraph obtained in Step 3 of HYPER from x and k be
the maximum hyperedge size of H. Then vector kx 〈E′〉 ∈ RE′

is a fractional set
cover for Hx.

Proof. Suppose that v ∈ V ′ is a vertex in a hyperedge e ∈ E′ such that x(δ(v)) ≥
x(δ(u)) for each u ∈ e. Since

∑
u∈e x(δ(u)) ≥ x(δ(e)) ≥ 1, we have x(δ(v)) ≥ 1/k.

Approximation Algorithms for the b-Edge Dominating Set Problem 755

Therefore kx 〈E′〉 (δ(v)) ≥ 1, which means that kx 〈E′〉 ∈ RE′
is a fractional set

cover for Hx. ��

Theorem 6. The algorithm HYPER achieves approximation factor of kθk for
the HEDS problem, where k is the maximum size of a hyperedge.

Proof. Omitted due to the space limitation. ��

Note that the approximation factor kθk = O(k log k) of algorithm HYPER is
superior to that of the algorithm obtained from the direct reduction if kθk < θd,
i.e., H is a dense hypergraph such that d = Ω(|V |k).

5 b-Edge Cover with Degree Constraints over Subsets

Given an undirected graph G = (V,E), a cost vector w ∈ QE
+, a family S ⊆ 2V

of subsets of V , and a demand vector b ∈ ZS
+, the b-edge cover with degree

constraints over subsets is formulated by

minimize wTx
subject to

∑
v∈S x(δ(v)) ≥ b(S) for each S ∈ S,

x ∈ ZE
+.

(7)

Note that if S = {{v}|v ∈ V }, then problem (7) is equivalent to the b-edge cover
problem (2). If S = {{u, v}|(u, v) ∈ E}, then problem (7) seems similar to the b-
EDS problem, but its constraint x(δ(u))+x(δ(v)) ≥ b(e) on each e = (u, v) ∈ E
is different from the constraint x(δ(e)) ≥ b(e) for the b-EDS. Let DC(G,b) denote
the set of all vectors x ∈ RE

+ satisfying inequality in (7), i.e., the relaxation of
the covering problem. We show that problem (7) is approximable by the next
algorithm.

Algorithm COVER
Input: A simple undirected graph G = (V,E), a cost vector w ∈ QE

+, a family
S ⊆ 2V of subsets of V , and a demand vector b ∈ ZS

+.
Output: A vector x ∈ ZE

+ feasible to the covering problem (7).
Step 1: Find a minimum cost vector x∗ ∈ DC(G, b).
Step 2: For each S ∈ S, b′x∗(v, S) := b(S) if x∗(δ(v)) ≥ x∗(δ(u)) for all u ∈ S

and b′x∗(v, S) := 0 otherwise.
Step 3: For each v ∈ V , b̃x∗(v) := maxS∈S:v∈S b

′(v, S).
Step 4: Compute a minimum cost b̃x∗-edge cover x̄ and output x̄ as a solution

to (7).

We show that algorithm COVER is an approximation algorithm for problem
(7). We can see that x̄ is a feasible for problem (7) since for each S ∈ S, the vector
v = arg maxu∈S x

∗(δ(u)) satisfies
∑

u∈S x̄(δ(u)) ≥ x̄(δ(v)) ≥ b̃x∗(v) ≥ b(S). The
approximation factor of algorithm COVER can be derived analogously to that
of algorithm DOMINATE.

756 Takuro Fukunaga and Hiroshi Nagamochi

Lemma 5. Let x ∈ DC(G, b) and h = maxS∈S |S|. Then vector hx satisfies
conditions (a) and (b) for EC(G, b̃x), where b̃x ∈ ZV

+ is a vector obtained from
x in Step 3 of COVER.

Proof. By x∈DC(G, b), x∈RE
+ holds. Then vector hx satisfies (a) for EC(G, b̃x).

We show that hx satisfies (b), i.e., hx(δ(v)) ≥ b̃x(v) for each v ∈ V . Let v be
a vertex in V . If b̃x(v) = 0, then hx(δ(v)) ≥ 0 = b̃x(v) holds. Then assume
b̃x(v) > 0. There exists a subset S ∈ S such that x(δ(v)) ≥ x(δ(u)) holds for
all u ∈ S and b̃x(v) = b′x(v, S) = b(S). From this inequality and the condition∑

u∈S x(δ(u)) ≥ b(S) for DC(G, b), we have

hx(δ(v)) ≥ |S|x(δ(v)) ≥
∑
u∈S

x(δ(u)) ≥ b(S) = b′x(v, S) = b̃x(v).

This implies that hx satisfies (b) for EC(G, b̃x). ��
Lemmas 5 and 2 indicate the following theorem.

Theorem 7. Algorithm COVER achieves the approximation factor of

h ·
(

1 +
1

2 %3β/2&+ 1

)(
≤ 4

3
h

)
for problem (7), where h = max{|S| |S ∈ S} and β = minS∈S,b(S) �=0 b(S).

Proof. Omitted due to the limitation. ��

References

1. E. M. Arkin, M. M. Halldórsson, and R. Hassin, Approximating the tree and tour
cover of graph, Information Processing Letters, vol. 47, pp. 275–282, 1993.

2. R. Carr, T. Fujito, G. Konjevod, and O. Parekh, A 2 1
10

-approximation algorithm
for a generalization of the weighted edge-dominating set problem, In Proceedings
of the Eighth ESA, pp. 132–142, 2000.

3. V. Chvátal, A greedy heuristics for the set covering problem, Mathematics of Op-
erations Research, vol. 4, pp. 233–235, 1979.

4. T. Fujito and H. Nagamochi, A 2-approximation algorithm for the minimum weight
edge dominating set problem, Discrete Applied Mathmatics, vol. 118, pp. 199–207,
2002.

5. M. R. Garey and D. S. Johnson, Computers and Intractability; a Guide to the
Theory of NP-completeness, W. H. Freeman & Co., 1979.

6. F. Harary, Graph Theory, Addison-Wesley, 1969.
7. J. Könemann, G. Konjevod, O. Parekh, and A. Sinha, Improved approximations

for tour and tree covers, Algorithmica, vol. 38, pp. 441–449, 2004.
8. L. Lovász, On the ratio of optimal integral and fractional covers, Discrete Mathe-

matics, vol. 13, pp. 383–390, 1975.
9. K. G. Murty and C. Perin, A 1-matching blossom-type algorithm for edge covering

problems, Networks, vol. 12, pp. 379–391, 1982.
10. A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, Springer,

2003.
11. M. Yannakakis and F. Gavril, Edge dominating sets in graphs, SIAM Journal on

Applied Mathematics, vol. 38, pp. 364–372, 1980.

Bounded Degree Closest k-Tree Power
Is NP-Complete�

Michael Dom, Jiong Guo, and Rolf Niedermeier

Institut für Informatik, Friedrich-Schiller-Universität Jena
Ernst-Abbe-Platz 2, D-07743 Jena, Fed. Rep. of Germany

{dom,guo,niedermr}@minet.uni-jena.de

Abstract. An undirected graph G = (V, E) is the k-power of an undi-
rected tree T = (V, E′) if (u, v) ∈ E iff u and v are connected by a path
of length at most k in T . The tree T is called the tree root of G. Tree
powers can be recognized in polynomial time. The thus naturally arising
question is whether a graph G can be modified by adding or deleting
a specified number of edges such that G becomes a tree power. This
problem becomes NP-complete for k ≥ 2. Strengthening this result, we
answer the main open question of Tsukiji and Chen [COCOON 2004]
by showing that the problem remains NP-complete when additionally
demanding that the tree roots must have bounded degree.

1 Introduction

Root finding is a natural and well-studied problem in graph algorithmics (see [1,
Section 10.6] and [10] for surveys). We call a graph G′ = (V ′, E′) a k-root of a
graph G = (V,E) if V ′ = V and there is an edge between vertices u and v in G
iff there is a path of length at most k between u and v in G′. The other way
round, G is the k-power of G′. Even determining whether a graph G possesses
a 2-root is NP-complete [12].

Kearney and Corneil [8] directed the attention to a special case of the root
finding problem by demanding G′ to be a tree. Before that, Lin and Skiena [11]
have already shown that it can be decided in linear time whether a graph is
the 2-power of a tree. Kearney and Corneil generalized this result by showing
that the tree root finding problem – called k-Tree Power problem – can be
solved in polynomial time for any k. Moreover, they introduced an important
generalization of root finding, yielding a natural graph modification problem.
The question now is, given a graph G and a nonnegative integer �, can G be
modified by adding or deleting at most � edges such that the resulting graph has
a k-tree root. Call this problem Closest k-Tree Power. This “error correction
scenario” takes into account that a graph might be close to being the k-power
of a tree and one tries to find out how close it actually is by considering the
number � of edge modifications needed. Kearney and Corneil have shown that
� Supported by the Deutsche Forschungsgemeinschaft (DFG), Emmy Noether research

group PIAF (fixed-parameter algorithms), NI 369/4.

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 757–766, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

758 Michael Dom, Jiong Guo, and Rolf Niedermeier

the Closest k-Tree Power problem is NP-complete for k ≥ 3. Moreover, it
is reported that it is also NP-complete in the case k = 2 [7]. We strengthen these
results to the case that the root trees may only have bounded degree.

Motivated by applications in computational biology, variants of k-Tree
Power and Closest k-Tree Power have recently been studied [2, 13]. In
these problems, only the leaves of the root are in one-to-one correspondence with
the given graph vertices, the inner tree nodes are considered as “Steiner nodes”
(see [2, 13] for details). The corresponding problems Closest k-Leaf Power
and Closest k-Phylogenetic Power (where in the latter case all inner nodes
of the tree have to have degree at least three) are NP-complete for k ≥ 2. Intu-
itively speaking, these problems allow for a higher degree of freedom by freely
choosing inner tree nodes and this may explain why, as opposed to tree root
finding, polynomial-time solvability of the corresponding recognition problems
k-Leaf Power and k-Phylogenetic Power is only known for k ≤ 4 [2, 13].
The cases k > 4 are open in both settings. In addition, it has been strongly
advocated to study the problems when the maximum node degree of the root
tree is bounded from above by a constant [2, 3, 14]. In particular, Tsukiji and
Chen [14] have proven that, for k ≥ 3, the Closest k-Phylogenetic Power
problem (called Closest k-Phylogenetic Root there) remains NP-complete
when one demands that the root tree has bounded degree. The case k = 2 is
open. Moreover, they emphasize that they leave open the “more fundamental”
problem to determine the complexity of Closest k-Tree Power [14, page 461]
in case of bounded degrees. They conjecture NP-completeness. We settle their
open problem by proving this conjecture. More precisely, we show that Closest
k-Tree Power is NP-complete for k ≥ 2 and maximum node degree four in
the root tree. We only leave open the case of maximum node degree three.

Let us briefly discuss our result. First, the NP-hardness proof of Kearney
and Corneil [8] relies on the NP-completeness of the so-called Fitting Ultra-
metric Trees problem [9]. To show our result, we had to develop a completely
different, more “fine-grained” sort of reduction from the NP-complete Vertex
Cover for Graphs with Maximum Degree Three problem (3-Vertex
Cover for short) [6]. Second, studying tree powers [8] instead of leaf powers [13]
or phylogenetic powers [2], it is impossible to make use of the degree of free-
dom as provided by inner nodes in the latter two cases. Hence, NP-hardness
appears to be harder to show here, somewhat explaining why the problem was
left open and considered more fundamental in [14]. Using our new type of con-
struction for the reduction, we could overcome this difficulty, improving Kearney
and Corneil’s construction [8] which makes use of unbounded degrees.

Due to the lack of space several proofs had to be omitted.

2 Preliminaries

We consider only undirected graphs G = (V,E) with n := |V | and m := |E|.
Edges are denoted as tuples (u, v). The degree of a vertex v is the number of
adjacent vertices. For a graph G = (V,E) and u, v ∈ V , let dG(u, v) denote

Bounded Degree Closest k-Tree Power Is NP-Complete 759

the length of the shortest path between u and v in G. With E(G), we denote
the edge set of a graph G. We call a graph G′ = (V ′, E′) an induced subgraph
of G = (V,E) if V ′ ⊆ V and E′ = {(u, v) | u, v ∈ V ′ and (u, v) ∈ E}. For two
sets A and B, A	 B denotes the symmetric difference (A \B) ∪ (B \A).

Given an unrooted tree T with node set V , the k-tree power of T is a graph,
denoted by T k with T k := (V,E), where E := {(u, v) | u, v ∈ V and dT (u, v) ≤
k}. It can be decided in O(n3) time whether, for specified k, a graph is a k-
tree power or not [8]. The more general graph modification problem that asks
whether a given graph G is close to any k-tree power T k then reads as follows.

Closest k-Tree Power (CTPk): Given a graph G = (V,E) and a nonneg-
ative integer �, is there a tree T such that T k and G differ by at most � edges,
that is |E(T k)	E(G)| ≤ �? CTPk is NP-complete for k ≥ 2 [7, 8]. In this paper
we study a special case of CTPk where the degree of every node in T is bounded
from above by a fixed constant Δ.

Closest k-Tree Power with Maximum Degree Δ (Δ-CTPk): Given
a graph G = (V,E) and a nonnegative integer �, is there a tree T with maximum
node degree Δ such that T k and G differ by at most � edges, that is |E(T k) 	
E(G)| ≤ �? Clearly, Δ-CTPk is in NP, because tree powers can be recognized
in polynomial time [8]. It remains to show the NP-hardness.

Our reference point for showing NP-completeness of Δ-CTPk is 3-Vertex
Cover: Given a graph G = (V,E) with a maximum vertex degree 3 and a
nonnegative integer �, is there a set C ⊆ V of at most � vertices such that
each edge from E has at least one endpoint in C? 3-Vertex Cover is NP-
complete [6]. We show NP-completeness of Δ-CTPk for k ≥ 2 and Δ ≥ 4
by proceeding as follows. First, we study the somewhat simpler case k ≥ 3.
Observe, however, that NP-completeness for some k does not immediately imply
NP-completeness for k + 1. Second, we strengthen our findings by showing NP-
completeness for k = 2 where some additional technical expenditure is needed.

To make the presentation clearer, we will speak of vertices when referring to
a Vertex Cover input instance in the following sections and we will speak of
nodes when referring to a Δ-CTPk instance.

3 Δ-CTPk Is NP-Complete for k ≥ 3 and Δ ≥ 4

The central point in the NP-completeness proof is to “simulate” the Vertex
Cover problem by the graph modification problem CTPk. In the course of
this, we will ensure that a Vertex Cover input instance with maximum vertex
degree three translates into an instance of CTPk with a desired tree root with
maximum node degree four. In what follows, we briefly describe the fundamental
ideas behind this reduction of 3-Vertex Cover to 4-CTPk.

Vertex covering means to find a minimum set of vertices that covers all edges.
Equivalently, we may consider the following problem. Subdivide each edge of the
graph into two edges by inserting a new vertex each time. Then, Vertex Cover
can be seen as an edge deletion problem where the task is to break the graph into
n connected components such that each connected component contains exactly

760 Michael Dom, Jiong Guo, and Rolf Niedermeier

one original vertex. Moreover, one wants to maximize the number of connected
components which consist of isolated vertices (or, equivalently, to minimize the
number of connected components that contain at least one edge – the correspond-
ing original vertices form the vertex cover). At first sight, this simply sounds as
a rather complicated reformulation of Vertex Cover. The advantage is that
this formulation is a step closer to our final goal, a graph modification problem
where we modify edges.

So far, observe that in the “new” problem we always have to delete m edges
to achieve n connected components as described above. Thus, one difficulty that
remains to be solved is to interrelate the number of vertices in a vertex cover
and the number of edges modified in 4-CTPk. In addition, we still have to bring
into play the tree root problem as such. To this end, we make a construction
as follows. Firstly, note that we will connect the n connected components de-
scribed above by an additional “backbone structure” such that we finally can
have a connected graph that has a tree root. Secondly, we employ an edge gadget
which translates the edge deletion scenario of the reformulated Vertex Cover
problem into an edge deletion and insertion scenario on the 4-CTPk side. It ba-
sically “expresses” that in vertex covering all edges have to be covered. Thirdly,
we employ a vertex gadget which ensures that we have a one-to-one functional
correspondence between the number of vertices of the 3-Vertex Cover in-
stance and the number of edges to be deleted and inserted in the 4-CTPk
instance. It basically expresses that we want to minimize the size of the vertex
cover. More specifically, the 3-Vertex Cover problem has a solution of size � iff
the constructed 4-CTPk instance has a solution of size 3m+2�. In fact, the first
term comes from the edge gadgets, and the second term comes from the vertex
gadgets. We illustrate our reduction by focussing on Δ-CTP3.

Construction of the Reduction. We now describe the details of the construction
for Δ-CTP3 for Δ ≥ 4. Given an instance G = (V,E) of 3-Vertex Cover
with V := {v1, . . . , vn}, we construct the graphGCTP = (VCTP, ECTP) as follows.

For every vertex vi ∈ V there is a vertex gadget in GCTP that contains a
vertex node xi

0, a connection stub consisting of eight nodes xi
1, . . . , x

i
8, an edge

stub for every neighbor vj of vi – each edge stub consisting of two nodes yi,j
1

and yi,j
2 –, and edges as shown in Figure 1.

To build the mentioned backbone structure, we add n−1 connection nodes zi

with 1 ≤ i < n to GCTP, and for all 1 ≤ i < n we insert edges between the vertex
gadgets of vi and vi+1 and between the gadgets and zi as shown in Figure 2.

For each edge (vi, vj) ∈ E, we add to GCTP an edge node ei,j and insert
edges between ei,j and the nodes xi

0, y
i,j
2 , xj

0, y
j,i
2 from the vertex gadgets of vi

and vj . See Figure 3 for an illustration. We call ei,j together with the four edges
incident to it the edge gadget for (vi, vj) ∈ E.

Clearly, GCTP is not a 3-tree power if G contains any edges, because in a
3-tree power T k that contains at least four nodes every node u has at least three
pairwise connected neighbors. To see this, consider the 3-tree root T of T k: If
there is a node v with distance 3 from u in T , then the two vertices between u
and v form a clique in T k together with v and u. Similarly, one can also find

Bounded Degree Closest k-Tree Power Is NP-Complete 761

xi
8xi

8xi
8 xi

7xi
7xi

7 xi
6xi

6xi
6 xi

5xi
5xi

5 xi
4xi

4xi
4

xi
3xi

3xi
3

xi
2xi

2xi
2

xi
1 xi

1xi
1

xi
0

xi
0xi

0

yi,g
1

yi,g
2

yi,h
1

yi,h
1

yi,h
2 yi,h

2

yi,j
1yi,j

1yi,j
1

yi,j
2yi,j

2 yi,j
2

Fig. 1. The vertex gadget of a vertex vi ∈ V . If vi has only one neighbor vj in G,
the gadget of vi has only one edge stub as shown on the left side. The illustrations in
the middle resp. on the right side show the gadget of vi in the case that vi has two
neighbors vh, vj resp. three neighbors vg , vh, vj .

xi
8xi

7xi
6 xi

5 xi
4

xi
3

xi
2

xi
1

xi
0

xi+1
8xi+1

7xi+1
6 xi+1

5 xi+1
4

xi+1
3

xi+1
2

xi+1
1

xi+1
0

zi

Fig. 2. The vertex gadgets of vi, vi+1 ∈ V , and the connection node zi. The edges
inserted between the two gadgets and between the gadgets and zi are drawn with bold
lines.

three pairwise connected neighbors of u in T k if all nodes in T are at distance at
most 2 from u. However, every edge node ei,j in GCTP has four neighbors with
only two edges between them. Figure 4 gives an example for the reduction.

Correctness of the Reduction.

Proposition 1. Let G = (V,E) be an instance of 3-Vertex Cover and
let GCTP be the instance of Δ-CTP3 constructed from G as described above.

If C ⊆ V is a vertex cover for G, then GCTP has a solution of size at
most 3 ·m+ 2 · |C|.

Proof. We prove the proposition by giving a solution of the postulated size
for GCTP. Let C ⊆ V be a vertex cover for G, that is, every edge of E has
at least one endpoint in C. Then we modify GCTP as follows:

762 Michael Dom, Jiong Guo, and Rolf Niedermeier

xi
8xi

7xi
6 xi

5 xi
4

xi
3

xi
2

xi
1

xi
0

xj
8xj

7xj
6 xj

5 xj
4

xj
3

xj
2

xj
1

xj
0

yi,j
2

ei,j

yj,i
2

Fig. 3. The edge node ei,j for (vi, vj) ∈ E and the vertex gadgets of vi and vj . The
edges of the edge gadget are drawn with bold lines.

For every vertex vi ∈ C delete the edge (xi
0, x

i
4) and insert the edge (xi

1, x
i
4).

For every edge (vi, vj) ∈ E, at least one of vi and vj , say vi, is in C. Then insert
the edge (ei,j , yi,j

1) and delete the edges (ei,j , xj
0) and (ei,j , yj,i

2).
This solution has size m · 3 + |C| · 2, since we modify two edges in GCTP for

every vertex in C and three edges for every edge of E.
The resulting graph has a 3-tree root T with maximum vertex degree 4: Every

edge node is connected with exactly one vertex gadget which is modified such
that it has a 3-tree root as shown in Figure 4 for the gadget of v2 (with x2

1 lying
between x2

0 and x2
2 in the tree root). If a vertex gadget is disconnected from all

edge nodes, it has a 3-tree root like the gadgets of v1 and v3 in Figure 4 (with x1
0

lying between x1
1 and x1

2). ��

In order to show the reverse direction, we need the following lemma. We omit
the lengthy proof.

Lemma 1. Given a graph GCTP = (VCTP, ECTP) constructed as described
above, there is an optimal solution Eopt for Δ-CTP3 on GCTP that leads to
a graph Gopt = (VCTP, ECTP 	Eopt) with the following two properties:
Edge node property. Each edge node ei,j which is added into GCTP for edge
(vi, vj) ∈ E has only three neighbors in Gopt, and these are either xi

0, y
i,j
1 , yi,j

2

or xj
0, y

j,i
1 , yj,i

2 .
Vertex node property. For each vertex node xi

0 with 1 ≤ i ≤ n, if there is an
edge node ei,j adjacent to xi

0 in Gopt, then Gopt contains edge (xi
1, x

i
4) but not

edge (xi
0, x

i
4); otherwise, Gopt contains (xi

0, x
i
4) but not (xi

1, x
i
4).

Proposition 2. Let G = (V,E) be an instance of 3-Vertex Cover and
let GCTP = (VCTP, ECTP) be the instance of Δ-CTP3 constructed from G.
If Esol is a solution for GCTP, then G has a vertex cover of size at most (|Esol|−
3 ·m)/2.

Bounded Degree Closest k-Tree Power Is NP-Complete 763

G:

GCTP:

G′:

T :

v1 v2 v3

x1
8

x1
8

x1
8

x1
7

x1
7

x1
7

x1
6

x1
6

x1
6

x1
5

x1
5

x1
5

x1
4

x1
4

x1
4

x1
3

x1
3

x1
3

x1
2

x1
2

x1
2

x1
1

x1
1

x1
1

x1
0

x1
0

x1
0

x2
8

x2
8

x2
8

x2
7

x2
7

x2
7

x2
6

x2
6

x2
6

x2
5

x2
5

x2
5

x2
4

x2
4

x2
4

x2
3

x2
3

x2
3

x2
2

x2
2

x2
2

x2
1

x2
1

x2
1

x2
0

x2
0

x2
0

x3
8

x3
8

x3
8

x3
7

x3
7

x3
7

x3
6

x3
6

x3
6

x3
5

x3
5

x3
5

x3
4

x3
4

x3
4

x3
3

x3
3

x3
3

x3
2

x3
2

x3
2

x3
1

x3
1

x3
1

x3
0

x3
0

x3
0

z1

z1

z1

z2

z2

z2

y1,2
1

y1,2
1

y1,2
1

y1,2
2

y1,2
2

y1,2
2

y2,1
1

y2,1
1

y2,1
1

y2,1
2

y2,1
2

y2,1
2

e1,2

e1,2

e1,2

y2,3
1

y2,3
1

y2,3
1

y2,3
2

y2,3
2

y2,3
2

y3,2
1

y3,2
1

y3,2
1

y3,2
2

y3,2
2

y3,2
2

e2,3

e2,3

e2,3

Fig. 4. An example reduction. Graph G is the 3-Vertex Cover instance, graph GCTP

is the graph constructed from G. There are three vertex gadgets with vertex
nodes x1

0, x
2
0, x

3
0 for the three vertices in G and two edge gadgets with edge

nodes e1,2, e2,3 for the two edges of G. Graph G′ results from GCTP by deleting five
edges and inserting three edges (inserted edges are drawn with bold lines, deleted edges
with dotted lines). Graph G′ is a 3-tree power with T as its 3-tree root. Note that we
need three edge modifications for each edge of G and two edge modifications for the
vertex gadget of v2, which forms a vertex cover for G.

764 Michael Dom, Jiong Guo, and Rolf Niedermeier

Proof. Let Esol ⊆ VCTP × VCTP be an optimal solution for GCTP as described
in Lemma 1. In the resulting graph, every edge node ei,j is connected either
to xi

0, y
i,j
1 , yi,j

2 or to xj
0, y

j,i
1 , yj,i

2 (edge node property of Lemma 1). Hence, for
every edge node ei,j there are three edge modifications in Esol, either the deletion
of (ei,j , xi

0), (ei,j , yi,j
2) and the insertion of (ei,j , yj,i

1), or the deletion of (ei,j , xj
0),

(ei,j , yj,i
2) and the insertion of (ei,j , yi,j

1).
As every edge node ei,j is adjacent to exactly one of the vertex nodes xi

0

and xj
0 in the resulting graph,

C := {vi ⊆ V | xi
0 is adjacent to at least one edge node}

is clearly a vertex cover for G. The vertex node property of Lemma 1 implies
that for every vertex node xi

0 that is adjacent to at least one edge node, the
solution Esol contains two edge modifications, namely the deletion of (xi

0, x
i
4)

and the insertion of (xi
1, x

i
4). Hence, there can be at most (|Esol| − 3 ·m)/2 such

vertex nodes, and the size of C, which consists of the corresponding vertices
in V , is bounded from above by (|Esol| − 3 ·m)/2. ��
Theorem 1. Δ-CTPk is NP-complete for k = 3 and Δ ≥ 4.

To generalize to Δ-CTPk for k > 3, we use a straightforward extension
of the construction used for the case k = 3. The gadget for a vertex vi ∈ V
then consists of a vertex node xi

0, 3k − 1 nodes xi
1, . . . , x

i
3k−1 (the connection

stub), and k − 1 nodes yi,j
1 , . . . , yi,j

k−1 for each neighbor vj of vi (the nodes of
the edge stubs). For each edge (vi, vj) ∈ E there is an edge node ei,j with edges
to xi

0, y
i,j
k−1, x

j
0 and yj,i

k−1. All ideas and proofs used for k = 3 also hold for k > 3,
which leads to the following theorem:

Theorem 2. Δ-CTPk is NP-complete for k > 3 and Δ ≥ 4.

4 Δ-CTP2 Is NP-Complete for Δ ≥ 4

In this section we show the NP-completeness of Δ-CTP2 for Δ ≥ 4. The reduc-
tion is also from 3-Vertex Cover. Compared to the reduction in Section 3,
the only difference lies in the edge gadget. In the construction in Section 3, a
decisive point was that in the edge gadget with edge node ei,j any optimal solu-
tion needs to disconnect exactly one of the two vertex gadgets corresponding to
vertices vi and vj from ei,j . More precisely, the vertex gadget for the covering
vertex (or the vertex gadget for exactly one arbitrary covering vertex if there are
two) stayed connected with ei,j whereas the vertex gadget for the other vertex
became disconnected. In case of CTP2, however, with this construction it is no
longer obvious that an optimal solution needs to disconnect exactly one of the
two vertex gadgets. That is why we introduce a somewhat more complicated
edge gadget, where we basically replace the one edge node ei,j by a clique of five
nodes.

To present the refined construction and demonstrate its correctness, we em-
ploy forbidden subgraphs as shown in Figure 5. No 2-tree power has any of these
as vertex-induced subgraph. A proof of the following lemma can be found in [5].

Bounded Degree Closest k-Tree Power Is NP-Complete 765

G1 G2 G3 G4

Fig. 5. Four forbidden induced subgraphs for 2-tree powers.

xj
1

xj
2

xi
1

xi
2

xj
0

xi
0

vi vj yi,j
1 yj,i

1

ei,j

di,j

ai,j

bi,j

ci,j

G GCTP

Fig. 6. The edge gadget used in the reduction from 3-Vertex Cover to Δ-CTP2 is a
5-nodes clique consisting of nodes ai,j , bi,j , ci,j , di,j , ei,j . The edges inserted between
the edge gadget and the two vertex gadgets are drawn as bold lines. Nodes yi,j

1 , yj,i
1

and ai,j , bi,j together with each of ci,j , di,j , ei,j form a forbidden induced subgraph G1

as shown in Figure 5.

Lemma 2. If a graph G has a 2-tree root, then G does not contain the subgraphs
shown in Figure 5 as induced subgraphs.

We use G1 in Figure 5 to construct the edge gadget. The other three forbidden
induced subgraphs are not directly used in the reduction but will be used in the
proof of Lemma 3.

Since subgraph G1 in Figure 5 is a forbidden induced subgraph for 2-tree
powers, we need at least one edge modification to edit G1 into a graph having a
2-tree root. Based on this observation, the edge gadget for (vi, vj) ∈ E consists
of five nodes which form a clique. Moreover, edges are inserted to connect two
nodes of this edge gadget to the vertex gadgets of vi and vj to form induced
subgraphs G1, see Figure 6 for an illustration. Thus, if the 3-Vertex Cover
instance G contains edges, then GCTP is not a 2-tree power.

With exception of the edge gadget, the rest of the reduction is the same as
the one in Section 3. The proof of the following lemma is very similar to the
proofs of Propositions 1 and 2.

Lemma 3. Given a 3-Vertex Cover instance G = (V,E). Let GCTP denote
the graph constructed as described above. There is a vertex cover of � vertices
iff GCTP can be transformed into a 2-tree power by 3 ·m+2 ·� edge modifications.

766 Michael Dom, Jiong Guo, and Rolf Niedermeier

Theorem 3. Δ-CTP2 is NP-complete for Δ ≥ 4.

5 Conclusion

Showing NP-completeness of Closest k-Tree Power for k ≥ 2 and maxi-
mum vertex degree four, we basically settled the open question of Tsukiji and
Chen [14] and strengthened results of Kearney and Corneil [8]. Only the case
with maximum vertex degree three is left open. We conjecture that by a further
refinement of our type of reduction NP-completeness can be also shown here.
Moreover, it would be interesting to study the complexities of the graph modi-
fication problems when one only allows either adding or deleting edges. Finally,
investigating the polynomial-time approximability or fixed-parameter tractabil-
ity of the proven NP-complete problems is a task for future research. Fixed-
parameter tractability for closely related leaf root problems is shown in [4, 5].

References

1. A. Brandstädt, V. B. Le, and J. P. Spinrad. Graph Classes: a Survey. SIAM Mono-
graphs on Discrete Mathematics and Applications, 1999.

2. Z.-Z. Chen, T. Jiang, and G. Lin. Computing phylogenetic roots with bounded
degrees and errors. SIAM Journal on Computing, 32(4):864–879, 2003.

3. Z.-Z. Chen and T. Tsukiji. Computing bounded-degree phylogenetic roots of dis-
connected graphs. In Proc. 30th WG, volume 3353 of LNCS, pages 308–319.
Springer, 2004.

4. M. Dom, J. Guo, F. Hüffner, and R. Niedermeier. Error compensation in leaf root
problems. In Proc. 15th ISAAC, volume 3341 of LNCS, pages 389–401. Springer,
2004. Long version to appear in Algorithmica.

5. M. Dom, J. Guo, F. Hüffner, and R. Niedermeier. Extending the tractability border
for closest leaf powers. In Proc. 31st WG, LNCS. Springer, 2005. To appear.

6. M. R. Garey, D. S. Johnson, and L. J. Stockmeyer. Some simplified NP-complete
graph problems. Theoretical Computer Science, 1(3):237–267, 1976.

7. T. Jiang, G. Lin, and J. Xu. On the closest tree kth root problem. Manuscript,
Department of Computer Science, University of Waterloo, 2000.

8. P. E. Kearney and D. G. Corneil. Tree powers. Journal of Algorithms, 29(1):111–
131, 1998.

9. M. Křivánek and J. Morávek. NP-hard problems in hierarchical-tree clustering.
Acta Informatica, 23(3):311–323, 1986.

10. L. C. Lau and D. G. Corneil. Recognizing powers of proper interval, split, and
chordal graphs. SIAM Journal on Discrete Mathmatics, 18(1):83–102, 2004.

11. Y. L. Lin and S. S. Skiena. Algorithms for square roots of graphs. SIAM Journal
on Discrete Mathematics, 8(1):99–118, 1995.

12. R. Motwani and M. Sudan. Computing roots of graphs is hard. Discrete Applied
Mathematics, 54(1):81–88, 1994.

13. N. Nishimura, P. Ragde, and D. M. Thilikos. On graph powers for leaf-labeled
trees. Journal of Algorithms, 42(1):69–108, 2002.

14. T. Tsukiji and Z.-Z. Chen. Computing phylogenetic roots with bounded degrees
and errors is hard. In Proc. 10th COCOON, volume 3106 of LNCS, pages 450–461.
Springer, 2004.

A New Algorithm
for the Hypergraph Transversal Problem�

Leonid Khachiyan1, Endre Boros2, Khaled Elbassioni3, and Vladimir Gurvich2

1 Department of Computer Science, Rutgers University
110 Frelinghuysen Road, Piscataway NJ 08854-8003

leonid@cs.rutgers.edu��

2 RUTCOR, Rutgers University, 640 Bartholomew Road, Piscataway NJ 08854-8003
{boros,gurvich}@rutcor.rutgers.edu

3 Max-Planck-Institut für Informatik, Saarbrücken, Germany
elbassio@mpi-sb.mpg.de

Abstract. We consider the problem of finding all minimal transversals
of a hypergraph H ⊆ 2V , given by an explicit list of its hyperedges. We
give a new decomposition technique for solving the problem with the
following advantages: (i) Global parallelism: for certain classes of hyper-
graphs, e.g. hypergraphs of bounded edge size, and any given integer
k, the algorithm outputs k minimal transversals of H in time bounded
by polylog(|V |, |H|, k) assuming poly(|V |, |H|, k) number of processors.
Except for the case of graphs, none of the previously known algorithms
for solving the same problem exhibit this feature. (ii) Using this tech-
nique, we also obtain new results on the complexity of generating mini-
mal transversals for new classes of hypergraphs, namely hypergraphs of
bounded dual-conformality, and hypergraphs in which every edge inter-
sects every minimal transversal in a bounded number of vertices.

1 Introduction

Let H ⊆ 2V be a hypergraph on a finite vertex set V of cardinality |V | = n. A
vertex set X ⊆ V is called a transversal of H if X intersects every hyperedge
of H. Let Hd = {minimal X ⊆ V | X is a transversal to H} ⊆ 2V denote
the set of all (inclusion-wise) minimal transversals of H. We denote further by
Hc def= {V \ H | H ∈ H} the complementary hypergraph of H. We say that
a hypergraph H is Sperner if no hyperedge of H contains another hyperedge.
Clearly, Hcc = H, and it is not difficult to see that for Sperner hypergraphs
Hdd = H. A vertex set I ⊆ V is called an independent set of H if I contains no
hyperedge of H. Let I(H) ⊆ 2V denote the family of all maximal independent
sets (MIS) of H. Obviously, I(H) = Hdc. We assume that a Sperner hypergraph
� This research was supported in part by the National Science Foundation (NSF), grant

IIS-0118635. The third author is also grateful for the partial support by DIMACS,
the NSF’s Center for Discrete Mathematics and Theoretical Computer Science.

�� Our friend and co-author, Leonid Khachiyan passed away with tragic suddenness,
while we were working on the final version of this paper.

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 767–776, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

768 Leonid Khachiyan et al.

H is given by the list of its hyperedges and consider problem DUAL(H, k) of
generating k sets in Hd for a given integer k:
DUAL(H, k): Given a Sperner hypergraph H ⊆ 2V , and an integer k ∈ Z+

output min{k, |Hd|} minimal transversals (or equivalently, MIS’s) of H.
This hypergraph transversal problem has received considerable attention in

recent years [5, 7, 11–15, 23, 24] due to its generality and wide applicability in a
variety of fields including artificial intelligence, reliability theory, database the-
ory, integer programming, and learning theory (see, e.g. [6, 8, 13]). It is still open
whether problem DUAL(H, k) can be solved in polynomial time for arbitrary hy-
pergraphs. The fastest currently known algorithm [15] is quasi-polynomial and
works by considering the following incremental generation problem:
NEXT (H,X): Given a Sperner hypergraph H and a subset X ⊆ Hd, either find
a new minimal transversal X ∈ Hd \ X or show that X = Hd.

The running time of the algorithm in [15] is O(nN) + No(log N), where n =
|V | and N = |H| + |X |. For several classes of hypergraphs, polynomial time
algorithms exist, e.g. hypergraphs of bounded dimension (edge-size) [4, 7, 13], of
bounded-degree [11, 14], of bounded-edge intersections [5], of bounded treewidth
[14], and read-once (exact) hypergraphs [12].

In this paper, we consider a new decomposition method, for solving the hy-
pergraph transversal problem, with the following advantages:
(i) Global parallelism: For hypergraphs of bounded dimension:

dim(H) def= max
H∈H

|H | < δ, (1)

for some constant δ ≥ 2, it was shown in [4], that problem NEXT(H,X) can be
efficiently solved in parallel: NEXT(H,X) ∈ NC for δ ≤ 4 and NEXT(H,X) ∈
RNC for δ = 5, 6 . . .Note, however, that this result implies only that we can solve
problem DUAL(H, k), in parallel, in time k · polylog(n, |H|, k) on poly(n, |H|, k)
processors. Except for hypergraphs of dimension 2, that is for graphs [9], no
global parallel algorithms, i.e. those that solve problem DUAL(H, k) in time
polylog(n, |H|, k) on poly(n, |H|, k) processors, are known. As we shall see, our
method allows for such global parallelism for any bounded-edge, as well as some
other related classes of hypergraphs.
(ii) Stronger results for new classes of hypergraphs: Using the decomposition
technique described in this paper, we also obtain stronger bounds on the (se-
quential) complexity of dualization for some classes of hypergraphs for which
the only previously known result was the quasi-polynomial bound of [15]:

1. Hypergraphs with bounded dual-conformality: These are hypergraphs H for
which the dual of I(H) has bounded-edge size (see e.g. [3]):

dim(Hdcd) < δ, (2)

for some constant δ ≥ 2. For instance, hypergraphs in which every two
minimal transversals intersect in a bounded number of vertices, belong to
this class. We show that it is possible to find all minimal transversals for
such hypergraphs in polylog time using a polynomial number of processors.

A New Algorithm for the Hypergraph Transversal Problem 769

2. Hypergraphs in which every edge intersects every minimal transversal in a
bounded number of vertices:

|H ∩ T | < δ for every H ∈ H and every T ∈ Hd, (3)

for some constant δ ≥ 2. These generalize read-once hypergraphs, in which
every edge meets every minimal transversal in exactly one vertex (i.e. δ = 2).
Read-once hypergraphs were considered in [12], where a polynomial-delay al-
gorithm was given. We show that, for any constant δ, we can find k minimal
transversals of a hypergraph H ⊆ 2V in this class in polylog(n, |H|, k) +
Δ log |H| time using a quasi-polynomial number of processors poly(n, k,Π) ·
|H|O(log |H|), where Δ and Π are respectively the parallel time and the num-
ber of processors required to generate a single minimal transversal of H.

We describe the general decomposition method used for obtaining the above
results in the next section. Direct application of this method yields our first
result for hypergraphs of bounded edge-size, which will be presented in Section
3. Following that, we consider in Section 4 the class of hypergraphs of bounded
dual-conformality and show how they can be dualized efficiently in parallel.
Finally, a more involved application of this decomposition method gives us the
claimed results about hypergraphs satisfying (3), and is presented in Section 5.

2 A Global Parallel Dualization Algorithm

Let V be a finite set. Given a hypergraph H ⊆ 2V and a subset S ⊆ V , denote
by HS = {H ∈ H | H ⊆ S} the sub-hypergraph of H induced by S. For r ∈ Z+

and 0 < ε < 1, denote by H(r, ε) the family of hypergraphs H ⊆ 2V , such that
for every S ⊆ V , there exist subsets S1, . . . , Sr ⊆ S satisfying:
(H1) For every H ∈ HS , there exists an i ∈ [r] = {1, . . . , r} such that Si ⊇ H .
(H2) |Si| ≤ (1− ε)|S|, for each i ∈ [r] for which |HSi | > 1.

Given two hypergraphs H1,H2 ⊆ 2V , denote their conjunction by

H1

∧
H2 = {minimal H | H = H1 ∪H2 for some H1 ∈ H1 and H2 ∈ H2}.

Proposition 1. Let H ⊆ 2V be a hypergraph and S1, . . . , Sr ⊆ V be subsets such
that for every H ∈ H there is an i ∈ [r] such that H ⊆ Si. Then Hd =

∧n
i=1Hd

Si
.

Consider the following parallel algorithm for generating all minimal transversals
of a hypergraph H ∈ H(r, ε):
Procedure DUALIZE(H, V):

1. If |H| = 0, then return ∅.
2. If H has only one hyperedge H , then return {{i} : i ∈ H}.
3. In parallel, do the following:
4. find sets S1, . . . , Sr ⊆ V satisfying (H1) and (H2) with S = V .
5. Let Gi ←DUALIZE(HSi , Si), for i = 1, . . . , r.
6. Compute the conjunction G ←

∧r
i=1 Gi.

7. Return G.

770 Leonid Khachiyan et al.

Proposition 2 ([21]). For any hypergraph H ⊆ 2V and any S ⊆ V , we have
|Hd

S | ≤ |Hd|.

Proposition 1 implies that the above procedure outputs all minimal transversals
of H ∈ H(r, ε) correctly. The following proposition gives the running time and
number of processors required by this procedure, in terms of the time τ =
τ(n, |H|, r, ε) and the number of processors π = π(n, |H|, r, ε) needed to find
the sets S1, . . . , Sr ⊆ V , satisfying (H1) and (H2). We shall assume in what
follows that we run our procedures on a CREW-PRAM.

Proposition 3. Let t(n,m,M) and p(n,m,M) be respectively the time and the
number of processors, required by procedure DUALIZE(H, V) to output all min-
imal transversals of a hypergraph H ∈ H(r, ε) of size m = |H| on n vertices
and with |Hd| = M . Then t(n,m,M) = O((τ + log(n(m + M r)) log n

ε) and
p(n,m,M) = O((π + (m+M2r)n)n

log r
ε).

Note that, in the above procedure, all minimal transversals are generated
simultaneously, at the very end, and there is no need to generate some of them
individually, in the course of the computations. In other words, we did not need,
in the above procedure, to compute a single minimal transversal in parallel.
In general, the efficient parallel computation of a single minimal transversal of
an arbitrary hypergraph is an outstanding open problem [18]. For some special
classes of hypergraphs, e.g. hypergraphs of bounded dimension [1, 2, 10, 20],
hypergraphs of bounded vertex-degrees [16], and linear hypergraphs [22], there
exist efficient parallel algorithms for finding a minimal transversal.

However, if the requirement is not to generate all minimal transversals of H
but only k of them, then the above procedure is not appropriate in its current
form, but in fact can be modified, provided that we know how to generate an
individual minimal transversal efficiently in parallel.

Procedure DUALIZE(H, V, k):

1. If |H| = 0, then return ∅.
2. If H has only one hyperedge H , then return {{i} : i ∈ H}.
3. In parallel, do the following:
4. find sets S1, . . . , Sr ⊆ V satisfying (H1) and (H2) with S = V .
5. Let Gi ←DUALIZE(HSi , Si, k), for i = 1, . . . , r.
6. If there is an i ∈ {1, . . . , r} such that |Gi| = k then
7. In parallel, for each Y ∈ Gi, do the following:
8. Let H[Y] = {H \ Si | H ∩ Y = ∅}.
9. Compute a minimal transversal TY of H[Y].
10. Return G ← {Y ∪ TY : Y ∈ Gi}, and stop.
11. else
12. Compute the conjunction G ←

∧r
i=1Hd

Si
.

13. Return min{k, |G|} elements of G.

Notation. In the rest of the paper, we use n, m respectively to denote the
number of vertices |V | and number of edges |H| of the input hypergraphH ⊆ 2V .

A New Algorithm for the Hypergraph Transversal Problem 771

We denote respectively further by Δ and Π the parallel time and the number
of processors required to generate a single minimal transversal for a hypergraph
H belonging to the class under consideration.

Proposition 4. DUALIZE(H, V, k) outputs min{k, |Hd|} minimal transversals
of a hypergraph H ∈ H(r, ε) in time t(n,m, k) = O((τ + log(n(m+ kr)) logn/ε+
Δ), using p(n,m, k) = O((π + (m+ k2r)n)nlog r/ε + kΠ) processors.

Remark. More generally, we may consider a positive integer-valued, monotone
set-function f : V .→ Z+, and replace condition (H2) above by

(H2′) f(Si) ≤ (1− ε)f(S), for each i ∈ {1, . . . , r} for which |HSi | > 1.

Then one can show similarly that the depth of the recursion tree required by
procedure DUALIZE(H, V, k) is O(log f(V)/ε). In Sections 3 and 4, we use
f(S) = |S|. In Section 5, we use f(S) = |HS |.

3 Hypergraphs of Bounded Dimension

Let H ⊆ 2V be a hypergraph on V , satisfying (1). As mentioned in the introduc-
tion, an efficient parallel algorithm exists [4] for solving problem NEXT(H,X)
for such hypergraphs. This is based on an NC-reduction of problem NEXT(H,X)
to problem DUAL(H′, 1) of finding a single minimal transversal in a partial sub-
hypergraph H′ of H, for which NC algorithms exist, if dim(H) ≤ 3 ([1, 10]), and
an RNC algorithm exists if dim(H) = 4, 5, . . . ([2, 20]). In particular, these reduc-
tions do not yield a global parallel algorithm. The case of graphs, dim(H) ≤ 2,
was considered in [9], where it was shown that problem DUAL(H, k) can be
solved in O(log3(nk)) parallel time on O(n2k6) processors, on a CREW-PRAM.
Here we show the following stronger and more general results.

Theorem 1. There is a deterministic parallel algorithm that, for any hyper-
graph H ⊆ 2V such that dim(H) < δ, solves problem DUAL(H, |Hd|) in time
O(δ2 logn log(n|Hd|)) using O(nδ log δ+1(m+ |Hd|2δ)) processors.

We also get an NC reduction of finding k minimal transversals of H, when
dim(H) ≤ Const., to computing a single minimal transversal in a restricted
sub-hypergraph of H.

Theorem 2. There is a deterministic parallel algorithm that, for any H ⊆ 2V

such that dim(H) < δ, and any integer k ∈ Z+, solves problem DUAL(H, k) in
time O(δ2 logn log(nk) +Δ) using O(nδ log δ+1(m+ k2δ) + kΠ) processors.

Theorem 2 extends the results of [2, 20] which show that problem DUAL(H, k)
∈ RNC, for hypergraphs H of bounded dimension and for k = 1, to any integer
k. Theorem 2 also extends the results of [9] where it was shown that problem
DUAL(H, k) ∈ NC, for hypergraphs of dimension 2 and for any integer k, to
hypergraphs of any bounded dimension.

772 Leonid Khachiyan et al.

Proofs of Theorems 1 and 2. We apply the results of the preceding section to
solve problem DUAL(H, k), by setting r = δ and ε = 1/δ. Then H ∈ H(r, ε). In-
deed, given any set S ⊆ V , we partition S into r (almost) equal parts W1, . . . ,Wr,
and let Si = S \Wi, for i = 1, . . . , r. The fact that any hyperedge H ∈ HS has
size at most δ−1 implies that H cannot intersect all sets W1, . . . ,Wr, i.e. H must
be contained in at least one of the sets S1, . . . , Sr. This implies that (H1) holds
for H. (H2) follows form the fact that |Si| is roughly (δ−1)|S|

δ , for i = 1, . . . , r.
Thus Theorems 1 and 2 follow from Propositions 3 and 4 respectively. ��

4 Hypergraphs of Bounded Dual-Conformality

Given a hypergraph H ⊆ 2V , a vertex set S ⊆ V is called a sub-transversal of
H if S ⊆ X for some minimal transversal X ∈ Hd. By the above definitions,
the hypergraph Hdcd is just the family of minimal non sub-transversals of H.
For a subset S ⊆ V , and a vertex v ∈ S, let Hv(S) = {H ∈ H | H ∩ S = {v}}
and let H0(S) = {H ∈ H | H ∩ S = ∅}. A selection of |S| hyperedges {Hv ∈
Hv(S) | v ∈ S} is called covering if there exists a hyperedge H ∈ H0(S) such
that H ⊆

⋃
v∈S Hv. The next proposition states that a non-empty set S is a

sub-transversal of H if and only if there exists a non-covering selection for S.

Proposition 5 (cf. [7]). Let S ⊆ V be a non-empty vertex set in a hypergraph
H ∈ 2V .

i) If S is a sub-transversal for H then there exists a non-covering selection
{Hv ∈ Hv(S) | v ∈ S} for S.

ii) Given a non-covering selection {Av ∈ Av(S) | v ∈ S} for S, we can extend
S to a minimal transversal of H by solving problem DUAL(H′, 1) for the
induced partial hypergraph H′ = {H ∩ U | H ∈ H0(S)} ⊆ 2U , where U =
V \

⋃
v∈S Hv.

In general, finding a non-covering selection for S (or equivalently, testing if
S is a sub-transversal) is NP-hard if the cardinality of S is not bounded. In fact,
this is so even for dim(H) = 2, that is for graphs (see [4]). However, if the size
of S is bounded by a constant then there are only polynomially many selections
{Hv ∈ Hv(S) | v ∈ S} for S. All of these selections, including the non-covering
ones, can be enumerated efficiently in parallel.

Corollary 1. For any fixed δ there is an algorithm which, given a hypergraph
H ⊆ 2V and a set S of less than δ vertices, determines whether S is a sub-
transversal to H and if so finds a non-covering selection {Hv ∈ Hv(S) | v ∈ S},
in O(log(nm)) parallel time using O(nmδ) processors.

Let H be a hypergraph such that (2) is satisfied for some constant δ. It is not
clear how to check (2), even for δ = 3. However, as far as the generation of the
dual hypergraph Hd is concerned, such a check is not needed. In fact, we present
below an efficient parallel algorithm that, for any given constant δ, either solves
problem DUAL(H, k) or discovers that (2) is not satisfied.

A New Algorithm for the Hypergraph Transversal Problem 773

Theorem 3. There is a deterministic parallel algorithm that, given H ⊆ 2V ,
k ∈ Z+, and a constant integer δ, either solves problem DUAL(H, k), or proves
that dim(Hdcd) ≥ δ, in time O(log n log(nmk)+Δ) using O((nmk)2δ log δ + kΠ)
processors, where Δ and Π are respectively the parallel time and the number of
processors required to generate a single minimal transversal in a hypergraph of
dimension less than δ.

A hypergraph H ⊆ 2V is said to be δ-conformal [3] if for every vertex-
set X ⊆ V the following property holds: X is contained in a hyperedge of H
whenever each subset of X of cardinality at most δ is contained in a hyperedge
of H. It is not difficult to see that a hypergraph H satisfies (2) if and only if its
dual Hd is (δ−1)-conformal. Note that the dualization problem for hypergraphs
H satisfying dim(Hd) < δ, for some constant δ, can be trivially solved efficiently
in parallel, just by enumerating all subsets of vertices of size less than δ, and
checking which of them are minimal transversals. Note further that dim(Hd) ≤ δ
implies that dim(Hdcd) ≤ δ+1. Thus Theorem 3 extends the parallel dualization
result for hypergraphs whose duals are of bounded dimension to the wider class
of hypergraphs whose duals are δ-conformal, for some constant δ.

Proof of Theorem 3. We present an algorithm that, will keep generating in
parallel minimal transversals of H, and halt only when either all or at least k
of such transversals have been generated, or when the algorithm discovers that
condition (2) is not satisfied. The algorithm proceeds in the following two steps:
Step 1. Generate the hypergraph F ⊆ 2V , whose hyperedges are defined as
follows: F = {S ⊆ V : |S| < δ and S is a minimal non sub-transversal of H}.
For a constant δ, the hypergraph F can be generated in O(log(nm)) parallel
time using O((nm)δ) processors by Corollary 1.
Step 2. Note that dim(F) < δ. Thus Theorem 2 implies that problem
DUAL(F , k) can be solved efficiently in global RNC time. However, we may
not need to generate all the hyperedges of Fd. We stop generation when either
an edge X ∈ Fd is generated such that V \X is not a minimal transversal of H,
or when k edges of Fd have been generated, whichever happens sooner.

To verify that the above procedure indeed generates k transversals of Hd in
global RNC time if (2) is satisfied, notice the equivalences

dim(Hdcd) ≤ δ ⇐⇒ F = Hdcd ⇐⇒ Fdc ⊆ Hd.

Now Theorem 3 becomes a consequence of Theorem 2, applied to the hypergraph
F constructed in Step 1 above. ��

5 Hypergraphs Generalizing Read-Once Hypergraphs

Let V be a finite set, δ ≥ 2 be a positive constant, and H ⊆ 2V be a hypergraph
satisfying (3). Note that testing a hypergraph H for (3) can be done efficiently
in parallel. Indeed, H satisfies (3) if and only if for every edge H ∈ H and every
subset X ⊆ H of size |X | = δ, X is not a sub-transversal to H.

774 Leonid Khachiyan et al.

If δ = 2, any hypergraph satisfying (3) is read-once (exact). For such hyper-
graphs, the following corollary is almost immediate from Theorem 1.

Corollary 2. Let H ⊆ 2V be a read-once hypergraph. Then for any integer
k Problem DUAL(H, k) can be solved deterministically in polylog(|V |, |H|, k)
parallel time using poly(|V |, |H|, k) number of processors.

It is not known whether a similar criterion can be used to reduce the dualiza-
tion of hypergraphs satisfying (3) to that of hypergraphs of bounded dimension.
Nevertheless, we use our decomposition approach to prove the following result.

Theorem 4. For any hypergraph H ⊆ 2V satisfying (3), Computing k ele-
ments of Hd can be done in O((δ log(nmk) + Δ)δ logm) parallel time using
O(((nmk2)δ + kΠ)m2δ2 log m) processors.

Proof. Let H be a hypergraph satisfying (3). For a subset S ⊆ V , let H(S) =
{H ∈ H : H∩S �= ∅}, HS = {minimal (H ∩S) | H ∈ H, H∩S �= ∅} and HS =
{H ∈ H | H ⊆ S}. Note that if H satisfies (3) then so does HS for any S ⊆ V ,
while HS satisfies (3) if S is a transversal to H. Denote by deg(v) = degH(v) the
number of hyperedges of H containing v ∈ V , and let 0 < ε1 < ε2 < 1/(δ − 1)
be positive constants. Let ε = max {1− ε1, (δ − 1)ε2, 1− (ε2 − ε1)} ∈ (0, 1). To
generate k minimal transversals of H, we use the following procedure:
Step 1. Set Z ← ∪{H ∈ H : |H | = 1}, V ← V \ Z, and H ← HV .
Step 2. If |H| = 0, then return {Z}. If H has only one hyperedge H , then
return {Z ∪ {i} : i ∈ H}.
Step 3. Let L = {v ∈ V : deg(v) ≥ ε1|H|}. If V \L is a transversal to H, then
we proceed with Steps 3.1, 3.2, and 3.3 below, otherwise, we go to Step 4.
Step 3.1. Let T = {v1, . . . , vt} ⊆ V \ L be a minimal transversal to H. Let
T1 ∪ T2 ∪ . . .∪ Tδ = T be a partition of T computed by the following procedure:
(a) find indices i1, . . . , iδ−1 ∈ [t] such that, for j = 1, . . . , δ − 1,

|H({vij−1+1, . . . , vij})| ≤ ε2|H| and |H({vij−1+1, . . . , vij+1})| > ε2|H|,

where i0 = 0 and iδ = t, by definition (b) set Tj ← {vij−1+1, . . . , vij} and
Sj ← V \ Tj , for j = 1, . . . , δ. Note that for every H ∈ H, since |H ∩ T | ≤ δ− 1,
we have H ⊆ Sj for some j ∈ [δ]. Note also that |HSj | < (1 − (ε2 − ε1))|H|, for
j = 1, . . . , δ, and |HSδ

| ≤ (δ − 1)ε2|H|.
Step 3.2. Let recursively (and in parallel) Gj ← DUAL(HSj , k), for j = 1, . . . , δ.
Step 3.3. If |Gj | = k, for some j ∈ [δ], then compute (in parallel) for each Y ∈ Gj

a minimal transversal TY of the sub-hypergraphH[Y] = {H\Sj : H∩Y = ∅} ⊆
2V \Vj . Note that H[Y] also satisfies (3). Return G ← {Y ∪ TY ∪ Z : Y ∈ Gj}.
Step 3.4. Otherwise, return k elements of the conjunction G ← G1∧. . .∧Gδ∧{Z}.
Step 4. If there are distinct vertices v1, . . . , vδ ∈ L such that no edge of H
contains {v1, . . . , vδ}, then proceed with Steps 4.1 and 4.2 below, otherwise go
to Step 5.
Step 4.1. Let Sj ← V \ {vj}, for j = 1, . . . , δ. Then H =

⋃δ
j=1HSj , and

|HSj | ≤ (1− ε1)|H| ≤ ε|H|, for j = 1, . . . , δ.

A New Algorithm for the Hypergraph Transversal Problem 775

Step 4.2. Compute recursively Gj ← DUAL(HSj , k), for j = 1, . . . , δ, and
continue as in Steps 3.3 and 3.4 above.
Step 5. Assume now that V \ L is not a transversal to H, and that for every
subset L′ ⊆ L of δ distinct vertices, there is an edge H ∈ H such that H ⊇ L′.
Then for every minimal transversal T ∈ Hd, we have 1 ≤ |T ∩L| ≤ δ− 1 by (3).

In this case, we proceed as follows. Let S def= {S ⊆ L | ∃T ∈ Hd : T ∩L = S},
and for S ∈ S, denote by VS the set V \ (L \ S). Elements of S can be identified
as follows: a non-empty set S ⊆ L of size at most δ − 1 is in S if and only if (i)
VS is a transversal to H, and (ii) S is a sub-transversal of the hypergraph HVS .
For S ∈ S, let T (S) = {T ∈ Hd | T ∩ L = S}. Then Hd is the disjoint union

Hd =

(⋃
S∈S

T (S)

)
∧ {Z}. (4)

For each S ∈ S, we find T (S) by applying the sub-transversal criterion
(Proposition 5). More precisely, for v ∈ S, let Hv(S) = {H ∈ HVS | H ∩ S =
{v}} and H0(S) = {H ∈ HVS | H ∩ S = ∅}. Let FS be the family of non-
covering selections of HVS with respect to S, i.e. collections of |S| hyperedges
{Hv ∈ Hv(S) | v ∈ S} for which there exists no hyperedge H ∈ H0(S) with
H ⊆

⋃
v∈S Hv. For every F = {Hv ∈ Hv(S) | v ∈ S} ∈ FS, denote by VF =

V \
(⋃

H∈F H ∪ L
)
. Then it is easy to see that

T (S) =
⋃

F∈FS

(H0(S)VF)d ∧ {S}. (5)

Note that, for all F ∈ FS and S ∈ S, we have |H0(S)VF | ≤ (1 − ε1)|H|
since none of the edges intersecting S belongs to H0(S). Using (4) and (5), we
compute k elements of Hd by recursively finding GF ← DUAL(H0(S)VF , k) for
every F ∈ FS and S ∈ S. We stop either when |GF | = k for some F ∈ FS

and some S ∈ S, or when all families (H0(S)VF)d have been generated, for all
F ∈ FS and S ∈ S, in which case we use (4) and (5) to compute Hd.

This completes our procedure for finding Hd. The following proposition gives
the parallel running time t(n,m, k) and the number of processors p(n,m, k)
required to generate k minimal transversals, in terms of n, m, and k.

Proposition 6. t(n,m, k) = O((δ log(nmk)+Δ) logm/ log 1
ε) and p(n,m, k) =

O(((nmk2)δ + kΠ)mδ log m/ log 1
ε).

Setting ε = 1− 1/(2δ) in Proposition 6 completes the proof of Theorem 4. ��

References

1. N. Alon, L. Babai, A. Itai, A fast randomized parallel algorithm for the maximal
independent set problem, J. Algorithms 7 (1986) pp. 567–583.

2. P. Beame, M. Luby, Parallel search for maximal independence given minimal de-
pendence, in Proc. of the First SODA Conference (1990), pp. 212–218.

776 Leonid Khachiyan et al.

3. C. Berge, Hypergraphs, North Holland Mathematical Library, Vol. 445, 1989.
4. E. Boros, K. Elbassioni, V. Gurvich, and L. Khachiyan, An efficient incremental

algorithm for generating all maximal independent sets in hypergraphs of bounded
dimension, Parallel Processing Letters, 10 (2000), pp. 253–266.

5. E. Boros, K. Elbassioni, V. Gurvich and L. Khachiyan, Generating Maximal Inde-
pendent Sets for Hypergraphs with Bounded Edge-Intersections, in Proc. 6th Latin
American Theoretical Informatics Conference 2004, LNCS 2976, pp. 488–498.

6. E. Boros, K. Elbassioni, V. Gurvich, L. Khachiyan and K.Makino, Dual-bounded
generating problems: All minimal integer solutions for a monotone system of linear
inequalities, SIAM J. Comput., 31(5) (2002) pp. 1624–1643.

7. E. Boros, V. Gurvich, and P.L. Hammer, Dual subimplicants of positive Boolean
functions, Optimization Methods and Software, 10 (1998) pp. 147–156.

8. C. J. Colbourn, The combinatorics of network reliability, Oxford Univ. Press, 1987.
9. E. Dahlhaus and M. Karpinski, A fast parallel algorithm for computing all maximal

cliques in a graph and the related problems, Proc. 1st Scandinavian Workshop on
Algorithm Theory (SWAT), Sweden, July 5-8, 1988, LNCS 318, pp. 139–144.

10. E. Dahlhaus, M. Karpinski and P. Kelsen, An efficient parallel algorithm for com-
puting a maximal independent set in a hypergraph of dimension 3, Inf. Process.
Lett. 42(6) (1992), pp. 309–313.

11. C. Domingo, N. Mishra and L. Pitt, Efficient read-restricted monotone CNF/DNF
dualization by learning with membership queries, Machine learning 37 (1999) pp.
89–110.

12. T. Eiter, Exact Transversal Hypergraphs and Application to Boolean μ-Functions,
J. Symb. Comput. 17(3) (1994), pp. 215–225.

13. T. Eiter and G. Gottlob, Identifying the minimal transversals of a hypergraph and
related problems, SIAM J. Comput., 24 (1995), pp. 1278–1304.

14. T. Eiter, G. Gottlob and K. Makino, New results on monotone dualization and
generating hypergraph transversals, in Proc. 34-th Anual ACM STOC Conf., 2002,
pp. 14–22.

15. M. L. Fredman and L. Khachiyan, On the complexity of dualization of monotone
disjunctive normal forms. J. Algorithms, 21 (1996) pp. 618–628.

16. O. Garrido, P. Kelsen and A. Lingas, A simple NC-algorithm for a maximal inde-
pendent set in a hypergraph of polylog arboricity, Information Processing Letters
58(2) (1996), pp. 55–58.

17. D. S. Johnson, M. Yannakakis and C. H. Papadimitriou, On generating all maximal
independent sets, Information Processing Letters, 27 (1988), pp. 119–123.

18. R. Karp and A. Wigderson, A fast parallel algorithm for the maximal independent
set problem, JACM 32 (1985) pp. 762–773.

19. R. Karp, E. Upfal, and A. Wigderson, The complexity of parallel search, Journal
of Computer and System Science, 36 (1988) pp. 225–253.

20. P. Kelsen, On the parallel complexity of computing a maximal independent set in
a hypergraph, Proc. 24-th Anual ACM STOC Conf. (1992).

21. E. Lawler, J. K. Lenstra and A. H. G. Rinnooy Kan, Generating all maximal
independent sets: NP-hardness and polynomial-time algorithms, SIAM J. Comput.,
9 (1980) pp. 558–565.

22. T. Luczak and E. Szymanska, A parallel randomized algorithm for finding a max-
imal independent set in a linear hypergraph, J. Algorithms 25(2) (1997), 311–320.

23. K. Makino, Efficient Dualization of O(log n)-Term Monotone Disjunctive Normal
Forms, Discrete Applied Mathematics, 126 (2003) pp. 305–312.

24. H. Tamaki, Space-efficient enumeration of minimal transversals of a hypergraph,
IPSJ-AL 75 (2000), pp. 29–36.

On Finding a Shortest Path in Circulant Graphs
with Two Jumps

Domingo Gómez, Jaime Gutierrez, Álvar Ibeas,
Carmen Mart́ınez, and Ramón Beivide

Faculty of Sciences, University of Cantabria
Santander E–39071, Spain

jaime.gutierrez@unican.es

Abstract. In this paper we present algorithms for finding a shortest
path between two vertices of any weighted undirected and directed cir-
culant graph with two jumps. Our shortest path algorithm only requires
O(log N) arithmetic steps and the total bit complexity is O(log3 N),
where N is the number of the graph’s vertices. This method has been
derived from some Closest Vector Problems (CVP) of lattices in dimen-
sion two and with 	1-norm.

1 Introduction

An undirected circulant graph CN (j1, j2, . . . , jm) with N vertices, labeled with
integers modulo N , and jumps j1, j2, . . . , jm, is a graph in which each vertex n,
0 ≤ n ≤ N − 1, is adjacent to all the vertices n ± ji mod N , with 1 ≤ i ≤ m.
In contrast, a directed circulant graph DCN (j1, j2, . . . , jm) with N vertices, and
jumps j1, j2, . . . , jm is a graph in which each vertex n, 0 ≤ n ≤ N−1, is adjacent
to all the vertices n+ji mod N , with 1 ≤ i ≤ m. Throughout the paper we employ
the term circulant graph for both undirected and directed circulant graphs.

This kind of graphs have a vast number of applications in telecommunication
networking, VLSI design and distributed computation. Their properties, such as
diameters and reliabilities, have been the focus of many research in computer
network design [1–3, 6, 15, 19].

Every circulant graph can be associated to a lattice L which consists of the
integer solutions (x1, . . . , xm) ∈ ZZm to the system of congruences

j1x1 + · · ·+ jmxm ≡ 0 mod N. (1)

Given two vertices r and s, a path from r to s in CN (j1, j2, . . . , jm) can be
described by an integer vector x = (x1, . . . , xm) ∈ ZZm such that∑m

i=1 xiji ≡ s− r mod N.
And a shortest path x is a path with minimum �1-norm. In contrast, a path

from r to s in the directed circulant graph DCN (j1, j2, . . . , jm) can be described
by a integer positive vector x = (x1, . . . , xm) ∈ INm verifying the above equation,
and a shortest path x is a path with minimum �1-norm.

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 777–786, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

778 Domingo Gómez et al.

For general graphs, finding a shortest path between two vertices is a well
known and important problem. Efficient polynomial time algorithms have been
developed for various routing problems. However, for the family of circulant
graphs, there is an important distinction to be made, and that concerns the nat-
ural input size to a problem. For an arbitrary graph it is common to consider the
input size to be N2, which is the number of bits in its adjacency matrix. However,
any circulant graph can be described by only m integers. In this representation
the input size is O(m logN). Thus polynomial time algorithms for general graphs
may exhibit exponential complexity in the special case of circulant graphs, for
this compact input representation.

In [4] the authors establish relations between several routing applications for
undirected circulant graphs and the problem of finding the shortest vector in
the �1−norm in the above lattice. They present an algorithm which solves the
Shortest-Loop problem in polynomial time for this input measure. In contrast,
they show that the Shortest-Path problem is NP-hard for this concise represen-
tation.

The particular case m = 2, that is, undirected circulant graphs of degree
four or distributed double-loop networks and directed circulant graphs of degree
two or double-loop networks has been extensively studied, see the surveys [2,
9]). When N is given as a unary input and the time complexity is measured
in terms of N , there are several shortest path algorithms for circulant graphs
of degree four and for directed circulant graph of degree two, see for instance
[6, 8, 10, 17, 18]. Typically, they require O(N) arithmetic steps or O(logN) time
for preprocessing and constant processing time at each node on the route. But a
lower bound of the diameter for circulant graph and directed circulant graphs is
Ω(
√
N) (see [2]). So, they are in both cases exponential in the input size logN .

The paper [5] shows an algorithm to compute a shortest path in the circulant
graph CN (1, h) (the so called chordal ring graphs) in O(h/g+log h) time, where
g = gcd(h,N). Obviously, it has also exponential time complexity.

We remark in Section 2 that given a path c, not necessarily a shortest one,
in an undirected circulant graph then the problem of finding a shortest path
is equivalent to problem of finding a vector that is closest to vector −c in the
lattice defined by Equation 1 with respect to �1 norm. The well known paper [12]
presents an algorithm for solving the Closest Vector Problem in a lattice given
by a basis with respect to �1, �2 and �∞ norms. Moreover, fixed the dimension of
the lattice, Kannan’s algorithm is polynomial in the bit-size of the lattice’s basis.
So, fixed the number of the jumps m, the paper [12] provides a polynomial time
algorithm of finding a shortest path in undirected circulant graphs. According
with the above paragraph, this simple observation could be considered as a minor
contribution of the present paper.

In this article we give a polynomial time deterministic algorithm to compute
a shortest path between two vertices in any weighted circulant graph with N ver-
tices and two jumps. Our algorithm only requires O(logN) arithmetic steps and
the total bit operations is O(log3 N). It is based on Closest Vector Problems for
�1-norm. The paper is divided into five sections. In Section 2 we introduce some

On Finding a Shortest Path in Circulant Graphs with Two Jumps 779

known lattice concepts and show the relation between Shortest Path Problem
and the Closest Vector Problem in a lattice for �1-norm. The Section 3 is devoted
to describe a cubic polynomial time algorithm for solving the two dimensional
CVP for �1-norm. As consequence of the two previous sections we obtain an
algorithm for finding a shortest path in any undirected circulant graph of degree
four. Section 4 is dedicated for finding a shortest path in double-loop networks.
Finally, in Section 5, we analyze the problem in weighted circulant graphs.

2 Closest Vector Problem Versus Shortest Path Problem

The fundamental objects we are dealing with in this section are lattices, defined
as a discrete subgroup of the space IRm. Equivalently, a lattice is the set of integer
linear combinations of some linearly independent vectors. Here we collect some
definitions and well-known facts about lattices which can be found, for instance,
in [7, 14, 16].

Let {b1, . . . ,bs} be a set of linearly independent vectors in IRm. The set

L = {z : z = c1b1 + . . .+ csbs, c1, . . . , cs ∈ ZZ}

is called an s-dimensional lattice with basis {b1, . . . ,bs}.
One basic lattice problem is the Shortest Vector Problem (SVP): given a

lattice L and norm ‖ · ‖, finding a nonzero lattice with the smallest norm among
all non-zero vectors in the lattice. Unfortunately, there are several indications
that this problem is NP-complete. This study has suggested several definitions
of a reduced basis for a lattice. The following concept is the generalization of the
reduced basis concept in celebrated LLL algorithm [13] for lattices of rank 2 to
an arbitrary norm [11].

Definition 1. A basis {u,v} is called reduced or Gauss-reduced respect to a
norm ‖ · ‖ if ‖u‖, ‖v‖ ≤ ‖u + v‖, ‖u− v‖.
The algorithm in [11] computes a Gauss-reduced basis from a basis {u,v} of the
lattice L ⊂ ZZ2 for any computable norm in O(logM) arithmetic steps where
M = max(‖u‖, ‖v‖) and a bound for total bit complexity is O(log3 M). Notice
that, possibly, swapping u and v, we can always assume that ‖u‖ ≤ ‖v‖. Then,
‖u‖ and ‖v‖ are the two successive Minkowski minima.

Another related problem for which no polynomial time solution exists is the
Closest Vector Problem, CVP:

Definition 2. Given a basis B generating the lattice L ⊆ IRm, a vector v ∈ IRm,
and a norm in IRm; the Closest Vector Problem consists on finding a vector in
the set v + �L with minimum norm.

The vertex-symmetry of circulants allows their analysis starting from any ver-
tex, which simplifies their study. We may assume the routing is from vertex 0
to vertex j ∈ ZZN . Using the well known Extended Euclidean Algorithm we
compute a path c = (c1, . . . , cm) from 0 to vertex j, that is, a solution of the
congruence equation: j1x1 + j2x2 + · · ·+ jmxm ≡ j mod N.

780 Domingo Gómez et al.

We consider the lattice L given in Equation (1), then we have the following
observation:

Lemma 1. With the above notation, we have:
- A vector w is a shortest path between 0 and j in CN (j1, . . . , jm) if and only if
w solves the CVP in the lattice L with norm �1 and for the vector c.
- A vector w=(x1, . . . , xm) is a shortest path between 0 and j in DCN (j1, . . . , jm)
if and only if w solves the CVP in the lattice L with norm �1 and for the vector
c verifying that xi ≥ ci, i = 1, . . . ,m.

It is well known that CVP is NP-hard. However, for any fixed dimension
CVP can be solved exactly in polynomial time for the Euclidean norm �2. The
algorithm presented in [12] can also be adapted to find the �1 closest and the
�∞ closest vectors. His algorithm requires cubic polynomial time (polynomial in
the bit-size of the lattice’s basis) for solving the two dimensional case.

In the next section we present an elementary cubic polynomial time algorithm
for solving the two dimensional CVP with respect �1-norm which can also be
extended for solving the shortest path in directed circulant graphs.

3 An Algorithm for Solving Two Dimensional CVP

The main problem addressed in this section is how to compute a vector that
is closest to another given vector in a two dimensional lattice with respect to
�1-norm.

For the rest of the paper we only consider the �1 norm. We denote by ‖·‖ this
norm acting over a vector. As we are dealing with vectors u ∈ IR2, we denote
their components by u = (u1, u2).

3.1 Reduction by a Vector

Given u,v in IR2, with v �= 0, we can find α ∈ ZZ such that the value ‖u− αv‖
is minimal, that is, we want to make u as short as possible by subtracting an
integer multiple of v (see [11, 16]).

The main goal of this subsection is to obtain a such smallest vector with
extra properties for our purpose. The algorithm REDUCE is an important tool of
this paper:

Algorithm 1.
INPUT: u,v ∈ IR2, v �= 0.
OUTPUT: Reducev(u) ∈ u + ZZv / ‖Reducev(u)‖

= min{‖u + αv‖ / α ∈ ZZ}.
– Select i ∈ {1, 2}, j ∈ {1, 2}\{i} such that |vi| > |vj |. If |v1| = |v2|, then
i := 1.

– Return the vector with minimum norm between:

u−
⌊
ui

vi

⌋
v ∧ u−

⌈
ui

vi

⌉
v.

If both have the same norm, return the one with ith non-negative component.

On Finding a Shortest Path in Circulant Graphs with Two Jumps 781

The next result collects several properties of this concept for later use.

Lemma 2. Let u,v ∈ IR2 be two vectors such that v �= 0. Let i ∈ {1, 2}, j ∈
{1, 2}\{i} as in Algorithm 1, that is, |vi| > |vj | ∨ (i = 1 ∧ |v1| = |v2|). We
have the following properties:

1. r = Reducev(u) ⇒ |ri| < |vi|.
2. h ∈ u + ZZv⇒ Reducev(h) = Reducev(u).
3. Reducev(Reducev(u)) = Reducev(u).
4. Reducev(u) = Reduce−v(u).

The properties 2, 3 and 4 in last Lemma show that Reducev(u) is invariant
in the set u + ZZv.

In order to gauge the norm reduction performed by REDUCE procedure, the
next result provides this bound.

Proposition 1. Let u,v ∈ IR2 be two vectors such that v �= 0. Let i ∈ {1, 2},
j ∈ {1, 2}\{i} as in Algorithm 1 with |vi| = β|vj | for some 1 ≤ β ∈ IR. If

|vi| ≤ |ui| and |uj | �= 0, then: ‖Reducev(u)‖ ≤ α(1+ 1
β)+2

2α+2 ‖u‖, where |ui| = α|uj |,
for some α ∈ IR .

A first consequence of the above result is that:
α(1+ 1

β)+2

2+2α ≤ 1, because β ≥ 1.
And if β > 1 then the inequality is strict. This result can be extended for the
cases vjuj = 0.

3.2 The Method’s Core

We start with three vectors in IR2, two of them linearly independent: w +ZZ <
u,v >, rank(u,v) = 2.

We are going to find the shortest element in that set with respect to �1 norm.
The method consists on recursively apply REDUCE algorithm to the “translation”
vector w by some vectors in ZZ < u,v >. Our purpose is to guarantee that each
step reduces the vector’s norm by a constant factor, until we reach some property.
To perform this goal, we select a particular basis of the lattice ZZ < u,v >:

Definition 3. A lattice basis {u,v} is call extra-reduced when:

Reducev(u) = u ∧Reduceu(v) = v.

In order to study some properties of this kind of lattice basis, we classify
vectors u = (u1, u2) ∈ IR2 in two types: horizontal, if |u1| ≥ |u2| and vertical,
if |u1| < |u2|.

Lemma 3. Let {u,v} be two linear independent vectors: We have

1. If {u,v} is a Gauss-reduced basis then one of the basis vectors is vertical
and the other one is horizontal or both basis vectors are horizontal.

782 Domingo Gómez et al.

2. If {u,v} is an extra-reduced basis then it is also Gauss-reduced and one of
the vector is vertical and the other oner horizontal.

Kaib and Schonrr showed in [11] how to get a reduced basis (referred to any
norm, in particular �1) of lattice in two dimensions. Thanks Lemma 3, it is easy
to reach an extra-reduced basis, by just applying REDUCE procedure.

Algorithm 2.
INPUT: u,v ∈ IR2, Gauss-reduced basis of a lattice.
OUTPUT: U,V ∈ IR2, extra-reduced basis of the same lattice.

1. Set the vectors U, V so that {U,V} = {u,v} and ‖U‖ ≤ ‖V‖.
2. if ‖U‖ < ‖V‖, do V := ReduceU(V).
3. else

1. if U and V are horizontal,
i. if |U1| �= |U2|, swap U and V.
ii. V := ReduceU(V).

2. else
i. if U is vertical, swap U and V.

3. if U2 < 0, U := −U.
4. if V1 < 0, V := −V.

We will use then this extra-reduced basis to perform iterative reductions of
the vector w.

Algorithm 3.
INPUT: w,u,v ∈ IR2; {u,v}, extra− reduced basis (u, hor., v, ver.).
OUTPUT: W ∈ w + ZZ < u,v >, |W1| < |u1|, |W2| < |v2|.

– W := w.
– while |W1| ≥ |u1| ∨ |W2| ≥ |v2|

• if |W1| ≥ |u1|, do W := Reduceu(W).
• else do W := Reducev(W).

From Lemma 2 and Proposition 1 we can obtain the following:

Lemma 4. Algorithm 3 is correct and the number of performed loops is
O(log ‖w‖).

3.3 The Whole Process

We have reached a vector in w + ZZ < u,v > with some properties. We need
to conclude our job by getting the shortest vector among all. We will use the
following technical result:

Lemma 5. Let {u1,u2} be a reduced basis (respect to any norm) of a lattice in
IRm. Let w = α1u1 + α2u2 be a lattice vector (α1, α2 ∈ ZZ). Then, we have:

‖α1u1‖, ‖α2u2‖ ≤ 2‖w‖.

On Finding a Shortest Path in Circulant Graphs with Two Jumps 783

Let us suppose now we have reached a description w + ZZ < u,v > of the
original set, where {u,v} is an extra-reduced basis (u is horizontal and v is
vertical), and with |w1| < |u1|, |w2| < |v2|. Let W be a closest vector to w with
respect �1 norm.

Then, d := W−w ∈ ZZ < u,v > and ‖d‖ ≤ 2‖w‖ = 2(|w1|+|w2|) < 2(|u1|+
|v2|). We try to bound the coefficients of d as a lattice member: d = αu + βv.
We distinguish two cases and applying previous Lemma 5

– |u1| ≥ |v2| then ‖αu‖ ≤ 2‖d‖ ⇒ |α| ≤ 4(|u1|+|v2|)
|u1|+|u2| ≤ 8.

– |u1| < |v2| then ‖βv‖ ≤ 2‖d‖ ⇒ |β| ≤ 4(|u1|+|v2|)
|v1|+|v2| ≤ 8.

To sum up, jointing Algorithms 2, 3 and 4, we reach our goal:

Algorithm 4.
INPUT: u,v, extra-reduced basis (u, hor. v, ver.)

w, with |w1| < |u1|, |w2| < |v2|
OUTPUT: W, shortest vector in w + Z < u,v >.

– U := u, V := v.
– if |U1| < |V2|, swap U and V.
– for α = [−8, . . . , 8] do

• Wα := ReduceV(w + αU).
– Return a vector with minimum norm in {Wα / |α| ≤ 8}.

When studying lattices from a complexity point of view, it is customary to
assume that the basis vectors (and therefore any lattice vector) have all rational
coordinates. It is easy to see that rational lattices can be converted to integer
lattices (i.e., sublattices of ZZm) by multiplying all coordinates by an appropriate
integer scaling factor.

If a, b are two integers, such that b �= 0, we denote by quo(a, b), rem(a, b) the
unique integers verifying: a = b · quo(a, b) + rem(a, b), 0 ≤ rem(a, b) < |b|, i.e.,
quo(a, b), rem(a, b) are the quotient and the remainder of the Euclidean division
of a by b.

For every real number x ∈ IR, as usual we denote by sgn (x) its sign.
In the case of lattices with integer coefficients, Algorithm 1 admits the fol-

lowing form:

Algorithm 5.
INPUT: u,v ∈ ZZ2, v �= 0.
OUTPUT: Reducev(u) ∈ u + ZZv / ‖Reducev(u)‖

= min{‖u + αv‖ / α ∈ ZZ}.

– Find i ∈ {1, 2}, j ∈ {1, 2}\{i} such that |vi| > |vj |. If |v1| = |v2|, select
i := 1.

– Return the vector with minimum norm between:

u− quo(ui, vi)v, u− (quo(ui, vi) + sgn (vi))v.

If both share the same norm, return u− quo(ui, vi)v.

784 Domingo Gómez et al.

It is straightforward to check both Algorithm 1 and Algorithm 5 have same
output for integer vectors. Then, clearly given an undirected circulant graph
CN (j1, j2) and vertex j ∈ ZZN , we can decide if there exists a shortest path
from vertex 0 to vertex j and, in the affirmative case, we can compute one on
O(log3 N) bit operations.

4 Directed Circulant Graphs

Our method can be easily extended to directed circulant graphs DCN (j1, j2).
First, we need to introduce the concept of positive reduction of a vector. Given
two vectors u = (u1, u2) and v = (v1, v2) �= 0, we are looking for α ∈ ZZ such
that the value ‖u − αv‖ is minimal and having both components positive. In
general, u − αv with both components positive may not achieve the minimum
norm over all integer component u− βv, with α, β integral.

Algorithm 6.
INPUT u,v ∈ ZZ2, v �= 0
OUTPUT PRedv(u) ∈ (u + ZZv) ∩ IN2,

‖PRedv(u)‖ ≤ ‖u + αv‖ ∀α ∈ ZZ/u + αv ∈ IN2 ∨
∅, if (u + ZZv) ∩ IN2 = ∅

1. Find i ∈ {1, 2}, j ∈ {1, 2}\{i} such that |vi| > |vj |. If |v1| = |v2|, select
i := 1.

2. Set ε =
{
−1, if |v1| ≥ |v2|
1 , if |v1| < |v2|.

3. Compute Δ := ε sgn (u1v2 − u2v1).
4. If vj = 0,

B := Δsgn (vi) .
1. If B = −1, Output ∅.
2. If B ≥ 0, Output u− sgn (vi) quo(ui, |vi|)v.

5. If vj �= 0,
A := −Δsgn (vj) , B := Δsgn (vi) .

1. If (A = −1 ∧B = −1), Output ∅.
2. If (A = −1 ∧B ≥ 0), Output u− sgn (vi) quo(ui, |vi|)v.
3. If (A ≥ 0 ∧B = −1), Output u− sgn (vj) quo(uj , |vj |)v.
4. If (A ≥ 0 ∧B ≥ 0),

i. w := u− sgn (vi) quo(ui, |vi|)v.
ii. If w ∈ IN2, Output w.
iii. Else, Output ∅.

It is easy to check that the previous algorithm is correct and a bound for the
bit complexity on computing PRedv(u) is O(log2 M), where M=max(‖u‖, ‖v‖).

Once this tool is fixed, let us describe the method to reach a shortest path
in a directed circulant graph. Firstly, we act as seen in the previous section to
compute an extra reduced basis of the associated lattice {u,v}, and a shortest
path for the corresponding undirected circulant graph w.

We can state that there always exists one path in the directed circulant graph
with bounded length.

On Finding a Shortest Path in Circulant Graphs with Two Jumps 785

Lemma 6. Let w,u,v ∈ ZZ2, such that {u,v} is an extra reduced basis for the
lattice they generate. Then, ∃d∈(w+ZZ < u,v >)∩IN2, ‖d‖≤6 max{‖u‖, ‖v‖}.

Proof. Let M = max{‖u‖, ‖v‖}. We consider the translated lattice

w − (2M, 2M) + ZZ < u,v > .

By Algorithm 3, this set contains an element z, with |z1| < |u1|, |z2| < |v2|. So,
‖z‖ ≤ 2M . Clearly z + (2M, 2M) belongs to the set (w + ZZ < u,v >) ∩ IN2,
and its norm is bounded by 6M . ��

Finally, we follow a similar argument than in Section 3 to reach the shortest
path for the directed graph.

Algorithm 7.
INPUT: w ∈ ZZ2, {u,v}, extra reduced basis.
OUTPUT: d, shortest element in (w + ZZ < u,v >) ∩ IN2.

– Find a shortest element z in w + ZZ < u,v >.
– if ‖u‖ ≥ ‖v‖

• for α = −16, . . . , 16 do dα := PRedv(z + αu).
– else

• for α = −16, . . . , 16 do dα := PRedu(z + αv).
– Return a vector with minimum norm in {dα / |α| ≤ 16}.

Proof. Let w,u,v ∈ ZZ2, such that {u,v} is an extra reduced basis for the lattice
they generate. Let W be a shortest element in a translated lattice w + ZZ <
u,v > and let d be a shortest element in (w + ZZ < u,v >) ∩ IN2. We have:
d−W = αu + βv, verifying |α| ≤ 16 if ‖u‖ ≥ ‖v‖, |β| ≤ 16 if ‖v‖ ≥ ‖u‖.

Let M = max{‖u‖, ‖v‖}, by Lemma 5 and Lemma 6 and since {u,v} is an
extra reduced basis, we have:

‖αu‖, ‖βv‖ ≤ 2‖d−w‖ ≤ 2‖d‖+ 2‖W‖ ≤ 12M + 4M ≤ 16M.
��

5 Weighted Circulant Graphs

In this section, we consider weighted circulant graphs with two jumps CN (j1, j2)
and weights w = (w1, w2).

Theorem 8. Given a circulant graph CN (j1, j2) with weights w = (w1, w2) we
can find a shortest path on cubic polynomial time.

Proof. The distance of a path c = (c1, c2) in the weighted circulant graph is
‖c‖w = w1|c1|+ w2|c2|.

Let c ∈ ZZ2 then ‖c‖w = ‖Φ(c)‖�1 where Φ is the injective group homomor-
phism Φ : ZZ2 → ZZ2, Φ((x, y)) = (w1x,w2y). Let j ∈ ZZN be a vertex of the
graph and let u,v be an extra-reduced basis of the circulant graphCN (j1, j2). By
Section 3 we compute on cubic polynomial time a shortest path c from vertex 0
to vertex j. Let d a solution to CVP for the lattice generated by < Φ(u), Φ(v) >
and target vector Φ(c), then Φ−1(d) is a shortest path in the weighted undi-
rected circulant graph. ��

786 Domingo Gómez et al.

The algorithm in the above theorem can be adapted in a natural way to
weighted directed circulant graphs.

References

1. R. Beivide, E. Herrada, J.L. Balcázar and A. Arruabarrena. Optimal Distance
Networks of Low Degree for Parallel Computers. IEEE Transactions on Computers,
Vol. C-40, No. 10, pp. 1109-1124, 1991.

2. J.-C. Bermond, F. Comellas and D.F. Hsu. Distributed Loop Computer Networks:
A Survey. Journal of Parallel and Distributed Computing, Vol. 24, pp. 2-10, 1995.

3. F.T. Boesch and R. Tindell. Circulants and their connectivity. J. Graph Theory,
Vol. 8, pp. 487-499, 1984.

4. J.-Y. Cai, G. Havas, B. Mans, A. Nerurkar, J.-P. Seifert and I. Shparlinski. On
Routing in Circulant Graphs. Proc. Fifth Annual International COCOON- 1999,
LNCS vol. 1627, Springer-Verlag, T. Asano, H. Imai, D.T. Lee, S. Nakano, and T.
Tokuyama (Eds.), pp. 360-369.

5. N. Chalamaiah and B. Ramamurthy. Finding shortest paths in distributed loop
networks. Information Processing Letters, Vol. 67, pp. 157-161, (1998).

6. Y. Cheng and F. K. Hwang. Diameters of Weighted Double Loop Networks, Journal
of Algorithms 9, 401-410, 1988.

7. M. Grötschel, L. Lovász and A. Schrijver, Geometric algorithms and combinatorial
optimization, Springer-Verlag, Berlin, 1993.

8. D. J. Guan. An Optimal Message Routing Algorithm for Double-Loop Networks.
Information Processing Letters 65(5): 255-260, 1998.

9. F. K. Hwang. A complementary survey on double-loop networks, Theoretical
Computer Science 263, 2001. 211-229.

10. F. K. Hwang. A survey on multi-loop networks, Theoretical Computer Science
299, 2003. 107-121.

11. M. Kaib and C.P. Schnorr: “The Generalized Gauss Reduction Algorithm”. Journal
of Algorithms 21, 3 (1996): 565-578.

12. R. Kannan. Minkoswski’s convex body theorem and integer programing, Mathe-
matics of operation research , 12(3), 415–440, 1987.

13. A. K. Lenstra, H. W. Lenstra and L. Lovász. ‘Factoring polynomials with rational
coefficients’, Mathematische Annalen, 261, 515–534, 1982.

14. L. Lovász and H. Scarf: “The Generalized Basis Reduction Algorithm”. Mathe-
matics of Operations Research 17, 3 (1992): 751-764.

15. B. Mans. Optimal Distributed algorithms in unlabeled tori and chordal rings Jour-
nal of Parallel and Distributed Computing, Vol. 46, pp. 80-90, 1997.

16. D. Micciancio and S. Goldwasser. Complexity of Lattices Problems, The Kluwer
International Series in Engineering and Computer Science, vol. 671, 2002.

17. K. Mukhopadhyaya and B.P. Sinha. Fault-Tolerant Routing Algorithm in dis-
tributed Loop Networks. IEEE Transactions on Computers 44(12): 1452-1456,
1995.

18. Yu-Liang Liu, Yue-Li Wang and D. J. Guan. An Optimal Fault-Tolerant Routing
Algorithm for Double-Loop Networks. IEEE Transactions on Computers 50(5):
500-505, 2001.

19. J. Žerovnik, and T. Pisanski. Computing the Diameter in Multiple-Loop Networks.
J. Algorithms 14(2): 226-243, 1993.

A Linear Time Algorithm for Finding
a Maximal Planar Subgraph Based on PC-Trees

Wen-Lian Hsu

Institute of Information Science, Academia Sinica, Taipei, Taiwan

Abstract. In Shih & Hsu, a planarity test was introduced utilizing a
data structure called PC-trees, generalized from PQ-trees. They illus-
trated that a PC-tree is more natural in representing planar graphs.
Their algorithm starts by constructing a depth-first-search tree and adds
all back edges to a vertex one by one. An important feature in the S&H
algorithm is that, at each iteration, at most two terminal nodes need to
be computed and the unique tree path between these two nodes provides
essentially the boundary path of the newly formed biconnected compo-
nent.
In this paper we modify their PC-tree algorithm and introduce the de-
ferred planarity test (DPT), which has the added benefit of finding a
maximal planar subgraph (MPS) in linear time when the given graph
is not planar. DPT is an incremental algorithm, which only computes
a partial terminal path at each iteration. DPT continually deletes back
edges that could create a violation to the formation of those partial ter-
minal paths so that, at the end, the subgraph constructed is guaranteed
to be planar.
The key to the efficiency of the S&H and the DPT algorithms lies in their
management on the creation and destruction of biconnected components
in which the PC-tree plays a major role. Previously, there have been
reports that the MPS problem can be solved in linear time. However,
there was no concrete data structure realizing them.

1 Introduction

Given an undirected graph, the planarity test is to determine whether there ex-
ists a clockwise edge ordering around each vertex, such that the graph can be
drawn in the plane without any crossing edges. Linear time planarity test was
first established by Hopcroft and Tarjan [5] based on a “path addition approach.”
A “vertex addition approach”, originally developed by Lempel, Even and Ceder-
baum [13], was later improved by Booth and Lueker [1] (hereafter, referred to
as B&L) to run in linear time using a data structure called a “PQ-tree”. Several
other approaches have also been developed for simplifying the planarity test (see
for example [2], [3], [16], [19], [21]) and the embedding algorithm [14]. Shih and
Hsu [18] (hereafter referred to as S&H) developed a very simple linear time test
based on PC-trees. Further exposition of S&H algorithm can be found in Hsu
and McConnell [9]. An earlier version [17] of Shih and Hsu [18] has been referred
to as the simplest linear time planarity test by Thomas [20] in his lecture notes.

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 787–797, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

788 Wen-Lian Hsu

Two attempts [10], [12] to use PQ-tree (following the LEC approach) in the
construction of a maximal planar subgraph (MPS) algorithm of O(n2) failed as
indicated by Junger, Leipert and Mutzel [11]. Currently, the fastest algorithm for
the MPS problem takes O(m log n) time by Cai, Han and Tarjan [3]. Previously,
there have been claims [6], [7] that the MPS problem can be solved in linear
time. However, there was no concrete data structure realizing them.

In this paper we illustrate how to modify S&H algorithm to yield another
planarity test, the deferred planarity test (DPT), which has the added benefit
of finding a maximal planar subgraph in linear time when the given graph is
not planar. Relative to the original PC-tree algorithm of S&H, which utilizes
full back edge information at all times, DPT considers only existing back edges.
The key to the efficiency of the DPT is its management on the creation and
destruction of biconnected components in which the PC-tree plays a major role.

In Section 2 we review some background information in the S&H algorithm.
PC-trees are discussed in Section 3. Important properties of S&H algorithm are
reviewed in Section 4, which form the basis of the DPT algorithm. Section 5
describes the DPT algorithm. Complexity of the DPT algorithm is analyzed in
Section 6.

2 Background

Let n be the number of vertices and m the number of edges of the graph G.
Construct a depth-first search tree T for G. Note that every non-tree edge of G
must be a back edge from a vertex to one of its ancestors. Let 1, ..., n be the
order resulting from a postorder traversal of T . So the order of a child is always
less than that of its parent. Denote the subtree of T with root i by Ti. Initially,
we include all edges of T , namely the depth-first-search tree, in the embedding.
Then, at iteration i, we add all back edges one by one from the descendants to
node i and update the embedding. Let r be a child of i such that there is a
node in Tr with a back edge to i. Then at the end of this iteration there is a
biconnected component generated containing r. In fact, for each such child of
i there is such a biconnected component generated around node i. Whenever
a biconnected component is generated, we create its internal embedding, store
it, and use a subset of vertices (called essential nodes) in its boundary cycle as
representatives to be used for future embedding.

Denote the largest neighbor of a node i by h(i). Sort the children of each
node of T according to the ascending order of their labels. At each iteration i,
we consider the embedding of the back edges from the descendants to i and revise
the tree accordingly. Denote the revised tree at the end of iteration i by T i.

Initially, there is no biconnected component. Consider the first iteration i
such that a child subtree Tr of i (with root r) has a back edge to i. A bicon-
nected component containing r will be generated at the end of this iteration.
The major work involved in generating a biconnected component is to deter-
mine its boundary, its inner vertices (those that should be embedded inside) and
its outer vertices. S&H used a labeling algorithm to annotate the above based
on the following notations and properties:

A Linear Time Algorithm for Finding a Maximal Planar Subgraph 789

Definition 1. Classify the nodes in Trinto four types: A node is type 1 if it has
no back edge; type 2 if it has a back edge to i and no other back edge; type 3 if it
has a back edge to i and a back edge to a node > i; and type 4 if all of its back
edges are to nodes > i.

Note that a type 1 leaf in Tr can be deleted without affecting the planarity
of the remaining graph. Such a deletion can be propagated recursively. Hence,
we could assume there is no type 1 leaf in Tr. A back edge from a subtree of Tr

to a node > i is also referred to as a remote back edge at iteration i.

Definition 2. A leaf in Tris full if it is type 2, partial if it is type 3, and empty
if it is type 4. A subtree Tvis

1. full if it contains only type 1 and type 2 nodes
2. partial if it either contains a type 3 node, or contains both a type 2 node and

a type 4 node
3. empty if it contains only type 1 and type 4 nodes.

A node v is full (respectively, partial, empty) if Tvis full (respectively, partial,
empty). Define a terminal node in Trto be a partial node whose children are
either full or empty.

Assume the graph is planar. We have the following properties from [18]:

(a) The parent of a partial node is partial.
(b) A partial node must contain a terminal node as a descendant.
(c) There are at most two terminal nodes in Tr .
(d) Any node v with two descendant terminal nodes satisfies h(v) ≤ i.

3 PC-Trees

To facilitate the representation of biconnected components, the notion of PC-
trees was introduced in [18]: a tree is a PC-tree if its nodes can be divided into
two types: P -nodes and C-nodes, where the neighbors of a P -node (denoted by
a circle) can be permuted arbitrarily and the neighbors of a C-node (denoted
by a double circle) must observe a cyclic order, which can only be reversed.
S&H used a PC-tree to represent the embedding of a partial planar graph, in
which a P -node denotes a regular vertex of the graph and a C-node denotes a
biconnected component as illustrated in Figure 1.

Unlike the PQ-tree, a PC-tree is unrooted. An important property of the
embedding of a partial planar graph at iteration i is that each vertex on the
boundary of a biconnected component should have back edges to nodes greater
than i; for otherwise, it can be contracted.

S&H showed that, when the graph is planar, there is a unique terminal path
TPi at each iteration i, which basically form the representative boundary cycle
(RBC), iTPii, of the resultant biconnected component. The RBC will enclose
all full subtrees in the inside, and leave empty subtrees on the outside. Figure 2

790 Wen-Lian Hsu

Fig. 1. An embedding of a planar graph and its corresponding PC-tree

Fig. 2. The unique terminal path between two terminal nodes u and u′

illustrates a terminal path in the current PC-tree. Define node i to be the head of
this RBC. Define the essential nodes of an RBC to be those that have a back edge
to a node > i or have at least an empty child. The essential nodes and the head
are the only ones on the RBC relevant to future embedding and the remaining
nodes are contracted. The RBC will be stored as a circular doubly linked list of
the essential nodes and the head. To distinguish it from the original edges of the
graph, we refer to the connections on the RBC as links. To maintain a tree-like
structure for the current embedding, represent the biconnected component by a
C-node, say, w, whose parent is i and whose children are the essential nodes in
the terminal path. Define the two end nodes of w to be the two neighbors of i
in its RBC; let head(w) = i and h(w) = i.

Since old biconnected components can be merged and new ones are created,
the parent pointers of the children of C-nodes can be changed frequently. To
avoid this overhead, S&H adopted the strategy of B&L by borrowing parent
pointers through the neighbors in its boundary cycle and keep parent pointers
only for a few necessary nodes (to be explained later). Therefore, for most chil-
dren of a C-node, their parent pointers are “virtual,” which are there only to
illustrate the algorithm conceptually.

If the graph is planar, we have the following property on full children of a
partial C-node:

A Linear Time Algorithm for Finding a Maximal Planar Subgraph 791

(e) Let u1be a partial C-node of Pu. Then the set of full children plus head(u1)
are consecutive in its RBC. If u1is an internal node of Pu, let its child v and
head(u1) be u1‘s two neighbors in Pu, then at least one neighbor of v in the
RBC is full. If both neighbors of v in its RBC are full, then all children of
u1not on Puare full and every ancestor t of u1in Pusatisfies h(t) ≤ i.

The main operation in S&H is the use of a tree traversal algorithm to identify
all full nodes and partial nodes in Tr. Whenever a node on the RBC of a C-node
is traversed, S&H used a parallel search algorithm along the boundary links to
locate its current parent.

Note that, in Lempel, Even and Cederbaum’s planarity test [13], internal
nodes of the PQ-trees are there only to keep track of feasible permutations.
However, in the PC-tree approach, every P -node is an original node of the graph,
every C-node represents a biconnected component in the partial embedding,
and nodes adjacent to the incoming node can be scattered anywhere, both as
internal nodes and as leaves in our PC-tree. Thus, a PC-tree is a more natural
representation.

4 Important Properties Derived from the S&H Algorithm

Three properties of the S&H algorithm that form the basis for the DPT are
described below.

Theorem 1. A graph G is planar iff, when we perform the S&H algorithm, there
are at most two terminal nodes and conditions (c), (d), and (e) are satisfied at
every iteration.

Another important property is related to the essential nodes of an RBC.
Again, assume the given graph is planar. Consider an iteration i of the S&H
algorithm that has a back edge from a node in a child subtree Tr to i. Let w
denote the corresponding C-node formed at the end of this iteration. Consider
the essential nodes of w. For each essential node v. Denote its empty children
by v1, . . . , vk. For each vm, m = 1, . . . , k, define

i(vm) = min { t| (s, t) is a back edge from a node s in Tvi to t},
which is the smallest ancestor that a back edge from a node in Tvm goes to.
Since any back edge from these children subtrees must go to a node larger than
i, we have i(vm) > i for m = 1, . . . , k. At the i(vm)-th iteration, there is a back
edge from a node, say, x, in Tvm to i(vm), which would initiate a traversal from
x through vm to i(vm) along the tree path for the first time. Such a traversal will
leave a label i(vm) on v. Thus, each essential node v could receive several labels.
Let E(w) be the collection of labels, t1, . . . , tp (in the ascending order), received
by the essential nodes of w. For each label t, let S(t) be the set of essential nodes
receiving the label t. We have the following consecutive property:

Theorem 2. Labels t1, . . . , tp(in the ascending order) satisfy that nodes in
[S(tm) ∪ S(tm+1) ∪. . . ∪ S(tp)], for each m = 2, . . . , p, are consecutive in

792 Wen-Lian Hsu

the RBC of w, say from em1, em2, . . . to emkin the counter-clockwise order.
Furthermore, no node in {i}∪ [S(t1) ∪ S(t2) ∪. . . ∪ S(tm−1)] can fall within the
set { em2, . . . , em(k−1)}.

In other word, Theorem 2 says that, for each m, m = 2, . . . , p, if we use
nodes in {i}∪ [S(t1) ∪ S(t2)∪. . . ∪ S(tm−1)] as delimiters in the circular linked
list for w, then all delimiters are consecutive in the list and there exist one pair
of nodes, say {e′, e′′}, for which nodes in [S(tm)∪S(tm+1)∪. . . ∪S(tp)] must be
exactly those nodes in between e′ and e′′ in the list(see Figure 3). Note that e′

or e′′ could be the same as em1 or emk.

i

em1, em2, …, emk

nodes in {i}∪ [S(t1) ∪ S(t2) ∪… ∪ S(tm-1)]
e’

e’ e”

e”

Fig. 3. An example illustrating Theorem 2

This theorem can be proved by virtue of the fact that any violation will
produce a Kuratowski subgraph. Because DPT does not use information on
remote back edges, no essential node can be readily identified at iteration i.
They will emerge in later iterations.

Finally, we have the following fundamental theorem for the DPT algorithm.

Theorem 3. In performing the S&H algorithm, if the set of back edges do not
violate the properties described in Theorem 2, then there can be no more than 2
terminal nodes and conditions (c), (d), and (e) are satisfied at every iteration.
Hence, the graph G must be planar.

5 Deferred Planarity Test (DPT)

Although the DPT is designed to solve the MPS problem, our description will
focus on how it is used for planarity test. Along the way, we will indicate the
extra steps needed for the MPS problem.

Theorem 1 is the basis for the S&H algorithm. However, the conditions in
Theorem 1 cannot be used directly for the MPS problem because, at iteration i,
a back edge from a node in Ti to a node > i could later be deleted, and that could
affect the determination of terminal nodes at iteration i (namely, condition (b)
does not hold for non-planar graphs). Therefore, any MPS algorithm should not
make use of information on back edges to nodes > i before the (i+1)-th iteration.
Our idea is to modify the S&H algorithm so as to guarantee that no more than

A Linear Time Algorithm for Finding a Maximal Planar Subgraph 793

two terminal nodes would be created at any iteration. The determination of
terminal nodes in an iteration is deferred until all relevant back edges have
been determined in later iterations. Hence, the modified algorithm is called the
deferred planarity test. All terminal nodes must eventually be determined at the
final iteration of the DPT.

The preprocessing stage of the DPT is the same as that in the S&H algorithm.
Find a depth-first-search tree T and get a postorder for nodes in T . A PC-tree
will be used to represent the partial graph at each iteration. The major operation
of DPT is described in the next section.

5.1 Back Edge Traversal

The DPT adopts a labeling routine to embed the back edges, which also controls
the creation and destruction of biconnected components during the embedding
process. There are two kinds of traversals in the labeling routine: tree edge
traversal on the PC-tree, and link traversal on a RBC. The former is the main
routine that assigns labels to nodes and edges traversed, whereas the latter is
only used to identify the parent of a node based on boundary link traversal.
During the edge traversal, we could encounter a node whose parent is yet to be
identified, then DPT initiates a link traversal on the RBC of the corresponding
component to find that parent, and renew the edge traversal starting from this
parent node.

Consider a traversal from a node s with back edge (s, i) upward to i. When
a node v first re-ceives a label i, it indicates that node v is now involved in some
component of i. However, there is no C-node for the component at this point
yet. Node v still keeps its original parent in the PC-tree. When a node v receives
a label i first and a label j next, let parent(v) = i′.(note that the original
component of i containing v could have been merged into other components)
Then node v was an essential node on the RBC of a component Bi′ of i′, but v
is now involved in some component Bj of j, and Bi′ will be merged into Bj . In
general, if a node v receives more than 2 labels with i, j being the last two, let
parent(v) = i′. Then node v was an essential node on the RBC of a component
Bi′ of i′, but v is now involved in some component Bj of j, and Bi′ will be
merged into Bj .

We now describe the details of the labeling algorithm. To maintain consis-
tency with previous notations we use indices i, j, k to indicate that there is a
component of i first traversed through a back edge traversal from a neighbor of j
(thus, this component is merged into a component of j), and such a component
for j is first traversed through a back edge traversal from a neighbor of k.

Consider the operations at iteration k (and then refer back to iterations j
and i whenever applicable). In S&H algorithm, the strategy of dividing nodes in
Tr into full nodes, partial nodes and empty nodes at iteration k can no longer
be applied here since DPT does not make use of the information on remote back
edges. The DPT algorithm labels both nodes and edges. Each node has a label
stack so that a node can receive many labels (denoted by [. . . ,i, j, k]) with the
most recent one (i.e. k) on top. Each edge can receive a pair of ordered labels

794 Wen-Lian Hsu

denoted by < i, j >. These labels, once assigned, will remain throughout the
algorithm.

At iteration k, we add the back edges from nodes in Tr to k one by one
starting from the lowest-indexed neighbor of i. Since we do not use information
on back edges to nodes > k, terminal nodes at the k-th iteration cannot be
identified right away. Each back edge, say, (u,k), embedded to the graph could
affect the identification of terminal nodes for components formed in previous
iterations (e.g. i and j) . DPT checks whether the conditions in Theorem 3 are
valid for all previous iterations. If not, then DPT removes those other back edges
responsible for such violations. To describe such an effect, we will trace the path
from u to k in the PC-tree. Our main back edge traversal algorithm is described
below. Assign label <k, ∅> to the back edge (u,k) for every neighbor u of k.

We use the following subroutines: Label(u), Find(u), and Eliminate(subtree).
Roughly speaking, Label(u) assigns a label to the top of the stack for the node
u; Find(u) returns the C-node whose RBC contains node u; Eliminate(subtree)
deletes all remote back edges for the nodes in the subtree. Define the set Delimiter
to keep track of all delimiters of a newly generated C-node.

The Back Edge Traversal Algorithm

1. Initialize the set, Delimiter, to be ∅. Let u be the first neighbor of k to be
labeled through the edge (u,k).

2. While there is still a back edge (u,k) do Label(u).
Let u← the next vertex in the neighbor list of k. If u > j, then generate the
C-node, w, for the component of j containing i. Make all nodes in Delimiter
children of w. head(w) ← j. Delimiter ← ∅.
end while

Subroutine Label(u)
/* The detailed Eliminate(subtree) steps are not given here. They will appear
in the full version of the paper.*/
Let u1 be the predecessor of u in the traversal (/* Note that the traversal will
trace out a tree path from a neighbor of k to u */).
if u is an unlabeled P -node then

label it [k] (/* u is now included in a component of k*/). Label the tree
edge (u, parent(u)) by <k, ∅>. Label(parent(u)).

end if
if u is a P -node with only one label i then

if edge (u1,u) has label <k, ∅> then
Delimiter ← Delimiter ∪ {u}. u′ ← u.

end if
while u′ has only one label i and u′ �= i do

give u′ the label k on top of its label stack. Label the edge (u′, parent(u′))
by <i, k>.
u′ ← parent(u′)

end while

A Linear Time Algorithm for Finding a Maximal Planar Subgraph 795

if u′ = i and has no more than 1 label then
let Delimiter ← Delimiter ∪ {u}; Label(i).

else
(/* u′ has two labels [i, j] */) Label(u′).

end if
end if
if u is a P -node with more than one label [. . . ,i,j] with i, j being the last two
then

if edge (u1,u) has label <k, ∅> then
Delimiter ← Delimiter ∪ {u}.

end if
if j < k then

if parent(u) = ∅ then
w ← Find(u)

else
w ←parent(u)

end if
Eliminate(the connected component associated with nodes in the forbid-
den area)
Label(head(w)).

else
(/* j = k */) stop

end if
end if

Subroutine Find(u)
/* This procedure will return the C-node that contains u on its boundary
cycle through parallel search */
if parent(u) �= ∅ then

Find(u) ← parent(u);
else

Search the neighbors of u in the doubly linked list in both directions until
a node, say v, with a nonempty parent pointer is found.

end if
Find(u) ← v.

Subroutine Eliminate(subtree)
Deletes all back edges for nodes in the subtree.

5.2 C-Nodes in the DPT Algorithm

A C-node on a path is said to have its correct side determined if an essential node
other than its two neighbors on the path is traversed during a back edge traversal.
Unlike the S&H algorithm whose linked list contain only P -nodes (by flipping
C-nodes to the correct side and eliminating the inner part), a path between any
two consecutive delimiters in our linked list can be a general PC-tree containing

796 Wen-Lian Hsu

C-nodes whose correct sides are yet to be determined. The advantage of this
design is that it allows essential nodes of these C-nodes to remain unidentified
until more back edges are included later on. A C-node on a linked list is deleted
whenever its correct side has been determined.

6 Complexity Analysis

The complexity of the algorithm can be analyzed as follows. The major operation
is the back edge traversal. Minor operations involve delimiter list construction,
boundary path composition and etc., which can be easily argued to be linear.
Back edge traversal involves both tree edge traversal and the link traversal. We
separate the edge traversal and the link traversal into two parts. First, consider
the edge traversal assuming every node can find its parent in constant time (i.e.
ignore the Find operation). The number of new nodes created (C-nodes) can be
at most O(n). Now, each tree edge can be traversed at most twice before it is
either embedded inside some biconnected component, eliminated or become a
link in the boundary cycle of some component. In the latter case, its traversal
is counted as link traversal. Hence, the total number of tree edge traversal is
O(m).

Next, consider the link traversal. The sole purpose of the parallel search is to
identify the biconnected component that the current node belongs to by locating
the closest delimiter. Once the delimiter is found, we can then eliminate all but
the current segment. Since this new node u will become a delimiter for another
C-node and either the left or the right side of it will eventually be eliminated
in future iterations; or else they will never be traversed again. In other words,
each link will be traversed at most a constant number of time. Hence, the total
cost in traversing the linked lists is O(m). Therefore, the entire algorithm takes
O(m) time.

Acknowledgement

We would like to thank the National Science Council for their generous sup-
port under Grant NSC 91-2213-E-001-011. I am also indebted to my research
assistant, Kevin Mai, for his endeavor in the LEDA programming for the project.

References

1. K. S. Booth and G. S. Lueker, Testing the consecutive ones property, interval
graphs, and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci. 13
(1976) 335–379

2. J. Boyer and W. Myvold, Stop minding your P’s and Q’s: A simplified O(n) em-
bedding algorithm. Proceedings of the Tenth Annual ACM-SIAM Symposium on
Discrete Algorithms (1999) 140–149

3. J. Cai, X. Han and R. E. Tarjan, An O(mlogn)-time algorithm for the maximal
planar subgraph problem. SIAM J. Comput. 22 (1993) 1142-1162

A Linear Time Algorithm for Finding a Maximal Planar Subgraph 797

4. N. Chiba, T. Nishizeki and S. Abe and T. Ozawa, A linear algorithm for embedding
planar graphs using PQ-trees. J. Comput. Syst. Sci. 30 (1985) 54-76

5. J. E. Hopcroft and R. E. Tarjan, Efficient planarity testing. J. Assoc. Comput.
Mach. 21 (1974) 549-568

6. D. Hristo, A Linear Algorithm for the Maximal Planar Subgraph Problem. Work-
shop on Algorithms and Data Structures (1995) 369-380

7. W. L. Hsu, Finding maximal planar subgraphs in linear time. Lecture Notes in
Computer Science 1004 (1995)

8. W. L. Hsu, PC-trees vs. PQ-trees. Lecture Notes in Computer Science 2108 (2001)
207-217

9. W. L. Hsu and R. McConnell, PQ Trees, PC Trees and Planar Graphs. In: Dinesh
P. Mehta and Sartaj Sahni (eds) Handbook of Data Structures and Applications
(2004)

10. R. Jayakumar, K. Thulasiraman and M. Swamy, On O(n2) algorithms for graph
planarization. IEEE Transactions on Computer-Aided Design 8 (1989) 257-267

11. M. Junger, S. Leipert and P. Mutzel, A note on computing a maximal planar sub-
graph using PQ-Trees. IEEE Transactions on Computer-Aided Design 17 (1998)
609-612

12. G. Kant, An O(n2) maximal planarization algorithm based on PQ-trees. Technical
Report RUU-CS-92-03, Department of Computer Science, Utrecht Unvesity. (1992)

13. A. Lempel, S. Even and I. Cederbaum, An algorithm for planarity testing of graphs.
In P. Rosenstiehl, Gordon and Breach (eds.) Theory of Graphs, New York (1967)
215-232

14. K. Mehlhorn, Graph algorithms and NP-completeness. Data Structure and Algo-
rithms 2 (1984) 93-122

15. K. Mehlhorn and P. Mutzel, On the embedding phase of the Hopcroft and Tarjan
planarity testing algorithm. Algorithmica 16 (1996) 233–242

16. J. Small, A unified approach of testing, embedding and drawing planar graphs.
Proc. ALCOM International Workshop on Graph Drawing, Sevre, France (1993)

17. W. K. Shih and W. L. Hsu, A simple test for planar graphs. Proceedings of the
International Workshop on Discrete Math. and Algorithms, University of Hong
Kong (1993) 110-122

18. W. K. Shih and W. L. Hsu, A new planarity test. Theoretical Computer Science
223 (1999) 179-191

19. H. Stamm-Wilbrandt, A simple linear-time algorithm for embedding maximal
planar graphs. Proc, ALCOM International Workshop on Graph Drawing, Sere,
France. (1993)

20. R. Thomas, Planarity in linear time – Lecture Notes. Georgia Institute of Tech-
nology (1997)

21. S. G. Williamson, Depth-first search and Kuratowski subgraphs. J. ACM 31 (1984)
681-693

Algorithms for Finding Distance-Edge-Colorings
of Graphs

Takehiro Ito, Akira Kato, Xiao Zhou, and Takao Nishizeki

Graduate School of Information Sciences, Tohoku University,
Aoba-yama 6-6-05, Sendai, 980-8579, Japan

{take,akira}@nishizeki.ecei.tohoku.ac.jp, {zhou,nishi}@ecei.tohoku.ac.jp

Abstract. For a bounded integer 	, we wish to color all edges of a graph
G so that any two edges within distance 	 have different colors. Such a
coloring is called a distance-edge-coloring or an 	-edge-coloring of G. The
distance-edge-coloring problem is to compute the minimum number of
colors required for a distance-edge-coloring of a given graph G. A partial
k-tree is a graph with tree-width bounded by a fixed constant k. We
first present a polynomial-time exact algorithm to solve the problem
for partial k-trees, and then give a polynomial-time 2-approximation
algorithm for planar graphs.

1 Introduction

We denote by G = (V,E) a graph with vertex set V and edge set E. An ordinary
edge-coloring of a graph G is to color all edges of G so that any adjacent edges
have different colors. For two vertices u and v, we denote by dist(u, v) the distance
between u and v in G, that is, the number of edges in a shortest path between
u and v in G. For two edges e = (u, v) and e′ = (u′, v′), the distance between e
and e′ in G is defined as follows:

dist(e, e′) = min{dist(u, u′), dist(u, v′), dist(v, u′), dist(v, v′)}.

For a given bounded nonnegative integer �, we wish to color all edges of G so that
any two edges e and e′ with dist(e, e′) ≤ � have different colors. Such a coloring is
called a distance-edge-coloring or an �-edge-coloring of G. Thus a 0-edge-coloring
is merely an ordinary edge-coloring, and a 1-edge-coloring is a “strong edge-
coloring” [13, 14]. The �-chromatic index χ′

�(G) of G is the minimum number of
colors required for an �-edge-coloring of G. The distance-edge-coloring problem
or the �-edge-coloring problem is to compute the �-chromatic index χ′

�(G) of a
given graph G. For example, the graph G in Fig. 1 has a 1-edge-coloring with
six colors c1, c2, · · · , c6, and one can easily observe that χ′

1(G) = 6. The coloring
is of course a 0-edge-coloring, but is not a 2-edge-coloring.

Since the edge-coloring problem is NP-hard [12], the �-edge-coloring problem
is NP-hard in general and hence it is very unlikely that the �-edge-coloring
problem can be efficiently solved for general graphs. A partial k-tree is a graph
with tree-width bounded by a fixed constant k. The class of partial k-trees is

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 798–807, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Algorithms for Finding Distance-Edge-Colorings of Graphs 799

c1

c1c2

c4
c2 c3

c5

c3

c6

v1

v2

v5

v3

v4

v7

v6

Fig. 1. A 1-edge-coloring of a partial 3-tree G with six colors.

fairly large, and includes trees, outerplanar graphs, series-parallel graphs, etc.
It is known that many combinatorial problems can be solved very efficiently for
partial k-trees even if the problems are NP-hard for general graphs [2, 3, 8–
10]. Such classes of problems have been characterized in terms of “forbidden
subgraphs” or “extended monadic second-order logic” [2, 3, 8–10]. The �-edge-
coloring problem does not belong to such a class of the “maximum or minimum
subgraph problems” [10]. The �-edge-coloring problem is indeed one of the “edge-
covering problems” which, as mentioned in [8], does not appear to be efficiently
solved for partial k-trees. However, the following two results have been known.
First, the ordinary edge-coloring problem can be solved in linear time for partial
k-trees [16]. Second, the 1-edge-coloring problem can be solved in polynomial
time for partial k-trees [14].

A vertex version of the distance-edge-coloring problem has been studied for
partial k-trees and planar graphs. For a given bounded nonnegative integer �,
the distance-vertex-coloring or �-vertex-coloring is to color all vertices of a graph
G so that any two vertices u and v with dist(u, v) ≤ � have different colors.
The distance-vertex-coloring problem, which finds an �-vertex-coloring of a given
graph with the minimum number of colors, can be solved in polynomial time for
partial k-trees [15]. There is a polynomial-time 2-approximation algorithm for
the distance-vertex-coloring problem on planar graphs [1]. The distance-edge-
coloring problem for a graph G can be reduced to an ordinary vertex-coloring
problem for a new graph G′ obtained from G by some operations. However, G′

is not always a partial k-tree or a planar graph even if G is a partial k-tree or a
planar graph.

In this paper we first give a polynomial-time exact algorithm to solve the �-
edge-coloring problem for partial k-trees. More precisely, we give an algorithm to
examine whether a partial k-tree G has an �-edge-coloring with a given number
α of colors in time O

(
n(α + 1)2

2(k+1)(�+1)+1)
, where n is the number of vertices

in G. Remember that k, � = O(1). One may assume without loss of generality
that α is smaller than the number m of edges in G; otherwise, G has a trivial
�-edge-coloring with α colors. Thus the �-edge-coloring problem can be solved
in polynomial time. Our algorithm takes linear time if α is a fixed constant. We
then give a polynomial-time 2-approximation algorithm for the �-edge-coloring
problem on planar graphs.

800 Takehiro Ito et al.

2 Terminology and Definitions

In this section we give some definitions. An edge joining vertices u and v is
denoted by (u, v). We denote by n and m the number of vertices and edges in
G, respectively, and assume that k is a bounded positive integer.

A k-tree is defined recursively as follows [5]:
(1) A complete graph with k + 1 vertices is a k-tree.
(2) If G is a k-tree and k vertices induce a complete subgraph of G, then a

graph obtained from G by adding a new vertex and joining it with each
of the k vertices is a k-tree.

Every subgraph of a k-tree is called a partial k-tree. Thus a partial k-tree G =
(V,E) is a simple graph, and m < kn.

Figure 2 illustrates a process of generating 3-trees. The graph in Fig. 1 is
indeed a partial 3-tree since it is a subgraph of the last 3-tree in Fig. 2.

v1

v2 v3

v4 v1

v2

v5

v3

v4

v7

v6

v1

v2

v5

v3

v4

v6

v1

v2

v5

v3

v4

Fig. 2. A process of generating 3-trees.

A binary tree T = (VT , ET) is called a tree-decomposition of a partial k-tree
G = (V,E) if T satisfies the following conditions (a)–(e):

(a) every node X ∈ VT of T is a subset of V , and |X | ≤ k + 1;
(b)

⋃
X∈VT

X = V ;
(c) for each edge e = (u, v) of G, T has a leaf X ∈ VT such that u, v ∈ X ;
(d) if node Xq lies on the path in T from node Xp to node Xr, then Xp∩Xr ⊆

Xq; and
(e) each internal node Xi of T has exactly two children, say XL and XR, and

either Xi = XL or Xi = XR.
We will use notions leaf, node, child, and root in their usual meaning. Figure 3
illustrates a tree-decomposition T of the partial 3-tree in Fig. 1. Note that VT =
{X0, X1, · · · , X6}. We always denote by X0 the root of a tree-decomposition T .

X0 = {v1, v2, v3, v4}

X2 = {v1, v3, v4, v6}

X6 = {v3, v4, v6, v7}X4 = {v1, v2, v3, v5}

X1 = X0

X5 = X2
X3 = X0

Fig. 3. Tree-decomposition of the partial 3-tree in Fig. 1.

Algorithms for Finding Distance-Edge-Colorings of Graphs 801

Since a tree-decomposition T of a partial k-tree G can be found in linear
time [6], we may assume that a partial k-tree G and its tree-decomposition T
are given. The number of nodes of T constructed by the algorithm in [6] is O(n).

By the condition (c) of a tree-decomposition, for every edge e = (u, v) ∈ E,
there is at least one leaf X of T such that u, v ∈ X . We choose one of such leaves
as the representative of the edge e, and denote it by rep(e). Each node Xi of T
corresponds to a subgraph Gi = (Vi, Ei) of G. The vertex set Vi and edge set Ei

of Gi are recursively defined as follows:
(i) if Xi is a leaf of T , then Vi = Xi and Ei = {e ∈ E | rep(e) = Xi}; and
(ii) if Xi is an internal node of T , the left child XL of Xi corresponds to a

subgraph GL = (VL, EL) of G, and the right child XR corresponds to
GR = (VR, ER), then Vi = VL ∪ VR and Ei = EL ∪ER, and hence Gi is a
union of two graphs GL and GR.

Note that EL ∩ER = ∅. Clearly G = G0 for the root X0 of T . The condition (d)
of a tree-decomposition implies that VL ∩ VR = XL ∩XR ⊆ Xi [11].

3 Algorithm for Partial k-Trees

The main result of this section is the following theorem.

Theorem 1. Let G be a partial k-tree, let � be a bounded nonnegative inte-
ger, and let α be a positive integer. Then it can be examined in time O

(
n(α +

1)2
2(k+1)(�+1)+1)

whether G has an �-edge-coloring with α colors.

The number α is not assumed to be a fixed constant, but can be assumed
to be smaller than the number m of edges in G. Therefore, using a binary
search technique, one can compute the �-chromatic index χ′

�(G) of G by applying
Theorem 1 for at most log2 m values of α, 1 ≤ α < m. We thus have the following
corollary.

Corollary 1. The �-chromatic index χ′
�(G) of a partial k-tree G can be com-

puted in polynomial time.

In the remainder of this section we give a proof of Theorem 1. From now on
we call an �-edge-coloring simply a coloring. Although we give an algorithm to
examine whether a partial k-tree G has a coloring with α colors, it can be easily
modified so that it actually finds a coloring ofG with α colors if G has. Our idea is
to extend techniques developed for the ordinary edge-coloring problem [5, 16] and
the distance-vertex-coloring problem [15] to the �-edge-coloring problem and is
to reduce the size of a Dynamic Programming (DP) table to O

(
(α+1)2

2(k+1)(�+1))
by considering “counts” and “pair-counts.”

Let G = (V,E) be a partial k-tree, and let T = (VT , ET) be a tree-
decomposition of G. Let C be a set of α colors. For a node Xi of T , a map-
ping f : Ei → C is called an entire coloring of Gi = (Vi, Ei) if f(e) �= f(e′) for
every pair of edges e, e′ ∈ Ei with dist(e, e′) ≤ �. Remember that dist(e, e′) is the
distance between e and e′ in the entire graph G, not in the subgraph Gi. Thus

802 Takehiro Ito et al.

an entire coloring of Gi is a coloring of Gi, while a coloring of Gi is not always
an entire coloring of Gi. However, a coloring of G0 = G is an entire coloring of
G. Figures 4(a), (b) and (c) illustrate entire colorings of G0 = G, G1 and G2,
respectively, for the case � = 1.

X0

X1 = X0 X2

(a) G0 = G

(b) G1 (c) G2

c1

c1c2

c4
c2 c3

c5

c3

c6

v1

v2

v5

v3

v4

v7

v6

c1

c2

c4

c3

c6

v1

v2

v5

v3

v4
c1

c2 c3

c5v1

v3

v4

v7

v6

Fig. 4. (a) Colorings f0 of G = G0, (b) f1 of G1, and (c) f2 of G2.

For a vertex u and an edge e = (v, w), the distance between u and e in G is
defined as follows: dist(u, e) = min{dist(u, v), dist(u,w)}. Thus dist(u, e) = 0 if
u is an end-vertex of e.

For an entire coloring f of Gi, an integer j, 0 ≤ j ≤ �, and a vertex v ∈ Xi,
we define a set D(f, j, v) ⊆ C as follows:

D(f, j, v) = {c ∈ C | Gi has an edge e such that f(e) = c and dist(v, e) = j}.

Thus D(f, j, v) consists of all colors c that are assigned to edges e of Gi with
dist(v, e) = j. For example, D(f1, 0, v1) = {c2, c3} and D(f1, 1, v1) = {c1, c4, c6}
for the entire coloring f1 of the graph G1 in Fig. 4(b). Note that dist(v1, v4) = 1
for the entire graph G depicted in Fig. 4(a).

For a node Xi ∈ VT of T , an entire coloring f of Gi, an integer j, 0 ≤ j ≤ �,
and a color c ∈ C, we define a set Y (Xi; f, j, c) ⊆ Xi as follows:

Y (Xi; f, j, c) = {v ∈ Xi | c ∈ D(f, j, v)}.

Thus Y (Xi; f, j, c) consists of all vertices v in Xi for which Gi has an edge e
such that f(e) = c and dist(v, e) = j. For example, Y (X1; f1, 0, c6) = {v3, v4}
and Y (X1; f1, 1, c6) = {v1} for the entire coloring f1 in Fig. 4(b).

We denote by 2Xi the power set of Xi, and by (2Xi)�+1 the direct prod-
uct of � + 1 copies of 2Xi . Thus, if A ∈ (2Xi)�+1, then A is an (� + 1)-tuple

Algorithms for Finding Distance-Edge-Colorings of Graphs 803

(A0, A1, · · · , A�) of sets A0, A1, · · · , A� ⊆ Xi. For an entire coloring f of Gi, we
define a mapping Cf : (2Xi)�+1 → 2C as follows:

Cf (A) = {c ∈ C | Aj = Y (Xi; f, j, c) for each j, 0 ≤ j ≤ �},

where A = (A0, A1, · · · , A�) ∈ (2Xi)�+1. For example, Cf1({v3, v4}, {v1}) = {c6}
and Cf1 ({v3, v4}, {v1, v2}) = ∅ for the entire coloring f1 in Fig. 4(b). Probably
Cf (A) = ∅ for many A ∈ (2Xi)�+1. We call the mapping Cf the color function of
f on Xi. We write Ff = {Cf (A) | A ∈ (2Xi)�+1}, then Ff is clearly a partition
of the set C.

For a node Xi of T , we say that an entire coloring of Gi is extensible if it can
be extended to a coloring of G = G0 without changing the entire coloring of Gi.
Both the entire coloring f1 of G1 in Fig. 4(b) and the entire coloring f2 of G2 in
Fig. 4(c) are extensible because both can be extended to the coloring f0 of G0

in Fig. 4(a).
A mapping γ : (2Xi)�+1 → {0, 1, · · · , α} is called a count on node Xi. A

count γ on Xi is defined to be active if Gi has an entire coloring f whose color
function Cf satisfies |Cf (A)| = γ(A) for each A ∈ (2Xi)�+1. Such a count γ is
called the count of the entire coloring f . Since |C| = α and Ff is a partition of
C, an active count γ satisfies

∑
{γ(A) | A ∈ (2Xi)�+1} = α.

One can easily observe that the following lemma holds.

Lemma 1. Assume that f and g are entire colorings of Gi for a node Xi of T ,
and that f and g have the same count. Then f is extensible if and only if g is
extensible.

Define an equivalence relation ∼= on the set of all entire colorings of Gi, as
follows: f ∼= g if the entire colorings f and g of Gi have the same (active) count.
Then each active count on Xi characterizes an equivalence class of entire color-
ings of Gi. Lemma 1 implies that either all the entire colorings in an equivalence
class are extensible or none of them is extensible. Since |Xi| ≤ k + 1, there are
at most (α+1)2

(k+1)(�+1)
distinct counts γ : (2Xi)�+1 → {0, 1, · · · , α} on Xi. The

main step of our algorithm is to compute a table of all active counts on each node
of T from the leaves to the root X0 of T by means of dynamic programming.
From the table on the root X0 one can easily know whether G has a coloring
with α colors, as follows.

Lemma 2. A partial k-tree G has a coloring with α colors if and only if the
table on the root X0 has at least one active count.

We now describe an algorithm to examine whether a partial k-tree G has a
coloring with the α colors c1, c2, · · · , cα in C.

We first compute the table of all active counts on each leaf Xi of T as follows:
(1) enumerate all mappings f : Ei → {c1, c2, · · · , cj}, where j = min{α, |Ei|};
(2) remove mappings that are not entire colorings of Gi; and
(3) compute all the active counts corresponding to entire colorings of Gi.

As a preprocessing, we compute dist(u, v) for all pairs of vertices u and v in
the same leaf of T . This can be done in linear time; the proof is omitted in

804 Takehiro Ito et al.

this extended abstract, due to the page limitation. Since |Ei| ≤ k(k + 1)/2,
the number of distinct mappings f enumerated in Step (1) above is at most
(k(k+1)

2)k(k+1)/2 = O(1). Since the distances dist(u, v) have been computed,
Step (2) above can be done in time O(1) for each mapping f . Clearly Step (3)
above can be done in time O(1) for each entire coloring f . Thus one can compute
the table on a leaf Xi of T in time O(1). Since T has O(n) leaves, the tables for
all leaves can be computed in time O(n).

We next compute all active counts on each internal node Xi of T from all
active counts on its children XL and XR. Either Xi = XL or Xi = XR by the
condition (e) of a tree-decomposition. Therefore, one may assume without loss
of generality that Xi = XL. A mapping ρ : (2XL)�+1× (2XR)�+1 → {0, 1, · · · , α}
is called a pair-count on Xi. There are at most (α + 1)2

2(k+1)(�+1)
distinct pair-

counts. For an entire coloring f of Gi, we denote by fL = f |GL the restriction of
f to GL: fL(e) = f(e) for each edge e of GL. Similarly, we denote by fR = f |GR

the restriction of f to GR. We denote by CfL the color function of fL on XL,
and by CfR the color function of fR on XR. Then we define a pair-count ρ to be
active if Gi has an entire coloring f such that ρ(AL,AR) = |CfL(AL)∩CfR(AR)|
for each pair of AL ∈ (2XL)�+1 and AR ∈ (2XR)�+1. Such a pair-count ρ is called
the pair-count of the entire coloring f of Gi. Thus, ρ(AL,AR) is the number of
colors c ∈ C such that Aj

L = Y (XL; fL, j, c) and Aj
R = Y (XR; fR, j, c) for each j,

0 ≤ j ≤ �, where AL = (A0
L, A

1
L, · · · , A�

L) and AR = (A0
R, A

1
R, · · · , A�

R). We now
have the following lemma, whose proof is omitted due to the page limitation.

Lemma 3. Let Xi be an internal node of T , and let XL and XR be the children
of Xi. Then a pair-count ρ on Xi is active if and only if ρ satisfies the following
Conditions (a) and (b):

(a) if ρ(AL,AR) ≥ 1, then Aj1
L ∩A

j2
R = ∅ for every pair of nonnegative integers

j1 and j2 with j1 + j2 ≤ �; and
(b) there is an active count γL on XL such that

γL(AL) =
∑
{ρ(AL,A) | A ∈ (2XR)�+1} (1)

for each AL ∈ (2XL)�+1, and there is an active count γR on XR such that

γR(AR) =
∑
{ρ(A,AR) | A ∈ (2XL)�+1} (2)

for each AR ∈ (2XR)�+1.

Using Lemma 3, we compute all active pair-counts ρ on Xi from all pairs
of active counts γL on XL and γR on XR, as follows. There are at most (α +
1)2

2(k+1)(�+1)
distinct pair-counts ρ onXi. For each ρ of them, we examine whether

ρ satisfies Conditions (a) and (b) in Lemma 3. For each pair-count ρ, one can
know in time O(1) whether ρ satisfies Condition (a), because there are at most
�222(k+1)(�+1) = O(1) distinct pairs (Aj1

L , A
j2
R). On the other hand, for each pair-

count ρ, one can know in timeO
(
(α+1)2

(k+1)(�+1)+1)
whether ρ satisfies Condition

(b), because there are at most
(
(α+ 1)2

(k+1)(�+1))2 = (α+ 1)2
(k+1)(�+1)+1

pairs of

Algorithms for Finding Distance-Edge-Colorings of Graphs 805

active counts γL and γR, and one can know in time O(1) for each of them whether
it satisfies Eqs. (1) and (2). Thus all active pair-counts ρ on Xi can be found in
time O

(
(α + 1)2

2(k+1)(�+1)+1)
, since there are at most (α + 1)2

2(k+1)(�+1)
distinct

pair-counts ρ on Xi and (α+1)2
(k+1)(�+1)+1

(α+1)2
2(k+1)(�+1) ≤ (α+1)2

2(k+1)(�+1)+1
.

We then compute all active counts on an internal node Xi from all active
pair-counts on Xi, as in the following Lemma 4, the proof of which is omitted
due to the page limitation.

Lemma 4. Assume that Xi is an internal node of T , XL and XR are the two
children of Xi, and Xi = XL. Then a count γ on Xi is active if and only if there
exists an active pair-count ρ on Xi such that, for each A ∈ (2Xi)�+1,

γ(A) =
∑

ρ(AL,AR), (3)

where the summation above is taken over all AL = (A0
L, A

1
L, · · · , A�

L) ∈ (2XL)�+1

and AR = (A0
R, A

1
R, · · · , A�

R) ∈ (2XR)�+1 satisfying Aj = (Aj
L ∪ Aj

R) ∩ Xi for
each integer j, 0 ≤ j ≤ �.

Using Lemma 4, we compute all active counts γ on Xi from all active pair-
counts ρ on Xi. There are at most (α+1)2

2(k+1)(�+1)
distinct active pair-counts ρ.

From each ρ of them we compute an active count γ by Eq. (3). This can be done
in time O(1) since |Aj |, |Aj

L|, |A
j
R| ≤ k + 1 = O(1) for each integer j, 0 ≤ j ≤ �.

We have thus shown that all active counts γ on Xi can be computed in time
O
(
(α+ 1)2

2(k+1)(�+1))
from all active pair-counts ρ on Xi.

One can thus compute the DP table for an internal node Xi from the tables
of the children XL and XR in time

O
(
(α+ 1)2

2(k+1)(�+1)+1
+ (α+ 1)2

2(k+1)(�+1))
= O

(
(α+ 1)2

2(k+1)(�+1)+1)
.

Since T has O(n) internal nodes, one can compute the DP tables for all internal
nodes in time O

(
n(α+ 1)2

2(k+1)(�+1)+1)
.

From the DP table for the root X0 one can know in time O(1) by Lemma 2
whether G has a coloring with α colors.

This completes a proof of Theorem 1.

4 2-Approximation Algorithm for Planar Graphs

The main result of this section is the following theorem.

Theorem 2. There is a polynomial-time 2-approximation algorithm for the
distance-edge-coloring problem on planar graphs.

In the remainder of this section, as a proof of Theorem 2, we give a poly-
nomial-time algorithm to find an �-edge-coloring of a given planar graph G with
at most 2χ′

�(G) colors. The approximation algorithm can be obtained by combin-
ing our algorithm in Section 3 with a general method for obtaining approximation
algorithms for NP-complete problems on planar graphs [4].

806 Takehiro Ito et al.

The method [4] partitions the vertex set V of a planar graph G = (V,E) into
a number p of subsets V0, V1, · · · , Vp−1 for some integer p so that every edge is
between adjacent subsets or within the same subset, that is, if (u, v) ∈ E and
u ∈ Vi then v ∈ Vi−1 ∪Vi∪Vi+1. Clearly, dist(u, v) ≥ |i− j| if u ∈ Vi and v ∈ Vj .
Let

V ′ =
⋃
{Vi | i mod 2(�+ 1) ≤ �+ 1}

and
V ′′ = (V − V ′) ∪

(⋃
{Vi | i mod 2(�+ 1) = 0 or �+ 1}

)
,

then both of the ends u and v of each edge (u, v) ∈ E are contained in either
V ′ or V ′′. Let G′ = (V ′, E′) be the subgraph of G induced by V ′, and let
G′′ = (V ′′, E′′) be the subgraph of G such that E′′ = E − E′. Then G′ is a
vertex-disjoint union of subgraphs H ′

j , 0 ≤ j ≤ %p/2(� + 1)&; H ′
j corresponds

to V2(�+1)j ∪ V2(�+1)j+1 ∪ · · · ∪ V2(�+1)j+(�+1). Every subgraph H ′
j , 0 ≤ j ≤

%p/2(� + 1)&, is an (� + 2)-outerplanar graph and hence is a partial (3� + 5)-
trees [7]. Since G′ is a vertex-disjoint union of H ′

j , 0 ≤ j ≤ %p/2(� + 1)&, G′

is a partial (3� + 5)-tree. Similarly, G′′ is a vertex-disjoint union of subgraphs
H ′′

j , 0 ≤ j ≤ %p/2(� + 1)&, and is a partial (3� + 5)-tree; H ′′
j corresponds to

V2(�+1)j+�+1 ∪ V2(�+1)j+�+2 ∪ · · · ∪ V2(�+1)j+2(�+1).
We now describe the approximation algorithm. We first compute dist(e, e′)

for all edges e and e′ in the entire graph G in advance. This preprocessing can be
done in time O(n2) by executing the breadth-first search with each vertex as a
starting vertex. We then find an entire �-edge-coloring of G′ with the minimum
number χ∗

� (G
′) of colors by using the polynomial-time algorithm in Section 3.

In the entire �-edge-coloring of G′, any two edges e and e′ with dist(e, e′) ≤ �
must have different colors, where dist(e, e′) is the distance between e and e′

in the entire graph G, not in G′. Thus χ∗
� (G

′) ≤ χ′
�(G). Similarly, we find an

entire �-edge-coloring of G′′ with the minimum number χ∗
� (G

′′) of colors, where
χ∗

� (G
′′) ≤ χ′

�(G). One may assume that the colors for G′ are different from the
colors for G′′. Combining the colorings of G′ and G′′, we finally obtain an �-edge-
coloring of G with χ∗

� (G
′) + χ∗

� (G
′′) ≤ 2χ′

�(G) colors. This completes a proof of
Theorem 2.

5 Conclusions

In this paper, we obtained two algorithms. The first algorithm is to examine
whether a given partial k-tree G has an �-edge-coloring with α colors in time
O
(
n(α+ 1)2

2(k+1)(�+1)+1)
, where n is the number of vertices in G and α is an ar-

bitrary positive integer. Using the algorithm, one can compute the �-chromatic
index χ′

�(G) of G in polynomial time. Our algorithm takes linear time if α is
a fixed constant. It is easy to modify the algorithm so that it actually finds an
�-edge-coloring of G with χ′

�(G) colors. The second algorithm is a polynomial-
time 2-approximation algorithm for the distance-edge-coloring problem on pla-
nar graphs.

Algorithms for Finding Distance-Edge-Colorings of Graphs 807

Many variants of the distance-edge-coloring problem can be solved for partial
k-trees in polynomial time. Consider for example a problem in which, for a given
set L ⊆ {0, 1, · · · , �}, one wishes to color all edges of a graphG with the minimum
number of colors so that every pair of edges e and e′ with dist(e, e′) ∈ L have
different colors. Such a problem can be solved in polynomial time for partial
k-trees similarly as the �-edge-coloring problem.

Replace some of the edges in a partial k-tree by multiple edges. The resulting
multigraph is called a partial k-multitree. One can easily extend our algorithms
for partial k-trees and planar simple graphs to those for partial k-multitrees and
planar multigraphs.

References

1. G. Agnarsson and M. M. Halldórson, Coloring powers of planar graphs, SIAM
J. Discrete Math., Vol. 16, pp. 651–662, 2003.

2. S. Arnborg, B. Courcelle, A. Proskurowski and D. Seese, An algebraic theory of
graph reduction, J. Assoc. Comput. Mach., Vol. 40, pp. 1134–1164, 1993.

3. S. Arnborg, J. Lagergren and D. Seese, Easy problems for tree-decomposable
graphs, J. Algorithms, Vol. 12, pp. 308–340, 1991.

4. B. S. Baker, Approximation algorithms for NP-complete problems on planar
graphs, J. Assoc. Comput. Mach., Vol. 41, pp. 153–180, 1994.

5. H. L. Bodlaender, Polynomial algorithms for graph isomorphism and chromatic
index on partial k-trees, J. Algorithms, Vol. 11, pp. 631–643, 1990.

6. H. L. Bodlaender, A linear-time algorithm for finding tree-decompositions of small
treewidth, SIAM J. Computing, Vol. 25, pp. 1305–1317, 1996.

7. H. L. Bodlaender, A partial k-arboretum of graphs with bounded treewidth, The-
oretical Computer Science, Vol. 209, pp. 1–45, 1998.

8. R. B. Borie, R. G. Parker and C. A. Tovey, Automatic generation of linear-time
algorithms from predicate calculus descriptions of problems on recursively con-
structed graph families, Algorithmica, Vol. 7 pp. 555–581, 1992.

9. B. Courcelle, The monadic second-order logic of graphs I: Recognizable sets of
finite graphs, Information and Computation, Vol. 85, pp. 12–75, 1990.

10. B. Courcelle and M. Mosbah, Monadic second-order evaluations on tree-
decomposable graphs, Theoretical Computer Science, Vol. 109, pp. 49–82, 1993.

11. R. Diestel, Graph Theory, Springer-Verlag, New York, 1997.
12. I. Holyer, The NP-completeness of edge-coloring, SIAM J. Computing, Vol. 10,

pp. 718–720, 1981.
13. M. Mahdian, On the computational complexity of strong edge coloring, Discrete

Applied Mathematics, Vol. 118, pp. 239–248, 2002.
14. M. R. Salavatipour, A polynomial time algorithm for strong edge coloring of partial

k-trees, Discrete Applied Mathematics, Vol. 143, pp. 285–291, 2004.
15. X. Zhou, Y. Kanari and T. Nishizeki, Generalized vertex-coloring of partial k-trees,

IEICE Trans. on Fundamentals of Electronics, Communication and Computer Sci-
ences, Vol. E83-A, pp. 671–678, 2000.

16. X. Zhou, S. Nakano and T. Nishizeki, Edge-coloring partial k-trees, J. Algorithms,
Vol. 21, pp. 598–617, 1996.

On the Recognition of Probe Graphs of Some
Self-Complementary Classes of Perfect Graphs

Maw-Shang Chang1,�, Ton Kloks3,��, Dieter Kratsch2,
Jiping Liu3,���, and Sheng-Lung Peng4

1 Department of Computer Science and Information Engineering
National Chung Cheng University, Chiayi, Taiwan 621, R.O.C.

mschang@cs.ccu.edu.tw
2 Université de Metz

LITA, 57045 Metz Cedex 01, France
kratsch@sciences.univ-metz.fr

3 Department of Mathematics and Computer Science
The university of Lethbridge, Alberta, T1K 3M4, Canada

liu@cs.uleth.ca
4 Department of Computer Science and Information Engineering

National Dong Hwa University, Hualien 974, Taiwan, R.O.C.
lung@csie.ndhu.edu.tw

Abstract. In this paper we consider the recognition of some probe
graph classes. Given a class of graphs G, a graph G is a probe graph
of G if its vertices can be partitioned into a set P of probes and an in-
dependent set N of nonprobes, such that G can be extended to a graph
of G by adding edges between certain nonprobes. We show that there
are polynomial-time recognition algorithms for probe cographs, probe
P4-reducible graphs, probe P4-sparse graphs, and probe splitgraphs.

1 Introduction

We will consider only finite simple graphs in which n and m are the number
of vertices and edges of a graph, respectively. For a graph G = (V,E) and a
subset S ⊆ V of vertices, we write G[S] for the subgraph of G induced by S.
For a vertex x we use N(x) to denote the set {v ∈ V |(x, v) ∈ E} and use N [x]
to denote N(x) + x. For a subset W ⊆ V of vertices of a graph G = (V,E) we
write G −W for the graph G[V −W], i.e., the subgraph induced by V −W .
For a vertex x we write G − x rather than G − {x}. For other conventions on
graph-related notations we refer to any standard textbook. For graph classes not
defined here we refer to [2, 8].

� I thank the Institute of Information Science of Academia Sinica of Taiwan for its
hospitality and support where part of this research took place

�� Supported by the National Science Council under grant NSC 93–2811–M–002–004.
I thank the LITA of the Université de Metz and the Department of Mathematics
of the National Taiwan University

��� Corresponding author. Partially supported by the NSERC of Canada

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 808–817, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

On the Recognition of Probe Graphs 809

Probe interval graphs were introduced in [21, 23] to model certain problems in
physical mapping of DNA when only partial data is available on the overlap of
clones. Chapter 4 of [10] is dedicated to this class of graphs. In the biological
application the partition of the vertex set into two sets, probes and nonprobes,
is part of the input, and the problem is to add edges between some nonprobes to
complete the graph into an interval graph. This problem was solved successfully
in [18] and an O(n2) time algorithm was established. An alternative O(n +
m logn) time algorithm appeared in [20]. The problem of recognizing probe
interval graphs in polynomial-time when the partition of the vertex set is not
part of the input was recently solved in [3]. Earlier attempts were made to gain a
better understanding of the structure of these graphs by analyzing probe chordal
graphs [9], where polynomial-time recognition algorithms were developed both
in the case when a partition is a part of the input and for the situation when no
partition is given. It is interesting to investigate other probe classes of graphs.

Definition 1. Let G be a class of graphs. A graph G is a probe graph of G if
its vertices can be partitioned into a set P and an independent set N such that
G can be embedded into a graph G′ ∈ G by adding edges between certain vertices
of N. The vertices of P are called probes and those of N are called nonprobes.

If the partition of the vertices into probes and nonprobes is part of the input,
then we call the graph a partitioned probe graph of G. We call a graph G′ ∈ G
obtained from G by adding some edges between vertices of N an embedding of
G. We have the following easy but useful observation.

Theorem 1 (Probe Sandwich Theorem). Let G be a self-complementary
class of graphs, i.e., H ∈ G ⇔ H ∈ G. Let G = (P + N, E) be a graph with
a partition of its vertices into P and an independent set N. Let G∗ be obtained
from G by removing all edges between vertices of N. Then G is a partitioned
probe graph of G if and only if G∗ is in the same category.

Another motivation for investigating probe self-complementary classes of graphs
is the relation to perfect graphs. Lovász proved in 1972 that the class of perfect
graphs1 is self-complementary [19]. Considering probe graphs of classes of perfect
graphs gives rise new classes, and it is interesting to see that many probe classes
of perfect graphs are still perfect. If G = (P + N, E) is a probe perfect graph,
then the complement of every odd cycle of length at least five contains exactly
two nonprobes, and these are connected by an edge in any embedding of G. This
observation, and the Probe Sandwich Theorem 1 mentioned above, lead us to
conjecture the following:

1 A graph G is called perfect if for every induced subgraph the chromatic num-
ber equals its maximum clique size. For a nice appetizer on perfect graphs we
refer to [11]. The strong perfect graph theorem (formulated by Berge), states that
a graph is perfect if and only if it does not contain an induced odd cycle of length
at least 5 or the complement of such a cycle. Recently this was proved to be cor-
rect [4]. Furthermore, an O(n9) time recognition algorithm for perfect graphs was
announced [7]

810 Maw-Shang Chang et al.

Conjecture 1 (Probe Perfect Graph Conjecture). There exists a polynomial-time
algorithm to test whether a partitioned graph G = (P + N, E) is probe perfect.

Conjecture 2 (Strong Probe Perfect Graph Conjecture). There exists a poly-
nomial-time algorithm to test whether a graph is probe perfect.

Remark 1. When a suitable embedding of a graph G into a perfect graph G′ is
given, a nice decomposition tree for G′ can be obtained in polynomial time and
this decomposition tree could be of use to solve NP-complete problems for G
in polynomial-time. Here lies one of the motivations for studying probe perfect
graph classes.

One of the merits of perfect graphs is that some of the ‘basic’ NP-complete
problems such as clique, independent set, chromatic number, and clique
cover become solvable in polynomial-time when restricted to perfect graphs [1].
For probe classes of perfect graphs, we have the following theorem.

Theorem 2. Let G be any class of perfect graphs. Let PPG be the class of parti-
tioned probe graphs of G. Then the clique problem can be solved in polynomial-
time for all graphs in PPG.

Proof. Let G = (P+N, E) ∈ PPG. By the recent algorithm that appeared in [7],
there exists a polynomial-time algorithm to test whether a graph is perfect.
Recall that, if a graph is perfect the clique problem is tractable in polynomial-
time, via Lovász theta function, see, e.g., pp. 325–356 in [1].
Observe that ω(G) can be computed as follows: For every vertex x ∈ N, compute
the maximum clique size of G[N [x]], which is a perfect graph. Also compute the
maximum clique size of G[P], which is likewise perfect. Then ω(G) will be the
maximal value of these, and thus it can be computed in polynomial-time. ��

Remark 2. Notice that the chromatic number of such a graph G is at most
ω(G)+1, since, after coloring G[P] with ω(G[P]) colors we can color the vertices
of N using only one additional color.

In our paper we expand the research into probe graph classes by investigating
probe cographs, probe P4-reducible graphs, probe P4-sparse graphs, and probe
splitgraphs. The general strategy is to investigate the partitioned case first, then
to deal with the unpartitioned case by exhibiting a polynomial number of feasible
partitions.

2 Probe Cographs

A cograph is a graph without an induced P4, i.e., an induced path with 4 vertices.
By now there are many characterizations known and in the literature various
characterizations of the class are used to define the class. There is a wide variety
of linear time cograph recognition algorithms. To mention just a few, see, e.g., [6,
12]. For our purpose, the following portrayal of the class will make the grade [5].

On the Recognition of Probe Graphs 811

Theorem 3. [5] Cographs can be characterized as follows:

1. A graph consisting of a single vertex is a cograph.
2. Let G1 and G2 be cographs. Then the join of G1 and G2, obtained by making

every vertex of G1 adjacent to every vertex of G2 is again a cograph.
3. Let G1 and G2 be cographs. Then the union of G1 and G2 is again a cograph.

To strike up an acquaintance with the class of probe cographs we mention some
bagatelles. The proofs of these observations are omitted because of limited space.
Observations. Let G be a probe cograph. Then:

a. Every induced 2K2 in a probe cograph remains an induced 2K2 in every em-
bedding.

b. If G contains an induced P5, say P = [u, v, w, x, y], then vertices u, w, and y
must be nonprobes.

c. G has no induced Pk+1 and Ck for any k ≥ 5. Other forbidden induced
subgraphs include parachute, domino, co-rising sun, the parapluie, and plenty
of others. We refer to [2] for depicting these graphs.

d. A probe cograph is weakly chordal [13]; hence it is perfect.
e. If G is a probe cograph then its clique-width is at most 4.

The following observations enable us to reduce the recognition problem in case
the graph or its complement is disconnected.

Theorem 4. 1. Suppose G = (V,E) is disconnected. Then G is a probe cograph
if and only if the subgraph induced by every connected component is a probe
cograph.

2. Let G = (V,E) be a graph whose complement G is disconnected. Let C1, C2,
. . . , Ck be the components of G. Then G is a probe cograph if and only if all
induced subgraphs G[C1], G[C2], . . . , G[Ck] are cographs except possibly one
which is a probe cograph.

Applying Theorem 1 and Theorem 4, we have the following result.

Theorem 5. There exists an O(n3) time algorithm to test whether a partitioned
graph G = (P + N, E) is a probe cograph.

Proof. Let G = (P + N, E) be a partitioned graph. Since there exists linear time
recognition algorithm for cographs and using an adjacency matrix for the graph
G, we can find a representation for G in O(n2) time; then Theorem 4 reduces
the problem to the case when both G and G are connected in time O(n2).
Suppose that G is a probe cograph and let H be a valid embedding of G into
a cograph. Since G is connected, and since H is obtained from G by adding
some edges to it, also H will be connected. By Theorem 3, H will be the join
of two cographs H1 and H2. Obviously, H is disconnected and the union of H1

and H2. The graph G∗ is obtained by deleting some edges from H ; hence it is
disconnected. Again using the adjacency matrix we find a representation of G∗

in O(n2) time. By the Probe Sandwich Theorem, G is a probe cograph if and

812 Maw-Shang Chang et al.

only if G∗ is a probe cograph. Let C1, . . . , Ck be the components of G∗ and check
whether each G[Ci] is a probe cograph recursively. If G∗ is connected, then G is
not a probe cograph.
We have described the recognition algorithm recursively and shown its correct-
ness. The algorithm first checks whether the input graph is a cograph, which
can be done in O(n + m) time. If it is not, then it takes O(n2) time to reduce
the problem to test whether each component of G, G, or G∗ induces a probe
cograph. There are at most O(n) tests with reductions. Therefore the running
time of the algorithm is O(n3). ��

Remark 3. The proof shows that each probe cograph has a decomposition tree
where the leaves are the vertices of the graph and the internal nodes are of
three types: either a join node, a union node, or a “sandwich join” node. This
decomposition tree can be built in O(n3) time.

In the rest of this section we show that there is a polynomial time algorithm
that finds a suitable nonprobe set N for an unpartitioned probe cograph.

Theorem 6. Let G and G be connected and assume that G is not a cograph.
Then G is a probe cograph if and only if there are two non–adjacent vertices x
and y in G such that G is a probe cograph with probe set P = N(x) +N(y) and
nonprobe set N = V − P.

Proof. Assume G is a probe cograph with an embedding G′. We may assume
that G′ is the join of two graphs G′

1 and G′
2 since G′ is obtained from the

connected graph G by adding some edges.
Let Ni and Pi be the probes and nonprobes in G′

i, i = 1, 2. We may assume
N1 �= ∅ and N2 �= ∅ since G is connected. Take x ∈ N1 and y ∈ N2. ��

Using Theorem 4 and Theorem 6 we have the following theorem.

Theorem 7. There is an O(n5) time algorithm to test whether G is a probe
cograph.

Proof. Using Theorem 4 we can reduce the problem to the case where both G
and G are connected. This reduction can obviously be done within the claimed
time bound.
By Theorem 6 there exists a collection of O(n2) feasible partitions of the form
P = N(x) + N(y) and N = V − P. For every such pair of vertices, it takes
O(n+m) to obtain the actual partition into probes P and nonprobes N. Each of
these O(n2) partitions can be tested using the algorithm of Theorem 5 in O(n3)
time. Therefore, the overall time complexity for testing if G is a probe cograph
is O(n2(n3 + n +m)) = O(n5). ��

3 Probe P4-Reducible Graphs

From this section, most of the proofs are omitted because of space limitations.

On the Recognition of Probe Graphs 813

Definition 2. A graph G is P4-reducible if every vertex belongs to at most one
induced P4 of G.

Definition 3. An ornament in a graph G is an induced P4, P = [a, b, c, d] such
that every vertex of G− P is adjacent to b and to c and non-adjacent to a and
to d.

P4-reducible graphs were defined in [15] and in this paper appeared also the
following characterization which led to a linear time recognition algorithm.

Theorem 8 ([15]). A graph G is P4-reducible if and only if for every induced
subgraph H of G, exactly one of the following conditions is satisfied:

1. either H or H is disconnected, or
2. there is a unique ornament.

Remark 4. Notice that the class of P4-reducible graphs is self complementary.
Since P4-reducible graphs have no induced house, it follows that probe P4-
reducible graphs are weakly chordal, and hence perfect.

We first consider the partitioned case: a graph G = (P + N, E) with a partition
of V into probes P and nonprobes N is given.

Lemma 1. Let G = (P + N, E) be a partitioned graph. Assume P is a set of
4 vertices in G that can be made into an ornament of G by adding some edges
between vertices of N.Then G is probe P4-reducible if and only if G−P is probe
P4-reducible.

The next lemma deals with the case that G can be embedded into a P4-reducible
graph G′ such that G′ is disconnected.

Lemma 2. Let G = (P + N, E) be a connected partitioned graph. Let G∗ be the
graph obtained from G by deleting all edges between vertices of N. Let C1, . . . , Ck

be the components of G∗, and let

Ni = (Ci ∩ N) ∧ (Pi = Ci ∩ P)

Then G is probe P4-reducible if and only if each G[Pi + Ni] is probe P4-reducible
with a vertex partition into probes Pi and nonprobes Ni.

Theorem 9. There exists a polynomial-time algorithm that checks if a graph
G = (P + N, E) is a partitioned probe P4-reducible graph.

Proof. If G is disconnected, then G is probe P4-reducible if and only if every
component is probe P4-reducible.
If G = (P+N, E) is a connected probe P4-reducible graph, then either Lemma 1
or Lemma 2 with k ≥ 2 applies. This can be tested in polynomial-time. If neither
lemma applies then G is not a partitioned probe P4-reducible graph. ��

We now describe the recognition algorithm for the unpartitioned case.

814 Maw-Shang Chang et al.

i. Assume that G′ is a disconnected embedding. Then G is also disconnected,
and G is probe P4-reducible if and only if every component is probe P4-
reducible. Henceforth assume that G is connected.

ii. Assume that G′ is an embedding such that G′ is disconnected. Identically
to the proof of Theorem 6 it can be shown that in this case there must exist
non-adjacent vertices x and y in G such that choosing P = N(x)+N(y) and
N = V − P provides a valid partition.

iii. Assume that G′ is an embedding with an ornament P = [a, b, c, d]. Notice
that, if G itself has some ornament P ′, then G is probe P4-reducible if and
only if G − P ′ is P4-reducible. Hence, we may assume that P is not an
ornament of G. Since G is connected, we may assume that a, d ∈ P in some
valid partition if this exists. We consider three possibilities:
a. There is a valid partition with b ∈ P and c ∈ N. Hence b is adjacent in G

to all vertices of V − P and N = (V − P −N(c)) + c.
b. There is a valid partition with b, c ∈ N. Hence b and c are not adjacent

in G. Then N(b)− P = N(c)− P = P− {a, d}.
c. If b, c ∈ P, then P is an ornament in G which contradicts our assumption.

By the discussion above we obtain:

Theorem 10. There exists a polynomial-time algorithm to test whether a graph
G is a probe P4-reducible graph and produce a valid embedding if this is the case.

4 Probe P4-Sparse Graphs

Hoàng introduced P4-sparse graphs [14].

Definition 4. A graph G is P4-sparse if no set of 5 vertices induces more than
one P4.

In [16] Jamison and Olariu characterized P4-sparse graphs using spiders.

Definition 5. A graph G is a spider if there is a partition of the vertices into
three sets S, K, and R, satisfying:

1. S is an independent set, K is a clique, and |S| = |K| ≥ 2,
2. every vertex of R is adjacent to every vertex of K and to no vertex of S,
3. there is a bijection f between S and K such that either ∀x∈SN(x) = {f(x)},

or ∀x∈SN(x) = K − f(x). In the first case, G is called a thin spider and in
the second case G is a thick spider.

The set R is called the head of the spider.

Theorem 11 ([16]). A graph is P4-sparse if and only if for every induced sub-
graph H exactly one of the following conditions is satisfied:

1. either H or H is disconnected, or
2. H is isomorphic to a spider.

On the Recognition of Probe Graphs 815

Notice that Theorems 4, 6, and Lemma 2 can be “translated” into similar state-
ments for P4-sparse graphs. Due to space limitations we have to omit the precise
description.
In the following lemma we show how to check whether a partitioned graph G
can be embedded into a thin spider by adding some edges in N.

Lemma 3 (Thin spider embedding). Assume G = (P + N, E) is connected
and partitioned.

1. Assume there exists a vertex x ∈ P and a pendant vertex y ∈ N(x) such that
V partitions into a set S = y + (V − N [x]) of pendants, K = N(S), and
R = V −K − S, and assume that this partition can be completed into a thin
spider by adding edges to N. Then G is a probe P4-sparse if and only if G[R]
is probe P4-sparse with the induced partition into probes and nonprobes.

2. Let S be the set of pendant vertices that are probes. Let K = N(S) and
R = V − K − S. Assume G can be embedded into a thin spider with this
partition. Then G is a probe P4-sparse if and only if G[R] is probe P4-sparse
with the induced partition.

3. Otherwise, G is not a probe thin spider.

Lemma 4 (Thick spider embedding). Let G = (P + N, E) be a partitioned
graph. Let G∗ be the graph obtained from G by removing all edges between vertices
of N. Then G is a probe thick spider if and only if G∗ is a probe thin spider.

Proof. The class of P4-sparse graphs is self-complementary. The complement of a
thin spider is a thick spider. The claim now follows immediately from the Probe
Sandwich Theorem 1. ��

Theorem 12. There exists a polynomial-time algorithm that checks if a parti-
tioned graph G = (P + N, E) is probe P4-sparse.

Now we have arrived at the unpartitioned recognition problem.

Theorem 13. There exists a polynomial-time algorithm to test whether a graph
G is a probe P4-sparse graph and produce a valid embedding if this is the case.

Proof. The case where G or G∗ is disconnected is easy. Notice that if there is
an embedding with a disconnected complement, then also G∗ is disconnected.
Lemmas 3 and 4 deal with the case where G is embedded into a spider. The
proofs of these lemmas show that only a polynomial number of partitions need
to be checked. ��

5 Probe Splitgraphs

Recall that a graph G = (V,E) is a splitgraph if its vertices can be partitioned
into a clique C and an independent set S. We use G = (C, S,E) to denote a
splitgraph. We observe that probe splitgraphs are perfect.

816 Maw-Shang Chang et al.

Lemma 5. Probe splitgraphs are perfect.

Assume that G′ = (C, S,E′) is an embedding of a probe splitgraph G = (V,E).
Let N be the set of nonprobes, i.e., N is an independent set in G, every edge
in E′ − E connects two vertices in N, and every vertex in N is adjacent to an
edge in E′ − E. Let NC and NS denote N ∩ C and N ∩ S, respectively. Let P
and PC denote V −N and C−NC , respectively. There exists an embedding of G
such that NS is empty. Thus, to test whether an unpartitioned graph is a probe
splitgraph, it is sufficient to hit upon NC and add the necessary edges to turn it
into a clique.

Theorem 14. A graph G is a probe splitgraph if and only if G is a splitgraph
or if there exists a clique K and one vertex κ ∈ K such that G −K is bipartite
and there is a bipartition of G −K such that every vertex of one color class is
adjacent to every vertex of K − κ and not adjacent to κ.

The recognition algorithm for unpartitioned probe split graphs is now lucid.
We assume that G is not a splitgraph, then NC �= ∅. If G is bipartite (i.e., if
ω(G) = χ(G) ≤ 2) then we complete it into a splitgraph by making a clique of
one of the two color classes.
Next assume ω(G) ≥ 3 and G is probe split with nonprobes N = NC and probes
P. Let K be a maximal clique of G. Then K consists of a subset of C −NC and
either one vertex κ ∈ NC , or one vertex s ∈ S, or both. For each w ∈ N either
(C − NC) ∪ {w} or (C − NC) ∪ {w, s} for some s ∈ S is a maximal clique of
G. Furthermore, it is not hard to see that G has O(n2) maximal cliques. Our
algorithm generates all maximal cliques of G in time O(n5) using an algorithm
given in [22]. Then it checks for every maximal clique K ofG all possible deletions
of one or two vertices to obtain a candidate for PC . The desired partition of the
bipartite remaining part as requested in Theorem 14 can be checked in O(n+m)
time. There are O(n2) maximal cliques and n2 possible deletions of vertices; thus
whether G is a probe splitgraph can be checked in time O(n4(n+m)).

Theorem 15. There exists a polynomial-time algorithm to recognize probe split-
graphs.

Acknowledgments

We thank Ross McConnell for preliminary discussions concerning some of the
topics of this paper. We thank Gérard Chang for fruitful discussions concerning
several parts of this paper. We thank Alexander Schrijver and Rolf Niedermeier
for ongoing discussions concerning the probe perfect graph conjectures. Finally
we are grateful to David Chandler for his careful proofreading.

References

1. Berge, C. and C. Chvatal ed., Topics on Perfect Graphs, Annals of Discrete Math-
ematics 21, 1984.

On the Recognition of Probe Graphs 817

2. Brändstadt, A., V. B. Le, and J. P. Spinrad, Graph classes: A survey SIAM Mono-
graphs on Discrete Mathematics and Applications, Philadelphia, 1999.

3. Chang, G. J., A. J. J. Kloks, J. Liu, and S. L. Peng, The PIGs full monty—a floor
show of minimal separators, to appear in STACS’2005, LNCS 3404, pp. 521–532.

4. Chudnovsky, M., P. Seymour, N. Robertson, and R. Thomas, The strong perfect
graph theorem. Manuscript 2002.

5. Corneil, D. G., H. Lerchs, and L. Stewart-Burlingham, Complement reducible
graphs, Discrete Applied Mathematics 3, (1981), pp. 163–174.

6. Corneil, D. G., Y. Perl, and L. K. Stewart, A linear recognition algorithm for
cographs, SIAM Journal on Computing 14, (1985), pp. 926–934.

7. Cornuéjols, Gérard, Xinming Liu, and Kristina Vus̆ković, A polynomial algorithm

for recognizing perfect graphs, Proceedings of the 44th Annual IEEE Symposium
on Foundations of Computer Science (FOCS’03), 2003.

8. Golumbic, M. C., Algorithmic Graph Theory and Perfect Graphs, Academic Press,
New York, 1980.

9. Golumbic, M. C. and M. Lipshsteyn, Chordal probe graphs (extended abstract),
Proceedings WG’2003 , LNCS 2880, (2003), pp. 249–260.

10. Golumbic, M. C. and Ann N. Trenk, Tolerance Graphs, Cambridge studies in
advanced mathematics 89, 2004.

11. Grötschel, Martin, Characterizations of perfect graphs, Mathematical Programming
Society Newsletter 62, (1999).

12. Habib. M. and C. Paul, A simple linear time algorithm for cograph recognition,
Discrete Applied Mathematics 145, (2005), pp. 183–197.

13. Hayward, R. B., Weakly triangulated graphs, Journal of Combinatorial Theory,
series B 39, (1985), pp. 200–208.

14. Hoàng, C. T., Perfect graphs, PhD thesis, School of Computer Science, McGill
University, Montreal 1985.

15. Jamison, B. and S. Olariu, P4-reducible graphs—a class of uniquely tree repre-
sentable graphs, Studies in Appl. Math. 81, (1989), pp. 79–87.

16. Jamison, B. and S. Olariu, A unique tree representation for P4-sparse graphs,
Discrete Applied Mathematics 35, (1992), pp. 115–129.

17. Jamison, B. and S. Olariu, Recognizing P4-sparse graphs in linear time, SIAM
Journal on Computing 21, (1992), pp. 381–406.

18. Johnson, J. L. and J. Spinrad, A polynomial-time recognition algorithm for probe

interval graphs, Proceedings 12th ACM–SIAM Symposium on Discrete Algorithms
(2001), pp. 477–486.

19. Lovász, L., A characterization of perfect graphs, Journal of Combinatorial Theory
Series B 13, (1972), pp. 95–98.

20. McConnell, R. M. and J. Spinrad, Construction of probe interval graphs, Proceed-

ings 13th ACM–SIAM Symposium on Discrete Algorithms (2002), pp. 866–875.
21. McMorris, F.R., Chi Wang, and P. Zhang, On probe interval graphs, Discrete

Applied Mathematics 88, (1998), pp. 315–324.
22. Tsukiyama, S., M. Ide, H. Ariyoshi, and I. Shirakawa, A new algorithm for gener-

ating all the maximal independent sets, SIAM Journal on Computing 6, (1977),
pp. 505–517.

23. Zhang, P, E. A. Schon, S. G. Fisher, E. Cayanis, J. Weiss, S. Kistler, and
P. E. Bourne, An algorithm based on graph theory for the assembly of contigs
in physical mapping of DNA, CABIOS 10, (1994), pp. 309–317.

Power Domination Problem in Graphs

Chung-Shou Liao� and Der-Tsai Lee�

Dept. of Computer Science and Information Engineering
National Taiwan University, Taipei, Taiwan

{shou794,dtlee}@iis.sinica.edu.tw

Abstract. To monitor an electric power system by placing as few phase
measurement units (PMUs) as possible is closely related to the famous
vertex cover problem and domination problem in graph theory. A set S is
a power dominating set (PDS) of a graph G = (V, E), if every vertex and
every edge in the system is observed following the observation rules of
power system monitoring. The minimum cardinality of a PDS of a graph
G is the power domination number γp(G). We show that the problem
of finding the power domination number for split graphs, a subclass of
chordal graphs, is NP-complete. In addition, we present a linear time
algorithm for finding γp(G) of an interval graph G, if the interval ordering
of the graph is provided, and show that the algorithm with O(n log n)
time complexity, is asymptotically optimal, if the interval ordering is not
given, where n is the number of intervals. We also show that the same
results hold for the class of proper circular-arc graphs.

1 Introduction

To continually monitor the power system and observe all the states, like: voltage
magnitude at loads and the current phase measurement at branches [1] is an
important task for electric power companies. Placing phase measurement units
(PMUs) at selected bus locations in the power system is one of the efficient
methods to monitor the power system. Because of their high cost, the number
of PMUs has to be minimized while maintaining the ability to monitor and
observe the system. A power system is said to be observed if all the states can
be determined by a set of PMUs according to the following rules [1]:

1. Assign a state of current phase measurement to each branch incident to a
bus provided with a PMU (also, assign a state of voltage measurement to
each bus located with a PMU);

2. Assign a state of voltage measurement to every bus incident to a branch with
known current and the other end bus with known voltages by using Ohm’s
law;

3. Assign a state of current phase measurement to each branch connecting two
buses with with a known voltage by using Ohm’s law;

4. Assign a state of current phase measurement to a branch whose current can
be inferred by using Kirchhoff’s current law

� Also with the Institute of Information Science, Academia Sinica, Nankang, Taipei
115, Taiwan

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 818–828, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Power Domination Problem in Graphs 819

Let G = (V,E) be a graph representation of an electric power system,
where a vertex represents an electric node (a substation bus where transmis-
sion branches, loads, and generators are connected) and an edge represents a
transmission branch joining two electric nodes. The problem of locating a small-
est set of PMUs to observe all the states of the power system is closely related
to the famous vertex cover problem and domination problem. The power sys-
tem observation problem can be transformed into the following graph-theoretic
problem [5–7]. Given a graph G = (V,E), a set S ⊆ V is said to be a power
dominating set (PDS) if every vertex and edge in G are observed by S according
to the following observation rules corresponding to the above-mentioned PMU
observation rules:

1. Any vertex a PMU is placed and its incident edges are observed.
2. If one end vertex of an observed edge is observed, then the other end vertex

is observed.
3. Any edge connecting two observed vertices is observed.
4. If a vertex is of degree k > 1, and k− 1 of these incident edges are observed,

then all k incident edges are observed.

The minimum cardinality of a PDS of a graph G is called the power domination
number of G, denoted γp(G). A set D ⊆ V (G) is said to be a dominating set
in a graph G = (V,E) if every vertex in V \D is adjacent to at least a vertex
in D. The cardinality of a minimum dominating set of a graph G is called the
domination number of G, denoted γ(G). A vertex cover of a graph G = (V,E)
is a set C ⊆ V (G) such that C contains at least one end vertex of every edge in
E(G). The cardinality of a minimum vertex cover of a graph G is denoted β(G).
It is obvious that 1 ≤ γp(G) ≤ γ(G) and 1 ≤ γp(G) ≤ β(G) for any graph G.
In [5], Haynes et al. considered the power domination problem as a variation of
the domination problem and studied the relationship between them.

2 Notation and Definitions

A graph H = (VH , EH) is a subgraph of G = (V,E) if VH ⊆ V and EH ⊆ E
and it is an induced subgraph of G if for all u, v ∈ VH , u, v ∈ EH if and only
if u, v ∈ E. If VH = {vi, . . . , vk}, the induced subgraph H = (VH , EH) is also
written as {vi, . . . , vk}G. The subscript G denoting the underlying graph will
be omitted in the following without any confusion. A vertex w ∈ V is said to
be a neighbor of or adjacent to a vertex v ∈ V if v, w ∈ E. The neighborhood
of a vertex v ∈ V is NG(v) = {w ∈ V : v, w ∈ E}. The closed neighborhood
of v ∈ V is NG[v] = NG(v) ∪ {v}. The closed neighborhood of a vertex set S,
NG[S] =

⋃
s∈S NG[s]. We define the out-degree of v ∈ VH of an induced subgraph

H = (VH , EH) of G to be the number of vertices in V \ VH adjacent to v, and
the edge v, w ∈ E connecting a vertex v ∈ VH and w /∈ VH is called an out-going
edge. The observation rules for a vertex set S = V 0 where PMUs are placed can
be rephrased as follows.

820 Chung-Shou Liao and Der-Tsai Lee

Induced Observation Rule
1. The sets of vertices and edges in the induced subgraphK1 = (V 1, E1) ofG are

observed, where V 1 is the closed neighborhood of V 0. That is V 1 = NG[V 0].
2. The sets of vertices and edges in the induced subgraph Ki = (V i, Ei) of G

are observed, where V i = V i−1∪{w | v, w is an out-going edge and v ∈ V i−1

is of out-degree 1}, i = 2, 3, 4,

Note that the new edge v, w ∈ E, where v ∈ V i−1 is of out-degree 1, defined
in Induced Observation Rule 2, is exactly what is specified in the fourth
observation rule. The final graph Ki = Ki−1 for some i > 0 is called the observed
graph of V 0, denoted GV 0 , and the size of GV 0 , denoted |GV 0 | is defined to be
the number of the vertices in V i, i.e., |GV 0 |= |V i|. The set V 0 is a PDS of G
if GV 0 = G. The vertex set V 0 of the induced subgraph K0 = (V 0, E0) of G is
referred to as the kernel, and vertices in the kernel are referred to as the kernel
vertices. The subsequent vertex sets V i, i > 0 are derived kernels of the ith

generation. For ease of reference the vertices V i \ V i−1, i > 0 are called the ith

generation descendants or i-descendants for short, of those in V 0. Consider two
kernels A and B and the observed graphs GA and GB respectively. Kernel A and
kernel B are said to be independent, if |GA∪B| is equal to |GA ∪ GB|. Otherwise,
i.e., |GA∪B| > |GA ∪ GB |, they are dependent. The properties below follow from
the Induced Observation Rule.

Property 1. For two vertex sets, U and W of a graphG, if NG[U] ⊆ NG[W], then
GU ⊆ GW . That is, the observed graph of kernel U is contained in the observed
graph of kernel W .

Property 2. Given a graph G = (V,E), two kernels A, B ⊆ V and their observed
graphs GA, GB , kernel A and kernel B are dependent, that is, |GA∪B| > |GA∪GB |
if and only if there is a vertex v ∈ GA of out-degree k, such that among the k
vertices adjacent to v, k − 1 of them are in GB, or vice versa.

3 NP-Completeness Results

In this section we establish NP-completeness results for the power domination
problem for split graphs (a subclass of chordal graphs). Given a graph G =
(V,E), a stable set is a subset of V in which all vertices are pairwise non-adjacent,
and a clique is a subset of V in which all vertices are pairwise adjacent. A graph
is a bipartite graph, if its vertex set can be partitioned into two stable sets. A
graph is a split graph, if its vertex set can be partitioned into a stable set and a
clique. Note that a split graph is chordal, that is, for every cycle of length greater
than three, there must be an edge, called chord, connecting two non-consecutive
vertices in the cycle. In [5] Haynes et al. gave NP-completeness proofs of the
power domination problem for bipartite and chordal graphs. However, there
is a flaw in the NP-completeness proof for chordal graphs. In their reduction
proof from the well-known NP-complete problem 3SAT to the power domination
problem for chordal graphs, they constructed an instance of chordal graph G(C)
from an instance C of 3SAT as follows. For each variable ui, construct a complete

Power Domination Problem in Graphs 821

subgraph of four vertices, two of which are labeled ui and ūi. For each clause
Cj = {ui, uk, ul}, create two nonadjacent vertices labeled Cj,1 and Cj,2, and add
edges: ui, Cj,1, ui, Cj,2, uk, Cj,1, uk, Cj,2, ul, Cj,1, ul, Cj,2. However, the graph
G(C) so constructed is not always a chordal graph.

Now we establish the NP-hardness of the power domination problem for split
graphs by transforming to it from the vertex cover problem, which is known to
be NP-complete. The vertex cover decision problem is defined as follows.
Given a nontrivial graph and a positive integer k, determine if there is a vertex
set of size at most k such that each edge of the graph has at least one end vertex
in this set. The power domination decision problem is defined as follows.
Given a graph and a positive integer k′, determine if there exists a vertex set
of size at most k′ such that every vertex and every edge are observed by this
set according to the observation rules. Similar NP-complete proofs are given in
[6, 7, 10]. Due to space limitation, we give without proofs the following theorem.
For details the reader is referred to [11].

Theorem 1. The power domination decision problem is NP-complete for split
graphs.

4 Power Dominating Set for Interval Graphs

A graph G is called an interval graph if its vertices can be put into a one-to-one
correspondence with a set of intervals I on the real line such that two vertices
are connected by an edge of G if and only if their corresponding intervals have
nonempty intersection. We call I an interval representation for G. It is known[4]
that the class of interval graphs is a subclass of chordal graphs. Interval graphs
were studied extensively for the domination problem, see, e.g., [3, 4, 6, 7]. In
particular, most of the variations of the domination problem are solvable for this
class of graphs. We shall assume in what follows that an interval representation
of the interval graph is available. That is, suppose G = (V,E) is an interval
graph, and its interval representation {Ii = [ai, bi] : 1 ≤ i ≤ n}, is indexed so
that their right endpoints satisfy the property: b1 ≤ b2 ≤ ... ≤ bn, and this
ordering satisfies the following interval ordering (IO) property [13]:

Property 3. G = (V,E) is an interval graph if and only if there exists an interval
ordering v1, v2, . . . , vn such that the following condition holds.

(IO) If i < j < k and vi, vk ∈ E, then vj , vk ∈ E.

In this section, we present a linear time algorithm for the power domination
problem for interval graphs if an interval ordering of the given interval graph is
provided. In the following, we assume all the graphs we discussed are connected.
First, we introduce the concept of gap for choosing PMUs. Given an interval
graph G = (V,E) with interval ordering {v1, v2, . . . , vn}, i.e., the corresponding
intervals Ii = [ai, bi], ∀i, with b1 ≤ b2 ≤ . . . ≤ bn, we assume without loss of
generality, that the left endpoint ordering of all intervals is also provided, that
is, a′1 ≤ a′2 ≤ . . . ≤ a′n. For two successive right endpoints bi and bi+1, i ≥ 1,

822 Chung-Shou Liao and Der-Tsai Lee

the pair (bi, bi+1) is called a b-gap if there exists no vertex vk �= vi+1 whose
left endpoint ak satisfies bi < ak ≤ bi+1. Similarly, an a-gap is a pair (a′i, a

′
i+1)

of two successive left endpoints such that there exists no vertex vk �= v′i whose
right endpoint bk satisfies a′i ≤ bk < a′i+1. A b- or a-gap may contain more
than two successive right or left, respectively, endpoints. Thus for each b-gap
we define the first and last right endpoints, i.e., bfi and b�i, respectively, and
similarly for each a-gap we define the first and last left endpoints, i.e., a′fi

and
a′�i

, respectively. The set of all the endpoints on the real line can be marked with
a sequence of labels, a and b representing left and right endpoints, respectively.
When consecutive a’s are grouped collectively, we ignore the singleton b’s that
are scattered in between joining their preceding a’s that define some interval,
and mark the a-gap, A. Similarly, when consecutive b ’s are grouped collectively,
we ignore the singleton a’s scattered in between joining their succeeding b’s that
define some interval, and mark the b-gap, B. Thus, we shall obtain a sequence
of A’s and B’s interleaved with a’s and b’s. Note that there may be overlap of
successive A and B. For instance, given the subsequence a′i, bj, a

′
i+1, bj+1, where

a′i and bj define interval vj and a′i+1 and bj+1 define interval vj+1. Then by our
definition, a′i, bj , a

′
i+1 form an a-gap and bj, a

′
i+1, bj+1 form a b-gap. Similarly,

there also may be overlap of successive B and A. By pre-processing, we find
all the a- and b-gaps, ag1, ag2, . . . , agp and bg1, bg2, . . . , bgr, respectively, where
agi = (a′fi

, a′�i
) and bgj = (bfj , b�j), to form the above sequence of A’s and

B’s interleaved with a’s and b’s. In addition, the size of a-gap agi (b-gap bgj),
denoted |agi| (|bgj|), is defined to be the number of vertices defining this a-gap (b-
gap), i.e., |{v′fi

, v′fi+1, . . . , v
′
�i−1, v

′
�i
}| (|{vfj , vfj+1, . . . , v�j−1, v�j}|). Obviously,

|agi|, |bgj| ≥ 2, for each 1 ≤ i ≤ p, 1 ≤ j ≤ r. The notion of gaps plays an
important role in our algorithm, as it will become clear later.

Lemma 1. (blocking gap lemma) The b-gap bgi = (bfi , b�i), 1 ≤ i ≤ r is a
blocking gap of any vertex vj where the left endpoint of the interval corresponding
to vj lies to the right of b�i, i.e., aj > b�i . That is, each vertex vu with bu ≤ b�i

does not belong to the observed graph of {vj}. The a-gap agi = (a′fi
, a′�i

), 1 ≤
i ≤ p, is a blocking gap of any vertex vk where the right endpoint of the interval
corresponding to vk lies to the left of a′fi

, i.e., bk < a′fi
. That is, each vertex vu

with au ≥ a′fi
does not belong to the observed graph of {vk}.

For ease of reference we say that the b-gap bgi = (bfi , b�i), 1 ≤ i ≤ r is a left
blocking gap of any vertex vj that lies to the right of b�i , i.e., aj > b�i , and that
the a-gap agi = (a′fi

, a′�i
), 1 ≤ i ≤ p, is a right blocking gap of any vertex vk

that lies to the left of a′fi
, i.e., bk < a′fi

.
For any vertex vj , among all left blocking b-gaps, bgi = (bfi , b�i), for some i,

1 ≤ i ≤ r, the one with the largest b�i that is less than aj , is referred to as the
left blocking b-gap of vj . Similarly, for any vertex vk, among all right blocking
a-gaps, agi = (a′fi

, a′�i
), for some i, 1 ≤ i ≤ p, the one with the smallest a′fi

, that
is greater than bk, is referred to as the right blocking a-gap of vk.

Associated with a b-gap bgi = (bfi , b�i), 1 ≤ i ≤ r, we have a PMU candidate
or candidate for short, vci , which is the vertex adjacent to vfi and whose corre-
sponding interval has the maximum right endpoint bci, among those with this

Power Domination Problem in Graphs 823

property. Recall that vertex vci corresponds to an interval [aci , bci]. Note that
all the vertices vfi , vfi+1, . . . , v�i−1, v�i defining bgi are in N [vci]. Assume that
the PMU candidate vcr associated with the last b-gap bgr = (bfr , b�r), where
b�r = bn, is vn. It is trivial that the vertices vfi , vfi+1, . . . , v�i−1, v�i that define
the b-gap bgi = (bfi , b�i), 1 ≤ i ≤ r, are all contained in G{vci

}.
Let the b-gap bgk = (bfk

, b�k
) be the left blocking gap of vci , and the a-gap

agj = (a′fj
, a′�j

) be the right blocking gap of vci . The following lemmas follow
immediately.

Lemma 2. (backward observation lemma) The induced subgraph {v�k+1,
. . . , vfi , . . . , v�i , . . . , vci} is contained in the observed graph G{vci

} of the kernel
{vci}. We call this generation of observed vertices and edges a backward obser-
vation from the kernel {vci}. The backward observation from {vci} stops at the
left blocking gap bgk of vci .

Lemma 3. (forward observation lemma) Let v′u be the vertex to the imme-
diate right of aci , i.e., a′u > aci and between them there exists no other left end-
point. The induced subgraph {vci, v

′
u, v

′
u+1, . . ., v

′
fj−1} is contained in the observed

graph G{vci
} of the kernel {vci}. We call this generation of observed vertices and

edges a forward observation from the kernel {vci}. The forward observation from
{vci} stops at the right blocking gap agj of vci .

The following lemma illustrates the role of PMU’s on which we base our
algorithm.

Lemma 4. Given an interval graph G = (V,E), there exists an optimal PDS S
for G consisting exclusively of PMU candidates associated with b-gaps.

We introduce our main idea to solve the power domination problem in con-
nected interval graphs. Initially, the PMU candidate vc1 associated with the first
b-gap bg1 has to be chosen because of Lemmas 1 and 4. If we chose vcj �= vc1

with j > 1, then bg1 would be the left blocking gap of vcj and v1, in particular,
would not belong to G{vcj

}. Then the forward observation from {vc1} will pro-
ceed until the right blocking gap of vc1 . We consider the choice of the next PMU
candidate vci in a greedy manner such that all the vertices between vc1 and vci

belong to G{vc1 ,vci
} and the index i is as large as possible. If we can choose the

next candidate vci correctly, then by repeating the same strategy we claim that
we will find the optimal PDS. To do this we need to consider the necessary and
sufficient conditions that the kernels {vci} and {vck

} are complete. We say that
two different kernels {vci} and {vck

}, ci < ck are complete if all the vertices be-
tween vci and vck

belong to G{vci
,vck

}. Otherwise, they are said to be incomplete.
Besides, we call that {vck

} is maximally complete with respect to {vci} if they
are complete and ck − ci is maximum, i.e., we cannot find a vertex cj > ck such
that {vci} and {vcj} are complete.

First, we have some definitions. The essential spot of an a-gap agi = (a′fi
, a′�i

),
denoted ess(agi), is defined to be the second smallest right endpoint of the
vertices v′fi

, v′fi+1, . . . , v
′
�i

defining the a-gap. In addition, we say a vertex set S

824 Chung-Shou Liao and Der-Tsai Lee

breaks a b-gap bgj = (bfj , b�j) (respectively, an a-gap agi = (a′fi
, a′�i

)) if at least
|bgj|−1 vertices among vfj , . . . , v�j (respectively, at least |agi|−1 vertices among
v′fj

, . . . , v′�j
) belong to the observed graph GS . Obviously, if the essential spot,

ess(agi), of some a-gap agi lies to the immediate right of some b-gap bgk, i.e.,
ess(agi) > b�k

, then the kernel {vck+1} breaks this a-gap agi by Property 3 and
Lemma 2.

We use the next procedure to introduce the formal definition of alternat-
ing break of the blocking gaps between two kernels {vci} and {vck

}. First, for
convenience, we define that the essential spot of a b-gap bgi = (bfi , b�i), denoted
ess(bgi), is the second largest left endpoint of the vertices vfi , vfi+1 , . . . , v�i defin-
ing the b-gap (similar to the previous definition of essential spot of a-gap). Be-
sides, we use two linked lists A[] and B[] to store the a-gap and b-gap sequences,
respectively. For each ag (bg, respectively), we add the pointer from ess(ag) to
its immediate right b-gap (from ess(bg) to its immediate left a-gap, respectively).
The procedure Alternate Break is as follows.

Procedure Alternate Break(vci , vck
, A[], B[])

1. Let j = 1 and temp = 0;
2. while(there is a pair of gaps, a left a-gap and a right b-gap between vci , vck

)
{ Let the leftmost a-gap be agij and the rightmost b-gap be bgkj ;

if(the backward observation from vck
breaks agij)

{ Delete the broken a-gap, update A[] and the corresponding ess(bg);
temp = temp+ 1; }

if(the forward observation from vci breaks bgkj)
{ Delete the broken b-gap, update B[] and the corresponding ess(ag);
temp = temp+ 1; }

if(temp �= 2)
{ Return Failure; }

j = j + 1 and let temp = 0; }
3. Return Success;

The above procedure Alternate Break shows the repeated process of the
propagation of the forward observation from {vci} and the backward observation
from {vck

} alternately. We call this process an alternating break by two kernels
{vci} and {vck

}. By this definition, we characterize the notion of completeness
in the following lemma.

Lemma 5. Given a connected interval graph G = (V,E), kernels {vci} and
{vck

}, ci < ck, are complete, i.e., all the vertices between vci and vck
belong

to the observed graph G{vci
,vck

} if and only if between vci and vck
there exists

neither a-gap nor b-gap that remains to be unbroken via alternating break by
two kernels {vci} and {vck

}, that is, the procedure Alternate Break returns
Success.

Corollary 1. Given a connected interval graph G = (V,E), if the different ker-
nels {vci} and {vck

}, ci < ck, are incomplete, then there must exist at least one
a-gap and one b-gap between vci and vck

, which are unbroken via alternating
break by the kernels {vci} and {vck

}.

Power Domination Problem in Graphs 825

Based on the above, we present a linear time algorithm MPDI for solving the
power domination problem in a given connected interval graph. The correctness
and timing analysis of the algorithm can be found in [11].

Algorithm MPDI. Find a minimum PDS of a connected interval graph.
Input. A connected interval graph G = (V,E) with interval ordering v1, v2, . . . ,
vn. A linked list A[] consists of all the a-gaps ag1, ag2, . . . , agp and their essential
spots ess(agi), 1 ≤ i ≤ p, and also a linked list B[] consists of all the b-gaps
bg1, bg2, . . . , bgr and their PMU candidates vc1 , vc2 , . . . , vcr .
Output. A minimum PDS S of G.
Method.

1. Let S = {vc1} and vc = vc1 ;
2. Find the right blocking a-gap agi of vc;
3. Delete the b-gaps, if any, broken by the forward observation from the kernel
{vc} and update B[] and corresponding ess(ag) pointers;

4. Select a possible candidate v∗c = vck
associated with b-gap bgk where ess(agi)

either lies to the immediate left of or belongs to bgk;
5. /* Check completeness conditions for {vc} and {v∗c}. */

while(Alternate Break(vc, v∗c , A[], B[]) returns Failure)
{ Let the first a-gap blocking the forward observation be agij ;

Select the new possible candidate v∗c = vck′ associated with
b-gap bgk′ , where ess(agij) lies to the immediate left of or
belongs to bgk′ ; }

6. Put the maximally complete candidate v∗c w.r.t. the kernel vc into S;
7. Let vc = v∗c ; repeat Steps 2 to 7 until there is no right blocking a-gap of vc.

Theorem 2. Given a connected interval graph G = (V,E), Algorithm MPDI
produces an optimal PDS S of minimum cardinality for G.

Theorem 3. Algorithm MPDI takes Θ(nlogn) time, which is asymptotically op-
timal. In addition, it takes O(n) time provided that the endpoints of the intervalts
are given sorted.

5 Power Dominating Set for Proper Circular-Arc Graphs

We refer to [8], [12], [14] and consider the power domination problem in circular-
arc graphs. A graph G is called a circular-arc graph if its vertices can be put
into a one-to-one correspondence with a set of arcs on a circle such that two
vertices are adjacent in G if and only if their correspondence arcs have nonempty
intersection. We call this set of arcs on a circle a circular-arc representation. A
graph G is said to be proper if for the corresponding intervals or arcs of vertex
set of G, no one is contained in another. For example, G is a proper circular-arc
graph if no arc is contained in another arc in G. A circular-arc is denoted (ai, bi),
where bi follows ai in clockwise direction and ai and bi are called the left and
right endpoints respectively. Note that arc (bi, ai) denotes the complement of

826 Chung-Shou Liao and Der-Tsai Lee

arc (ai, bi) with respect to the circle. We arbitrarily select a right endpoint and
label it b1, and proceed to label the subsequent right endpoints following b1 in
clockwise direction as b2, b3, . . . , bn, and the corresponding vertices have thus a
circular ordering v1, v2, . . . , vn with b1 3 b2 3 . . . bn 3 b1, where bi 3 bj means
that bj follows bi in clockwise direction. Vertices between vi and vk refer to those
vertices whose corresponding right endpoints bj lie on the arc defined by (bi, bk),
i.e., bi 3 bj 3 bk. Two different kernels {vci} and {vck

}, ci 3 ck, are said to
be complete, if all the vertices between vci and vck

belong to G{vci
,vck

}. {vck
} is

said to be maximally complete with respect to {vci} if they are complete and
there exists no other vck′ such that vck

lies between vci and vck′ , and {vci} and
{vck′} are complete.

All lemmas in Section 4 also hold for proper circular-arc graphs. We present
a linear time algorithm for the power domination problem for proper circular-
arc graphs, where no arc is contained in another arc, provided that a circular
ordering of the proper circular-arc graph is given. We apply Step 2 to Step 5 of
Algorithm MPDI to find the candidate v∗c = vck

such that {v∗c} is maximally
complete with respect to {vc = vci}, ci 3 ck. It is obvious that this process
works in circular-arc graphs. We denote this candidate v∗c as NEXT(vc) if {v∗c}
is maximally complete with respect to {vc}. For the candidate vc, if there exists
no a-gap that is the right (or clockwise) blocking a-gap of vc, then all the vertices
following vc clockwise belong to G{vc} and we assume NEXT(vc)= null. Then
we have the following lemma to illustrate interleaving property of the vc and
NEXT(vc) relation.

Lemma 6. (Interleaving Property) Given a circular-arc graph G with a cir-
cular ordering v1, v2, . . . , vn, for any two distinct PMU candidates vci and vcj ,
ci 3 cj, we have NEXT(vci) 3 NEXT(vcj).

We construct the directed graphD = (VD, ED), where VD ={vc1 , vc2 , . . . , vcr}
and the directed edge (vci , vcj) ∈ ED if and only if vcj = NEXT(vci). By as-
sumption, G is a connected circular-arc graph with a circular ordering v1, . . . , vn.
First, we assume VD �= ∅, that is, at least one b-gap in G, else we let {vn} be
a PDS. Next, we assume that every vertex vci ∈ VD has its NEXT(vci), that
is, NEXT(vci)�= null, ∀i; otherwise, if there exists some vci with NEXT(vci)=
null, we select it as a PDS. Consequently, there exists at least one directed cy-
cle in D because VD is of finite cardinality. Besides, no two directed cycles can
share one common vertex since every vertex has exactly one out-degree in D. We
define PDS(vci) = {vci , v

(1)
ci , . . . , v

(m)
ci }, where v(j+1)

ci =NEXT(v(j)
ci), v(0)

ci = vci ,
and either vci= NEXT(v(m)

ci) or vci 3 NEXT(v(m)
ci). Undoubtedly, PDS(vci)

is a PDS containing vci for a circular-arc graph G by definition. We have the
following lemma.

Lemma 7. Let S be any PDS of a circular-arc graph G and vci ∈ S, for some i.
Then we have |PDS(vci)| ≤ |S|.

By Lemma 7, we know that PDS(vci) is the minimum PDS containing vci .
In addition, a vertex vci in VD is called a valid candidate if |PDS(vci)| = γp(G)
and we have the next result.

Power Domination Problem in Graphs 827

Lemma 8. There is at least one directed cycle consisting exclusively of valid
candidates in D.

Theorem 4. Every directed cycle C in the directed graph D consists exclusively
of valid candidates.

Note that the selection of candidate v∗c = vck
associated with the b-gap bgk

in Step 4 of Algorithm MPDI is exactly the one that is maximally complete
with respect to {vc} in proper circular-arc graphs. The reason is that if v∗c = vck

breaks the a-gap agi, then it also breaks all the a-gaps between agi and bgk since
their essential spots follow ess(agi) clockwise. Step 5 of Algorithm MPDI, that
checks completeness by alternating break procedure, is unnecessary for proper
circular-arc graphs. Based on the above, we have Algorithm MPDPC to solve
the power domination problem in proper circular-arc graphs.

Algorithm MPDPC. Find a minimum PDS of a connected proper circular-arc
graph.
Input. A connected proper circular-arc graph G = (V,E) with circular ordering
v1, v2, . . . , vn. All the a-gaps ag1, ag2, . . . , agp and their essential spots ess(agi),
1 ≤ i ≤ p, and also all the b-gaps bg1, bg2, . . . , bgr and their PMU candidates
vc1 , vc2 , . . . , vcr .
Output. A minimum PDS S of G.
Method.

1. if(there is no b-gap) { Let {vn} be a PDS and stop; }
2. Let all PMU candidates be labeled ”unvisited” and let vc = vc1 ;
3. while(vc is ”unvisited”)

{ Label vc as ”visited” and run Step 2 in MPDI;
if(there is no clockwise or right blocking a-gap of vc)
{ Let {vc} be a PDS and stop; }

Run Steps 3 and 4 in MPDI to find v∗c =NEXT(vc);
Let vc = v∗c ; }

4. Select the vertex set of the PDS(vc) from vc as a PDS;

Theorem 5. Given a proper circular-arc graph G = (V,E), Algorithm MPDPC
produces an optimal PDS of minimum cardinality for G in linear time if the
circular-arc endpoints are sorted.

6 Concluding Remarks

We have considered the power domination problem, which is related to the dom-
ination problem in graph theory [5], and shown that the power domination prob-
lem for split graphs (a subclass of chordal graphs) in NP-complete. We have also
presented a linear time algorithm for solving the power domination problem for
both interval graphs and proper circular-arc problem, provided that the end-
points of the corresponding interval model or circular-arc model have been given

828 Chung-Shou Liao and Der-Tsai Lee

sorted. We conjecture that the power domination problem for general circular-arc
graphs can be solved in linear time. There are several open problems: what are
the complexities of the power domination problem for other classes of intersec-
tion graphs and what are the relationships, if any, between the power domination
number and other variations of domination numbers.

References

1. T. L. Baldwin, L. Mili, M. B. Boisen, Jr., and R. Adapa, Power system observability
with minimal phasor measurement placewement, IEEE Trans. Power Syst. Vol. 8,
No. 2, May 1993, 707-715.

2. M. Ben-Or, Lower bounds for algebraic computation trees, Proc. 15th Annual
Symp. on theory of Computing, 1983, pp. 80-86.

3. G. J. Chang, Algorithmic aspects of domination in graphs, in: Handbook of Com-
binatorial Optimization (D.-Z. Du and P. M. Pardalos eds.) Vol. 3 (1998) 339-405.

4. M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press,
Inc (1980).

5. T. W. Haynes, S. M. Hedetniemi, S. T. Hedetniemi, and M. A. Henning, Domina-
tion in graphs applied to electric power networks, SIAM J. Discrete Math. Vol. 15,
No. 4, (2002) 519-529.

6. T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Domination in Graphs: The
Theory, Marcel Dekker, Inc. New York (1998).

7. T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Domination in Graphs: Advanced
Topics, Marcel Dekker, Inc. New York (1998).

8. Wen-Lian Hsu, and Kuo-Hui Tsai, Linear time algorithms on circular-arc graphs,
Infrom. Process. Letter., Vol. 40, (1991) 123-129.

9. C. S. Liao and G. J. Chang, Algorithmic aspect of k-tuple domination in graphs,
Taiwanese J. Math. 6 (2002) 415-420.

10. C. S. Liao and G. J. Chang, k-tuple domination in graphs, Inform. Process. Letter.,
Vol. 87, (2003) 45-50.

11. C. S. Liao and D. T. Lee, Power domination problem in graphs, manuscript, In-
stitute of Information Science, Academia Sinica, April 2005.

12. D. T. Lee, M. Sarrafzadeh, and Y. F. Wu, Minimum cuts for circular-arc graphs,
SIAM J. Comput., Vol. 19, No. 6, (1990) 1041-1050.

13. G. Ramalingam and C. Pandu Rangan, A unified approach to domination problems
in interval graphs, Inform. Process. Letter., Vol. 27, (1988) 271-274.

14. K. H. Tsai anad D. T. Lee, k-Best Cuts for Circular-Arc Graphs, Algorithmica,
Vol. 18, (1997) 198-216.

15. Min Zhao, Liying Kang, G. J. Chang, Power domination in graphs, manuscript,
Personal Communication.

Complexity and Approximation
of Satisfactory Partition Problems�

Cristina Bazgan1, Zsolt Tuza2, and Daniel Vanderpooten1

1 LAMSADE, Université Paris-Dauphine, France
{bazgan,vdp}@lamsade.dauphine.fr

2 Computer and Automation Institute, Hungarian Academy of Sciences, Budapest
and Department of Computer Science, University of Veszprém, Hungary

Abstract. The Satisfactory Partition problem consists of deciding
if a given graph has a partition of its vertex set into two nonempty parts
such that each vertex has at least as many neighbors in its part as in the
other part. This problem was introduced by Gerber and Kobler in 1998
and further studied by other authors but its complexity remained open
until now. We prove in this paper that Satisfactory Partition, as well
as a variant where the parts are required to be of the same cardinality,
are NP -complete. We also study approximation results for the latter
problem, showing that it has no polynomial-time approximation scheme,
whereas a constant approximation can be obtained in polynomial time.
Similar results hold for balanced partitions where each vertex is required
to have at most as many neighbors in its part as in the other part.

1 Introduction

Gerber and Kobler introduced in [5, 6] the problem of deciding if a given graph
has a vertex partition into two nonempty parts such that each vertex has at
least as many neighbors in its part as in the other part. A graph with this
property is called satisfactory partitionable. As remarked by Gerber and Kobler,
Satisfactory Partition may have no solution. In particular, the following
graphs are not satisfactory partitionable: complete graphs, stars, and complete
bipartite graphs with at least one of the two vertex sets having odd size. Some
other graphs are easily satisfactory partitionable: cycles of length at least 4,
trees which are not stars, and disconnected graphs. After [5, 6] this problem was
further studied in [8] and [1] but its complexity remained open until now, while
some generalizations were studied and proved to be NP -complete.

We define in this paper another variant of Satisfactory Partition, called
Balanced Satisfactory Partition, where the parts are required to have the
same cardinality. A graph admitting such a partition is said to be balanced sat-
isfactory partitionable. Graphs like cycles of even length and complete bipartite
� This research was supported by the bilateral research cooperation Balaton be-

tween EGIDE (France) and Ministry of Education (Hungary) under grant numbers
07244RJ and F-29/2003. The second author was also supported in part by the Hun-
garian Scientific Research Fund, grant OTKA T-042710

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 829–838, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

830 Cristina Bazgan, Zsolt Tuza, and Daniel Vanderpooten

graphs with both vertex classes of even size are trivially balanced satisfactory
partitionable. A graph of even order formed by two non-partitionable connected
components of unequal size, however, is an example of a graph which is satisfac-
tory partitionable but not balanced satisfactory partitionable. We show in this
paper that Satisfactory Partition and Balanced Satisfactory Parti-
tion are NP -complete.

We consider also the opposite problem of deciding if a given graph has a
vertex partition into two parts such that each vertex has at least as many neigh-
bors in the other part as in its own part. This problem called Co-Satisfactory
Partition corresponds to finding in the graph a maximal cut with respect to
moving a vertex from its part to the other. Therefore, a graph always admits
such a partition that can be found in polynomial time. However, the balanced
version of this problem, called Balanced Co-Satisfactory Partition, does
not always admit a solution, e.g. for stars of even order. We prove in this paper
that Balanced Co-Satisfactory Partition is NP -complete.

When a graph has no balanced (co-)satisfactory partition, it is natural to ask
for a balanced partition maximizing the number of (co-)satisfied vertices. The
corresponding optimization problems are Max Satisfying Balanced Par-
tition and Max Co-Satisfying Balanced Partition. We prove in this
paper that Max Satisfying Balanced Partition is 3-approximable, Max
Co-Satisfying Balanced Partition is 2-approximable, and that these two
problems have no polynomial-time approximation scheme unless P=NP.

The paper is structured as follows. Section 2 contains some notations and
definitions of problems. In Section 3 we show the NP -completeness of Satisfac-
tory Partition, Balanced Satisfactory Partition, and Balanced Co-
Satisfactory Partition. In Section 4 we prove that Max (Co-)Satisfying
Balanced Partition has no approximation scheme, unless P=NP, and in Sec-
tion 5 we give constant approximation algorithms for these problems.

2 Preliminaries

We begin with some basic definitions concerning approximation, and then we
define the problems considered.

Approximability. Given an instance x of an optimization problem A and a
feasible solution y of x, we denote by val(x, y) the value of solution y, and by
optA(x) the value of an optimum solution of x. For a function ρ, an algorithm
is a ρ-approximation for a maximization problem A if for any instance x of the
problem it returns a solution y such that val(x, y) ≥ optA(x)

ρ(|x|) . We say that a
maximization problem is constant approximable if, for some constant ρ > 1,
there exists a polynomial-time ρ-approximation for it. A maximization problem
has a polynomial-time approximation scheme (a PTAS, for short) if, for every
constant ε > 0, there exists a polynomial-time (1 + ε)-approximation for it.

Reductions. ([7]) Let A and A′ be two maximization problems. Then A is
said to be gap-preserving reducible to A′ with parameters (c, ρ), (c′, ρ′) (where

Complexity and Approximation of Satisfactory Partition Problems 831

ρ, ρ′ ≥ 1), if there is a polynomial-time algorithm that transforms any instance
x of A to an instance x′ of A′ such that the following properties hold:

optA(x) ≥ c⇒ optB(x′) ≥ c′ and optA(x) < c
ρ ⇒ optB(x′) < c′

ρ′

Gap-preserving reductions have the following property. If it is NP -hard to
decide if the optimum of an instance of A is at least c or less than c

ρ , then it is
NP -hard to decide if the optimum of an instance of A′ is at least c′ or less than
c′

ρ′ . This NP -hardness implies that A′ is hard to ρ′-approximate.

Graphs. We consider finite, undirected graphs without loops and multiple edges.
For a graph G = (V,E), a vertex v ∈ V , and a subset Y ⊆ V we denote by dY (v)
the number of vertices in Y that are adjacent to v; and, as usual, we write d(v)
for the degree dV (v) of v in V . A partition (V1, V2) of V is said to be nontrivial
if both V1 and V2 are nonempty.

The problems we are interested in are defined as follows.

Satisfactory Partition
Input: A graph G = (V,E).
Question: Is there a nontrivial partition (V1, V2) of V such that for every v ∈ V ,
if v ∈ Vi then dVi(v) ≥ dV3−i(v) ?

The variant of this problem where the two parts have equal size is:

Balanced Satisfactory Partition
Input: A graph G = (V,E) on an even number of vertices.
Question: Is there a partition (V1, V2) of V such that |V1| = |V2| and for every
v ∈ V , if v ∈ Vi then dVi(v) ≥ dV3−i (v)?

Given a partition (V1, V2), we say that a vertex v ∈ Vi is satisfied if dVi(v) ≥
dV3−i(v), or equivalently if dVi(v) ≥ �

d(v)
2 �. A graph admitting a nontrivial parti-

tion where all vertices are satisfied is called satisfactory partitionable, and such a
partition is called a satisfactory partition. If |V1| = |V2| also holds, then it will be
called a balanced satisfactory partition and the graph G is balanced satisfactory
partitionable.

Co-Satisfactory Partition
Input: A graph G = (V,E).
Question: Is there a partition (V1, V2) of V such that for every v ∈ V , if v ∈ Vi

then dVi(v) ≤ dV3−i(v) ?

We already mentioned in the introduction that Co-Satisfactory Parti-
tion always has a solution which can be found easily in polynomial time.

Balanced Co-Satisfactory Partition
Input: A graph G = (V,E) on an even number of vertices.
Question: Is there a partition (V1, V2) of V such that |V1| = |V2| and for every
v ∈ V , if v ∈ Vi then dVi(v) ≤ dV3−i (v) ?

Given a partition (V1, V2), a vertex v ∈ Vi is co-satisfied if dVi(v) ≤ dV3−i(v),
or equivalently if dVi(v) ≤ �

d(v)
2 �. The previous notions are similarly defined for

co-satisfiability.

832 Cristina Bazgan, Zsolt Tuza, and Daniel Vanderpooten

When a graph is not balanced (co-)satisfactory partitionable, it is natural
to ask for a balanced partition that maximizes the number of vertices that are
(co-)satisfied. Therefore, we consider the following problems.
Max Satisfying Balanced Partition
Input: A graph G = (V,E) on an even number of vertices.
Output: A partition (V1, V2) of V , such that |V1| = |V2|, that maximizes the
number of satisfied vertices.
Max Co-Satisfying Balanced Partition
Input: A graph G = (V,E) on an even number of vertices.
Output: A partition (V1, V2) of V , such that |V1| = |V2|, that maximizes the
number of co-satisfied vertices.
Almost Balanced Partitions. The above problems can also be formulated for
graphs with an odd number of vertices, requiring partitions (V1, V2) such that
|V1| and |V2| differ just by 1.

3 Complexity of (Balanced) (Co-)Satisfactory Partition

In this section we establish the NP -completeness of the following three problems:
(i) Satisfactory Partition
(ii) Balanced Satisfactory Partition
(iii) Balanced Co-Satisfactory Partition

The overall scheme is that (iii) is NP -complete, (iii) is reducible to (ii), and (ii)
is reducible to (i).

Proposition 1. Balanced Satisfactory Partition is polynomial-time re-
ducible to Satisfactory Partition.

Proof. Let G = (V,E) be a graph, instance of the first problem on n vertices.
The graph G′ = (V ′, E′), instance of Satisfactory Partition, is obtained
from G by adding two cliques of size n

2 , A = {a1, . . . , an
2
} and B = {b1, . . . , bn

2
}.

In G′, in addition to the edges of G, all vertices of V are adjacent to all vertices
of A and B. Also each vertex ai ∈ A is linked to all vertices of B except bi,
i = 1, . . . , n

2 .
Let (V1, V2) be a balanced satisfactory partition of G. Then (V ′

1 , V
′
2) where

V ′
1 = V1∪A and V ′

2 = V2∪B is a satisfactory partition ofG′. Indeed, a vertex from
A∪B is satisfied, for example if v ∈ A, dV ′

1
(v) = |V1|+ |A|−1 = |V2|+ |B|−1 =

dV ′
2
(v). Also it is easy to see that a vertex from V is satisfied in G′ since it is

satisfied in G.
Let (V ′

1 , V
′
2) be a satisfactory partition of G′, where V ′

1 = V1 ∪ A1 ∪ B1 and
V ′

2 = V2 ∪A2 ∪B2 with Vi ⊆ V,Ai ⊆ A,Bi ⊆ B, i = 1, 2. We claim that (V1, V2)
is a balanced satisfactory partition of G.

We first show that A1 ∪ B1 �= ∅ and A2 ∪ B2 �= ∅, which means that no
satisfactory partition can contain A ∪ B in one of its parts. Indeed, by contra-
diction, suppose we have V ′

1 = V1 ∪ A ∪ B and V ′
2 = V2. Then, the inequality

specifying that v ∈ V2 is satisfied is dV2(v) ≥ dV1(v) +n which is impossible. So,

Complexity and Approximation of Satisfactory Partition Problems 833

two cases are possible: either each part of the partition contains one clique, say
V ′

1 = V1 ∪A and V ′
2 = V2 ∪B (case 1) or at least one of the cliques is cut by the

partition (case 2).
In case 1, in order for a vertex of A to be satisfied, we have n

2 − 1 + |V1| ≥
|V2|+ n

2 − 1 and in order that a vertex of B be satisfied, we have n
2 − 1 + |V2| ≥

|V1|+ n
2 −1. These two inequalities imply |V1| = |V2|. Moreover, since v ∈ V1∪V2

is satisfied in G′ where it is linked to n
2 vertices in A and n

2 vertices in B, v is
also satisfied in G.

In case 2, suppose that clique A is cut by the partition into non-empty sets
A1 and A2 while B1 or B2 may be empty. We show now that if ai ∈ A1 for some
i, then also bi ∈ B2 for the same i. Assume by contradiction that bi ∈ B1. Since
ai is satisfied we have

(|A1| − 1) + (|B1| − 1) + |V1| ≥ |A2|+ |B2|+ |V2| (1)
This implies |V ′

1 | > |V ′
2 |.

Let aj ∈ A2. We may have bj ∈ B1 or bj ∈ B2. If bj ∈ B2 then the condition
that aj is satisfied is

(|A2| − 1) + (|B2| − 1) + |V2| ≥ |A1|+ |B1|+ |V1| (2)
If bj ∈ B1 then the condition that aj is satisfied is

(|A2| − 1) + |B2|+ |V2| ≥ |A1|+ (|B1| − 1) + |V1| (3)
Each of (2) and (3) implies that |V ′

2 | ≥ |V ′
1 |, contradicting (1). Thus |A1| =

|B2| and |A2| = |B1|, that means that both cliques are cut by the partition.
For ai ∈ A1 and bi ∈ B2 the inequalities specifying that ai and bi are satisfied

are respectively: (|A1| − 1) + |B1|+ |V1| ≥ |A2|+ (|B2| − 1) + |V2|
and |A2|+ (|B2| − 1) + |V2| ≥ (|A1| − 1) + |B1|+ |V1|

from which we obtain |A1|+ |B1|+ |V1| = |A2|+ |B2|+ |V2|. Since |A1| = |B2|
and |A2| = |B1|, we get |V1| = |V2|.

Moreover, since v ∈ V1∪V2 is satisfied in G′ where it is linked to |A1|+ |B1| =
n
2 vertices in V ′

1 among the vertices of the two cliques and |A2|+|B2| = n
2 vertices

in V ′
2 , v is also satisfied in G. �

We state now our NP -completeness results.

Theorem 1. Balanced Co-Satisfactory Partition is NP-complete.

Proof. Clearly, this problem is in NP. We construct a polynomial reduction
from a variant of Independent Set, the problem of deciding if a graph with
n vertices contains an independent set of size at least n

2 , a problem stated to
be NP -hard in [4]. Let G = (V,E) be a graph with n vertices v1, . . . , vn and
m edges, an input of this variant of Independent Set problem. We assume
that n is even, since otherwise we can add a vertex that we link with all the
vertices of the graph without changing the problem. The edges of G are labelled
e1, . . . , em. We construct a graph G′ = (V ′, E′), instance of Balanced Co-
Satisfactory Partition as follows: the vertex set V ′ consists of three sets F , T
and V (the vertex set of G) where F = {f1, . . . , f2m+1} and T = {t1, . . . , t2m+1}.
Vertices f2�, f2�+1 correspond to edge e� (� = 1, . . . ,m) and f1 is an additional
vertex. F and T are two independent sets of size 2m+ 1. Vertices ti are linked

834 Cristina Bazgan, Zsolt Tuza, and Daniel Vanderpooten

with fj , i = 1, . . . , 2m + 1, j = 1, . . . , 2m + 1. In addition to these edges and
E, the edge set E′ contains the edges (f2�, vi) and (f2�+1, vj) for each edge
e� = (vi, vj), � = 1, . . . ,m.

It is easy to see that this construction can be accomplished in polynomial
time. All that remains to show is that G has an independent set of size at least
n
2 if and only if G′ is balanced co-satisfactory partitionable.

Suppose firstly that G has an independent set of size at least n
2 . Let S be

an independent set of size exactly n
2 of G. Let V ′

1 = F ∪ S and V ′
2 = T ∪ S̄,

where S̄ = V \ S. Let us check in the following that (V ′
1 , V

′
2) is a balanced co-

satisfactory partition. It is easy to see that all vertices of F and T are co-satisfied.
Let v ∈ S. Since S is an independent set, v is not linked to any vertex in S.
Thus, dV ′

1
(v) = dS̄(v) = dV ′

2
(v) and so the vertices of S are co-satisfied. Given

a vertex v ∈ S̄, dV ′
1
(v) = 2dS(v) + dS̄(v) while dV ′

2
(v) = dS̄(v), thus also the

vertices of S̄ are co-satisfied in G′.
Suppose now that G′ is balanced co-satisfactory partitionable and let (V ′

1 , V
′
2)

be a balanced co-satisfactory partition. It is easy to see that F and T cannot
be both included in the same part of the partition since otherwise the vertices
of F and T are not co-satisfied. If the partition cuts only one of the two sets
F or T , suppose for example that F is cut, then the vertices of F that are in
the same part of the partition as T are not co-satisfied. If the partition cuts
both F and T , denote by F1, T1 and F2, T2 the sets of vertices of F and T that
are included in V ′

1 and V ′
2 respectively. For vertices of T1 to be co-satisfied, we

first have |F1| ≤ |F2| whereas for vertices of T2 to be co-satisfied, we must have
|F2| ≤ |F1|, that is |F1| = |F2|, which is impossible since |F | is odd. Therefore, F
and T are included in different parts of the partition and thus (V ′

1 , V
′
2) cuts the

set V into two balanced sets V1, V2, where V ′
1 = F ∪V1 and V ′

2 = T ∪V2. We show
that V1 is an independent set. A vertex v ∈ V1 has dV ′

1
(v) = 2dV1(v) + dV2(v)

and dV ′
2
(v) = dV2(v). Since v is co-satisfied in G′ we have dV ′

1
(v) ≤ dV ′

2
(v) and

we obtain that dV1(v) = 0. Thus V1 is an independent set of size n
2 . �

Theorem 2. Satisfactory Partition and Balanced Satisfactory Par-
tition are NP-complete.

Proof. Clearly, these two problems are in NP. We reduce Balanced Co-Satis-
factory Partition to Balanced Satisfactory Partition which shows the
NP -completeness of the latter problem by Theorem 1. Proposition 1 implies the
NP -completeness of Satisfactory Partition. The reduction is as follows.

Let G be a graph, instance of Balanced Co-Satisfactory Partition
on n vertices v1, . . . , vn. The graph G′, instance of Balanced Satisfactory
Partition, has 2n vertices v1, . . . , vn, u1, . . . , un. G′ is the complement of graph
G on vertices v1, . . . , vn, and we add pendant edges (ui, vi), i = 1, . . . , n. If G
is balanced co-satisfactory partitionable and (V1, V2) is such a partition, then
V ′

i = Vi ∪ {uj : vj ∈ Vi} is a balanced satisfactory partition for G′. Indeed, if
vi ∈ V1 then dV1(vi) ≤ dV2(vi) in G. Thus, in G′ we have dV ′

1
(vi) = n

2 − 1 −
dV1(vi) + 1 ≥ n

2 − dV2(vi) = dV ′
2
(vi) and dV ′

1
(ui) = 1 > dV ′

2
(ui) = 0. Conversely,

since in each balanced satisfactory partition of G′, ui is in the same set as vi,
such a partition of G′ gives a balanced co-satisfactory partition in G. �

Complexity and Approximation of Satisfactory Partition Problems 835

4 No PTAS for Max (Co-)Satisfying Balanced Partition

In this section we prove that Max Co-Satisfying Balanced Partition and
Max Satisfying Balanced Partition have no polynomial-time approxima-
tion scheme unless P=NP. We first introduce a problem used in our reductions.

Max k-Vertex Cover-B
Input: A graph G = (V,E) with |V | ≥ k and maximum degree at most B.
Output: The maximum number of edges in G that can be covered by a subset
V ′ ⊆ V of cardinality k.

Theorem 3 (Petrank [7]). There exists a constant α, 0 < α < 1 with the
following property: given a graph G with n vertices and m edges, instance of
Max k-Vertex Cover-B for some k = Θ(n), it is NP-hard to distinguish,
whether it has opt(G) = m or opt(G) < (1− α)m.

Though it is not explicitly mentioned in [7], the proof of Theorem 3 yields
the same conclusion for the restricted class of graphs with m ≥ n

2 . We prove
next that the previous result holds in particular for k = n

2 .

Theorem 4. There exists a constant β, 0 < β < 1, with the following property:
given a graph G with N vertices and M edges, instance of Max N

2 -Vertex
Cover-B′, it is NP-hard to distinguish whether it has opt(G) = M or opt(G) <
(1− β)M .

Proof. We construct a gap-preserving reduction from Max k-Vertex Cover-
B with k = cn, for some constant c < 1, to Max N

2 -Vertex Cover-(2B+2).
Let G = (V,E) be a graph on n vertices and m ≥ n

2 edges, instance of Max
k-Vertex Cover-B. We will construct a graph G′′ with N vertices and M
edges such that if opt(G) = m then opt(G′′) = M and if opt(G) ≤ (1− α)m, for
some α > 0, then opt(G′′) ≤ (1− β)M , for some β > 0.

First assume that c > 1/2. Let G′′ be the graph obtained from G by insert-
ing 2k − n isolated vertices. In this case, the properties of the gap-preserving
reduction hold with β = α.

Consider now the case c < 1/2. Suppose first that n − 2k is a multiple of
B + 1. Let G′′ be the graph that consists of a copy of G and n−2k

B+1 copies of
the graph TB+1 which is the complete tripartite graph whose vertex classes have
cardinality B + 1 each. Observe that TB+1 needs 2B + 2 vertices in covering
its edges (the complement of a vertex class), and if just 2B + 2 − t vertices
are taken, then at least t(B + 1) edges remain uncovered. Thus, since G has
maximum degree at most B, each subset of N

2 vertices not covering all copies
of TB+1 is trivially improvable. Suppose first that opt(G) = m and let V ′ be a
vertex cover of size k in G. Then the set V ′ and the vertices of two among the 3
independent sets of each of the n−2k

B+1 copies of TB+1 form a vertex cover of G′′ of
size N

2 , and thus opt(G′′) = M . On the other hand, suppose opt(G) < (1−α)m.
Then since M = m + 3(B + 1)(n − 2k) and m ≥ n

2 , the number of edges not
covered in G′′ is at least αm ≥ αM

1+6(B+1)(1−2c) that can be viewed as βM .

836 Cristina Bazgan, Zsolt Tuza, and Daniel Vanderpooten

Finally, if c < 1/2 and if n−2k = � mod(B+1), 0 < � ≤ B, then let G′ be the
graph G together with further B+1−� isolated vertices. Now, we can transform
G′ to G′′ as before by inserting n−2k−�

B+1 + 1 copies of TB+1. In this case we get
a slightly different value for β, as the number m of edges is now compared with
the modified number n+B+1− � of vertices. Nevertheless, β > 0 is obtained. �

From this theorem, the following non-approximability results can be deduced.

Theorem 5. Max Co-Satisfying Balanced Partition has no polynomial-
time approximation scheme unless P=NP.

Proof. We construct a gap-preserving reduction between Max n
2 -Vertex

Cover-B and Max Co-Satisfying Balanced Partition. Let G be a graph
instance of Max n

2 -Vertex Cover-B on n vertices and m edges. We construct
the graph G′ as in the proof of Theorem 1. Denote by N the number of vertices
of G′.

Suppose first that opt(G) = m, and let V ′ be a vertex cover of size n
2 of G.

Then in the partition (F ∪ (V \V ′), T ∪V ′) all vertices are co-satisfied and thus
opt(G′) = N .

Suppose now that opt(G) < (1 − β)m. Thus for any set of n
2 vertices V ′,

at least βm edges of G remain uncovered. The number of vertices incident to
a non-covered edge is at least 2βm

B . These vertices are not co-satisfied in the
partition (F ∪(V \V ′), T ∪V ′) and thus the number of co-satisfied vertices in this
partition is less than N− 2βm

B . It is lengthy but not too hard to show that, when
a balanced partition cuts F or/and T , at least cm vertices are not co-satisfied, for
some constant c < 1, and thus in this case we have opt(G′) < N − dm, for some
constant d. Since Max k-Vertex Cover-B is trivial for m ≤ k, we may assume
that m ≥ n

2 . Thus, since the number of vertices of G′, N = 4m + 2 + n ≤ 7m,
we obtain opt(G′) < (1 − d

7)N . �

Theorem 6. Max Satisfying Balanced Partition has no polynomial-time
approximation scheme unless P=NP.

Proof. Consider the graph G′ with N vertices and M edges obtained in the
construction given in the proof of Theorem 5, and apply toG′ the reduction given
in Theorem 2. Let G′′ be the graph obtained. It can be shown that if opt(G′) = N
then opt(G′′) = 2N and if opt(G′) < (1 − γ)N then opt(G′′) < 2N(1 − cγ) for
some constant c. �

5 Constant Approximations
for Max (Co-)Satisfying Balanced Partition

We concentrate mostly on the approximation of Max Satisfying Balanced
Partition. The co-satisfying version turns out to be simpler, and will be con-
sidered at the end of the section.

Proposition 2. Any graph G with an odd number of vertices n has an almost
balanced partition such that each vertex in the part of size n+1

2 is satisfied, and
such a partition can be found in polynomial time.

Complexity and Approximation of Satisfactory Partition Problems 837

Proof. Let (V1, V2) be an almost balanced partition of G with |V1| > |V2|. If V1

contains a vertex v that is not satisfied, then dV1(v) < dV2(v) and thus by moving
v from V1 to V2 we obtain an almost balanced partition with a smaller value of
the cut induced by (V1, V2). The algorithm repeats this step while the largest
set contains a non-satisfied vertex. After at most |E| steps we obtain an almost
balanced partition where the largest set contains only satisfied vertices. �

We consider now graphs of even order. Given a graph on an even number of
vertices n, a vertex of degree n−1 is never satisfied in a balanced partition since
it has only n

2 − 1 neighbors in its own part and n
2 neighbors in the other part.

Theorem 7. In any graph G on an even number of vertices n, a balanced parti-
tion with at least �n−t

3 � satisfied vertices can be found in polynomial time, where
t is the number of vertices of degree n− 1 in G.

Proof. If G is not connected, then we find an almost balanced partition in each
odd connected component, using Proposition 2, and a balanced partition in each
even connected component (as shown afterwards); and then it is easy to put them
together in order to form a balanced partition of G, where at least �n−t

3 � vertices
are satisfied.

Suppose in the following that G is connected, and let H be the complement
of G. Let H1, . . . , Hq (q ≥ 1) be the connected components of H . Observe that
if a vertex is of degree n − 1 in G then it forms alone a connected component
in H . Denote by ni the number of vertices of Hi, i = 1, . . . , q. Consider now a
connected component Hi, where ni > 1. We will show that a (almost) balanced
partition of V (Hi) can be constructed where at least �ni

3 � vertices are satisfied in
G. (For ni odd and n even, the almost balanced partition found in Proposition 2
may not work, since its smaller part will be completed with too many, n

2 −
ni−1

2
vertices in G.)

Let M = {(a1, b1), . . . , (ap, bp)} be a maximum matching in Hi. It can be
found efficiently, using e.g. Edmonds’ algorithm [2]. We distinguish two cases.

If |M | ≥ �ni

3 � then consider a (almost) balanced partition of the vertices of
V (Hi) except the vertices of the matching M . Let (V1, V2) be the partition of
V (Hi) obtained from this one by adding vertices aj to V1 and vertices bj to V2.
While there exists a pair (aj , bj) where both vertices are not satisfied (in G), we
exchange these two vertices. Since aj and bj are not linked in G, this exchange
makes both aj and bj satisfied and decreases the value of the cut by at least 2.
Therefore, after at most |E|

2 exchanges, we obtain a (almost) balanced partition
with at least �ni

3 � vertices satisfied (at least one vertex in each pair (aj , bj)).
If |M | < �ni

3 � then using Gallai’s decomposition theorem [3] we can obtain in
polynomial time a vertex set S such that 2|M | = ni−�+|S|where � is the number
of odd connected components of Hi − S. Let O1, . . . , O� be the odd connected
components of Hi − S. Thus �− |S| ≥ �ni

3 � and so � ≥ �ni

3 � and |S| ≤ �ni

3 �. Let
us consider a vertex vj ∈ Oj linked to a vertex of S, for j = 1, . . . , �. Those vj

are mutually adjacent in G.

838 Cristina Bazgan, Zsolt Tuza, and Daniel Vanderpooten

If � ≥ �ni

2 � then we consider the following (almost) balanced partition
(V1, V2): V1 contains �ni

2 � vertices from v1, . . . , v� and V2 contains the other
vertices. It is easy to see that at least �ni

2 � vertices are satisfied in G, since for
vj ∈ V1 we have dV1(vj) = �ni

2 � − 1 and dV2(vj) ≤ %ni

2 & − 1.
Suppose next that �ni

3 � ≤ � ≤ �ni

2 �. If ni is even, we construct a balanced
partition (V ′

1 , V
′
2) where V ′

1 contains v1, . . . , v� and V ′
2 contains S and �−|S| other

vertices; and if ni is odd, we construct an almost balanced partition (V ′
1 , V

′
2)

where V ′
1 contains v1, . . . , v� and V ′

2 contains S and �− 1− |S| other vertices. In
this latest step we pay attention, when we take some vertices from the remaining
vertices of an odd connected component Oj , to take always an even number of
vertices. In order to obtain a (almost) balanced partition (V1, V2) from (V ′

1 , V
′
2)

we consider the remaining vertices of each odd connected component Oj and
we put half of these vertices in V1 and half in V2 such that vj is satisfied. The
partition in Oj does not influence the satisfied status of vs for s �= j, therefore
it can be done independently in all Oj . We complete this partition by putting
half of the remaining vertices in V1 and half in V2. �

Theorem 8. Max Satisfying Balanced Partition is 3-approximable.

Proof. Given a graph on n vertices, the maximum number of vertices that are
satisfied in a balanced partition is opt(G) ≤ n − t, where t is the number of
vertices of degree n−1. Using Theorem 7 we obtain in polynomial time a balanced
partition where the number of satisfied vertices is val ≥ �n−t

3 � ≥
opt(G)

3 . �

Theorem 9. Max Co-Satisfying Balanced Partition is 2-approximable.

Proof. Let (V1, V2) be a balanced partition of G. While there exists v1 ∈ V1 and
v2 ∈ V2 that are not co-satisfied, we exchange v1 and v2. After this exchange the
value of the cut increases by at least 2. Thus, after |E|

2 steps we obtain a balanced
partition where at least one of the two parts contains co-satisfied vertices only. �

References

1. C. Bazgan, Zs. Tuza and D. Vanderpooten, On the existence and determination of
satisfactory partitions in a graph, Proc. ISAAC 2003, LNCS 2906, 444–453.

2. J. Edmonds, Paths, trees, and flowers, Canadian J. of Math. 17 (1965), 449–467.
3. T. Gallai, Maximale Systeme unabhängiger Kanten, Magyar Tud. Akad. Mat. Ku-

tató Int. Közl. 9 (1964), 401–413.
4. M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the

Theory of NP-Completeness, W. H. Freeman and Co., San Francisco, 1979.
5. M. Gerber and D. Kobler, Partitioning a graph to satisfy all vertices, Technical

report, Swiss Federal Institute of Technology, Lausanne, 1998.
6. M. Gerber and D. Kobler, Algorithmic approach to the satisfactory graph partition-

ing problem, European Journal of Operation Research 125 (2000), 283–291.
7. E. Petrank, The hardness of approximation: gap location, Computational Complex-

ity 4 (1994), 133–157.
8. K. H. Shafique and R. D. Dutton, On satisfactory partitioning of graphs, Congressus

Numerantium 154 (2002), 183–194.

Distributed Weighted Vertex Cover
via Maximal Matchings&

Fabrizio Grandoni1, Jochen Könemann2, and Alessandro Panconesi1

1 Dipartimento di Informatica, Università di Roma “La Sapienza”
Via Salaria 113, 00198 Roma, Italy

{grandoni,ale}@di.uniroma1.it
2 Department of Combinatorics and Optimization, University of Waterloo

200 University Avenue West, Waterloo, ONN2L 3G1, Canada
jochen@math.uwaterloo.ca

Abstract. In this paper we consider the problem of computing a minimum-
weight vertex-cover in an n-node, weighted, undirected graph G = (V,E). We
present a fully distributed algorithm for computing vertex covers of weight at
most twice the optimum, in the case of integer weights. Our algorithm runs in
an expected number of O(logn + logŴ) communication rounds, where Ŵ is
the average vertex-weight. The previous best algorithm for this problem requires
O(logn(logn+ logŴ)) rounds and it is not fully distributed.
For a maximal matching M in G it is a well-known fact that any vertex-cover in
G needs to have at least |M| vertices. Our algorithm is based on a generalization
of this combinatorial lower-bound to the weighted setting.

1 Introduction

We are given an undirected graph G = (V,E) and non-negative vertex weights wv ≤W
for all vertices v ∈ V . A vertex cover is a subset C ⊆ V such that each edge e ∈ E has
at least one end-point in C. In the minimum-weight vertex-cover problem we want to
compute a vertex-cover of smallest total weight.

Computing minimum-weight vertex-covers is NP-hard [4]. Papadimitriou and Yan-
nakakis [14] show that the problem is APX-hard. More recently, Håstad [8] proves that
there is no (7/6− ε)-approximation algorithm for the vertex-cover problem for any
ε > 0 unless P= NP.

On the positive side, the best known algorithms for the vertex cover problem are
due to Bar-Yehuda and Even [1], and to Monien and Speckenmeyer [12]. These algo-
rithms achieve an approximation ratio of (2− log logn

2 logn). In graphs with maximum de-
gree Δ, Hochbaum [9] gives a (2− 1/Δ)-approximation algorithm for the problem.
This was subsequently improved by Halldórsson and Radhakrishnan [5] who present a
(2− log(Δ)+O(1)

Δ)-approximation algorithm. Finally, Halperin [6] presents the currently
best algorithm for the problem with a performance ratio of (2− (1−o(1)) 2 lnlnΔ

lnΔ).
In the distributed setting, it is known how to compute a 2-approximate vertex cover

in the unweighted case. This can be achieved by computing a maximal matching in

& The first and third authors were supported with funding from EC Projects DELIS and EYES,
and project WebMinds of the Italian Ministry of University and Research (MIUR)

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 839–848, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

840 Fabrizio Grandoni, Jochen Könemann, and Alessandro Panconesi

the graph and by including the matched nodes in the cover. A maximal matching can
be computed in O(log4 n) rounds via the algorithm of Hanckowiack et al. [7], and in
O(Δ + log∗ n) rounds via the algorithm of Panconesi and Rizzi [13]. Both algorithms
are deterministic. Maximal matchings can also be computed in an expected number of
O(logn) rounds via the randomized algorithm of Israeli and Itai [10].

For the weighted case a (2 + ε)-approximation can be computed deterministically
in O(logn log 1

ε) many rounds by using the algorithm of Khuller et al. [11]. Their algo-
rithm is stated as a PRAM algorithm, but it is readily seen to be a bona fide distributed
algorithm. Let Ŵ be the average weight. Then, by setting ε = 1/(nŴ + 1), the latter
algorithm computes a 2-approximate vertex cover in O(logn(logn+ logŴ)) communi-
cation rounds. Note that the above choice of ε requires global knowledge of the quantity
nŴ . This assumption may not be realistic in all scenarios.

In this paper we present an improved fully-distributed algorithm to compute a 2-
approximate weighted vertex cover, in the case of integer weights. Our main result can
be stated as follows:

Theorem 1. There is a fully distributed algorithm which computes a 2-approximate
weighted vertex cover in an expected number of O(logn + logŴ) communication
rounds. The message size is O(logW) and the local computation done in each round
is O(Δ log(ΔW)) in expectation.

Our algorithm can be viewed as a generalization of the reduction from unweighted
vertex cover to maximal matching. The basic idea is to expand each node v of weight
wv into wv micro-nodes v(1),v(2) . . . ,v(wv), and connect each v(i) to every u(j) when-
ever vu is an edge of the network. Then a maximal matching in the auxiliary graph is
computed. The vertex cover is given by the nodes such that all the corresponding micro-
nodes are matched. If the maximal matching is computed via the fully-distributed algo-
rithm of Israeli and Itai, the algorithm halts in an expected number of O(logn + logŴ)
rounds.

A naive implementation of the matching algorithm by Israeli and Itai leads to
pseudo-polynomial message and time complexity in each round. The main insight lead-
ing to the bounds on message-size and local computation time in Theorem 1 is to keep
an implicit representation of the auxiliary graph and a maximal matching in it.

The rest of this paper is organized as follows. In Section 2 we introduce some pre-
liminaries. Our algorithm relies on a careful adaptation of the matching algorithm by
Israeli and Itai. We present this adaptation in Section 3. Finally, Sections 4 and 5 deal
with the naive and refined versions of our weighted vertex cover algorithm, respectively.

2 Preliminaries

The minimum-weight vertex cover problem can be formulated as an integer linear pro-
gram (ILP):

min ∑v∈V wvxv

s.t.
xv +xu ≥ 1, ∀vu ∈ E;
xv ∈ {0,1}, ∀v ∈V .

Distributed Weighted Vertex Cover via Maximal Matchings 841

Each assignment of the variables which satisfies the constraints (feasible solution)
corresponds to a vertex cover containing exactly the nodes v with xv = 1. By (LP) we
denote the natural linear programming relaxation of (ILP).

Let N(v) be the set of neighbors of v. The linear programming dual (D) of (LP) is:

max ∑vu∈E yvu

s.t.
∑u∈N(v) yvu ≤ wv, ∀v ∈V ;
yvu ≥ 0, ∀vu ∈ E.

By weak duality (e.g., see [2]), the value of each feasible solution of (D) is a lower
bound for the value of every feasible solution of (LP) and hence (IPL).

In this paper we consider a synchronous message-passing model of computation.
The computation proceeds in rounds. In each round, a node can send/receive a mes-
sage (of unbounded size) to/from each one of its neighbors, and execute an unbounded
amount of computation. No global knowledge is available (including the number n of
nodes in the graph). The algorithms presented can be easily modified so as to work in a
(non-faulty) asynchronous system also.

By B(p), p ∈ [0,1], we denote a 0-1 Bernoulli random variable, which takes value
one with probability p. A random bit is a Bernoulli variable B(0.5).

3 Distributed Maximal Matching

A matching of a graph G = (V,E) is a subset M ⊆ E such that no two edges of M are
incident to the same node. The results of the next sections are based on the following
simplified version M of the distributed maximal-matching algorithm of Israeli and Itai
[10].

Algorithm M works in phases, each one consisting of a constant number of rounds.
In each phase, a matching is computed and the edges incident on matched nodes are
removed. The algorithm halts when no edge is left. The maximal matching is given by
the union of the matchings found in the different phases.

In a given phase a matching is computed in the following way. Let G′ = (V ′,E ′) be
the current graph. By N′(v) and δ′v we denote the set of neighbors of v and the degree
of v in G′, respectively. Each node v randomly decides to be a sender or a receiver
with probability one half. Note that the same node may play a different role in different
phases. Each sender u selects one neighbor v ∈ N′(u) uniformly at random and makes
a proposal to v. Each receiver v which receives at least one proposal, selects one of the
proponents (arbitrarily) and accepts its proposal. The matching is given by the edges
corresponding to accepted proposals.

Let a node v be good if at least one third of its neighbors u have degree δu ≤ δv. To
prove the bound on the number of rounds, we use the following simple combinatorial
result [10]:

Lemma 1. At least one half of the edges of a graph are incident to good nodes.

Theorem 2. Algorithm M computes a maximal matching in O(logn) expected rounds.

Proof. The correctness of the algorithm is trivial.

842 Fabrizio Grandoni, Jochen Könemann, and Alessandro Panconesi

We show that in each phase at least a constant fraction of the edges is removed in
expectation. This implies that the expected number of rounds is O(log(n2)) = O(logn).
Consider a good node v of G′ in a given phase. The probability P′v that v accepts a
proposal is lower bounded by:

P′v ≥
1
2

(
1− ∏

u∈N′(v)

(
1− 1

2δ′u

))
.

From the definition of good nodes:

∏
u∈N′(v)

(
1− 1

2δ′u

)
≤ ∏

u∈N′(v):δ′u≤δ′v

(
1− 1

2δ′v

)
≤
(

1− 1
2δ′v

)δ′v/3

≤ e−1/6.

Thus P′v≥ (1−e−1/6)/2 and the expected number of edges removed is at least a fraction
(1− e−1/6)/4 of the total. �

4 Distributed Vertex Cover via Maximal Matchings

In this section we present a simple pseudo-polynomial reduction from the problem of
computing a 2-approximate vertex cover to the problem of computing a maximal match-
ing in an auxiliary graph. Thanks to this reduction, a 2-approximate vertex cover can be
computed in O(logn + logŴ) expected rounds via algorithm M of section 3.

Consider the following auxiliary graph G̃. For each node v of G, G̃ contains wv

micro-nodes v(1),v(2) . . .v(wv). Two micro-nodes v(i) and u(j) are adjacent if and only
if vu is an edge of G. In Figure 1 an example of the reduction is given.

3

2 1

Fig. 1. A weighted graph G (on the left) with the corresponding auxiliary graph G̃. A maximal
matching M of G̃ is indicated via dashed lines. The dashed nodes of G form a vertex cover

Let M be a maximal matching in G̃. By V (M) we denote the set of nodes v of G
such that all the corresponding micro-nodes v(i) are matched by M.

Lemma 2. Set V (M) is a 2-approximate vertex cover of G.

Proof. Assume by contradiction that V (M) is not a vertex cover. Thus there are two
adjacent nodes v and u in G which do not belong to V (M). This implies that there are
two adjacent micro-nodes v(i) and u(j) in G̃ which are not matched by M. Then the set
M′ = M∪{v(i)u(j)} is a matching, which contradicts the maximality of M.

Distributed Weighted Vertex Cover via Maximal Matchings 843

Letapx andopt denote the weight of the vertex cover found and that of a minimum
weight vertex cover, respectively. Moreover, let zv be the number of micro-nodes in
{v(1),v(2) . . .v(wv)} that are matched by M. A feasible solution of (D) is obtained by
assigning to each dual variable yvu the number of edges of the kind v(i)u(j) ∈M. This
solution is feasible since, for every v ∈ V : ∑u∈N(v) yvu = zv ≤ wv. By weak duality we
obtain apx≤ ∑v∈V zv ≤ 2∑vu∈E yvu ≤ 2opt and hence V (M) is 2-approximate. �

Lemma 2 suggests a strategy to compute a 2-approximate vertex cover distribu-
tively. The idea is to simulate the behavior of algorithm M on a virtual auxiliary graph
G̃, and then to select the nodes in the vertex cover as suggested by Lemma 2.

Specifically, each node simulates the execution of the algorithm on the correspond-
ing micro-nodes v(i) in G̃. Whenever two micro-nodes v(i) and u(j) of G̃ need to com-
municate, nodes v and u are responsible for allowing such communication. The ver-
tex cover is given by the nodes v such that all the corresponding micro-nodes v(i) are
matched by the maximal matching computed. Since the virtual auxiliary graph contains
O(nŴ) nodes, the total number of rounds is O(log(nŴ)) = O(logn + logŴ).

This naive application of Lemma 2 has two major drawbacks. The first problem
is the large message size. In fact, in each phase all the micro-nodes of v may send a
proposal to some micro-node of u. Thus the message size is Ω(W).

A second problem is the time complexity of the algorithm: consider a node v in a
given phase. Each micro-node v(i) of v, with probability one half, needs to select one
neighbor out of Θ(ΔW) uniformly at random. This random selection can be performed
in Θ(log(ΔW)) expected time, assuming that the cost of generating a random bit is O(1)
(e.g., see [3]). Thus the expected time complexity of each phase is Ω(W log(ΔW)).

In next section we show how to solve both problems by creating the matchings
implicitly.

5 An Improved Algorithm

In this section we present an improved fully distributed algorithm A for computing a 2-
approximate vertex cover. Algorithm A still requires O(logn+ logŴ) expected rounds,
but it reduces the size of the messages to O(logW) and the expected time complexity
of each phase to O(Δ log(ΔW)).

The basic structure of algorithm A is analogous to the structure of the naive algo-
rithm described in previous section: in each phase, a matching in the current auxiliary
graph G̃′ is computed, and the matched nodes are removed from G̃′ (together with all
the edges incident to them). The algorithm halts when no edge is left. The vertex cover
is given by the nodes v such that all the corresponding micro-nodes v(i) are matched by
one of the matchings computed. The main novelty in Algorithm A is that matchings are
created implicitly: in each phase each node only knows the number of the correspond-
ing matched micro-nodes. Intuitively, this simplification is allowed by the symmetry
properties of G̃: all the micro-nodes corresponding to a node v have the same degree
and share the same neighborhood. This invariant is kept by all the induced subgraphs
of G̃.

Algorithm A , which is described in Figure 2, works in phases. Each phase consists
of a constant number of communication rounds. Each node v has an associated state

844 Fabrizio Grandoni, Jochen Könemann, and Alessandro Panconesi

w′v = wv; N′(v) = N(v), sv = active;
while (sv = active) {

send w′v and receive w′u to/ from all u ∈ N′(v);
N′(v) = {u ∈ N(v) : w′u > 0};
if (|N′(v)|= 0)

sv = outside;
else {

compute the proposals pv(u);
send pv(u) and receive pu(v) to/ from all u ∈ N′(v);
compute the counter-proposals cv(u);
send cv(u) and receive cu(v) to/ from all u ∈ N′(v);
for (all u ∈ N′(v))

w′v = w′v−cv(u)−cu(v);
if (w′v = 0) {

send w′v to all u ∈ N′(v);
sv = inside;

}
}

}
Fig. 2. Protocol for node v for 2-approximate vertex cover

sv, which is initially active. In each phase, part of the active nodes switch to the state
inside or outside, and the algorithm terminates when no active node is left. When a
node leaves the active state, it halts. At the end of the algorithm, the inside nodes form
a vertex cover.

In more details, each node v has an associated residual weight w′v, which is initially
wv. The residual weight w′v can be interpreted as the number of micro-nodes v(i) of v in
the current auxiliary graph G̃′. Note that all the micro-nodes v(i) have the same degree
W ′

v = ∑u∈N(v) w′u. In each phase, the expected residual weight of active nodes decreases.
The decrease of w′v in a given phase reflects the number of micro-nodes of v that have
been matched in that phase.

At the beginning of each phase, each active node v sends w′v to all its currently active
neighbors N′(v). The neighbors with w′u = 0 are removed from N′(v). If N′(v) becomes
empty, node v switches to the outside state. In fact, in this case the degree W ′

v of the
micro-nodes v(i) is zero, and thus they will never be matched.

Otherwise, v sends a proposal pv(u) to each active neighbor u ∈ N′(v). The value
of pv(u) can be interpreted as the number of proposals directed from the micro-nodes
of v to the micro-nodes of u. Let p′v be the sum of the proposals pv(u):

p′v = ∑
u∈N′(v)

pv(u).

This quantity can be viewed as the number of micro-senders among v(1),v(2) . . .v(wv).
We postpone a detailed description of how proposals are fixed until later.

For each proposal pu(v) received, node v replies with a counter-proposal cv(u). The
counter-proposal cv(u) can be interpreted as the number of micro-nodes of v which ac-
cept proposals of micro-nodes of u. Let c′v = w′v− p′v be the number of micro-receivers

Distributed Weighted Vertex Cover via Maximal Matchings 845

of v. The sum of the counter-proposals for node v then needs to be at most c′v. At
the same time each counter-proposal cv(u) must not exceed the corresponding pro-
posal pu(v). Given these restrictions we choose a feasible set of counter-proposals
{cv(u)}u∈N′(v) arbitrarily such that their sum is maximum, i.e.

∑
u∈N′(v)

cv(u) = min

{
c′v, ∑

u∈N′(v)
pu(v)

}
.

Eventually, node v decrements w′v by the sum of all the counter-proposals
cv(u) and cu(v) which have been sent and received by v, respectively: w′v = w′v −
∑u∈N′(v) (cv(u)+ cu(v)). This decrement reflects the number of micro-nodes of v which
are matched in the considered phase.

If w′v becomes zero, node v sends w′v to all its neighbors (for the last time) and
switches to the inside state (since all the corresponding micro-nodes are matched).

We now show how proposals are fixed by each node v. If the number w′v of micro-
nodes v(i) is “sufficiently” small, the proposals pv(u) are fixed according to algorithm
M . Otherwise, they are fixed in a more efficient way, while keeping the same expected
value. In more details, there are two different strategies, depending on whether w′v < 2δ′v
or not, where δ′v = |N′(v)| is the number of currently active neighbors of v. If w′v < 2δ′v,
the proposals pv(u) are initially set to zero. Then, for w′v times, an active neighbor u ∈
N′(v) is selected at random with probability proportional to w′u, and the corresponding
proposal pv(u) is incremented by one with probability one half. Note that each pv(u),
considered separately, is the sum of w′v i.i.d. Bernoulli variables B(w′u/(2W ′

v)):

pv(u) =
w′v

∑
i=1

B

(
w′u

2W ′
v

)
. (1)

Otherwise (w′v ≥ 2δ′v), the value of each pv(u) is independently set to:

pv(u) =
⌊

w′vw′u
2W ′

v

⌋
+ B

(
w′vw′u
2W ′

v
−
⌊

w′vw′u
2W ′

v

⌋)
. (2)

Note that, in both cases, the sum p′v of the proposals is upper bounded by w′v. In
the first case this is trivially true. In the second case, this is a consequence of the small
value of δ′v:

∑
u∈N′(v)

pv(u)≤ ∑
u∈N′(v)

(
w′vw′u
2W ′

v
+ 1

)
=

w′v
2

+ δ′v ≤ w′v.

Moreover, in both cases E[p′v] = w′v/2. The following technical property of proposals
will be useful in later parts of the analysis.

Lemma 3. For any two given nodes v and u ∈ N′(v) we have

Eu,v = E

[(
1− 1

w′v

)pu(v)
]
≤
(

1− 1
W ′

u

)w′u/4

.

846 Fabrizio Grandoni, Jochen Könemann, and Alessandro Panconesi

Proof. If w′u < 2δ′u, by Equation (1):

Eu,v = E

⎡⎣(1− 1
w′v

)∑w′u
i=1 B

(
w′v

2W ′u

)⎤⎦ =

⎛⎝E

⎡⎣(1− 1
w′v

)B

(
w′v

2W ′u

)⎤⎦⎞⎠w′u

=

=
(

1− w′v
2W ′

u
+

w′v
2W ′

u

(
1− 1

w′v

))w′u
≤
(

1− 1
W ′

u

)w′u/2

.

Consider now the case w′u ≥ 2δ′u. By Equation (2), if w′uw′v/(2W ′
u)≥ 1:

Eu,v ≤ E

[(
1− 1

w′v

)%w′uw′v/(2W ′
u)&
]
≤
(

1− 1
w′v

)w′uw′v/(4W ′
u)

≤
(

1− 1
W ′

u

)w′u/4

.

Otherwise (w′uw′v/(2W ′
u)< 1):

Eu,v = E

⎡⎣(1− 1
w′v

)B

(
w′uw′v
2W ′u

)⎤⎦ = 1− w′u
2W ′

u
≤
(

1− 1
W ′

u

)w′u/2

.

�

Lemma 4. Algorithm A computes a 2-approximate vertex cover.

Proof. The algorithm halts. In fact, the residual weight of each active node decreases
by at least one in each round with positive probability. It follows that the nodes which
do not switch to the outside state, switch to the inside state in a finite expected number
of rounds. Assume by contradiction that, at the end of the algorithm, the inside nodes
do not form a vertex cover. This implies that there is an outside node v which has at
least one outside neighbor. Let v switch to the state outside in phase p. At the beginning
of phase (p− 1), all the neighbors of v are either inside or active nodes. Consider the
active neighbors of v in phase (p−1). These nodes are not active any more when phase
p starts. But they cannot switch to the state outside in phase (p−1), since their active
degree is greater than zero in that phase. Thus they all switch to the state inside, which is
a contradiction. Let zv be the difference between wv and the final residual weight w′v. A
feasible solution of (D) is obtained by assigning to each dual variable yvu the sum of all
the counter-proposals of the kind cv(u) and cu(v). Let apx and opt be the weight of the
vertex cover found and that of a minimum vertex cover, respectively. By weak duality:
apx≤ ∑v∈V zv ≤ 2∑vu∈E yvu ≤ 2opt. Thus the vertex cover found is 2-approximate. �

Lemma 5. Algorithm A sends messages of size O(logW). Each phase of algorithm A
has time complexity O(Δ log(ΔW)) in expectation.

Proof. Both proposals and counter-proposals can be packed in messages of size
O(logW). The time complexity of each phase is upper bounded by the cost of com-
puting the proposals. Computing the proposals is as expensive as selecting O(Δ) times
an element out of O(ΔW) ones uniformly at random. Each random selection can be

Distributed Weighted Vertex Cover via Maximal Matchings 847

performed by generating O(log(ΔW)) random bits in expectation. By assuming a O(1)
cost for generating a random bit, the total expected cost of each phase is O(Δ log(ΔW)).

�
Recall that a node is good if at least one third of its neighbors have degree smaller

or equal than its own degree. Consider a node v in G. The degree of all the micro-nodes
corresponding to v in G̃ is Wv = ∑u∈N(v) wu. Thus a micro-node v(i) is good if and only
if:

∑
u∈N(v):Wu≤Wv

wu ≥
Wv

3
.

Note that, if a micro-node v(i) is good, all the micro-nodes v(j), j ∈ {1,2 . . .wv}, are
good and vice-versa. We call a node of G heavy if all its micro-nodes in G̃ are good.
The next observation can be seen as the weighted analogue of Lemma 1.

Lemma 6. Let EH ⊆ E be the subset of edges incident to heavy nodes. Then
∑vu∈EH

wvwu ≥ 1
2 ∑vu∈E wvwu.

Proof. Consider the auxiliary graph G̃. The number of edges of G̃ that are incident to
good nodes is ∑{v,u}∈EH

wvwu. Since the number of edges of G̃ is ∑{v,u}∈E wvwu, the
claim follows from Lemma 1. �

We use the properties of heavy nodes to prove the following bound on the number
of rounds.

Lemma 7. Algorithm A halts in O(logn + logŴ) expected rounds.

Proof. We show that the residual weight of heavy nodes decreases by at least a positive
constant factor in expectation in each phase. It follows from Lemma 6 that the same
holds for the potential function: 0≤ ∑vu∈E w′vw′u < (nŴ)2, thus implying the claim.

Consider a heavy node v in a given phase. Let w′′v be the values of w′v at the end of the
phase. The residual weight of v decreases by at least the sum of the counter-proposals
cv(u) sent by v:

w′′v ≤ w′v− ∑
u∈N′(v)

cv(u) = p′v + c′v

(
1− 1

c′v
min{c′v, ∑

u∈N′(v)
pu(v)}

)

= p′v +(w′v− p′v)

(
1− 1

c′v
min{c′v, ∑

u∈N′(v)
pu(v)}

)
.

Note that:(
1− 1

c′v
min{c′v, ∑

u∈N′(v)
pu(v)}

)
≤
(

1− 1
c′v

)∑u∈N′(v) pu(v)

≤ ∏
u∈N′(v)

(
1− 1

w′v

)pu(v)

.

Thus:

E[w′′v]≤
w′v
2

+
w′v
2 ∏

u∈N′(v)
E

[(
1− 1

w′v

)pu(v)
]
,

848 Fabrizio Grandoni, Jochen Könemann, and Alessandro Panconesi

where we used E[p′v] = w′v/2. By Lemma 3 and the definition of heavy nodes:

∏
u∈N′(v)

E

[(
1− 1

w′v

)pu(v)
]
≤ ∏

u∈N′(v)

(
1− 1

W ′
u

) w′u
4

≤ ∏
u ∈ N ′(v)
W ′

u ≤W ′
v

(
1− 1

W ′
v

)w′u
4

≤
(

1− 1
W ′

v

)W ′v
12

.

The right-hand side is at most e−1/12 and it follows that E[w′′v]≤ w′v (1 + e−1/12)/2. �
Lemmas 4, 5, and 7 together imply Theorem 1.

References

1. R. Bar-Yehuda and S. Even. A linear-time approximation algorithm for the weighted vertex
cover problem. Journal of Algorithms, 2:198–203, 1981.

2. V. Chvátal. Linear programming. Freeman, 1983.
3. T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to algorithms. MIT Press and

McGraw-Hill Book Company, 6th edition, 1992.
4. M. R. Garey and D. S. Johnson. Computers and Intractability. A Guide to the Theory of

NP-Completeness. Freemann, 1979.
5. M. M. Halldórsson and J. Radhakrishnan. Greed is good: Approximating independent sets in

sparse and bounded-degree graphs. In ACM Symposium on the Theory of Computing, pages
439–448, 23–25 1994.

6. E. Halperin. Improved approximation algorithms for the vertex cover problem in graphs and
hypergraphs. SIAM Journal on Computing, 31(5):1608–1623, Oct. 2002.

7. M. Hańćkowiak, M. Karoński, and A. Panconesi. On the distributed complexity of comput-
ing maximal matchings. SIAM Journal on Discrete Mathematics, 15(1):41–57, 2001.

8. J. Håstad. Some optimal inapproximability results. Journal of the ACM, 48(4):798–859, July
2001.

9. D. S. Hochbaum. Efficient bounds for the stable set, vertex cover, and set packing problems.
Discrete Applied Mathematics, 6:243–254, 1983.

10. A. Israeli and A. Itai. A fast and simple randomized parallel algorithm for maximal matching.
Information Processing Letters, 22:77–80, 1986.

11. S. Khuller, U. Vishkin, and N. Young. A primal-dual parallel approximation technique ap-
plied to weighted set and vertex cover. Journal of Algorithms, 17(2):280–289, 1994.

12. B. Monien and E. Speckenmeyer. Ramsey numbers and an approximation algorithm for the
vertex cover problem. Acta Informatica, 22:115–123, 1985.

13. A. Panconesi and R. Rizzi. Some simple distributed algorithms for sparse networks. DIST-
COMP: Distributed Computing, 14, 2001.

14. C. Papadimitriou and M. Yannakakis. Optimization, approximization and complexity
classes. Journal of Computer and System Sciences, 43:425–440, 1991.

On the Complexity
of the Balanced Vertex Ordering Problem�

Jan Kára1, Jan Kratochv́ıl1, and David R. Wood2

1 Department of Applied Mathematics, Faculty of Mathematics and Physics
Charles University, Prague, Czech Republic

{kara,honza}@kam.mff.cuni.cz
2 Departament de Matemàtica Aplicada II

Universitat Politècnica de Catalunya, Barcelona, Spain
david.wood@upc.edu

Abstract. We consider the problem of finding a balanced ordering of the
vertices of a graph. More precisely, we want to minimise the sum, taken
over all vertices v, of the difference between the number of neighbours
to the left and right of v. This problem, which has applications in graph
drawing, was recently introduced by Biedl et al. [1]. They proved that the
problem is solvable in polynomial time for graphs with maximum degree
three, but NP-hard for graphs with maximum degree six. One of our
main results is closing the gap in these results, by proving NP-hardness
for graphs with maximum degree four. Furthermore, we prove that the
problem remains NP-hard for planar graphs with maximum degree six
and for 5-regular graphs. On the other hand we present a polynomial
time algorithm that determines whether there is a vertex ordering with
total imbalance smaller than a fixed constant, and a polynomial time
algorithm that determines whether a given multigraph with even degrees
has an ‘almost balanced’ ordering.

1 Introduction

A number of algorithms for graph drawing use a ‘balanced’ ordering of the
vertices of the graph as a starting point [2–4, 6, 7]. Here balanced means that
neighbours of each vertex v are as evenly distributed to the left and right of v
as possible (see below for more precise definition). The problem of determining
such an ordering was recently studied by Biedl et al. [1]. We solve a number of
open problems from [1] and study a few other related problems.

Let G = (V,E) be a multigraph without loops. An ordering of G is a bijection
σ : V → {1, . . . , |V |}. For u, v ∈ V with σ(u) < σ(v), we say that u is to the left

� Supported by grant MEC SB2003-0270. Research completed at the Department
of Applied Mathematics and the Institute for Theoretical Computer Science,
Charles University, Prague, Czech Republic. Supported by projects LN00A056 and
1M0021620808 of the Ministry of Education of the Czech Republic, and by the Eu-
ropean Union Research Training Network COMBSTRU (Combinatorial Structure
of Intractable Problems)

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 849–858, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

850 Jan Kára, Jan Kratochv́ıl, and David R. Wood

of v and that v is to the right of u. The imbalance of v ∈ V in σ, denoted by
Bσ(v), is∣∣|{e ∈ E : e = {u, v}, σ(u) < σ(v)}| − |{e ∈ E : e = {u, v}, σ(u) > σ(v)}|

∣∣.
When the ordering σ is clear from the context we simply write B(v) instead

of Bσ(v). The imbalance of ordering σ, denoted by Bσ(G), is
∑

v∈V Bσ(v). The
minimum value of Bσ(G), taken over all orderings σ of G, is denoted by M(G).
An ordering with imbalance M(G) is called minimum. Clearly the following two
facts hold for any ordering:

– Every vertex of odd degree has imbalance at least one.
– The two vertices at the beginning and at the end of any ordering have im-

balance equal to their degrees.

These two facts imply the following lower bound on the imbalance of an ordering.
Let odd(A) denote the number of odd degree vertices among the vertices of
A ⊆ V . Let (d1, . . . , dn) be the sequence of vertex degrees of G, where di ≤ di+1

for all 1 ≤ i ≤ n− 1. Then

Bσ(G) ≥ odd(V)− (d1 mod 2)− (d2 mod 2) + d1 + d2.

An ordering σ is perfect if the above inequality holds with equality. perfect
ordering is the decision problem whether a given multigraph G has a perfect
ordering. This problem is clearly in NP .

Biedl et al. [1] gave a polynomial time algorithm to compute a minimum
ordering of graphs with maximum degree at most three. On the other hand,
they proved that it is NP-hard to compute a minimum ordering of a (bipartite)
graph with maximum degree six.

One of the main results of this paper is to close the above gap in the com-
plexity of the balanced ordering problem with respect to the maximum degree
of the graph. In particular, we prove that the perfect ordering problem is
NP-complete for simple graphs with maximum degree four.

Whether the balanced ordering problem is efficiently solvable for planar
graphs is of particular interest since planar graphs are often used in graph draw-
ing applications. We answer this question in the negative by proving that the
perfect ordering problem is NP-complete for planar simple graphs with
maximum degree six.

Our thirdNP-hardness result states that finding a minimum ordering isNP-
hard for 5-regular simple graphs. All of these NP-hardness results are presented
in Section 3. The proofs are based on reductions from various satisfiability prob-
lems. Section 2 contains several NP-completeness results for the satisfiability
problems that we use.

In Section 4 we present our positive complexity results. In particular, we
describe a polynomial time algorithm that determines whether a given graph
has an ordering with at most k imbalanced vertices for any constant k. This
algorithm has several interesting corollaries. For example, the perfect order-
ing problem can be solved in polynomial time for a multigraph in which all the
vertices have even degrees (in particular, for 4-regular multigraphs).

On the Complexity of the Balanced Vertex Ordering Problem 851

2 NP-Hardness of Satisfiability Problems

In this section we state several NP-hardness results about various satisfiability
problems. The results in this section can be achieved by verifying conditions of
a general theorem of Schaefer [5]. First we introduce several basic definitions
about satisfiability. Throughout this paper, formulae are considered to be in a
conjunctive normal form. We allow a variable to occur several times in one clause
but note that the graphs created in this way are simple (unless stated otherwise).
Suppose ϕ is a formula with variables x1, . . . , xn. The incidence graph of ϕ is
the bipartite graph with vertices c1, . . . , cm and x1, . . . , xn, where {ci, xj} is an
edge if and only if the variable xj occurs in the clause ci (positive or negated). A
truth assignment of a formula ϕ with variables x1, . . . , xn is an arbitrary function
t : {1, . . . , n} → {0, 1}. The values 0 and 1 are also sometimes called false and
true respectively. A truth assignment t is satisfying ϕ if there is at least one true
literal in every clause. The formula ϕ is satisfiable if it has at least one satisfying
truth assignment.

The decision problem asking whether a given formula ϕ is satisfiable is called
sat. If we assume that every clause in the given formula ϕ has size exactly
three, then the decision problem asking whether ϕ is satisfiable is called 3sat.
Two common variants of 3sat are Not–All–Equal 3-Satisfiability (nae–3sat for
short) and 1–in–3 Satisfiability (1–in–3sat). Both these problems are defined on
formulae in which each clause has size exactly three. A truth assignment t is NAE
satisfying if each clause has at least one true and at least one false literal, and t is
called 1–in–3 satisfying if each clause has exactly one true literal. The notions of
NAE satisfiable and 1–in–3 satisfiable formulae, and the corresponding decision
problems are defined in the obvious way. sat is one of the basic NP-complete
problems, and it is well known that nae–3sat and 1–in–3sat are NP-complete
even for formulae without negations [5].

We say that a formula ϕ for which all clauses have five literals is 2–or–3–
in–5 satisfiable if there exists a truth assignment such that in each clause either
two or three literals are true. Let 2–or–3–in–5sat denote the decision problem
asking whether a given formula without negations is 2–or–3–in–5 satisfiable. For
a formula ϕ, in which all clauses have six literals, a truth assignment t is 3–in–6
satisfying if each clause in ϕ has exactly three true literals. The formula ϕ is 3–
in–6 satisfiable if there exists a 3–in–6 satisfying truth assignment. 3–in–6sat is
the decision problem asking whether a given formula ϕ is 3–in–6 satisfiable. The
fact that 2–or–3–in–5sat isNP-complete and that 3–in–6sat isNP-complete
for formulae without negations follows from [5].

Now we strengthen the result about 3–in–6sat.

Proposition 1. Problem 3–in–6 sat is NP-complete for planar formulae with-
out negations.

Proof. Suppose we have a formula ϕ with clauses of size six without negations.
We now show that if the formula ϕ is not planar we can alter it in polynomial
time so that the resulting formula ϕ′ is planar and ϕ is 3–in–6 satisfiable if and
only if ϕ′ is 3–in–6 satisfiable. This will prove the lemma. Let d be a drawing

852 Jan Kára, Jan Kratochv́ıl, and David R. Wood

of the incidence graph of ϕ in the plane, such that any two edges cross at most
once. For each pair of crossing edges e = (v, c) and e′ = (v′, c′), add four new
variables vee′

1 , . . . , vee′

4 and three clauses cee′
= v∨v∨vee′

1 ∨vee′

1 ∨v′ ∨vee′

2 , cee′

e =
vee′

1 ∨ vee′

1 ∨ vee′

1 ∨ vee′

3 ∨ vee′

3 ∨ vee′

3 , cee′

e′ = vee′

2 ∨ vee′

2 ∨ vee′

2 ∨ vee′

4 ∨ vee′

4 ∨ vee′

4 .
Then substitute occurrences of v in c by vee′

3 , and occurrences of v′ in c′ by vee′

4 .
See Figure 1 for an example of a gadget for two crossing edges.

v
v′ c′

c

cee′ cee′

e′

cee′

evee′

1 vee′

3

vee′

2 vee′

4

Fig. 1. The crossing gadget for two edges {v, c} and {v′, c′}. Empty circles represent
clauses, and full circles represent variables

After the substitutions we clearly obtain a planar formula. It remains to
prove that ϕ′ is 3–in–6 satisfiable if and only if ϕ is. To do so, we show that
3–in–6 satisfiability of the formula is unchanged by each substitution. Let t be a
3–in–6 satisfying truth assignment for ϕ and let ψ be the formula obtained from
ϕ by the substitution described above. Setting t′(x) = t(x) for all variables x of
ϕ and t′(vee′

1) = ¬t(v), t′(vee′

2) = ¬t(v′), t′(vee′

3) = t(v) and t′(vee′

4) = t(v′), we
obtain a 3–in–6 satisfying truth assignment for ψ. The other implication can be
seen as follows. Let t′ be a 3–in–6 satisfying truth assignment for ψ. Hence it
must hold that t′(vee′

1 = ¬t′(vee′

3) and t′(vee′

2) = ¬t′(vee′

4). It is also clear that
t′(v) = ¬t′(vee′

1) = t′(vee′

3). Thus, regardless of the truth assignment, there are
two true and two false literals in the clause cee′

. Hence t′(v′) = ¬t′(vee′

2) = t′(vee′

4)
and we can conclude (because t′(v) = t(vee′

3) and t′(v′) = t(vee′

4)) that if t′ is
restricted to the variables of ϕ, then a 3–in–6 satisfying truth assignment is
obtained.

3 NP-Hardness of Balanced Ordering Problems

In this section we prove several NP-hardness results about balanced ordering
problems.

Theorem 1. The perfect ordering problem is NP-complete for graphs with
maximum degree four.

Proof. The construction is a refinement of a construction by Biedl et al. [1];
the difference being that we reduce the maximum degree from six to four. NP-
hardness is proved by a reduction from nae–sat. Given a formula ϕ, create a
graph Gϕ with one vertex uc for each clause c. For each variable v that occurs
ov times in ϕ, add a path on 3ov + 1 new vertices pv

1, . . . , p
v
3ov+1 to Gϕ, add ov

On the Complexity of the Balanced Vertex Ordering Problem 853

additional vertices qv
1 , . . . , q

v
ov

and connect qv
i , i ∈ {1, . . . , ov} with vertices pv

3i−2

and pv
3i of the path. The path with the additional vertices is called a variable

gadget. Finally for each i ∈ {1, . . . , ov}, connect vertex pv
3i−2 of the path to uc,

where c is the clause corresponding to the i-th occurrence of the variable v. These
edges are called clause edges. See Figure 2 for an example of this construction.

a

c

b

d

u1

u2

u3

pd
7pd

1 pd
2

qd
1 qd

2

Fig. 2. Constructed graph for formula (a ∨ b ∨ c) ∧ (c ∨ a ∨ d) ∧ (d ∨ c ∨ b). The three
clauses have numbers 1, 2, 3 in the picture

Observe that the maximum degree of Gϕ is four. In particular, deg(uc) =
3, deg(qv

i) = 2 for all i ∈ {1, . . . , ov}, deg(pv
3i) = 3 for all i ∈ {1, . . . , ov},

deg(pv
3i−2) = 4 for all i ∈ {2, . . . , ov}, deg(pv

3i−1) = 2 for all i ∈ {1, . . . , ov},
deg(pv

1) = 3, and deg(pv
3ov+1) = 1.

We now prove that Gϕ has a perfect ordering if and only if ϕ is NAE-
satisfiable. Suppose Gϕ has a perfect linear ordering σ. For each variable v,
since deg(pv

3i−1) = 2 and deg(qv
i) = 2, vertices pv

3i−1, i ∈ {1, . . . , ov}, and qv
i , i ∈

{1, . . . , ov}, must have one incident edge to the left and one to the right in σ.
Thus they must be placed between pv

3i−2 and pv
3i. As pv

3i−1 and qv
i are on one side

(e.g., to the left) of vertex pv
3i−2 (pv

3i) the other neighbours of the vertex must
be on the other side. This implies that in σ, the path in each variable gadget
is in the order given by its numbering or inverse numbering, and all the clause
edges (the edges with exactly one endpoint in the variable gadget) have a clause
vertex on the same end (for example the left end of each clause edge is a vertex
of a path). If the path in the gadget for variable v is ordered according to its
numbering, then set t(v) := 0. Otherwise set t(v) := 1. This truth assignment
is NAE-satisfying because each clause vertex has at least one neighbour on each
side.

For a given truth assignment t we can analogously construct a perfect linear
ordering. First place each variable gadget corresponding to a variable with t(v) =
0 with the path placed according to the inverse ordering, and put each vertex
qv
i immediately after vertex pv

3i−1, i ∈ {1, . . . , ov}. Then place vertices uc in an
arbitrary order and finally the variable gadgets corresponding to variables with
t(v) = 1 with the paths ordered according to the numbering and vertices qv

i

placed immediately after the vertex pv
3i−2. ��

Now we present the result about ordering of planar graphs:

Theorem 2. The perfect ordering problem is NP-complete for planar sim-
ple graphs with maximum degree six.

854 Jan Kára, Jan Kratochv́ıl, and David R. Wood

Proof. We reduce the problem of 3–in–6 sat for planar formulae to the perfect
ordering problem for planar graphs. To do so, use the graph construction
from the proof of Theorem 1. Note that multiple occurrences of a variable in
a clause do not create any parallel edges in the constructed graph. Clearly the
construction creates planar graph of maximum degree six from a planar formula
and perfect orderings of the created graph correspond to 3–in–6 satisfying truth
assignments, as in the proof of Theorem 1. ��

The following two technical lemmas will be used later for removing parallel
edges from a multigraph without changing an ordering with minimum imbalance.
Their proofs are omitted due to the space limitation.

Lemma 1. Let G be the multigraph drawn in Figure 3 with two parallel edges
added between the vertices a and b. Then there exists a minimum ordering of G
such that a is the leftmost and b the rightmost vertex. Such an ordering is called
a natural ordering of G.

a b1

2

3

6

4
5

Fig. 3. The triple edge gadget

Lemma 2. Let G be a 5-regular multigraph and let c be the number of triple-
edges in G. Let G′ be the graph obtained from G by replacing each triple-edge of
G with endpoints a and b by the triple-edge gadget in Figure 3. The vertices a
and b of the gadget are identified with the original end-vertices of the triple-edge.
Then M(G) = M(G′)− 10 · c.

For the next reduction we use the 2–or–3–in-5sat problem which we proved
to be NP-complete in Section 2.

Theorem 3. The perfect ordering problem is NP-complete for 5-regular
multigraphs.

Proof. We prove NP-hardness by a reduction from 2–or–3–in-5sat. Suppose
that we are given a formula ϕ without negations and with all clauses of size five.
Moreover we assume that each variable occurs in at least two different clauses
in the formula. We can make a formula satisfy this condition by adding satisfied
clauses of type x∨x∨x∨¬x∨¬x. Now create the following multigraph G from

On the Complexity of the Balanced Vertex Ordering Problem 855

ϕ. For each clause c add a new vertex vc to G. For each variable x that occurs
ox times in ϕ, add a new path (called a variable path) with 2ox − 2 vertices
vx
1 , . . . , vx

2ox−2 where edges vx
2i−1v

x
2i, 1 ≤ i ≤ ox − 1, are triple-edges. Connect

vertex vx
2i, 1 ≤ i ≤ ox − 1, of the path to the vertex corresponding to the clause

with i-th occurrence of x. Furthermore, connect vertex vx
2ox−2 to the vertex

corresponding to the clause with the ox-th occurrence of x (because x was in
at least two different clauses we can without loss of generality assume that no
parallel edges are created). Connect each vertex vx

2i−1, 1 ≤ i ≤ ox−1, to the new
vertex px

i , and connect each vertex vx
1 to the new vertex px

0 . Now the only vertices
which have degree other that five are in the set P = {px

j : x is a variable, 0 ≤
j ≤ ox − 1} and these have degree one. By running the following procedure two
times for the set P , all the vertices will have degree five.

n := |P |
Arbitrarily number the vertices in P by 1, . . . , n.
while |P | ≥ 3 do
Take three arbitrary vertices ui, uj , uk ∈ P
P := P \ {ui, uj, uk} ∪ {un+1, un+2}
Add a complete bipartite graph on ui, uj , uk and un+1, un+2 to G.
n := n + 2

end
Now P = {ui, uj}
Add to G a complete bipartite graph on ui, uj and new vertices s1, s2.
Add a triple-edge s1s2 to G.

Let n0 denote the value of n at the beginning of the procedure and n1 the
value of n at the end of the procedure. It is easy to check that G is 5-regular
and we show that G has a perfect ordering if and only if ϕ was 2-or-3-in-5 sat-
isfiable. Suppose we have a perfect ordering of G. In every ordering of s1, s2

and their neighbours ui, uj , B(s1) + B(s2) > 2. Thus (from the perfectness of
the ordering) the ordering begins s1, s2 without loss of generality. By a similar
argument, the ordering ends by vertices s′2, s

′
1, where s′1 and s′2 are the ver-

tices added in the end of the second run of the procedure on P . Because all
other vertices must be balanced we know that every variable path is either in
its natural ordering or reversed. Moreover all edges between the variable path
and clauses have clause vertices to the right (or to the left in the reversed case).
Because all clause vertices are balanced we get a 2-or-3-in-5 satisfying truth
assignment of ϕ by assigning t(x) = 0 to the variables whose path is in natu-
ral order and t(x) = 1 to the variables whose path is reversed. For the other
implication, suppose we have a 2-or-3-in-5 satisfying truth assignment t of ϕ.
We can place vertices s1, s2, un1 , . . . , un0+1 added in the first run, then vertices
px

j : x is a variable with t(x) = 0, 0 ≤ j ≤ ox − 1, then variable paths for vari-
ables x such that t(x) = 0 in their natural ordering, then the clause vertices,
and then symmetrically the rest of the paths and vertices added in the second
run. It is straightforward to check that this ordering is perfect. ��

See an example of the above construction in Figure 4.

856 Jan Kára, Jan Kratochv́ıl, and David R. Wood

a
b

c
d

2

1

Fig. 4. Constructed 5-regular multigraph for formula (a∨a∨b∨c∨d)∧(a∨b∨b∨c∨d).
Clause vertices are marked 1 and 2. Clause vertices and variable paths are drawn in
black colour, vertices px

i and vertices added by the procedure are in gray colour

Corollary 1. Finding a minimum ordering for 5-regular graphs is NP-hard.

Proof. Construct the multigraph G as in the reduction in the proof of Theorem 3.
Say G has c triple edges. Construct G′ from G by substituting each triple-
edge by a triple-edge gadget. Observe that G′ remains 5-regular and is a simple
graph. From Lemma 2 we know that orderings of G′ with imbalance |V |+ 10 · c
correspond to perfect orderings of G. This proves NP-hardness of finding the
ordering with such imbalance and hence the statement of the corollary. ��

4 Algorithm

In this section we present an algorithm that determines in polynomial time
whether a given multigraph G has an ordering with an imbalance smaller than
a fixed constant. First we introduce a key lemma.

Lemma 3. There is an O(n + m) time algorithm to test whether a multigraph
G with n vertices and m edges has an ordering σ in which a given list of vertices
imbalanced = (v1, . . . , vk) are the only imbalanced vertices, and σ(vi) < σ(vi+1)
for all 1 ≤ i ≤ k − 1.

Proof. The vertices not in the list imbalanced are called balanced. The algorithm
works as follows: First we check that all odd-degree vertices are in the imbalanced
list. If not, then we can reject since every odd-degree vertex must be imbalanced.
Now assume that all balanced vertices have even degrees. Then start building
an ordering σ from left to right. We append to σ vertices that have not been
placed yet and have half of their neighbours already placed. Such vertices are
called saturated and are stored in the set saturated. Because saturated vertices
are balanced each saturated vertex must be placed before any of its unplaced
neighbours. In particular saturated vertices must form an independent set. Hence
we cannot make a mistake when placing any saturated vertices. If there is no
saturated vertex, the vertex which is placed next will be imbalanced and hence
it must be the first unused vertex from the imbalanced list. It remains to prove
that it is not better to place some vertices from the imbalanced list while there
are still some saturated vertices. If the order of vertices of any edge does not

On the Complexity of the Balanced Vertex Ordering Problem 857

change then we have an equivalent ordering. Otherwise it does change, in which
case some balanced vertex becomes imbalanced (as the order of vertices in an
edge can change only for the edges which contain at least one balanced vertex)
and we would not get a valid ordering. ��

The following theorem is a consequence of Lemma 3.

Theorem 4. There is an algorithm that, given an n-vertex m-edge multigraph
G, computes a minimum ordering of G with at most k imbalanced vertices (or
answers that there is no such ordering) in time O(nk · (m + n)).

Proof. The algorithm is simple: just try all the possible choices of k imbalanced
vertices and their orderings; for each choice run the procedure from Lemma 3
and select the ordering with minimum imbalance from those orderings. There are
O(nk) k-tuples of imbalanced vertices, and for each such k-tuple, by Lemma 3,
we can check in O(m + n) time whether there is an ordering with the chosen
vertices imbalanced, and compute the imbalance of the ordering in the case the
procedure produced one. ��

Corollary 2. There is a polynomial time algorithm to determine whether a
multigraph G has an ordering with imbalance less than a fixed constant c.

Proof. Apply the algorithm from Theorem 4 with k = c − 1. If the algorithm
rejects the multigraph or produces an ordering with imbalance greater than c,
then the graph does not have an ordering with imbalance less than c (because
any ordering with imbalance less than c must have at most c − 1 imbalanced
vertices). If the algorithm outputs some ordering with imbalance less than c,
then we are also done. ��

Corollary 3. The perfect ordering problem is solvable in time O(n2(n +
m)) for any n-vertex m-edge multigraph with all vertices of even degree.

Proof. Apply the algorithm from Theorem 4 with k = 2, and then check whether
the achieved imbalance is equal to that required by the perfect ordering
problem. A perfect ordering of a multigraph with even degrees must have exactly
two imbalanced vertices (if there is at least one edge). ��

5 Conclusion and Open Problems

In this paper we have considered the problems of deciding the existence of a
perfect ordering for graphs with maximum degree four, planar graphs with max-
imum degree six and 5-regular multigraphs. All these problems were shown to
be NP-complete, thus answering a number of questions raised by Biedl et al. [1].
The result for planar graphs still leaves unresolved the complexity of the per-
fect ordering problem for planar graphs with maximum degree four or five.
We have also established that it is NP-hard to find an ordering with minimum
imbalance for 5-regular simple graphs. In the positive direction, we have pre-
sented an algorithm for determining an ordering with imbalance smaller than

858 Jan Kára, Jan Kratochv́ıl, and David R. Wood

k running in time O(nk(n + m)). It would be interesting to obtain a fixed-
parameter-tractable (FPT) algorithm for this problem (as one cannot hope for
a polynomial solution unless P = NP).

References

1. Therese Biedl, Timothy Chan, Yashar Ganjali, MohammadTaghi Hajiaghayi,
David R. Wood, Balanced vertex-orderings of graphs, Discrete Applied Mathe-
matics 148(1), pp. 27–48, 2005.

2. Goos Kant, Drawing planar graphs using the canonical ordering, Algorithmica 16,
pp. 4–32, 1996.

3. Goos Kant and Xin He, Regular edge labeling of 4-connected plane graphs and its
applications in graph drawing problems, Theoretical Computer Science 172(1–2),
pp. 175–193, 1997.

4. Achilleas Papakostas and Ioannis G. Tollis, Algorithms for area-efficient orthogonal
drawings, Computational Geometry: Theory and Applications 9, pp. 83–110, 1998.

5. Thomas J. Schaefer, The complexity of satisfiability problems, Proceedings of 10th
Annual ACM Symposium on Theory of Computing (STOC’78), pp. 216–226, ACM,
1978.

6. David R. Wood, Minimizing the number of bends and volume in three-dimensional
orthogonal graph drawings with a diagonal vertex layout, Algorithmica 39, pp.
235–253, 2004.

7. David R. Wood, Optimal three-dimensional orthogonal graph drawing in the gen-
eral position model, Theoretical Computer Science 299 (1–3), pp. 151-178, 2003.

An O(2O(k)n3) FPT Algorithm
for the Undirected Feedback Vertex Set Problem�

Frank Dehne1, Michael Fellows2, Michael A. Langston3,
Frances Rosamond2, and Kim Stevens4

1 Carleton University, Ottawa, Canada
frank@dehne.net

2 University of Newcastle, Callaghan NSW 2308, Australia
{mfellows,fran}@cs.newcastle.edu.au

3 University of Tennessee, Knoxville TN 37996-3450, USA
langston@cs.utk.edu

4 The Mechanics Institute, Bob’s Farm NSW 2316, Australia
wonganellawines@telstra.com

Abstract. We describe an algorithm for the Feedback Vertex Set
problem on undirected graphs, parameterized by the size k of the feed-
back vertex set, that runs in time O(ckn3) where c = 10.567 and n is the
number of vertices in the graph. The best previous algorithms were based
on the method of bounded search trees, branching on short cycles. The
best previous running time of an FPT algorithm for this problem, due to
Raman, Saurabh and Subramanian, has a parameter function of the form
2O(k log k/ log log k). Whether an exponentially linear in k FPT algorithm
for this problem is possible has been previously noted as a significant
challenge. Our algorithm is based on the new FPT technique of iterative
compression. Our result holds for a more general “annotated” form of the
problem, where a subset of the vertices may be marked as not to belong
to the feedback set. We also establish “exponential optimality” for our
algorithm by proving that no FPT algorithm with a parameter function
of the form O(2o(k)) is possible, unless there is an unlikely collapse of
parameterized complexity classes, namely FPT = M [1].

1 Introduction

The Feedback Vertex Set problem for undirected graphs can be informally
described as the problem of finding a set of vertices that “covers all the cycles”
in a graph in the sense that every cycle in the graph includes at least one vertex
of a solution set. We consider here a generalization of the problem, where the
vertices of the input graph may be annotated according to whether or not they
are allowed to belong to a solution set. This generalized form of the problem is
formally defined as follows:
� This research has been supported in part by the U.S. National Science Founda-

tion under grant CCR–0075792, by the U.S. Office of Naval Research under grant
N00014–01–1–0608, by the U.S. Department of Energy under contract DE–AC05–
00OR22725, by the Australian Research Council and by the Australian Centre for
Bioinformatics

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 859–869, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

860 Frank Dehne et al.

Feedback Vertex Set (FVS)
Instance: An undirected graph G = (V, E)

(loops and multiple edges are allowed),
an annotated subset U ⊆ V of vertices,
and a positive integer k.

Parameter: k
Question: Is there a subset S of the vertices not in U , S ⊆ V − U ,

of size at most k, |S| ≤ k, such that G− S is acyclic?

The Feedback Vertex Set problem is NP-complete for both directed
and undirected graphs [GJ79]. There are numerous applications of the prob-
lem in areas such as circuit testing, deadlock resolution, analyzing manufactur-
ing processes and computational biology [BGNR98, ENSS98, FHS03, FHPSS04,
KW90]. The minimization version of the problem is approximable within a factor
of 2 in polynomial time [BBF99].

The FVS problem has been extensively studied from the parameterized point
of view [BBG00, Bod94, DF92, DF99, KPS04, RSS02, RSS05]. A parameterized
problem is said to be fixed-parameter tractable (FPT) if it can be solved in time
f(k)nc for some function f (unrestricted), where n is the total input size, k is the
declared parameter and c is a constant independent of k and n. This running time
may be written as O∗(f(k)) in the notation introduced by Woeginger [Woe03]
that focuses attention on the exponential time costs due to the parameter and
ignores the polynomial time costs due to the overall input size. Highlights of
previous research on the FVS problem in the parameterized framework include:
• A randomized FPT algorithm due to Becker et al. [BBG00] running in time
O∗(4k) finds a minimum feedback vertex set of size k with probability at least
1− (1− 4−k)c4k

for an arbitrary constant c.
• After several rounds of improvement, the best previous deterministic FPT
algorithm, due to Raman, Saurabh and Subramanian [RSS05], refining some
ideas from [RSS02] and [KPS04], has a running time of O∗(2O(k lg k/ lg lg k)). The
basic idea for this and most previous algorithms is to branch on short cycles in a
bounded search tree approach. See [DF99, Nie02, Nie05] for surveys of this and
other FPT techniques.

A number of problems concerning FVS have notably remained open:
(1) Is there an O∗(2O(k)) FPT algorithm for FVS on undirected graphs?
(2) Is there a polynomial-time algorithm that kernelizes FVS on undirected

graphs to a kernel of size polynomial in k? See [DF99, Nie02, Nie05] for a dis-
cussion of kernelization and FPT.

(3) Is the FVS problem in FPT for directed graphs?
In this paper we answer the first of these significant open problems by

an approach based on the relatively new technique of iterative compression
[RSV04, DFRS04, Ma04, GGHNW05]. As we prepare the final version of this
paper, we have become aware that independently a solution to (1) has been de-
scribed by Guo, et al. [GGHNW05], also based on iterative compression. Our
algorithm differs in some details, and has a run time analysis that is superior to

An O(2O(k)n3) FPT Algorithm 861

the apparently slightly earlier solution to question (1) described in the upcoming
conference paper [GGHNW05].

In the next section we provide a brief discussion of the iterative compression
technique and its application to the FVS problem. In §3 we describe our FPT
algorithm for the solution-compression form of the FVS problem. In §4 we prove
an “optimality” result for our algorithm (giving a lower bound on the possibility
of further qualitative improvements). In §5 we conclude with a review of open
problems.

2 Iterative Compression Applied to FVS

The FPT technique of iterative compression seems first to have appeared in an
FPT algorithm devised by Reed, Smith and Vetta for the problem of deleting k
vertices to render a graph bipartite [RSV04]. The approach was articulated as
a general FPT design technique in [DFRS04]. Some applications of the method
can be found in [RSV04, DFRS04, Ma04, GGHNW05].

Here we use this approach to solve the FVS decision problem by recursively
solving the following constructive solution-compression form of the problem:

Solution Compression for Feedback Vertex Set
Instance: An undirected graph G = (V, E)

(loops and multiple edges are allowed),
an annotated subset U ⊆ V of vertices,
a solution set S ⊆ V − U such that G− S is acyclic,
where |S| = k + 1.

Parameter: k
Output: Either: (1) a solution set S′ of size k, or

(2) NO (i.e., no solution of size k is possible).

We employ an FPT algorithm for the above compression form of the FVS
problem in the following way. We recursively solve a constructive form of the
problem of deciding whether a graph G = (V, E) admits a feedback vertex set
of size k with vertices to be chosen from V −U . In this constructive form of the
decision problem we are required either to produce a solution of size k, if one
exists, or to return NO otherwise.

Given an instance (G = (V, E), U ⊆ V, k), we recursively address the con-
structive decision problem for the instance (G− v, U, k) where v is an arbitrarily
chosen vertex in V − U . If this recursive call on G − v returns NO, that is, no
k-vertex solution for G − v is possible, then clearly the correct answer for G is
NO as well.

Alternatively, if the recursive call on the instance (G − v, U, k) returns a k-
element solution S ⊆ V − U , then S ∪ {v} is a solution of size k + 1 for G. We
now employ as a subroutine the FPT algorithm for the solution compression
problem. If f(k)nc is the running time for Solution Compression for FVS,
then our recursive solution to the constructive decision problem runs in time
f(k)nc+1, where n is the number of vertices in the graph G.

862 Frank Dehne et al.

3 An FPT Algorithm for FVS Solution Compression

We will use the following reduction rules that can be easily applied to simplify
(or summarily decide) an instance of the problem. Recall that some vertices (the
vertices in U in the problem definition) may be annotated as not to belong to a
solution set.
Rule 1: The Degree One Rule. If v is a vertex (annotated or not) of degree
1 in G, then delete v and adjust the rest of the input data accordingly.
Rule 2: The Degree Two Rule. If v is a vertex (annotated or not) of degree
2 in G, with neighbors a and b (allowing possibly a = b), then modify G by
replacing v and its two incident edges with a single edge between a and b (or a
loop on a = b) and adjust the rest of the input data accordingly.
Rule 3: Annotation Contraction. If u and v are adjacent annotated vertices
(that is, u, v ∈ U) then contract one of the edges between u and v and adjust
the rest of the input data accordingly.
Rule 4: The Loop Rules. If there is a loop on an annotated vertex v then
answer NO. If there is a loop on an unannotated vertex v ∈ V − U then take v
into the solution set, and reduce to the instance (G− v, U, k − 1).
Rule 5: Multiedge Reduction. If there are more than two edges between u
and v (annotated or not) then delete all but two of these.
Rule 6: Multiedge Selection. If there is an annotated vertex u that is con-
nected by two edges to an unannotated vertex v, then take v into the solution
set, that is, reduce to the instance (G− v, U, k − 1).

The soundness of all these reduction rules is self-evident. In time O(n) we
can determine if any of the above reduction rules can be applied to a problem in-
stance. Note that applications of the rules may cascade. We say that an instance
is reduced if none of the reduction rules can be applied.

Note that if we reduce an instance (G, U, k) to an instance (G′, U ′, k′) by a
series of applications of the above reduction rules, then given a solution S′ of
size k′ for G′, we can in time O(n) recover a solution S of size k for G. We will
always assume that the instance we are working with is reduced.
Algorithm for Solution Compression for FVS
Input: A reduced instance (G = (V, E), U ⊆ V, k), and a solution S ⊆ V −U of
size k + 1.
Output: Either a solution of size at most k, or NO if none exists.
Step 1: Branch on all 2k+1 − 1 subsets of S of size at most k. The branch
corresponding to a subset A ⊆ S represents the search for a size k solution S′

that includes the vertices of A, that is, A ⊆ S′, and that does not include any
of the vertices of S −A = A′.

Thus, in the instance (G′, U ′, k′) that represents this branch of Step 1:
(1) the vertices of A are deleted,
(2) the vertices of A′ are annotated,
(3) k′ = k − |A|, and
(4) the instance is further reduced according to Reduction Rules (1-6).

An O(2O(k)n3) FPT Algorithm 863

We will argue below that for the reduced instance (G′ = (V ′, E′), U ′, k′)
considered on any of the branches of Step 1, we have either:
(i) |V ′ − U ′| ≤ 4k, or
(ii) we can immediately determine that the answer is NO.

Step 2: On each branch of Step 1, exhaustively analyze the resulting reduced
instance by checking each k′-element subset of the unannotated vertices to see
if any provides a solution.

Step 2 requires checking at most
(
4k
k

)
subsets. A simple bound on the running

time of our algorithm is O(ckn2) where c = 18.963, since(
4k

k

)
≈ (9.4815)k

Amore refined versionof our algorithm,detailed in §3.3, runs in time O∗(10.567k).

3.1 The Reduced Instance Bound for Step 1

The correctness of the algorithm is obvious because of its extreme simplicity.
What is less obvious is the claimed bound of 4k on the number of unannotated
vertices in the reduced instance generated on a branch of Step 1 that need to be
considered further.

Let A ⊆ S and A′ = S − A as in the description of Step 1. The immediate
instance graph G′ on the A-branch of Step 1 consists of two sets of vertices:
(1) The (now) annotated vertices of A′, where we have the bound |A′| ≤ k + 1.
(2) The other vertices, which we denote F . Some of these may be annotated.

This immediate branch instance is further reduced, and this reduction process
may result in some modification of the above picture. For example, connected
components of the subgraph generated by A′ would be contracted to a single
vertex, by repeated applications of Rule 3. To simplify the argument, we will
assume that the immediate branch instance is already reduced so that our de-
scription of the vertices of G′ as partitioned into A′ and F is accurate (these sets
would be modified by further reduction, but a bipartition with the same prop-
erties we make use of below would result in any case). The following structural
claims hold.

Lemma 1. The subgraph 〈F 〉 induced by F is acyclic.

Proof. Otherwise S would not be a solution for G.

Henceforth we may use F (for convenience) to denote also the forest induced
by the vertices in the vertex set F .

Lemma 2. Each leaf l of the forest F is adjacent to at least two distinct vertices
in A′.

Proof. In view of Lemma 1 and Reduction Rules 1 and 2, there must be at least
two edges connecting l to vertices in A′. Reduction Rule 6 would apply if l were
connected to only one vertex of A′.

864 Frank Dehne et al.

The vertices in the forest F can be partitioned into three sets. Let L denote
the leaves of F , let J be the vertices that have degree 2 in the forest subgraph
〈F 〉. We will refer to the vertices of J as the subdivision vertices of F . Let B, the
branch vertices of F , be the vertices of degree at least 3 in the subgraph 〈F 〉.

Lemma 3. Each vertex j ∈ J is connected to at least one vertex of A′.

Proof. Otherwise, in view of Lemma 1, Reduction Rule 2 would apply.

Definition 1. Let F be a forest with vertex set partitioned into the three sets:
(1) the leaves L, (2) the subdivision vertices J , and (3) the branch vertices B of
F . A path-matching of the J-vertices of F of size r consists of:
(1) r mutually disjoint 2-element subsets {xi, yi} ⊆ J , 1 ≤ i ≤ r,
(2) for each i, 1 ≤ i ≤ r, a path ρi in F from xi to yi, subject to the requirement
that for i �= j, the paths ρi and ρj are vertex disjoint.

Definition 2. The potential π(F) of the forest F is defined to be the sum of
the number of leaves |L| of F and the size of a maximum path-matching of the
J-vertices. (See Figure 1 for an example.)

Fig. 1. A maximum path-matching of the subdivision vertices (“J vertices”) of the
forest F , showing that π(F) = 11 + 3 = 14

Lemma 4. Suppose that for the reduced instance (G′, U ′, k′) with vertex set
partitioned into A′ and F as above we have π(F) ≥ k′ + |A′|. Then the answer
for this instance is NO.

Proof. If it were a YES-instance (for k′) then there would be a feedback vertex set
S′ consisting of at most k′ unannotated vertices. But then there would necessarily
be at least |A′| leaves and J−matching paths ρi in F having empty intersection
with S′. Since S′ ∩A′ = ∅ (because the vertices of A′ are annotated), there are

An O(2O(k)n3) FPT Algorithm 865

at least |A′| virtual edges or virtual loops connecting the vertices of A′ through
F −S′. (For example, if a leaf l of F is not in S′, then by Lemma 2 it is adjacent
to two vertices a and b in A′, which we consider here as a virtual edge between
a and b. If the path ρi in F from the J-vertex xi to the J-vertex yi does not
contain any vertices in S′, then together with the connections of xi and yi to
the set A′ guaranteed by Lemma 3, we have what can be considered either a
virtual edge between A′ vertices — or a virtual loop, in case the A′-adjacencies
guaranteed for xi and yi by Lemma 3 connect these vertices to the same vertex
of A′.) Joining the vertices of A′ by |A′| virtual edges or virtual loops necessarily
implies that there is a cycle not including any vertices of S′, that is, that S′ is
not a feedback vertex set, a contradiction.

Lemma 5. For any forest F on m vertices, π(F) ≥ (m + 1)/2.

The proof of Lemma 5 is intricate, and can be found in the full paper.

Lemma 6. If on the branch of Step 1 corresponding to A ⊆ S we have a reduced
instance (G′, U ′, k′) where the vertices of G′ are partitioned into A′ and F as in
the discussion above, and where |F | ≥ 4k + 1, then this is a NO-instance.

Proof. By Lemma 5, π(F) ≥ 2k + 1. The rest follows by Lemma 4, since |A′| ≤
k + 1 and k′ ≤ k.

3.2 A More Efficient Version

Lemma 4 shows that there is a simple way to improve the efficiency of our
algorithm. On the branch of Step 1 corresponding to a subset A of the (k + 1)-
sized solution S, we can answer NO if for the reduced instance we have π(F) ≥
k′ + |A′|. Since k′ = k−|A| and |A′| = k+1−|A|, and using Lemma 5, the total
bound on the number of possible solutions explored in Steps 1 and 2 is

k∑
i=0

(
k + 1

i

)(
2((k + 1− i) + (k − i)− 1)− 1

k − i

)
=

k∑
i=0

(
k + 1

i

)(
4k − 4i− 1

k − i

)
Define

f(x, k) =
(

k

x

)(
4(k − x)
k − x

)
and suppose f(x, k) is maximized for x∗ = x(k). Then our sum above is bounded
by (k + 1) · f(x∗, k + 1).

We next work out two estimates x1(k) and x2(k) such that

x1(k) ≤ x∗(k) ≤ x2(k)

and we will therefore have a bound on our sum of

(k + 1) ·
(

k + 1
x2(k + 1)

)(
4((k + 1)− x1(k + 1))
(k + 1)− x1(k + 1)

)

866 Frank Dehne et al.

(The reason for the two estimates is that the first part of f(x, k) increases with
x, and the second part decreases with x.)

We study the ratio f(x, k)/f(x + 1, k). The maximizing value x∗ is located
(essentially) at the point where this ratio is equal to 1. Assuming that k is large,
this ratio is approximately:

f(x, k)
f(x + 1, k)

≈
(

x + 1
k − x

)
(4)(4/3)3

This yields the estimates:
x1(k) = (27/283)k and
x2(k) = (28/283)k.

Using the bound (based on Stirling’s approximation) that(
ak

bk

)
≤
(

aa

bb(a− b)a−b

)k

for constants a > b, we obtain the bound on our total cost sum of (k+1)(10.567)k.

4 Optimality

Our FPT algorithm for the problem of Solution Compression for FVS
yields, by the approach of §2, an FPT algorithm for the parameterized Feed-
back Vertex Set problem that runs in time O(ckn3) where c = 10.567. In
qualitative terms, we have given an algorithm with a running time of the form
O∗(2O(k)). We next show that this is, in a qualitative sense, “optimal” for the
problem.

Theorem 1. There can be no FPT algorithm for Feedback Vertex Set with
a running time of the form O∗(2o(k)) unless FPT = M [1].

Proof. Determining whether a graph on n vertices has a vertex cover of size at
most k log n, where the parameter is k, is termed the k log n Vertex Cover
Problem. This “renormalized” form of the well-known FPT Vertex Cover
problem is complete for the parameterized complexity class M [1] [DEFPR03,
CF04]. The theorem follows because there is a linear-size and parameter-preserv-
ing (i.e., k′ = k) polynomial-time reduction from Vertex Cover to Feedback
Vertex Set, by simply replacing each edge of the Vertex Cover instance
with a pair of parallel edges. Thus if there were an FPT algorithm for Feedback
Vertex Set running in time O∗(2o(s)) where s is the size of the feedback vertex
set, then we would have an algorithm for the k log n Vertex Cover Problem
running in time O∗(2o(k log n)), but as shown in [CJ03], this is an FPT running
time. By the completeness of the k log n Vertex Cover Problem for M [1] we
would have FPT = M [1].

Remark 1. The consequence FPT = M [1] is highly unlikely, since it is known
that FPT = M [1] if and only if satisfiability of 3SAT instances on n variables
can be decided in time O∗(2o(n)). (See [DEFPR03, CF04] for further information
and discussion.)

An O(2O(k)n3) FPT Algorithm 867

Remark 2. A number of other FPT optimality results have been shown for var-
ious problems [DFR03, CJ03]. A notable example is the parameterized Planar
Dominating Set problem, for which there is an FPT algorithm with a running
time of O∗(2O(

√
k)) [ABFKN02]. It has been shown that there can be no FPT

algorithm for this problem with a running time of the form O∗(2o(
√

k)) unless
FPT = M [1] [CJ03].

5 Open Problems

There are two compelling problems concerning FVS that remain unresolved.
• Is the Feedback Vertex Set problem for directed graphs in FPT? This is
currently open even for the restriction to planar digraphs.
• Is there a polynomial-time kernelization algorithm for FVS on undirected
graphs that reduces an instance (G, k) to (G′, k′) where k′ ≤ k and the size
of G′ is bounded by a polynomial in k?

Perhaps an iterative compression approach similar to the one employed in
our main result here might be of use in addressing the FVS problem for digraphs.

The potential practical significance of our algorithm should also be investi-
gated. Our approach to the FVS problem here is a new one. The “flat” parallelism
of Step 1 (where there are many branches of the algorithm created “all at once”,
as contrasted with many branches created by repeated binary branching, as is
more typically the case for FPT algorithms) could conceivably be significant for
highly parallel implementations.

The reduction rules that we have employed are all local and elementary in
character. It could be productive to explore if global “crown type” reduction
rules for the problem might be possible, as has turned out to be usefully the
case for Vertex Cover [ACFLSS04]. Such reduction rules could be important
for addressing the very natural open problem concerning polynomial-size kernel-
ization. Alternatively, perhaps some new lower bound techniques, such as those
recently developed in [CFKX05], can be used to show that no polynomial-time
polynomial-size many:1 kernelization for FVS is possible.

References

[ABFKN02] J. Alber, H. L. Bodlaender, H. Fernau, T. Kloks and R. Niedermeier.
Fixed parameter algorithms for Dominating Set and related problems
on planar graphs. Algorithmica 33 (2002), 461–493.

[ACFLSS04] F. N. Abu-Khzam, R. L. Collins, M. R. Fellows, M. A. Langston, W.
H. Suters and C. T. Symons. Kernelization algorithms for the vertex
cover problem: theory and experiments. Proceedings of the 6th Workshop
on Algorithm Engineering and Experiments (ALENEX), New Orleans,
January, 2004, ACM/SIAM, Proc. Applied Mathematics 115, L. Arge,
G. Italiano and R. Sedgewick, eds.

[BBF99] V. Bafna, P. Berman and T. Fujito. A 2-approximation algorithm for
the undirected feedback vertex set problem. SIAM Journal on Discrete
Mathematics 12 (1999), 289–297.

868 Frank Dehne et al.

[BBG00] A. Becker, R. Bar-Yehuda and D. Geiger. Random algorithms for
the loop cutset problem. Journal of Artificial Intelligence Research 12
(2000), 219–234.

[BGNR98] R. Bar-Yehuda, D. Geiger, J. Naor and R. Roth. Approximation al-
gorithms for the feedback vertex set problem with applications to con-
straint satisfaction and Bayesian inference. SIAM Journal on Computing
27 (1998), 942–959.

[Bod94] H. Bodlaender. On disjoint cycles. International Journal of Foundations
of Computer Science 5 (1994), 59–68.

[CF04] Y. Chen and J. Flum. On miniaturized problems in parameterized com-
plexity theory. Proceedings of the First International Workshop on Pa-
rameterized and Exact Computation, Springer-Verlag, Lecture Notes in
Computer Science vol. 3162 (2004), 108–120.

[CJ03] L. Cai and D. Juedes. On the existence of subexponential parameterized
algorithms. Journal of Computer and System Sciences 67 (2003), 789–
807.

[CFKX05] J. Chen, H. Fernau, I. Kanj and G. Xia. Parametric duality and ker-
nelization: lower bounds and upper bounds on kernel size. The 22nd
Symposium on Theoretical Aspects on Computer Science (STACS 2005),
Springer-Verlag, Lecture Notes in Computer Science vol. 3404 (2005),
269-280.

[DEFPR03] R. Downey, V. Estivill-Castro, M. Fellows, E. Prieto-Rodriguez and F.
Rosamond. Cutting up is hard to do: the complexity of k-cut and related
problems. Electronic Notes in Theoretical Computer Science 78 (2003),
205–218.

[DF92] R. Downey and M. Fellows. Fixed-parameter tractability and complete-
ness. Congressus Numerantium 87 (1992), 161–187.

[DF99] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer-
Verlag, 1999.

[DFR03] F. Dehne, M. Fellows and F. Rosamond. An FPT algorithm for set
splitting. Proceedings of the 29th Workshop on Graph Theoretic Con-
cepts in Computer Science (WG 2003), Springer-Verlag, Lecture Notes
in Computer Science 2880 (2003), 180–191.

[DFRS04] F. Dehne, M. Fellows, F. Rosamond and P. Shaw. Greedy localization,
iterative compression and modeled crown reductions: new FPT tech-
niques, an improved algorithm for set splitting and a novel 2k kerneliza-
tion for vertex cover. Proceedings of the First International Workshop on
Parameterized and Exact Computation, Springer-Verlag, Lecture Notes
in Computer Science vol. 3162 (2004), 271–280.

[ENSS98] G. Even, J. Naor, B. Scheiber and M. Sudan. Approximating minimum
feedback sets and multicuts in directed graphs. Algorithmica 20 (1998),
151–174.

[FHPSS04] C. Fried, W. Hordijk, S.J. Prohaska, C.R. Stadler and P.F. Stadler. The
footprint sorting problem. J. Chem. Inf. Comput. Sci. 44 (2004), 332
-338.

[FHS03] M. Fellows, M. Hallett and U. Stege. Analogs and duals of the MAST
problem for sequences and trees. Journal of Algorithms 49 (2003), 192–
216.

[GGHNW05] J. Guo, J. Gramm, F. Hueffner, R. Niedermeier, S. Wernicke. Improved
fixed-parameter algorithms for two feedback set problems. Proceedings
of WADS 2005, Springer-Verlag, Lecture Notes in Computer Science
(2005), to appear.

An O(2O(k)n3) FPT Algorithm 869

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W.H. Freeman, 1979.

[KPS04] I. Kanj, M. Pelsmajer and M. Schaefer. Parameterized algorithms for
feedback vertex set. Proceedings of the First International Workshop on
Parameterized and Exact Computation, Springer-Verlag, Lecture Notes
in Computer Science vol. 3162 (2004), 235–247.

[KW90] A. Kunzmann and H. Wunderlich. An analytical approach to the partial
scan problem. Journal of Electronic Testing: Theory and Applications 1
(1990), 163–174.

[Ma04] D. Marx. Chordal deletion is fixed-parameter tractable. Manuscript,
2004.

[Nie02] R. Niedermeier. Invitation to fixed-parameter algorithms, Habilitation-
schrift, University of Tubingen, 2002. (Electronic file available from R.
Niedermeier.)

[Nie05] R. Niedermeier. Invitation to Fixed-Parameter Algorithms, Oxford Uni-
versity Press, forthcoming.

[RSS02] V. Raman, S. Saurabh and C. Subramanian. Faster fixed-parameter
tractable algorithms for undirected feedback vertex set. In Proceedings
of the 13th Annual International Symposium on Algorithms and Com-
putation, Springer, Lecture Notes in Computer Science vol. 2518 (2002),
241–248.

[RSS05] V. Raman, S. Saurabh and C.R. Subramanian. Faster algorithms for
feedback vertex set. In: Proceedings of the 2nd Brazilian Symposium
on Graphs, Algorithms and Combinatorics, GRACO 2005, April 27-29,
2005, Angra dos Reis (Rio de Janeiro), Brazil. Elsevier, Electronic Notes
in Discrete Mathematics (2005), to appear.

[RSV04] B. Reed, K. Smith, and A. Vetta. Finding odd cycle transversals. Oper-
ations Research Letters 32 (2004), 299–301.

[Woe03] G. J. Woeginger. Exact algorithms for NP-hard problems: a survey. Pro-
ceedings of 5th International Workshop on Combinatorial Optimization-
Eureka, You Shrink! Papers dedicated to Jack Edmonds, M. Junger, G.
Reinelt, and G. Rinaldi (Festschrift Eds.) Springer-Verlag, Lecture Notes
in Computer Science 2570 (2003), 184-207.

Approximating the Longest Cycle Problem
on Graphs with Bounded Degree

Guantao Chen1,�, Zhicheng Gao2, Xingxing Yu3,��, and Wenan Zang4,���

1 Department of Mathematics & Statistics, Georgia State University,
Atlanta, GA 30303
gchen@cs.gsu.edu

2 Faculty of Business Administration, University of Macau,
Macau, China
ZCGao@umac.mo

3 School of Mathematics, Georgia Institute of Technology,
Atlanta, GA 30332
yu@math.gatech.edu

4 Department of Mathematics, University of Hong Kong,
Hong Kong, China
wzang@maths.hku.hk

Abstract. In 1993, Jackson and Wormald conjectured that if G is a
3-connected n-vertex graph with maximum degree d ≥ 4 then G con-
tains a cycle of length Ω(nlogd−1 2), and showed that this bound is best
possible if true. In this paper we present an O(n3) algorithm for finding
a cycle of length Ω(nlogb 2) in G, where b = max{64, 4d + 1}. Our result

substantially improves the best existing bound Ω(n
log2(d−1)2+1 2

).

1 Introduction

Over the past three decades, the longest cycle problem, one of the classical NP-
hard problems, has attracted tremendous attention. Despite arduous research
efforts, little progress has been made on the general problem. Essentially, there
is no known polynomial time algorithm which guarantees an approximation ratio
better than n/polylog(n), and there is no strong inapproximability result that
explains this situation. For graphs with a cycle of length k, it was proved by
Björklund and T. Husfeldt [1] that one can find in polynomial time a cycle of
length Ω((log k)2/ log log k). Recently, Gabow [5] showed how to find in polyno-
mial time a cycle of superpolylogarithmic length through a given vertex. In [4],
Feder and Motwani improved Gabow’s result with some additional condition.

Karger, Motwani, and Ramkumar [9] established that unless P = NP it is
impossible to find, in polynomial time, a path of length n − nε in an n-vertex

� Partially supported by NSA grant H98230-04-1-0300
�� Partially supported by NSF grant DMS-0245530, NSA grant MDA904-03-1-0052,

and RGC grant HKU7056/04P
��� Partially supported by RGC grant HKU7056/04P

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 870–884, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Approximating the Longest Cycle Problem on Graphs 871

Hamiltonian graph for any ε < 1. They conjectured that it is true even for
graphs with bounded degree. On the other hand, Feder, Motwani, and Subi [3]
showed that there is a polynomial time algorithm for finding a cycle of length
at least n(log3 2)/2 in any 3-connected cubic n-vertex graph. They also proposed
to examine the problem on 3-connected graphs with bounded degree. In fact,
the work on this special longest cycle problem dates back to 1993 when Jackson
and Wormald [8] proved that every 3-connected n-vertex graph with maximum
degree at most d has a cycle of length at least 1

2nlogb 2+1, with b = 6d2. Recently,
Chen, Xu, and Yu [2] gave a cubic algorithm that, given a 3-connected n-vertex
graph with maximum degree at most d, finds a cycle of length at least nlogb 2

with b = 2(d− 1)2 + 1. It was conjectured by Jackson and Wormald [8] that for
d ≥ 4 the right value for b should be a linear function of d, more specifically,
d−1; this bound, if true, would be best possible as shown by a concrete example.
The purpose to this paper is to asymptotically prove this conjecture.

Theorem 1. Let n ≥ 4 and d ≥ 4 be integers. Let G be a 3-connected graph
on n vertices, and assume that the maximum degree of G is at most d. Then G
contains a cycle of length at least 1

2nlogb 2 + 2, where b = max{64, 4d + 1}.

We point out that our proof yields an O(n3) algorithm for finding such a
cycle in G. Moreover, we introduce the coefficient 1/2 in the bound just in order
to simplify the induction basis, and the additional constant 2 is also for induction
purpose. To establish Theorem (1.1), we shall actually prove three statements
simultaneously.

Theorem 2. Let n ≥ 5 and d ≥ 4 be integers, let b = max{64, 4d + 1} and
r = logb 2, and let G be a 3-connected graph of order n. The following statements
hold.

(a) Let xy ∈ E(G) and z ∈ V (G) − {x, y}, and let t denote the number of
neighbors of z distinct from x and y. Assume that the maximum degree of G
is at most d + 1, and every vertex of degree d + 1 (if any) is incident with
the edge zx or zy. Then there is a cycle C through xy in G − z such that
|C| ≥ 1

2 ((d−1)n
dt)r + 2.

(b) Suppose the maximum degree of G is at most d. Then, for any distinct e, f ∈
E(G), there is a cycle C through e and f in G such that |C| ≥ 1

2 (n
d)r + 3.

(c) Suppose the maximum degree of G is at most d. Then, for any e ∈ E(G),
there is a cycle C through e in G such that |C| ≥ 1

2nr + 3.

Clearly, (c) of Theorem 2 implies Theorem 1 when n ≥ 5, and Theorem 1 is
obvious when n = 4. Note the condition in (a) about the maximum degree; it is
due to the addition of edges in order to maintain 3-connectivity.

To prove Theorem 2, we need to deal with graphs obtained from 3-connected
graphs by deleting a vertex (such as G− z in (a)), and such graphs need not be
3-connected. We shall use a result of Tutte [10] and Hopcroft and Tarjan [6] to
decompose such graphs into “3-connected components”, find long paths through
certain 3-connected components, and apply the convexity of the function xlogb 2

872 Guantao Chen et al.

to account for the unused 3-connected components. Our result substantially
improves that in [2], and this improvement is mainly obtained by exploiting
more sophisticated structural descriptions of 3-connected components.

This paper is organized as follows. In Section 2, we shall recall the notation
related to the decomposition result of Tutte [10] and Hopcroft and Tarjan [6].
We shall also state and prove several results on paths in certain 3-connected
components. In Section 3, we shall exhibit several properties enjoyed by the
function f(x) = xlogb 2 and then use them to prove several lemmas concerning
paths in 3-connected components. In Sections 4 and 5, we shall show that each
of (a), (b) and (c) can be reduced to (a), (b) and/or (c) for smaller graphs. In
Section 6, we shall complete the proof of our main result, and outline an O(n3)
algorithm for finding a desired long cycle in a 3-connected graph with bounded
degree.

2 Paths in Cycle Chains

For convenience, we briefly recall the notation which is used to describe the
decomposition of a 2-connected graph into 3-connected components. A detailed
description can be found in [2] and [6].

Let G be a 2-connected graph. We allow multiple edges (and hence, E(G)
is a multi-set). We say that {a, b} ⊆ V (G) is a separation pair in G if there
are subgraphs G1, G2 of G such that G1 ∪ G2 = G, V (G1) ∩ V (G2) = {a, b},
E(G1)∩E(G2) = ∅, and |E(Gi)| ≥ 2 for i = 1, 2. Let G′

i := (V (Gi), E(Gi)∪{ab})
for i = 1, 2. Then G′

1 and G′
2 are called split graphs of G with respect to the

separation pair {a, b}, and the new edge ab added to Gi is called a virtual edge.
It is easy to see that since G is 2-connected, G′

i is 2-connected or G′
i consists of

two vertices and at least three multiple edges between them.
Suppose a multigraph is split, and the split graphs are split, and so on,

until no more splits are possible. Then each remaining graph is called a split
component. No split component contains a separation pair, and therefore, each
split component must be one of the following: a triangle, a triple bond (two
vertices with three multiple edges between), or a 3-connected graph.

It is not hard to see that if a split component of a 2-connected graph is 3-
connected then it is uniquely determined. It is also easy to see that, for any two
split components G1, G2 of a 2-connected graph, we have |V (G1) ∩ V (G2)| = 0
or 2, and if |V (G1) ∩ V (G2)| = 2 then either G1 and G2 share a virtual edge
between vertices in V (G1) ∩ V (G2) or there is a sequence of triple bonds such
that the first shares a virtual edge with G1, any two consecutive triple bonds in
the sequence share a virtual edge, and the last triple bond shares a virtual edge
with G2.

In order to get unique 3-connected components, we merge some triple bonds
and to merge some triangles. Let G′

i = (V ′
i , E′

i), i = 1, 2, be two split components,
both containing a virtual edge ab. Let G′ = (V ′

1 ∪V ′
2 , (E′

1−{ab})∪ (E′
2−{ab})).

Then, the graph G′ is called the merge graph of G1 and G2. Clearly, a merge of
triple bonds gives a graph consisting of two vertices and multiple edges, which

Approximating the Longest Cycle Problem on Graphs 873

is called a bond. Also a merge of triangles gives a cycle, and a merge of cycles
gives a cycle.

Let D denote the set of 3-connected split components of a 2-connected graph
G. We merge the other split components of G as follows: the triple bonds are
merged as much as possible to give a set of bonds B, and the triangles are merged
as much as possible to give a set of cycles C. Then B ∪ C ∪ D is the set of the
3-connected components of G. Note that any two 3-connected components either
are edge disjoint or share exactly one virtual edge.

Tutte [10] proved that the above decomposition of a 2-connected graph into
3-connected components is unique. Hopcroft and Tarjan [6] gave a linear time
algorithm for finding all 3-connected components of a graph.

Theorem 3. For any 2-connected graph, the 3-connected components are unique
and can be found in O(|V |+ |E|) time.

If we define a graph whose vertices are the 3-connected components of G and
two vertices are adjacent if the corresponding 3-connected components share a
virtual edge, then it is easy to see that such a graph is a tree, called the block-
bond tree of G. For convenience, 3-connected components that are not bonds are
called 3-blocks. An extreme 3-block is a 3-block that contains at most one virtual
edge. That is, either it is the only 3-connected component, or it corresponds to
a degree one vertex in the block-bond tree.

A cycle chain in a 2-connected graph G is a sequence C1C2 . . . Ck of 3-blocks
of G such that each Ci is a cycle and there exist bonds B1, B2, . . ., Bk−1 in
G such that C1B1C2B2 . . . Bk−1Ck is a path in the block-bond tree of G. For
convenience, we sometimes write H := C1C2 . . . Ck for a cycle chain, and view
H as the graph

⋃k
i=1 Ci. The following is a direct consequence of the definition

of a cycle chain.

Proposition 1. Let G be a 2-connected graph and let C1C2 . . . Ck be a cycle
chain in G. Then deleting all virtual edges with both ends in V (Ci ∩ Ci+1),
1 ≤ i ≤ k − 1, results in a cycle.

Proposition 2. Let G be a 2-connected graph, let C1C2 . . . Ck be a cycle chain
in G, let uv ∈ E(C1) with {u, v} �= V (C1) ∩ V (C2) when k �= 1, and let ab ∈
E(Ck) with {a, b} �= V (Ck−1) ∩ V (Ck) when k �= 1. Then there is a path in
(
⋃k

i=1 Ci)−{v, ab} from u to {a, b} and containing (
⋃k−1

i=1 V (Ci−1∩Ci))−({a, b}∪
{u, v}).

A similar argument establishes the following result.

Proposition 3. Let G be a 2-connected graph, let C1C2 . . . Ck be a cycle chain
in G, let uv ∈ E(C1) with {u, v} �= V (C1 ∩ C2) when k �= 1, and let x ∈ V (Ck)
with x /∈ V (Ck−1 ∩ Ck when k �= 1. Then there is a path in (

⋃k
i=1 Ci)− v from

u to x and containing (
⋃k−1

i=1 V (Ci ∩ Ci+1))− {v}.

The following two results are Propositions (2.7) and (2.8) in [2], respectively.

874 Guantao Chen et al.

Proposition 4. Let G be a 2-connected graph, let C1C2 . . . Ck be a cycle chain
in G, let uv ∈ E(C1) with {u, v} �= V (C1 ∩ C2) when k �= 1, ab ∈ E(Ck) with
{a, b} �= V (Ck−1∩Ck) when k �= 1, and cd ∈ E(

⋃k
i=1 Ci)−{ab}. Suppose ab �= uv

when k = 1. Then there is a path P in (
⋃k

i=1 Ci)− ab from {a, b} to {c, d} such
that uv ∈ E(P), cd /∈ E(P) unless cd = uv, and (

⋃k−1
i=1 V (Ci ∩ Ci+1)) ⊆ V (P).

Proposition 5. Let G be a 2-connected graph, let C1C2 . . . Ck be a cycle chain
in G, let uv ∈ E(C1) with {u, v} �= V (C1) ∩ V (C2) when k �= 1, x ∈ V (Ck) with
x /∈ V (Ck−1 ∩Ck) when k �= 1, and cd ∈ E(

⋃k
i=1 Ci). Then there is a path P in

(
⋃k

i=1 Ci) from x to {c, d} such that uv ∈ E(P), cd /∈ E(P) unless cd = uv, and
(
⋃k−1

i=1 V (Ci ∩ Ci+1)) ⊆ V (P).

We conclude this section by recalling two graph operations and three lemmas
from [2]. Let G be a graph and let e, f be distinct edges of G. An H-transform of G
at {e, f} is an operation that subdivides e and f by vertices x and y respectively
and then adds the edge xy. Let x ∈ V (G) such that x is not incident with e.
A T-transform of G at {x, e} is an operation that subdivides e with a vertex y
and then adds the edge xy. If there is no need to specify e, f, x, we shall simply
speak of an H-transform or a T-transform. The following result is Lemma (3.3)
in [2].

Lemma 1. Let d ≥ 3 be an integer and let G be a 3-connected graph with
maximum degree at most d. Let G′ be a graph obtained from G by an H-transform
or a T-transform. Then G′ is a 3-connected graph, the vertex of G involved in
the T-transform has degree at most d+1, and all other vertices of G′ has degree
at most d.

3 Convex Function and Paths in Block Chains

In this section we prove several lemmas concerning the function xlogb 2. These
lemmas will then be used in the proof of Theorem 2 to show that it suffices to
find long paths in certain 3-blocks in a 2-connected graph. The first of these is
Lemma (3.1) in [2].

Lemma 2. Let b ≥ 4 be an integer, and let m ≥ n be positive integers. Then
mlogb 2 + nlogb 2 ≥ (m + (b − 1)n)logb 2.

When m is sufficiently larger than n, we can improve the above result.

Lemma 3. Let b ≥ 9 be an integer, and let m and n be positive integers. Suppose
m ≥ b(b−1)

4 n. Then mlogb 2 + nlogb 2 ≥ (m + b(b−1)
4 n)logb 2.

When m is not sufficiently larger than n, we have the following complemen-
tary result.

Lemma 4. Let b ≥ 64 be an integer, and let m ≥ n be positive integers. Suppose
m ≤ b(b−1)

4 n. Then mlogb 2 + nlogb 2 ≥ (4m)logb 2.

Approximating the Longest Cycle Problem on Graphs 875

The observations in the following lemma will be convenient in the proof of
Theorem 2.

Lemma 5. Let m be an integer, d ≥ 3, and b ≥ d + 1. If m ≥ 4 then m ≥
1
2mlogb 2+3. If m ≥ 3 then m > 1

2 (m
d)logb 2+2. If m ≥ 2 then m > 1

2 (m
d)logb 2+1.

Let us now turn to paths in block chains. Let G be a 2-connected graph.
A block chain in G is a sequence H1H2 . . . Hh for which (1) each Hi is a cy-
cle chain in G or a 3-connected 3-block of G, (2) for any 1 ≤ s ≤ h − 1,
HsHs+1 is not a cycle chain, and (3) there exist bonds B1, B2, . . . , Bh−1 such
that H1B1H2B2 . . . Bh−1Hh form a path in the block-bond tree of G (by also
including the tree paths corresponding to Hi when Hi is a cycle chain). For
convenience, we sometimes write H := H1H2 . . . Hh for a block chain and view
H =

⋃h
i=1 Hi as a graph.

Let H1H2 . . . Hh be a block chain and let V (Hs ∩Hs+1) = {xs, ys} for 1 ≤
s ≤ h− 1. For each 1 ≤ s ≤ h, we define A(Hs) as follows. If Hs is 3-connected
then A(Hs) := V (Hs). If Hs = C1C2 . . . Ck is a cycle chain then let A(Hs) :=
(
⋃k−1

i=1 V (Ci ∩ Ci+1)) − ({xs−1, ys−1} ∪ {xs, ys}) when 1 < s < h, A(Hs) :=⋃k−1
i=1 V (Ci ∩ Ci+1) when s = 1 = h, A(Hs) := (

⋃k−1
i=1 V (Ci ∩ Ci+1)) − {xs, ys}

when s = 1 < h, and A(Hs) := (
⋃k−1

i=1 V (Ci ∩ Ci+1)) − {xs−1, ys−1} when
1 < s = h.

For a block chain H = H1H2 . . .Hh, we write σ(H) :=
∑h

s=1 |A(Hs)| and
|H| := |

⋃h
i=1 V (Hi)|.

Lemma 6. Assume Theorem 2 holds for graphs of order < n, and let H =
H1H2 . . . Hh be a block chain in a 2-connected graph such that |H| < n and
the maximum degree of H is at most d. Let uv ∈ E(H1) such that {u, v} �=
V (H1 ∩H2) and {u, v} is not a cut of H1. Suppose for all 1 ≤ j < h, |A(Hj)| ≤
(d − 1)

∑h
i=j+1 |A(Hi)|. Then there exists a path P from u to v in H such that

|E(P)| ≥ 1
2 (σ(H))r + 2.

Lemma 7. Assume Theorem 2 holds for graphs of order < n, and let H =
H1H2 . . . Hh be a block chain in a 2-connected graph such that |H| < n and
the maximum degree of H is at most d. Let uv ∈ E(H1) such that {u, v} �=
V (H1 ∩H2) and {u, v} is not a cut of H1. Then there is a path P in H from u

to v such that |E(P)| ≥ 1
2 ((d−1)σ(H)

d)r + 2.

Proof. Let t be minimum such that |A(Ht)| ≥ (d− 1)
∑h

i=t+1 |A(Hi)|. If no such
t exists, let t = h. Then |A(Ht)| ≥ d−1

d

∑h
i=t |A(Hi)|. Let H′ = H1H2 . . . Ht.

Then σ(H′) ≥ d−1
d σ(H). By the choice of t and by Lemma 6, there is a path P

in H′ (and hence in H) from u to v such that |E(P ′)| ≥ 1
2 (σ(H′))r + 2. ��

Lemma 8. Assume Theorem 2 holds for graphs of order < n, and let H =
H1H2 . . . Hh be a block-chain in a 2-connected graph such that |V (H)| < n and
the maximum degree of H is at most d. When h = 1, if H1 is 3-connected or H1

is a cycle then let uv ∈ E(H1) and x ∈ V (H1)−{u, v}, and if H1 = C1C2 . . . Ck

876 Guantao Chen et al.

is a cycle chain with k ≥ 2 then let uv ∈ E(C1) with {u, v} �= V (C1 ∩ C2) and
let x ∈ V (Ck) − V (Ck−1 ∩ Ck). When h ≥ 2, if H1 is 3-connected or H1 is
a cycle then let uv ∈ E(H1) with {u, v} �= V (H1 ∩ H2), if H1 = C1C2 . . . Ck

is a cycle chain with k ≥ 2 and V (H1 ∩ H2) = V (Ck ∩ H2) then let uv ∈
E(C1) with {u, v} �= V (C1 ∩ C2), if Hh is a cycle or Hh is 3-connected then let
x ∈ V (H1) − {u, v}, and if Hh = C1C2 . . . Ck is a cycle chain with k ≥ 2 and
V (Hh−1 ∩ Hh) = V (Hh−1 ∩ C1) then let x ∈ V (Ck) − V (Ck−1). Suppose the
degree of x in H is at most d − 1. Then there exists a path P in H− v from u
to x such that

(i) |E(P)| ≥ 1
2

∑h
i=1(

|A(Hi)|
d)r + 1 ≥ 1

2 (σ(H)
d)r + 1,

(ii) |E(P ∩Hi)| ≥ 1
2 (|A(Hi)|

d)r + 1, and
(iii) |E(P ∩Hi)| ≥ max{1, |A(Hi)| − 2} when Hi is a cycle chain.

Corollary 1. Assume the same hypothesis of Lemma 8. Then for any 0 ≤ t ≤ h
and for any pq ∈ E(Ht), there exists a path P in H from x to {p, q} such that

(i) |E(P)| ≥ 1
2 |H0|r + 1

2

∑
(|A(Hi)|

d)r +
∑

max{1, |A(Hi)| − 2} + 1, where the
first summation is over all 3-connected Hi’s (1 ≤ i ≤ h) and the second
summation is over all cycle chains Hi (1 ≤ i ≤ n),

(ii) if we require uv ∈ E(P) then |E(P)| ≥ 1
2

∑
(|A(Hi)|

d)r +
∑

max{1, |A(Hi)| −
2} + 1, where the first summation is over all 3-connected Hi’s (0 ≤ i ≤ h)
and the second summation is over all cycle chains Hi (0 ≤ i ≤ n), and

(iii) |E(P)| ≥ 1
2

∑h
i=0(

|A(Hi)|
d)r + 1 ≥ (σ(H)

d)r + 1.

4 Cycles Through Two Edges

In this section, we show how to reduce (a) and (b) of Theorem 2 to (a), (b)
and/or (c) of Theorem 2. Note that finding a cycle in (a) of Theorem 2 through
xy avoiding z is equivalent to finding a cycle through xz, yz of appropriate length.
(This justifies the title of this section.)

First, we reduce (a) of Theorem 2 through the following lemma.

Lemma 9. Let n ≥ 6 and d ≥ 4 be integers, let b = max{64, 4d + 1} and
r = logb 2, and assume that Theorem 2 holds for graphs with at most n − 1
vertices. Let G be a 3-connected graph with n vertices, let xy ∈ E(G) and z ∈
V (G)−{x, y}, and let t denote the number of neighbors of z distinct from x and
y. Assume the maximum degree of G is at most d+1, and every vertex of degree
d + 1 in G (if any) is incident with the edge zx or zy. Then there is a cycle C

through xy in G− z such that |C| ≥ 1
2 ((d−1)n

dt)r + 2.

Next, we show how to reduce (b) of Theorem 2.

Lemma 10. Let n ≥ 6 and d ≥ 4 be integers, let b = max{64, 4d + 1} and
r = logb 2, and assume that Theorem 2 holds for graphs with at most n − 1
vertices. Suppose G is a 3-connected graph on n vertices and the maximum degree
of G is at most d. Then for any {e, f} ⊆ E(G), there is a cycle C through e, f
in G such that |C| ≥ 1

2 (n
d)r + 3.

Approximating the Longest Cycle Problem on Graphs 877

5 Cycles Through One Edge

In this section, we show how to reduce (c) of Theorem 2 to (a), (b), or (c) of
Theorem 2 for smaller graphs.

Lemma 11. Let n ≥ 6 and d ≥ 4 be integers, let b = max{64, 4d + 1} and
r = logb 2, and assume that Theorem 2 holds for graphs with at most n − 1
vertices. Let G be a 3-connected graph on n vertices, and assume the maximum
degree of G is at most d. Then for any e ∈ E(G), there is a cycle C through e
in G such that |C| ≥ 1

2nr + 3.

Proof. Let e = xy ∈ E(G). If G − y is 3-connected, then let y′ be a neighbor
of y other than x. Clearly, G′ := (G − y) + xy′ is a 3-connected graph with
maximum degree at most d. Since 5 ≤ |G′| < n, Theorem 2 holds for G′. By (c)
of Theorem 2, there is a cycle C′ through xy′ in G′ such that |C′| ≥ 1

2 (n−1)r+3.
Now let C := (C′ − xy′) + {y, xy, yy′}. Then C is a cycle through xy in G and
by Lemma 2, |C| = |C′|+ 1 ≥ 1

2 (n− 1)r + 1 + 3 ≥ 1
2nr + 3.

Therefore, we may assume that G − y is not 3-connected. Since G − y is
2-connected, we can use Theorem 3 to decompose G− y into 3-connected com-
ponents.

First, let us consider the case where all 3-blocks of G − y are cycles. Let
L = L1 . . . L� be a cycle chain in G − y such that (i) x ∈ V (L1), (ii) L� is an
extreme 3-block of G−y, and (iii) subject to (i) and (ii), |L| is maximum. It is easy
to see that there is some y′ ∈ V (L)−{x} such that

⋃�
i=1 Ls contains a Hamilton

path P from x to y′ and G has a path Q from y′ to y disjoint from V (L)−{y}. Let
C := (P∪Q)+{y, xy, yy′}. Then |C| ≥ |L|+1. If G−y = L then |C| = n ≥ 1

2nr+3
(since n ≥ 5). So we may assume G − y �= L. Write B := L1. Then by (iii), we
have |L| ≥ (n−1)−|B|

t−1 + |B| = n+(t−2)|B|−1
t−1 , where t is the number of extreme

3-blocks of G − y distinct from L1 (because x ∈ V (L1) and xy ∈ E(G)). So
n ≥ t + 4 (since |B| ≥ 3) and 2 ≤ t ≤ d − 1 (because G − y �= L). Then
|C| ≥ |L|+ 1 ≥ n+(t−2)|B|−1

t−1 + 1. Note that |C| − 3 ≥ n+(t−2)|B|−1
t−1 − 2 ≥ n+t−5

t−1

(since |B| ≥ 3). Using elementary calculus, we can show that n+t−5
t−1 ≥ 1

2nr.
Therefore, |C| ≥ 1

2nr + 3.
Hence, we may assume that not all 3-blocks of G−y are cycles. Let H0 be a 3-

connected 3-block of G−y such that |H0| is maximum. Let H = H0H1H2 . . . Hh

be a block chain in G − y such that x ∈ V (Hh) − V (Hh−1), and if Hh =
C1 . . . Ck is a cycle chain with k ≥ 2 and V (Hh−1 ∩ Hh) = V (C1 ∩ C2) then
x ∈ V (Ck) − V (Ck−1 ∩ Ck). For 0 ≤ i ≤ h − 1, let V (Hi ∩ Hi+1) = {ai, bi}.
Choose H so that σ(H) is maximum.

If G − y �= H, there is a block chain L := L1L2 . . . L� in G − y such that
V (H∩L) = V (H∩L1) consists of two vertices c0 and d0, L� contains an extreme
3-block of G − y, and if L1 = C1C2 . . . Ck is a cycle chain with k ≥ 2 and
V (L1 ∩ L2) = V (Ck ∩ H2) then c0d0 ∈ E(C1) and {c0, d0} �= V (C1 ∩ C2).
Without loss of generality, we may assume that c0d0 ∈ E(Ht) − E(Ht+1). For
1 ≤ i ≤ � − 1, let V (Li ∩ Li+1) = {ci, di}. If such L exists, we choose L such

878 Guantao Chen et al.

that σ(L) is maximum. Therefore, since the maximum degree of G is at most d,
we have

(1) σ(L) ≥ n−σ(H)−1
d−1 .

By Corollary 1, there exists a path P in H from x to {c0, d0} such that

(2) |E(P)| ≥ 1
2 |H0|r + 1

2

∑
(|Hi|

d)r +
∑
max{1, |A(Hi)| − 2}+ 1, where the first

summation is over all 3-connected Hi’s and the second is over those Hi’s which
are cycle chains.

(3) We may asume σ(H) < n−1
4 , and hence, L �= ∅.

Suppose σ(H) ≥ n−1
4 . Without loss of generality, assume c0 is an end of

the path P in (2). Because |H0| ≥ |Hi| for all 3-conneced Hi’s, it follows from
Lemma 2 that |E(P)| ≥ 1

2 (σ(H))r +1. By Lemma 8, there is a path Q in L− d0

from c0 to some y′ ∈ N(y) ∩ V (L�) such that |E(P)| ≥ 1
2 (σ(L)

d)r + 1.
Let C = (P ∪Q)+{y, yy′, yx}. Then |C| = |E(P)|+ |E(Q)|+2 ≥ 1

2 (σ(H))r +
1 + 1

2 (σ(L)
d)r + 3. If σ(H) ≤ b(b−1)

4 σ(L), then by Lemma 4, |C| ≥ 1
2 (4σ(H) +

1)r + 3 ≥ 1
2nr + 3. So assume σ(H) ≥ b(b−1)

4 σ(L). By Lemma 3 |C| ≥ 1
2 (σ(H) +

1 + b(b−1)
4 σ(L))r + 3 ≥ 1

2nr + 3 (by (1)).

(4) We may further assume |H0|+ 4(σ(H) − |H0|+ σ(L) < n, in particular,
σ(L) < n−1

4 .
Suppose |H0|+4(σ(H)−|H0|+σ(L) ≥ n. Without loss of generality, assume

that the path P in (2) is from x to c0. By Lemma 8, there is a path Q in L− d0

from c0 to some y′ ∈ N(y) ∩ V (L�) such that |E(Q)| ≥ 1
2

∑�
i=1(

|A(Li)|
d)r + 1.

Let C = (P ∪ Q) + {y, yy′, yx}. Then by (2), |C| = |E(P)| + |E(Q)| + 2 ≥
1
2 |H0|r + 1

2

∑
(|A(Hi)|

d)r +
∑

max{1, |A(Hi)| − 2}+ 1
2

∑�
i=1(

|A(Li)|
d)r + 4, where

the first summation is over all 3-connected Hi’s and the second is over those
Hi’s which are cycle chains. Using Lemma 2 and the fact (b− 1)/d ≥ 4, we have

|C| ≥ 1
2
[|H0|+ (b− 1)

∑
(
|A(Hi)|

d
)

+(b− 1)
∑

max{1, |A(Hi)| − 2}]r +
�∑

j=1

(
|A(Lj)|

d
)r + 4

≥ 1
2
[|H0|+ 4(

h∑
i=1

|A(Hi)|+
�∑

j=1

|A(Lj)|)]r + 4

>
1
2
nr + 3.

A block chain M := M1M2 . . .Mm is called an HL-leg if Mm contains an
extreme 3-block of G − y and V (M∩ (H ∪ L)) consists of two vertices x0 and
y0 such that {x0, y0} ⊆ V (M1) and {x0, y0} �= V (M1 ∩ M2), and if M1 =
C1C2 . . . Ck is a cycle chain with k ≥ 2 and V (Ck ∩M2) = V (M1 ∩M2) then
{x0, y0} ⊆ V (C1) and {x0, y0} �= V (C1 ∩ C2).

Approximating the Longest Cycle Problem on Graphs 879

(5) We may assume that there is an HL-leg M = M1M2 . . .Mm such that
σ(M) ≥ (n−1)

4(d−2) .
To prove (5), we choose an HL-legM such that σ(M) is maximum. Because

σ(H) < n−1
4 (by (3)) and σ(L) < n−1

4 (by (4)) and since the maximum degree
of G is at most d, σ(M) + 2 ≥ n−1

2(d−2) . If n < 8d then 1
2nr + 3 ≤ 4, and one

can easily see that (c) of Theorem 2 holds. So assume n ≥ 8d. Then we see that
σ(M) ≥ (n−1)

4(d−2) .

For an HL-leg M in (5), let x0 and y0 be the vertices in V (M∩ (H ∪ L)),
and let V (Mi ∩Mi+1) = {xi, yi} for 1 ≤ i ≤ m − 1. Based on the location of
{x0, y0}, we consider four cases.

Case 1. M may be chosen so that x /∈ {x0, y0} ∩ {c0, d0}, {x0, y0} �= {c0, d0},
and {x0, y0} ⊆ V (L).

Because {x0, y0} �= {c0, d0}, we may assume {x0, y0} ⊆ V (Lt) with {x0, y0} �=
{ct−1, dt−1}. By the choice of L,

∑�
i=t+1 |A(Li)| ≥ σ(M). Without loss of gen-

erality, we may assume that the path P in (2) is from x to c0.
Since each Li is 3-connected or a cycle chain, there exists a path Q in

(
⋃t

i=1 Li)−d0 from c0 to some z ∈ {ct, dt}∪{x0, y0} such that (a) if z ∈ {ct, dt}
then x0y0 ∈ E(Q), and ctdt �∈ E(Q) unless x0y0 = ctdt, and (b) if z ∈ {x0, y0}
then ctdt ∈ E(Q), and x0y0 �∈ E(Q) unless x0y0 = ctdt.

Suppose z ∈ {ct, dt}, and assume the notation is chosen so that z = ct. By
Lemma 8 there is a path P1 in (

⋃�
i=t+1 Li)−dt from z to some y′ ∈ N(y)∩V (L�)

such that

|E(P1) ∩ Li| ≥
{

1
2 (|Li|

d)r + 1, if Li is 3-connected,
max{1, |A(Li)| − 2}, if Li is a cycle chain.

By Lemma 7, let P2 be a path from x0 to y0 in M such that |E(P2)| ≥
1
2 ((d−1)σ(M)

d)r + 2. Let C be the cycle obtained from (P ∪Q∪P1) + {y, yy′, yx}
by replacing x0y0 with P2. Then

|C| ≥ |E(P)|+ |E(P1)|+ |E(P2)|+ 2

≥ 1
2
[(σ(H))r +

∑
(
|A(Li)|

d
)r+

∑
max{1, |A(Li)|−2}+(

(d−1)σ(M)
d

)r]+5

≥ 1
2
[(σ(H) +

(b − 1)
∑�

i=t+1 |A(Li)|
d

)r + (
(d− 1)σ(M)

d
)r] + 5 (Lemma 2)

≥ 1
2
[σ(H) +

�∑
i=t+1

|A(Li)|+
(b− 1)(d− 1)σ(M)

d
]r + 5 (Lemma 2)

>
1
2
(4(d− 1)σ(M) + 1)r + 3 (by Lemma 2)

≥ 1
2
nr + 3.

The fourth inequality is also because
∑�

i=t+1 |A(Li)| ≥ σ(M), and the last
inequality follows from (5).

880 Guantao Chen et al.

Now suppose z ∈ {x0, y0}, and assume the notation is chosen so that z = x0.
By Lemma 8, there is a path P2 in M− y0 from x0 to some y′′ ∈ N(y)∩V (Mm)
such that

|E(P2 ∩Mi)| ≥
{

1
2 (|Mi|

d)r + 1, if Mi is 3-connected,
max{1, |A(Mi)| − 2}, if Mi is a cycle chain.

By Lemma 7 there is a path P1 in
⋃�

i=t+1 Li from ct to dt such that |E(P1)| ≥
1
2 (

(d−1)
∑�

i=t+1
|A(Li)|

d)r. Let C be the cycle obtained from (P∪Q∪P2)+{y, yx, yy′′}
by replacing ctdt with P1. Similarly, we can show that

|C| ≥ 1
2
[(σ(H))r +

∑
(
|A(Mi)|

d
)r +

∑
max{1, |A(Mi)| − 2}

+(
(d− 1)

∑�
i=t+1 |A(Li)|
d

)r] + 5

≥ 1
2
[(σ(H) + σ(M))r + (

(d − 1)
∑�

i=t+1 |A(Li)|
d

)r] + 5.

If
∑�

i=t+1 |A(Li)| ≤ σ(H) + σ(M), then by Lemma 2,

|C| ≥ 1
2
(σ(H) + σ(M) + (b − 1)

�∑
i=t+1

|A(Li)|)r + 4

≥ 1
2
(4dσ(M) + 1)r + 3

≥ 1
2
nr + 3.

So assume
∑�

i=t+1 |A(Li)| ≥ σ(H) + σ(M). Applying Lemma 2 again, we have

|C| ≥ 1
2
(

�∑
i=t+1

|A(Li)|+ (b − 1)(σ(H) + σ(M)))r + 3

≥ 1
2
(4dσ(M) + 1)r + 3

≥ 1
2
nr + 3.

Case 2. M may be chosen so that x /∈ {x0, y0} ∩ {c0, d0}, {x0, y0} �= {c0, d0},
and x0y0 ∈ H.

Assume that c0d0 ∈ E(Hs) − E(Hs−1) and x0y0 ∈ E(Ht) − E(Ht−1). We
only consider the case s ≤ t; since the case t ≥ s is similar.

We claim that there is a path P0 in H from x to some z ∈ {c0, d0} ∪ {x0, y0}
such that

Approximating the Longest Cycle Problem on Graphs 881

(a) |E(P0)| ≥ 1
2 (|H0|+1

d)r,
(b) c0d0 ∈ E(P0) or x0y0 ∈ E(P0), and
(c) if c0d0 ∈ E(P0) then z ∈ {x0, y0}, and x0y0 /∈ E(P0) unless {x0, y0} =

{c0, d0}, and if x0y0 ∈ E(P0) then z ∈ {c0, d0}, and c0d0 /∈ E(P0) unless
{x0, y0} = {c0, d0}.
If s = 0, then this claim follows from (i) and (ii) of Corollary 1, with c0d0, x0y0

as uv, pq, respectively. So assume s ≥ 1. In
⋃s−1

i=0 Hi, we use (c) of Theorem 2 to
find a path Q from as−1 to bs−1 such that |E(Q)| ≥ 1

2 |H0|r + 2 > 1
2 (|H0|+1

d)r.
By applying the same argument as for (1) in Case 2 in the proof of Lemma 10,
we find a path R from x to z ∈ {c0, d0} ∪ {x0, y0} such that as−1bs−1 ∈ E(R)
and (b) and (c) hold. Now P0 := (Q− as−1bs−1) ∪R gives the desired path.

Suppose x0y0 ∈ E(P0) and, without loss of generality, assume z = c0. Let
y′ ∈ N(y) which is contained in the extreme 3-block in L�. By Lemma 8 there is
a path P1 in L−d0 from c0 to y′ such that |E(P1)| ≥ 1

2 (σ(L)
d)r +1. By Lemma 7,

there is a path P2 from x0 to y0 in M such that |E(P2)| ≥ 1
2 ((d−1)σ(M)

d)r + 2.
Let C be the cycle obtained from (P0 ∪P1)+ {y, yy′, yx} by replacing x0y0 with
P2. Then

|C| ≥ |E(P0)|+ |E(P1)|+ |E(P2)|+ 1

≥ 1
2
[(
|H0|
d

+ σ(L))r + (
(d− 1)σ(M)

d
)r] + 4

≥ 1
2
[
|H0|
d

+ σ(L) + ((b − 1)(d− 1)/d)σ(M)]r + 4

≥ 1
2
[4(d− 1)σ(M) + 1]r + 3

≥ 1
2
nr + 3.

Now assume c0d0 ∈ E(P0) and, without loss of generality, assume z = x0.
Let y′ be a neighbor of y which belongs to the extreme 3-block contained in Mm.
By Lemma 8, there is a path P1 from x0 to y′ in M− y0 such that |E(P1)| ≥
1
2 (σ(M)

d)r + 1. By Lemma 7, there is a path P2 from c0 to d0 in L such that
|E(P2)| ≥ 1

2 (d−1
d σ(L))r + 2. Let C be the cycle obtained from (P0 ∪ P1) +

{y, yy′, yx} by replacing c0d0 with P2. Then

|C| ≥ |E(P0)|+ |E(P1)|+ |E(P2)|+ 1

≥ 1
2
[(
|H0|
d

+ σ(M))r + (
d− 1

d
σ(L))r] + 4.

If d−1
d σ(L) ≥ |H0|

d + σ(M), we have by Lemma 2 that

|C|≥ 1
2
[(b−1)(

|H0|
d

+σ(M))+
d−1
d

σ(L))r +4≥ 1
2
[4(d−1)σ(M)+1]r+3≥ 1

2
nr+3.

If d−1
d σ(L) < |H0|

d + σ(M), then by Lemma 2 and because σ(L) ≥ σ(M) we
have

|C| ≥ 1
2
[
|H0|
d

+σ(M)+(b−1)
d−1
d

σ(L)]r+4 ≥ 1
2
[4(d−1)σ(M)+1]r+3 ≥ 1

2
nr+3.

882 Guantao Chen et al.

Case 3. M may be chosen so that {x0, y0} = {c0, d0}, x /∈ {c0, d0}, and {c0, d0}
is not a cut of H.

We first show that there is a path Q0 in H from x to {c0, d0} such that
{c0, d0} �⊆ V (Q0) and |E(Q0)| ≥ 1

2 (|H0|
d)r + 1. If {c0, d0} �⊆ V (H0), then since

{c0, d0} is not a cut in H, we get Q0 by finding a path from x to {c0, d0} through
a0b0 and finding a path in H0 from a0 to b0 of length at least 1

2 |H0|r + 1 (by
(c) of Theorem 2). So assume {c0, d0} ⊆ V (H0). In H0 + a0c0, we apply (b) of
Theorem 2 to find cycle C0 through a0c0 and c0d0 of length at least 1

2 (|H0|
d)r +3.

It is then easy to see that C0 − d0 can be extended to the desired path Q0.
By Lemma 8, there is a path Q1 inM−d0 from c0 to some y′ ∈ N(y)∩V (Mm)

such that |E(Q1)| ≥ 1
2 (σ(M)

d)r + 1. By Lemma 7, there is a path Q2 from c0 to
d0 in L such that |E(Q2)| ≥ 1

2 ((d−1)σ(L)
d)r + 2.

Let C := (Q0 ∪Q2 ∪Q1) + {y, yx, yy′}. Then by Lemma 2, we have

|C| ≥ |E(Q0)|+ |E(Q1)|+ |E(Q2)|+1 ≥ 1
2
[(
|H0|
d

+σ(M))r +(
d− 1

d
σ(L))r]+5.

By the same argument as in Case 2, we have |C| ≥ 1
2nr + 3.

Case 4. For every choice of M such that σ(M) ≥ n
4(d−2) , we have x ∈ {c0, d0}∩

{x0, y0} or {x0, y0} = {c0, d0} is a cut in H.
In this case, we see that the sum of σ(M) for those HL-legs M in previous

cases is at most n−1
2 . Hence the sum of σ(M) for those HL-legs M for which

x ∈ {c0, d0} ∩ {x0, y0} or {x0, y0} = {c0, d0} is a cut in H is at least n
4 . Let k

denote the number of HL-legs M for which x ∈ {c0, d0}∩ {x0, y0} or {x0, y0} =
{c0, d0} is a cut in H. Let z = x if x ∈ {c0, d0} ∩ {x0, y0}, and otherwise let
z ∈ {c0, d0}. Without loss of generality, we assume that z = x0 = c0.

Let t(M) := dM(z)−1. By indunction on k, we can show that max{σ(M)
t(M) } ≥

n
4k . Since k ≤ d − 1, we have (d− 1)max{σ(M)

t(M) } ≥
n
4 . So we further choose M

so that σ(M)
t(M) is maximum, and so, σ(M)

t(M) ≥
n
4k .

Let G∗ denote the graph obtained from G by deleting those components of
G−{x0, y0, y} which contain no vertex of M. Then |G∗| ≥ σ(M)+1. Note that
G∗ + {yx0, yy0, x0y0} is 3-connected and has maximum degree at most d + 1,
and any vertex of degree d + 1 must be incident with x0y or x0y0.

Suppose y0 ∈ V (H). Let Q0 be a path from x to y0 in H through edge
c0d0. By Corollary 7, there is a path Q1 from x = c0 to d0 in L such that
|E(Q1)| ≥ 1

2 ((d−1)σ(L)
d)r +2. By (a) of Theorem 2, there is a path Q2 from y0 to

y in G∗−x0 such that |E(Q2)| ≥ 1
2 ((d−1)σ(M)

dt(M))r+1. Let C := (Q0∪Q1∪Q2)+yx.
Then

|C| = |E(Q1)|+ |E(Q2)|+ 2 ≥ 1
2
[(

(d− 1)σ(L)
d

)r + (
(d− 1)σ(M)

dt(M)
)r] + 5.

Since σ(L) ≥ σ(M) and by Lemma 2, we have

|C| ≥ 1
2
[
(d− 1)σ(L)

d
+

(b− 1)(d− 1)σ(M)
dt(M)

]r + 4

Approximating the Longest Cycle Problem on Graphs 883

≥ 1
2
[4(d− 1)σ(M)/t(M)]r + 4

≥ 1
2
nr + 3.

Thus, we may assume y0 /∈ V (H). Then y0 ∈ V (L1). Let n∗∑�
i=2 |A(Li)|.

By our choice of L, we have n∗ ≥ σ(M). Let Q0 be a path from x to y0 through
c1d1 in L1. Since L1 is 2-connected, Q0 exists. By Corollary 7 there is a path
Q1 from c1 to d1 in

⋃�
i=2 Li such that |E(Q1)| ≥ 1

2 ((d−1)n∗

d)r + 1. Define G∗ as
above. By (a) of Theorem 2 there is a path Q2 in G∗−x0 from y0 to y such that
|E(Q2)| ≥ 1

2 ((d−1)σ(M)
td(M))r +1. Let C be the cycle obtained from (Q0∪Q2)+yx by

replacing the edge c1d1 by Q1. By the same argument as in the above paragraph
(with σ(L) replaced by n∗), we can show that |C| ≥ 1

2nr + 3. ��

6 Conclusions

We now complete the proof of Theorem 2. Let n, d, r, G be given as in Theorem 2.
We apply induction on n. When n = 5, G is isomorphic to one the following three
graphs: K5, K5 minus an edge, or the wheel on five vertices. In each case, we
can verify that Theorem 2 holds. So assume that n ≥ 6 and Theorem 2 holds
for all 3-connected graphs with at most n − 1 vertices. Then (a) of Theorem 2
holds by Lemma 9, (b) of Theorem 2 holds by Lemma 10, and (c) of Theorem 2
holds by Lemma 11. This completes the proof of Theorem 2. ��

Our proof of Theorem 2 implies a polynomial time algorithm which, given a
3-connected n-vertex graph, finds a cycle of length 1

2nr + 3. In fact, our proof
implies a cubic algorithm when combined with following two results from [7].

Lemma 12. Let G be a k-connected graph, where k is a positive integer. Then G
contains a k-connected spanning subgraph with O(|G|) edges, and such a subgraph
can be found in O(|G|) time.

The next result is an easy consequence of a result in [7], which states that, in
a 2-connected graph G, one can find, in O(|G|) time, two disjoint paths between
two given vertices.

Lemma 13. Let G be a 2-connected graph and let e, f ∈ E(G). Then there is a
cycle through e and f in G, and such a cycle can be found in O(|G|) time.

Finally, we give an outline of the desired algorithm. Let G be a 3-connected
graph with maximum degree at most d, let e = xy ∈ E(G), and assume |G| ≥ 5.
The following procedure finds a cycle C through e in G with |C| ≥ 1

2 |G|r + 3.

1. Preprocessing: Replace G with a 3-connected spanning subgraph of G with
O(|G|) edges.

2. We either find the desired cycle C, or we reduce the problem to (a), (b) or
(c) of Theorem 2 for some 3-connected graphs Gi, for which |Gi| < |G| and
each Gi contains a vertex which does not belong to any other Gi.

884 Guantao Chen et al.

3. Replace each Gi with a 3-connected spanning subgraph of Gi with O(|Gi|)
edges.

4. Apply Lemma 9 to those Gi for which (a) of Theorem 2 needs to be applied.
Apply Lemma 10 to those Gi for which (b) of Theorem 2 needs to be applied.
Apply Lemma 11 to those Gi for which (c) of Theorem 2 needs to be applied.

5. Repeat step 3 and step 4 for new 3-connected graphs.
6. In the final output, replace all virtual edges by paths in G to complete the

desired cycle C.

It can be shown that the algorithm runs in O(|G|3) time.

References

1. Björklund, A., Husfeldt, T.: Finding a path of superlogarithmic length. SIAM J.
Comput. 32 (2003) 1395-1402.

2. Chen,G., Xu, J., Yu, X.: Circumference of graphs with bounded degree. SIAM J.
Comput. 33 (2004) 1136-1170.

3. Feder, T., Motwani, R., and Subi, C.: Approximating the longest cycle problem in
sparse graphs. SIAM J. Comput. 31 (2002) 1596-1607.

4. Feder, T., Motwani, R.: Finding a long cycle in a graph with a degree bound and
a 3-cyclable minor. Manuscript (2004).

5. Gabow, H.N.: Finding paths and cycles of superpolylogarithmic length. Proc. 36th
annual ACM symposium on Theory of Computing (STOC), Chicago, 2004, pp.
407-416.

6. Hopcroft, J.E., Tarjan, R.E.: Dividing a graph into triconnected components. SIAM
J. Comput. 2 (1973) 135-158.

7. Ibaraki, T., Nagamochi, H.: A linear-time algorithm for finding a sparse k-
connected spanning subgraph of a k-connected graph. Algorithmica 7 (1992) 583-
596.

8. Jackson, B., Wormald, N.C.: Longest cycles in 3-connected graphs of bounded
maximum degree. in: Graphs, Matrices, and Designs (R. S. Rees, ed.), Marcel and
Dekker, Inc (1993) 237-254.

9. Karger, D., Motwani, R., Ramkumar, G.D.S.: On approximating the longest path
in a graph. Algorithmica 18 (1997) 82-98.

10. Tutte, W.T.: Connectivity in Graphs. University of Toronto Press (1966).
11. Whitney, H.: A theorem on graphs. Ann. of Math. 32 (1931) 378-390.

Bin Packing and Covering Problems
with Rejection

Yong He1,� and György Dósa2

1 Department of Mathematics, and State Key Lab of CAD & CG, Zhejiang
University, Hangzhou 310027, P.R. China

mathhey@zju.edu.cn
2 Department of Mathematics, University of Veszprém, Hungary

dosagy@almos.vein.hu

Abstract. In this paper we consider the following problems: We are
given a set of n items {u1, · · · , un}, each item ui is characterized by its
size wi ∈ (0, 1] and its penalty/profit pi ≥ 0, and a number of unit-
capacity bins. An item can be either rejected, in which case we pay/get
its penalty/profit, or put into one bin under the constraint that the total
size of the items in the bin is not greater/smaller than 1. No item can be
spread into more than one bin. The objective is to minimize/maximize
the sum of the number of used/covered bins and the penalties/profits of
all rejected items. We call the problems bin packing/covering with rejec-
tion penalties/profits, and denoted by BPR and BCR respectively. For
the online BPR problem, we present an algorithm with an absolute com-
petitive ratio of 2.618 while the lower bound is 2.343, and an algorithm
with an asymptotic competitive ratio of arbitrarily close to 7/4 while
the lower bound is 1.540. For the offline BPR problem, we present an
algorithm with an absolute worst-case ratio of 2 while the lower bound
is 3/2, and an algorithm with an asymptotic worst-case ratio of 3/2. For
the online BCR problem, we show that no algorithm can have an abso-
lute competitive ratio of greater than 0, and present an algorithm with
an asymptotic competitive ratio of 1/2, which is the best possible. For
the offline BCR problem, we also present an algorithm with an absolute
worst-case ratio of 1/2 which matches the lower bound.

1 Introduction

In this paper we consider a variant of the classical bin packing problem which has
the special feature that items can be rejected at a certain cost. We are given a set
of n items {u1, · · · , un}, each item ui is characterized by its size wi ∈ (0, 1] and
its penalty pi ≥ 0, and a number of unit-capacity bins. The cost of purchasing
one bin is 1. An item can be either rejected, in which case we pay its penalty,
or put into one bin under the constraint that the total size of the items in the
bin, called the content of the bin, is not greater than 1. No item can be spread
into more than one bin. The objective is to minimize the sum of the cost for
� Supported by the NSFC (10271110, 60021201) and TRAPOYT of China

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 885–894, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

886 Yong He and György Dósa

purchasing bins and the penalties of all rejected items. We call this problem bin
packing with rejection penalties or BPR for short.

This problem may have applications in the real world. Let us first consider
a company’s intranet. Usually it has two main functions. One is to release the
company’s messages, providing services for users. The other one is to help em-
ployees of this company use it to visit outside internet for getting useful files and
messages [6]. If a message or file on outside internet is visited by employees many
times, the administrator of the intranet may download it to a web server of the
intranet to decrease communication cost and traffic. Note that the capacity of
any web server is limited. If the content in one web server is close to its limit, a
new web server must be purchased. This yields the following problem: we have
a list of messages and files which are considered for downloading, each with a
size and penalty, here penalty denotes its estimated communication cost if it is
not downloaded. The goal is to minimize the total cost, i.e., the sum of the cost
for purchasing web servers and the total penalties for not downloaded messages
and files. Clearly this problem can be reduced to BPR. Take another example, a
transportation company manages to transmit goods. Two choices are presented.
The one is to pack goods in its own trucks, with a constraint that the total size
of the packed goods in a truck is not greater than truck’s capacity. The other one
is to ask a forwarding agent to deliver the goods. For the first choice, the cost
is proportional to the number of used trucks, while for the second choice, the
company should pay the forwarding agent costs depending on goods. Assume
that all own trucks have the same capacity and the same cost 1. Thus the total
cost consists of one for used trucks and one for all forwarded goods. The goal is
to transport all goods in the cheapest way, i.e., deciding which goods are packed
in its own trucks or forwarded to minimize the total cost. It is clear that this
problem is essentially the bin packing problem with rejection penalties.

We also consider the dual problem of BPR in this paper, which can be de-
scribed as follows: We are given a set of n items {u1, · · · , un}, each item ui is
characterized by its size wi ∈ (0, 1] and its profit pi ∈ [0, 1), and a number of
unit-capacity bins. An item can be either rejected, in which case we get its profit,
or assigned to one bin. If one bin has a content of at least 1, then we say that it is
covered and get profit 1. No item can be spread into different bins. The objective
is to maximize the total profit, i.e., the sum of the number of covered bins and
the profits of all rejected items. This problem can also be viewed as a variant
of the classical bin covering problem, hence we also refer it to bin covering with
rejection profits or BCR for short. The problem BCR may model the following
application. An industry company holds several monopolies. It can choose to
break them up into smaller companies, each of which must be large enough to
be viable, or sell them to get profit. Suppose that the profit of a viable company
is the same. The objective is to maximize the total profit, i.e., the number of
viable companies and the profit of those monopolies which are sold.

For the problem BPR (BCR), if all pi > 1 (pi = 0), i = 1, · · · , n, then no
item can be rejected in an optimal solution. Hence the bin packing (bin covering)
problem is a special case of BPR (BCR). It follows that the problems under

Bin Packing and Covering Problems with Rejection 887

consideration are strongly NP-hard [7]. The bin packing problem is a classical
combinatorial optimization problem that has been extensively studied for more
than three decades. The readers may refer to survey papers [2],[5] and papers
cited therein. Meanwhile, the bin covering problem is also well-studied since it
was first proposed by Assman et al. [1]. The readers may refer to recent papers
[3],[8], survey paper [5] and papers cited therein. But to our best knowledge,
both BPR and BCR are unexplored.

In the online version of the discussed problems, item arrives one by one,
and the decision to either reject an item or pack it into one bin has to be made
before any information about the next item is revealed. If we are allowed to make
decisions with full information of the set of items, the version is called offline.
Algorithms for online/offline problem are called online/offline algorithms.

The quality of an offline approximation algorithm is usually measured by its
worst-case ratio, while online algorithm by competitive ratio. Let A(I) denote the
objective function value produced by an algorithm A, and OPT (I) denote the op-
timal value in the offline version. Then for BPR, the absolute worst-case (compet-
itive) ratio of A is defined by RA = supI{

A(I)
OPT (I)}; and the asymptotic worst-case

(competitive) ratio of A is defined by R∞
A = lim supn→∞ max{ A(I)

OPT (I) | OPT (I)
= n}. For BCR, the absolute worst-case (competitive) ratio and asymptotic
worst-case (competitive) ratio of A, are respectively defined by RA =
infI{ A(I)

OPT (I)}, and R∞
A = lim infn→∞ min{ A(I)

OPT (I) | OPT (I) = n}. An offline
(online) minimization/maximization problem has a lower/upper bound ρ with
respect to absolute or asymptotic worst-case (competitive) ratio if no offline
(online) algorithm has an absolute or asymptotic worst-case (competitive) ratio
of smaller/greater than ρ, respectively. An offline (online) algorithm is called
best possible if its worst-case (competitive) ratio matches the corresponding
lower/upper bound of the minimization/maximization problem.

Table 1. Summary of the results for BPR and BCR

BPR BCR
upper bound lower bound lower bound upper bound

online, absolute ratio 2.618 2.343 0 0

online, asymptotic ratio 7/4 1.540 [13] 1/2 1/2 [4]

offline, absolute ratio 2 3/2 [7] 1/2 1/2 [1]

offline, asymptotic ratio 3/2 open 1/2 open

In this paper we study the problems BPR and BCR. Both online and offline
versions are considered. The results are listed in Table 1. Algorithms RFF1 −
RFF4 and MDNFD run in time O(n log n), and algorithm MDNF runs in
time O(n). For comparison purposes, we also list the known best results of bin
packing and covering problems in Table 2. As we know, even for the classical bin
packing and covering problems, it took a long time to get most of the results in

888 Yong He and György Dósa

Table 2. Summary of the known best results for bin packing and covering problems

Bin packing problem Bin covering problem
upper bound lower bound lower bound upper bound

online, absolute ratio 7/4 [15] 5/3 [14] 1/2 [1] open

online, asymptotic ratio 1.589 [11] 1.540 [13] 1/2 [1] 1/2 [4]

offline, absolute ratio 3/2 [12] 3/2 [7] 1/2 [1] 1/2 [1]

offline, asymptotic ratio FPTAS [10] 1 FPTAS [8] 1

Table 2, and it is still open how to close the existing gaps. Our problems under
consideration become more complicated, and harder to approximate since one
more parameter is introduced for every item. To devise the algorithms presented
in this paper, we will introduce several strategies for trade-off between packing
cost/profit and rejection penalty/profit. Furthermore we will employ harmonic
technique with consideration of penalty parameter. In analysis of the algorithms,
we will develop methods to estimate the optimal value. Especially we will apply
a simple linear programming technique instead of case by case analysis to prove
the asymptotic competitive ratio of algorithm RFF2 (see Theorem 4).

In the remainder of this paper, denote W (S) =
∑

ui∈S wi and P (S) =∑
ui∈S pi for an item set S. Denote M1 = {ui|pi/wi > 1} and M2 = {ui|pi/wi ≤

1}. Denote by ε > 0 a sufficiently small number, and by N a sufficiently large
positive integer, whose exact values are immaterial in later proofs. In the online
version of the problems, before all items arriving, we do not know which of them
are in M1 and M2, but we still use the notation ui ∈ M1 (ui ∈ M2) to mean
that the item ui satisfies pi/wi > 1 (pi/wi ≤ 1) for simplicity.

2 The Problem BPR

2.1 Preliminaries

We use I ′ to denote an instance of the bin packing problem, and FF (I ′) to
denote the number of bins used by First F it (FF) algorithm.

Lemma 1. Let I ′ be an instance of the bin packing with |I ′| = n′.
(1) if wi ≤ 1/2, i = 1, · · · , n′, then

FF (I ′)

{
= 1, if

∑n′

i=1 wi ≤ 1,

< 3
2

∑n′

i=1 wi + 1
2 , if

∑n′

i=1 wi > 1.

(2)([2]) FF(I′)

{
= 1, if

∑n′

i=1 wi ≤ 1
2 ,

< 2
∑n′

i=1 wi, if
∑n′

i=1 wi > 1
2 .

Theorem 1. For BPR, OPT (I) ≥ W (M1) + P (M2).

Bin Packing and Covering Problems with Rejection 889

2.2 Online Algorithms

Algorithm RFF1:

1. k = 1, P = 0. Denote φ = (
√

5− 1)/2 ≈ 0.618.
2. If no new item arrives, stop. Else go to 3.
3. If P + pk < φ, then reject uk, set P = P + pk, k = k + 1 and go to 2;

Otherwise, go to 4.
4. If uk ∈ M1, then pack it by FF algorithm; Otherwise, reject it. Set k = k+1.

If no new item arrives, stop. Else go back to 4.

Theorem 2. RRFF1 = (1 + φ)/φ = 2 + φ ≈ 2.618.

Next we consider the lower bound of the online problem BPR in terms of
the absolute competitive ratio. Let β ≈ 0.7446, x ≈ 0.2991 be the root of the
following system of equations: 2+β+x

1+x = 1+β
β = β + 2x + 1.

Theorem 3. No online algorithm can have an absolute competitive ratio of less
than (1 + β)/β ≈ 2.343.

Now we turn to study the asymptotic competitive ratios of online algorithms.
To show the asymptotic competitive ratio of RFF1, we consider the following
sequence with 2N+1 items: w1 = ε, p1 = φ−ε, w2 = · · · = w2N+1 = ε+1/2, p2 =
· · · = p2N+1 = 2ε+1/2. Then RFF1 only rejects the first item while an optimal
solution only accepts the first two items. Therefore RFF1(I)

OPT (I) = 2N+φ−ε
N+4Nε−2ε+1/2 →

2 (Nε → 0, N →∞). It follows that the asymptotic competitive ratio of RFF1
cannot be smaller than 2. In the following, we present another online algorithm
RFF2 with an asymptotic competitive ratio of arbitrarily close to 7/4.

Let m be a large positive integer. We partition set M1 into several subsets
as follows:

M11 = {ui ∈M1|wi ≤ 1
2},

Mjk =
{

ui ∈M1|mj < wi ≤ m
j−1 , k−1

m < pi

wi
≤ k

m

}
,

j = m + 1, · · · , 2m, k = m + 1, · · · , j − 1,

Mjj = {ui ∈M1|mj < wi ≤ m
j−1 , j−1

m < pi

wi
}, j = m + 1, · · · , 2m.

Algorithm RFF2:

1. If the incoming item is in M11, pack it by FF algorithm.
2. If the incoming item is in one of the sets Mjk, j = m + 1, · · · , 2m, k =

m + 1, · · · , j − 1, or M2, reject it.
3. If the incoming item is in Mjj , m + 1 ≤ j ≤ 2m, then pack it each into a

bin, and this bin will not be used to pack any other item.

Theorem 4. For any given positive integer m ≥ 2, R∞
RFF2 ≤ 7m−3

4m−2 , hence there
exists an online algorithm with an asymptotic competitive ratio of arbitrarily
close to 7/4.

890 Yong He and György Dósa

Proof. Since all items in M11 have sizes no greater than 1/2, and are packed by
FF algorithm, we have

RFF2(M11) = FF (M11) ≤ max
{

3
2
W (M11) +

1
2
, 1
}
≤ 3

2
W (M11) + 1

by Lemma 1(1). By the definition of Mjk, j = m+1, · · · , 2m, k = m+1, · · · , j−1,
we have P (Mjk) ≤ k

mW (Mjk). Because every item in Mjj does not share a bin
with any other item in RFF2 algorithm, and for any item ui ∈ Mjj , m/j < wi

holds, i.e. jwi/m > 1, we obtain that the number of bins used for the items in
Mjj is |Mjj | ≤

∑
ui∈Mjj

j
mwi = j

mW (Mjj). Therefore we have

RFF2(I) ≤ 3
2
W (M11) + 1 +

∑
m+1≤j≤2m,m+1≤k≤j−1

k

m
W (Mjk)

+
∑

m+1≤j≤2m

j

m
W (Mjj) + P (M2) . (1)

By Theorem 1, we have

OPT (I) ≥W (M11) +
∑

m+1≤j≤2m,m+1≤k≤j−1

W (Mjk)

+
∑

m+1≤j≤2m

W (Mjj) + P (M2) . (2)

Next we are going to obtain another lower bound of OPT (I). Let

I ′ = I \ (M11 ∪M2) =
⋃

j=m+1,···,2m,k=m+1,···,j
Mjk.

It is obvious that OPT (I ′) ≤ OPT (I). Let us consider an optimal solution
for instance I ′. For every item ui ∈ Mjk ⊆ I ′, j = m + 1, · · · , 2m, k = m +
1, · · · , j − 1, since wi > 1/2, this item cannot share a bin with any other item
in I ′, if it is accepted in the optimal solution. In this case, its contribution to
the optimal value is 1 ≥ j−1

m wi. If this item is rejected in the optimal solution,
the contribution to the optimal value is pi ≥ k−1

m wi. Hence we conclude that
the contribution of item ui to the optimal value is at least min

{
j−1
m , k−1

m

}
wi =

k−1
m wi. Similarly, for any ui ∈ Mjj , j = m + 1, · · · , 2m, its contribution to the

optimal value of I ′ is at least j−1
m wi. Therefore we obtain

OPT (I) ≥
∑

m+1≤j≤2m,m+1≤k≤j−1

k − 1
m

W (Mjk) +
∑

m+1≤j≤2m

j − 1
m

W (Mjj).

(3)
To get the asymptotic competitive ratio, we need to show that there exist

constants a, b such that RFF2(I)/OPT (I) ≤ a + b/OPT (I) for any instance I.

Bin Packing and Covering Problems with Rejection 891

We are interested in the maximum possible value of RFF2(I)/OPT (I). Dividing
the inequalities (1)-(3) by OPT (I), we construct a linear program as follows

max z = 3
2x11 +

∑
m+1≤j≤2m,m+1≤k≤j−1

k
mxjk +

∑
m+1≤j≤2m

j
mxjj + y

s.t. x11 +
∑

m+1≤j≤2m,m+1≤k≤j−1

xjk +
∑

m+1≤j≤2m

xjj + y ≤ 1,∑
m+1≤j≤2m,m+1≤k≤j−1

k−1
m xjk +

∑
m+1≤j≤2m

j−1
m xjj ≤ 1, (4)

y ≥ 0, x11 ≥ 0, xjk ≥ 0, j = m + 1, · · · , 2m, k = m + 1, · · · , j,

where x11 = W (M11)
OPT (I) , xjk = W (Mjk)

OPT (I) , j = m + 1, · · · , 2m, k = m + 1, · · · , j, y =
P (M2)
OPT (I) and z = RFF2(I)

OPT (I) are variables. Note that we omit the additive fac-
tor 1/OPT (I) from the objective function of the linear program, since we are
considering the asymptotic competitive ratio. It is clear that the asymptotic
competitive ratio is not greater than the optimal value of (4).

By a simple calculation, we know that (4) has a unique optimal solution:
x11 = m−1

2m−1 , x2m,2m = m
2m−1 , and the values of all remaining variables equal to

0. The optimal value is 3
2

m−1
2m−1 + 2 m

2m−1 = 7m−3
4m−2 which can be arbitrarily close

to 7/4 if m is chosen to be large enough. We thus finish the proof. ��

Since no online algorithm for the classical bin packing problem can have an
asymptotic competitive ratio of less than 1.540 [13], it is still true for BPR.

2.3 Offline Algorithms

Algorithm RFF3:

1. For
∑n

i=1 wi ≤ 1, if
∑n

i=1 pi > 1, then all items are accepted and packed
into one bin, otherwise reject all jobs.

2. For
∑n

i=1 wi > 1, if ui ∈ M1, i = 1, 2, · · · , n, then pack it by FF algorithm,
otherwise reject it.

Theorem 5. RRFF3 = R∞
RFF3 = 2.

Note that there does not exist a polynomial time algorithm with an absolute
worst-case ratio of smaller than 3/2 for the classical bin packing problem, unless
P=NP [7], it still holds for the problem BPR. In the remainder of this section,
we are devoted to presenting an offline algorithm with an asymptotic worst-case
ratio of 3/2.

First we split M1 into four subsets as follows:
M1h =

{
ui ∈ M1 : wi > 2

3

}
, M1l =

{
ui ∈ M1 : 1

2 < wi ≤ 2
3

}
,

M1m =
{
ui ∈ M1 : 1

3 < wi ≤ 1
2

}
, M1s =

{
ui ∈M1 : wi ≤ 1

3

}
,

and the items in M1h, M1l, M1m, M1s are called as huge, large, medium and small
items respectively. We propose a procedure for pre-process as below, which puts
one large item and one medium item pairwise into one bin as much as possible.
Denote by max(I) the maximum number k such that k large items and k medium
items can be packed pairwise into k bins for instance I.

892 Yong He and György Dósa

Lemma 2. Let ulα be the largest large item for which there exists a medium
item umj such that wlα + wmj ≤ 1, and let umβ be an arbitrary medium item
satisfying wlα + wmβ ≤ 1. Then max(I \ {ulα, umβ}) = max(I)− 1.

By Lemma 2 we can describe the pre-process procedure, which puts large
and medium items commonly into bins as many as possible in a greedy way.

Procedure Greedy:

1. Let M ′
1l = M1l and M ′

1m = M1m. Sort items in M ′
1l in non-increasing order

of their sizes.
2. If M ′

1l or M ′
1m is empty then go to 5.

3. Let ui be the first item in M ′
1l.

4. Let uj be the first item in M ′
1m satisfying wi + wj ≤ 1. If it does not exist,

then delete item ui from set M ′
1l and go to 2; Otherwise pack items ui and

uj into a new bin, delete them from set M ′
1l and M ′

1m respectively. Go to 2.
5. For all unpacked medium items, pack them pairwise into a bin. If the number

of unpacked medium items is odd, then pack the last unpacked medium item
alone into a bin.

6. For all unpacked large items with penalty at least 1, pack them each into a
bin.

7. Pack huge items each into a bin.

Call the bins used in Steps 4-7 as B1-, B2-, B3-, and B4-bins, respectively.
In the remainder of this subsection, we call a bin open if it is allowed to pack
more items, otherwise it is closed. Now we can describe the algorithm.

Algorithm RFF4:

1. Apply procedure Greedy. Sort items in M1s in non-increasing order of their
sizes. Let all B1-, B2-, and B4-bins be closed.

2. Arbitrarily choose an open B3-bin if it exists, else go to 5.
3. Pack the first small item in M1s into this open bin, if it fits into this bin,

and delete it from M1s. Go to 3.
4. If the first small item in M1s does not fit into this open bin, close this bin,

and go to 2.
5. If there does not exist open B3-bin, (and M1s is not empty yet), and there

is at least one unpacked large item in M1, then pack the first unpacked large
item into a new bin. Call this bin as an open B5-bin. Go to 3.

6. If there does not exist unpacked small item, and there exist unpacked large
items, then reject them. Denote by R6 the set consisting of all rejected large
items. Go to 8.

7. If all large items are packed, then pack all remaining small items in M1s into
new bins by algorithm FF . Denote these bins by B7-bins. Go to 8.

8. Reject all items in M2.

Theorem 6. R∞
RFF4 ≤ 3/2.

Bin Packing and Covering Problems with Rejection 893

3 The Problem BCR

3.1 Online Algorithm

Theorem 7. No online algorithm can have an absolute competitive ratio of
greater than 0.

Hence in the remainder of this subsection, we consider the asymptotic com-
petitive ratios of online algorithms. Since for the bin covering problem, no online
algorithm can have an asymptotic competitive ratio of greater than 1/2 [4], it
is still true for BCR. Next we present an online algorithm with a matching
asymptotic competitive ratio of 1/2.

Noting that Dual Next Fit (DNF) is the best possible online algorithm for
the classical bin covering problem in terms of the asymptotic competitive ratio
[1], we next show that a simple modification of DNF also works for BCR.

Algorithm MDNF :

1. If the incoming item is in M2, pack it by DNF algorithm.
2. If the incoming item is in M1, reject it.

Lemma 3. Let I ′ be an instance of the classical bin covering with n′ items. (1)

([1]) We have DNF (I ′) ≥ %
∑

n′

j=1
wj

2 &. (2) Furthermore, if
∑n′

j=1 wj ≥ 2k +1 for
some integer k, then DNF (I ′) ≥ k + 1.

Theorem 8. R∞
MDNF = 1/2, thus MDNF is the best possible online algorithm

in terms of the asymptotic competitive ratio.

3.2 Offline Algorithm

Since the classical bin covering problem is a special case of BCR, we conclude
that no offline algorithm can have an absolute worst-case ratio of greater than
1/2, unless P = NP ([1]). Next we present a modified Dual Next Fit Decreasing
(MDNFD) algorithm with an absolute worst-case ratio of 1/2.

Algorithm MDNFD:

1. If
∑n

i=1 wi < 1, reject all items and stop.
2. If W (M2) < 1 and P (M1) < 1, pack all items into one bin and stop.
3. If W (M2) < 1 and P (M1) ≥ 1, reject all items and stop.
4. Determine an integer ω ≥ 0 and real number 0 ≤ γ < 2 such that W (M2) =

2ω + 1 + γ.
5. If γ ≤ 1 or P (M1) ≥ 1, then apply algorithm MDNF to all items and stop.
6. If W (M2 ∪M1) ≥ 2ω + 3, then accept all items, and pack them by DNF

algorithm. Stop.
7. Sort the items of M2 in non-increasing order of their ratios between sizes

and profits wi/pi such that w1
p1
≥ w2

p2
≥ · · · ≥ w|M2|

p|M2|
. Determine k̄ = min{j :∑j

i=1 wi ≥ 2ω + 1, ui ∈ M2, i = 1, · · · , j}.
8. Pack the first k̄ items of M2 by DNF , reject the remaining items of M2 and

all items of M1. Stop.

894 Yong He and György Dósa

Theorem 9. RMDNFD = 1/2, thus MDNFD is the best possible in terms of
the absolute worst-case ratio.

The following instance can show that the asymptotic worst-case ratio is
still 1/2. Let I be an instance with 2N + 2 items, each with size 1 − ε and
profit 1 − 2ε. Then we know M1 = ∅. MDNFD stops at Step 5, and we have
MDNFD(I)

OPT (I) = N+1
(2N+2)(1−2ε) →

1
2 (ε → 0). Therefore, to give an offline algorithm

with an asymptotic worst-case ratio of greater than 1/2 is open.

References

1. S. B. Assman, D. S. Johnson, D. J. Kleitman, J. Y. T. Leung, On the dual of
one-dimensional bin-packing problem, J. of Algorithms, 5(1984) 502-525.

2. E. G. Coffman, M. R. Garey, D.S. Johnson, Approximation algorithms for bin
packing: A survey, In: D. Hochbaum eds., Approximation algorithms for NP-hard
problems, PWS Publishing, 1997, 46-93.

3. J. Csirik, D. S. Johnson, C. Kenyon, Better approximation algorithms for bin
covering, Proc. of SIAM Conference on Discrete Algorithms, Washington, DC,
2001, 557-566.

4. J. Csirik, V. Totik, On-line algorithms for a dual version of bin packing, Discrete
Applied Mathematics, 21 (1988) 163-167.

5. J. Csirik, G. Woeginger, On-line packing and covering problems, Lecture Notes in
Computer Science 1442, Berlin, Springer, 1998, 147-177.

6. W. Chen, J. Yang, D. Lu, Y. Pan, Two mathematical models and algorithms of
internet communications, Chinese J. Computers, 21 (1999) 51-55. (in Chinese)

7. M. R. Garey, D. S. Johnson, Computer and Intractability: A Guide to the theory
of NP-Completeness, New York, Freeman, 1979.

8. K. Jansen, R. Solis-Oba, An asymptotic fully polynomial time approximation
scheme for bin covering, Theoretical Computer Science, 306(2003) 543-551.

9. D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey, R. L. Graham, Worst-case
performance bounds for simple one-dimensional packing algorithms, SIAM J. on
Computing, 3(1974) 299-325.

10. N. Karmarkar, R. M. Karp, An efficient approximation scheme for the one-
dimensional bin packing problem, Proc. 23rd Annual Symposium on Foundations
of Computer Science, Chicago, 1982, 312–320.

11. S. S. Seiden, On the online bin packing problem, J. of the ACM, 49(2002) 640-671.
12. D. Simchi-Levi, New worst-case results for the bin-packing problemma, Naval Re-

search Logistics, 41(1994), 579-585.
13. A. Van Vliet, An improved lower bound for on-line bin packing algorithms, Infor-

mation Processing Letters, 43(1992) 277-284.
14. D. Ye, G. Zhang, On-line scheduling of parallel jobs, Lecture Notes in Computer

Science 3104, Berlin, Springer, 2004, 279-290.
15. G. C. Zhang, X. Q. Cai, C. K. Wong, Linear-time approximation algorithms for

bin packing problem, Operations Research Letters, 26(1999) 217-222.

Query-Monotonic Turing Reductions�

Lane A. Hemaspaandra1 and Mayur Thakur2,��

1 Department of Computer Science, University of Rochester, Rochester, NY 14627, USA
lane@cs.rochester.edu

2 Department of Computer Science, University of Missouri–Rolla, Rolla, MO 65409, USA
thakurk@umr.edu

Abstract. We study reductions that limit the extreme adaptivity of Turing re-
ductions. In particular, we study reductions that make a rapid, structured pro-
gression through the set to which they are reducing: Each query is strictly
longer (shorter) than the previous one. We call these reductions query-increasing
(query-decreasing) Turing reductions. We also study query-nonincreasing (query-
nondecreasing) Turing reductions. These are Turing reductions in which the se-
quence of query lengths is nonincreasing (nondecreasing). We ask whether these
restrictions in fact limit the power of reductions. We prove that query-increasing
and query-decreasing Turing reductions are incomparable with (that is, are nei-
ther strictly stronger than nor strictly weaker than) truth-table reductions and
are strictly weaker than Turing reductions. In addition, we prove that query-
nonincreasing and query-nondecreasing Turing reductions are strictly stronger
than truth-table reductions and strictly weaker than Turing reductions. Despite
the fact that we prove query-increasing and query-decreasing Turing reductions
to in the general case be strictly weaker than Turing reductions, we identify a
broad class of sets A for which any set that Turing reduces to A will also reduce
to A via both query-increasing and query-decreasing Turing reductions. In partic-
ular, this holds for all tight paddable sets, where a set is said to be tight paddable
exactly if it is paddable via a function whose output length is bounded tightly
both from above and from below in the length of the input. We prove that many
natural NP-complete problems such as satisfiability, clique, and vertex cover are
tight paddable.

1 Introduction

Oracle access is an important notion in the theory of computation. It forms the basis
for defining the different levels of the polynomial hierarchy [16, 19]. It is central to
the notion of Turing reducibility [14], which is used to compare the complexity of
problems.

How the nature of access to its oracle affects the power of a Turing machine is a
central research issue. For example, the issue of whether adaptive access is more power-
ful than nonadaptive access has been well researched (see, e.g., [1, 18, 20])1. A Turing
� Supported in part by grant NSF-CCF-0426761

�� Work done in part while at the University of Rochester
1 More broadly, the differences between various polynomial-time reducibilities have been exten-

sively studied ever since the seminal work of Ladner, Lynch, and Selman [14]. For an overview
of this line of research, we refer the reader to the survey articles by Homer [11, 12], Buhrman
and Torenvliet [3], and Pavan [17]

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 895–904, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

896 Lane A. Hemaspaandra and Mayur Thakur

machine with adaptive access to its oracle has the full flexibility of asking queries in
any order. In particular, the kth query may depend on the answers to the previous k− 1
queries. On the other hand, in nonadaptive access, the Turing machine is required to
generate all queries before asking any of them. Thus, adaptive access and nonadaptive
access might at first seem to represent two extremes of flexibility in deterministic oracle
access (when one is without external limits on the number of queries allowed).

In this paper, we examine modes of oracle access whose flexibility in some cases
lies somewhere between these two extremes, and in some cases is incomparable even to
the lower “extreme,” truth-table reducibility. To help us formalize the degree and nature
of the flexibility of oracle access, we introduce the notion of query-restricted Turing
reductions, ≤p

ρ-T , where ρ is a set of query sequences. A Turing machine M has the ρ
query property with respect to B if the following holds for each input x: If q1, q2, . . . , qk

is the sequence of strings queried by MB(x), then (x, q1, q2, . . . , qk) ∈ ρ. We say that
A ≤p

ρ-T B if there is a deterministic Turing machine M such that M robustly (i.e., for
all oracles) runs in polynomial time, L(MB) = A, and M has the ρ query property
with respect to B.

Note that each query-restricted Turing reduction ≤p
ρ-T imposes certain restric-

tions (formally captured by ρ) on the sequence of strings queried by the machine.
In this paper, we study query-restricted Turing reductions in which the set of allow-
able query sequences imposes monotonicity in the length of the queries that the un-
derlying machine asks to the oracle. We call such reductions query-monotonic Tur-
ing reductions. For example, in query-increasing Turing reductions, the machine is re-
quired to ask its queries in a length-increasing fashion, i.e., each query must be longer
than all the earlier ones (and also, in its strongest form, longer than the input). The
main query-monotonic reductions that we study in this paper are query-increasing re-
ductions (≤p

li-T), query-decreasing reductions (≤p
ld-T), query-nonincreasing reductions

(≤p
lni-T), and query-nondecreasing reductions (≤p

lnd-T). (Formal definitions of these
and other query-monotonic reductions are provided in Section 2.)

We came to define the notion of query-monotonicity motivated by the idea of rapid
progress. In particular, in this paper we wish to study the power of polynomial-time
machines that sweep, directionally, through their database (i.e., oracle). Such machines
will have a “use it when you can” flavor to their access to the information at each length
– once one query at or beyond a length is asked, the rest of the information at that
length is forever lost to direct access, on the current input. However, this apparently
restrictive access is not necessarily restrictive in effect. It is at least plausible that, by
exploiting properties of particular databases, the restriction (for those databases) will
be toothless, i.e., can be obeyed without loss of generality. In this paper, we show that
in some cases the restriction has teeth, but we also show that in other quite central
cases the restriction is toothless. In particular, for several reductions ≤p

α and ≤p
β , we

ask whether, for all A, B ⊆ Σ∗, A ≤p
α B implies A ≤p

β B. If the answer to this ques-
tion is “true”, we say that ≤p

β is stronger than ≤p
α. (Note that “stronger” does not in

this paper necessarily promise “strictly stronger” – for example, each reduction is, un-
der our definition, stronger than itself, but obviously is not strictly stronger than itself.
Similarly, “weaker” does not necessarily promise “strictly weaker.”) Roughly speaking,
we show that if ≤p

α and ≤p
β are chosen from among the Turing reductions, truth-table

Query-Monotonic Turing Reductions 897

reductions, 2-truth-table reductions, and the set of query-monotonic reductions that we
study, then the only “is stronger than” relationships that hold are the ones that obvi-
ously follow directly from the definitions. The rest provably do not hold. For example, a
query-increasing reduction is by definition also a query-nondecreasing reduction (since
each length-increasing query sequence is also a length-nondecreasing query sequence).
Thus, query-nondecreasing reductions are stronger than query-increasing reductions.
We prove that the converse is not true. That is, we prove that query-increasing reduc-
tions are strictly weaker than query-nondecreasing reductions.

It is clear from the definitions that query-monotonic Turing reductions are no less
restrictive than Turing reductions. Furthermore, from our results mentioned above it is
clear that in some cases the query-increasing and query-decreasing restrictions have
teeth. Thus, it is interesting to ask whether there are cases in which the restriction
is toothless. In particular, we ask the following question: What structural properties
should a set S have so that each set that is Turing reducible to S is in fact also query-
increasing (query-decreasing) Turing reducible to S? We show that for a large class of
sets – namely those that are paddable via a (polynomial-time) function whose output
size is bounded tightly both from above and from below in the length of the input – the
query-increasing (query-decreasing) restriction does not limit the power of polynomial-
time oracle Turing machines using these sets as their database. We call these sets tight
paddable. On one hand, we prove that there are NP-complete sets that are not tight
paddable, but on the other hand hand, we show that many natural NP-complete prob-
lems (for example, satisfiability, vertex cover, and maximum clique) are tight paddable.

Glaßer et al. [6] have recently shown that all NP-complete sets are many-one au-
toreducible. This is a very powerful result. However, our results neither seem to be
implied by nor seem to imply theirs.

This paper is organized as follows. Sections 2 and 3 define the different query-
monotonic reductions that are used in this paper, and show that all these reductions
are robust in a certain sense. In Section 4, we compare the power of query-monotonic
reductions with that of Turing and truth-table reductions. In Section 5, we study the
query-monotonic reduction closures of sets in NP and prove that many important NP-
complete sets are tight paddable.

(Due to space limitations, all proofs, almost all of the discussion in the results sec-
tions, and some results are omitted. These in general can or will be found in the current
technical report version of the paper [10] or in the in-preparation revised, extended
version of that report.)

2 Preliminaries

The alphabet for all strings, unless otherwise mentioned, is Σ = {0, 1}. The length of
a string x is denoted by |x|.

We use the standard Turing machine model as described, for example, in [13]. We
view all Turing machines as potentially taking an oracle (or a pair of oracles), and so
write “Turing machine” rather than “oracle Turing machine.” Let M1, M2, . . . be a
standard enumeration of deterministic polynomial-time Turing machines such that the
running time of Mi is bounded by ni + i. Note that we build into our requirements

898 Lane A. Hemaspaandra and Mayur Thakur

of the standard enumeration the fact that Turing machines in the enumeration defined
above run in time that is bounded by a polynomial that is independent of the oracle(s)
attached to the machine2. Thus, when we say that M is a polynomial-time Turing
machine, we mean that there is a k ∈ N such that, for each X ⊆ Σ∗, each Y ⊆ Σ∗, and
for each x ∈ Σ∗, MX,Y (x) runs in time |x|k + k (thus so does MX(x) “=” MX,∅(x)
and M(x) “=” M∅,∅(x)). (For each Turing machine M and for each Y, Z ⊆ Σ∗, MY,Z

represents machine M with Y as its first oracle and Z as its second oracle. See [8, 9] for
earlier uses of double oracles – there in the context of studying the effect of the order in
which the two databases are accessed.)

For any Turing machine N and any x ∈ Σ∗, we will use N(x) as an abbreviation for
“the computation of N on x.” We will use DPTM as an abbreviation for “deterministic
polynomial-time Turing machine.” We use the standard meanings and notations for
polynomial-time many-one reduction (≤p

m), polynomial-time Turing reduction (≤p
T),

polynomial-time truth-table reduction (≤p
tt), and for each k ∈ N, polynomial-time k-

truth-table reduction (≤p
k-tt) [14].

We now introduce query-monotonic reductions. We in fact define a general “query-
restricted” Turing reduction, ≤p

ρ-T , where ρ is a restriction on the allowed sequences.
Query-monotonic reductions are defined in terms of query-restricted Turing reductions:
Each query-monotonic reduction is a query-restricted Turing reduction for some partic-
ular restriction ρ.

Definition 1. Let ρ ⊆ Σ∗ ∪ Σ∗ ×Σ∗ ∪ Σ∗ ×Σ∗ ×Σ∗ ∪ · · · .

1. For each Turing machine M , each B ⊆ Σ∗, and each x ∈ Σ∗, we say that M
has the ρ query property with respect to B on input x if the sequence q1, q2, . . . , qk

of queries made by MB(x) to its oracle satisfies: (x, q1, q2, . . . , qk) ∈ ρ. (For
example, MB(x) may legally ask no queries only if (x) ∈ ρ.)

2. For each Turing machine M and each B ⊆ Σ∗, we say that M has the ρ query
property with respect to B if, for each x ∈ Σ∗, M has the ρ query property with
respect to B on input x.

3. A ≤p
ρ-T B if there exists a DPTM M such that

(a) M has the ρ query property with respect to B, and
(b) L(MB) = A.

We now define several query-monotonic restrictions that will be of interest to us. Note
that the “Σ∗” part in the following definitions makes it legal for a Turing machine to
ask no queries to its oracle.

Definition 2. 1. (Length-increasing) ρli = Σ∗∪{(x, q1, q2, . . . , qk) |k ≥ 1 ∧ |q1| <
|q2| < . . . < |qk|}.

2. (Length-decreasing) ρld = Σ∗ ∪ {(x, q1, q2, . . . , qk) | k ≥ 1 ∧ |q1| > |q2| > . . . >
|qk|}.

2 This is certainly not true of all Turing machines. There has been some study of the differ-
ence between the power of machines that have a robust – that is, independent of the oracle –
polynomial-time bound on their running time and those that run in polynomial-time for each
oracle yet have no robust polynomial-time bound on their running time [4]

Query-Monotonic Turing Reductions 899

3. (Length-nonincreasing) ρlni = Σ∗ ∪ {(x, q1, q2, . . . , qk) | k ≥ 1 ∧ |q1| ≥ |q2| ≥
. . . ≥ |qk|}.

4. (Length-nondecreasing) ρlnd = Σ∗ ∪ {(x, q1, q2, . . . , qk) | k ≥ 1 ∧ |q1| ≤ |q2| ≤
. . . ≤ |qk|}.

5. (Strong length-increasing) ρs-li = Σ∗∪{(x, q1, q2, . . . , qk) |k ≥ 1 ∧ |x| < |q1| <
|q2| < . . . < |qk|}.

6. (Strong length-decreasing) ρs-ld = Σ∗∪{(x, q1, q2, . . . , qk) |k ≥ 1 ∧ |x| > |q1| >
|q2| > . . . > |qk|}.

7. (Strong length-nonincreasing) ρs-lni = Σ∗ ∪ {(x, q1, q2, . . . , qk) | k ≥ 1 ∧ |x| ≥
|q1| ≥ |q2| ≥ . . . ≥ |qk|}.

8. (Strong length-nondecreasing) ρs-lnd = Σ∗ ∪ {(x, q1, q2, . . . , qk) | k ≥ 1 ∧ |x| ≤
|q1| ≤ |q2| ≤ . . . ≤ |qk|}.
For each α ∈ {li, ld, lnd, lni, s-li, s-ld, s-lni, s-lnd}, and for each A, B ⊆ Σ∗,

we will abuse notation and use A ≤p
α-T B when we formally mean A ≤p

ρα-T B.
For each Turing machine M and each B ⊆ Σ∗, if M has the ρli (respectively, ρld,
ρlni, ρlnd, ρs-li, ρs-ld, ρs-lni, ρs-lnd) query property with respect to B, then we say
that M has the query-increasing (respectively, query-decreasing, query-nonincreasing,
query-nondecreasing, strong query-increasing, strong query-decreasing, strong query-
nonincreasing, strong query-nondecreasing) property with respect to B. If A ≤p

li-T B
(respectively, A ≤p

ld-T B, A ≤p
lni-T B, A ≤p

lnd-T B, A ≤p
s-li-T B, A ≤p

s-ld-T B,
A ≤p

s-lni-T B, A ≤p
s-lnd-T B), then we say that A polynomial-time query-increasing

(respectively, query-decreasing, query-nonincreasing, query-nondecreasing, strong
query-increasing, strong query-decreasing, strong query-nonincreasing, strong query-
nondecreasing) Turing reduces to B.

We now define relativized query-monotonic reductions. For each ρ ⊆ Σ∗ ∪ Σ∗×
Σ∗ ∪ Σ∗×Σ∗×Σ∗ ∪ · · · , we say that, relative to Z , M has the ρ query property with
respect to Y if, for each x ∈ Σ∗, the sequence q1, q2, . . . , qk of queries that MY,Z(x)
asks to its first oracle satisfies (x, q1, q2, . . . , qk) ∈ ρ. A ≤p,C

ρ-T B if there exists a
DPTM M such that L(MB,C) = A and, relative to C, M has the ρ query property
with respect to B.

We now define a new notion of padding – tight paddability – that we will use to un-
derstand query-monotonic reductions over NP. Before we define tight paddability, for
comparison we review notions of padding that are standard in the literature. Paddabil-
ity of sets has been used in complexity theory in many contexts including the seminal
work of Berman and Hartmanis [2] on polynomial-time isomorphism for sets in NP,
and of Hartmanis [7] on the study of logspace isomorphism for sets in NL, CSL, P,
NP, PSPACE, etc. Mahaney and Young [15] use padding functions to prove results
regarding the structure of polynomial-time many-one degrees.

A (polynomial-time) paddable set is one for which there is a polynomial-time func-
tion (called a padding function for that set) that allows one to map the input string to a
longer string while preserving membership in the set.

Definition 3. Let A ⊆ Σ∗. Then σ : Σ∗ → Σ∗ is a padding function for A if

1. σ is polynomial-time computable,
2. for each x ∈ Σ∗, σ(x) ∈ A if and only if x ∈ A, and
3. for each x ∈ Σ∗, |σ(x)| > |x|.

900 Lane A. Hemaspaandra and Mayur Thakur

We say that A is paddable if there exists a padding function for A.

Berman and Hartmanis [2] define two different types of functions called Z-padding
functions and S-padding functions (though, formally speaking S-padding functions
need not be padding functions in the sense of Definition 3).

Definition 4. [2] Let A ⊆ Σ∗. Then σ : Σ∗ → Σ∗ is a Z-padding function for A if
σ is a padding function and σ is a one-to-one function. We say that A is Z-paddable if
there exists a Z-padding function for A.

Definition 5. [2] Let A ⊆ Σ∗. Then σ : Σ∗ ×Σ∗ → Σ∗ is an S-padding function for
A if

1. σ is polynomial-time computable,
2. σ is polynomial-time invertible in the second argument, i.e., there is a polynomial-

time computable function σ′ such that, for each x, y ∈ Σ∗, σ′(σ(x, y)) = y, and
3. for each x, y ∈ Σ∗, σ(x, y) ∈ A if and only if x ∈ A.

We say that A is S-paddable if there exists an S-padding function for A.

Mahaney and Young [15] note that any set that is S-paddable is S-paddable via
some function that is polynomial-time invertible in both arguments, i.e., there exists
a polynomial-time computable function ρ such that for each x and y, ρ(σ(x, y)) =
〈x, y〉. Also, note that if a function is invertible in both arguments, in the particular
sense just mentioned, then it is one-to-one. We can use this property of S-paddable
sets to show that each S-paddable set is also Z-paddable. Note that most natural NP-
complete problems (for example, SAT, vertex cover, max clique, 3-colorability, etc.) are
obviously S-paddable.

We now define two notions of tight padding: tight paddability and tight Z-
paddability. Informally speaking, a tight padding function for a set is a padding function
that has strong guarantees on the length of its output.

Definition 6. Let A ⊆ Σ∗.

1. Let σ : Σ∗ → Σ∗. Then σ is a tight padding function for A if σ is a padding
function for A and there exists a k ∈ N such that, for each x ∈ Σ∗, |σ(x)| ≤ |x|+k.
We say that A is tight paddable if there is a tight padding function for A.

2. Let σ : Σ∗ → Σ∗. Then σ is a tight Z-padding function for A if σ is a Z-padding
function for A and there exists a k ∈ N such that, for each x ∈ Σ∗, |σ(x)| ≤ |x|+k.
We say that A is tight Z-paddable if there is a tight Z-padding function for A.

Clearly, each tight paddable set is also paddable. Similarly, each tight Z-paddable
set is also Z-paddable. Figure 1 shows the relationships among the different notions of
paddability.

One might ask why we have not defined a “tight” analog of the S-paddable sets. One
could. But we mention in passing that no one-to-one 2-ary function satisfies the length
restriction associated with tightness. Let σ be an arbitrary one-to-one 2-ary function.
Let n ∈ N. The number of pairs of strings x and y such that |x| + |y| is n is exactly
(n+1)2n. Thus, the length of the longest string whose preimage (x, y) in σ is such that

Query-Monotonic Turing Reductions 901

tight paddable

S−paddable

paddable

Z−paddable

tight Z−paddable

Fig. 1. Relationships between different notions of paddability. A line between a and b such that a
lies above b indicates that any set of type b is also a set of type a

|x|+ |y| = n is at least �log(1 + (n + 1)2n)− 1� ≥ n− 1 + log(n + 1). Thus, for any
such σ and for each k ∈ N, there exist x and y such that σ(x, y) > |x|+ |y|+ k.

In Section 5, we show that many well-known NP-complete problems such as sat-
isfiability of boolean formulas, vertex cover in graphs, and size of the largest clique in
graphs are tight Z-paddable. We also show that many types of query-monotonic re-
ductions are equivalent (and in fact, also equivalent to Turing reductions) when the set
being reduced to is tight paddable.

3 Robustness of Query-Monotonic Reductions

In this section, we study the question: Given A ≤p
ρ-T B, under what conditions is this

≤p
ρ-T reduction witnessed by a machine that has the robust (that is, with respect to all

oracles) ρ query property?

Definition 7. Let ρ ⊆ Σ∗ ∪Σ∗ ×Σ∗ ∪Σ∗ ×Σ∗ ×Σ∗ ∪ · · · .
1. For each Turing machine M , we say that M has the robust ρ query property if, for

each C ⊆ Σ∗, M has the ρ query property with respect to C.
2. For each A, B ⊆ Σ∗, A ≤p

r-ρ-T B if there exists a DPTM M such that
(a) M has the robust ρ query property, and
(b) L(MB) = A.

Theorem 8. Let ρ ⊆ Σ∗ ∪ Σ∗×Σ∗ ∪ Σ∗×Σ∗×Σ∗ ∪ · · · be a set of tuples such
that ρ′ = {〈x1, x2, . . . , xk〉 | (x1, x2, . . . , xk) ∈ ρ} ∈ P and ρ satisfies the following:
For each k ≥ 0, and each x, q1, q2, . . . , qk+1 ∈ Σ∗, if (x, q1, x2, . . . , xk+1) ∈ ρ, then
(x1, x2, . . . , xk) ∈ ρ. Then, for each A, B ⊆ Σ∗, A ≤p

ρ-T B if and only if A ≤p
r-ρ-T B.

Corollary 9. For each α ∈ {li, ld, lni, lnd, s-li, s-ld, s-lni, s-lnd}, and for each
A, B ⊆ Σ∗, A ≤p

α-T B if and only if A ≤p
r-α-T B.

Theorem 10. Let ρ ⊆ Σ∗ ∪ Σ∗ ×Σ∗ ∪ Σ∗ × Σ∗ ×Σ∗ ∪ · · · be a set of tuples
such that the set ρ′ = {〈x1, x2, . . . , xk〉 | (x1, x2, . . . , xk) ∈ ρ} is in P. If P = NP,
then for each A, B ⊆ Σ∗, A ≤p

ρ-T B if and only if A ≤p
r-ρ-T B.

Theorem 11. There is an oracle C, a set B, and a constraint set ρ such that the set
ρ′ = {〈x1, x2, . . . , xk〉 | (x1, x2, . . . , xk) ∈ ρ} ∈ PC , ∅ ≤p,C

ρ-T B, and yet ∅ �≤p,C
r-ρ-T B.

902 Lane A. Hemaspaandra and Mayur Thakur

4 Comparing Query-Monotonic Reductions
to Turing and Truth-Table Reductions

In this section, we compare the power of query-monotonic reductions to different forms
of Turing and truth-table reductions. By definition, query-monotonic reductions are no
more powerful than Turing reductions. But in which cases are they as powerful as Tur-
ing reductions and in which cases are they not? How does the power of query-monotonic
reductions relate to the that of classical reductions such as Turing reductions and truth-
table reductions? These are the central questions that we answer in this section.

Let ≤p
α and ≤p

β be defined reductions. If (∀A, B ⊆ Σ∗)[A ≤p
α B =⇒ A ≤p

β B],
then we say that ≤p

β is stronger than ≤p
α and that ≤p

α is weaker than ≤p
β . If ≤p

β is
stronger than ≤p

α and (∃A, B ⊆ Σ∗)[A ≤p
β B ∧ A �≤p

α B], then we say that ≤p
β is

strictly stronger than ≤p
α and that ≤p

α is strictly weaker than ≤p
β . (For example, ≤p

T is
trivially stronger than itself, and is both stronger and strictly stronger than ≤p

tt.)
3 If we

say that ≤p
β is not stronger than ≤p

α, we mean just that – that “≤p
β is stronger than ≤p

α”
is untrue. That is, this means (A, B ⊆ Σ∗)[A ≤p

α B ∧ A �≤p
β B]. Note of course that

“≤p
β is not stronger than≤p

α” and “≤p
β is strictly weaker than≤p

α” are not synonymous.
Also note that “≤p

β is strictly stronger than ≤p
α” is equivalent to “≤p

β is stronger than
≤p

α but ≤p
α is not stronger than ≤p

β .”
Let X = {li, ld, lni, lnd, s-li, s-ld, s-lni, s-lnd}. For each α, β ∈ X , we ask

whether ≤p
α is stronger than ≤p

β . There are 64 (8 × 8 = 64) such questions. We re-
solve all these questions. In fact, we show that the only “stronger than” relationships
that hold are the ones that immediately follow from the definitions. Since the definitions
of query-monotonic reductions are based on restriction sets (see Definition 2), we can
formally (yet succinctly) state the answers to each of these 64 questions as Theorem 12.

Theorem 12. For each α, β ∈ {li, ld, lni, lnd, s-li, s-ld, s-lni, s-lnd}, ≤p
β is stronger

than ≤p
α if and only if ρα ⊆ ρβ .

We now compare query-monotonic reductions to 2-truth-table, truth-table, and Tur-
ing reductions.

Theorem 13. (∃A, E ⊆ Σ∗)[E ≤p
T A ∧ E �≤p

lni-T A ∧ E �≤p
lnd-T A].

Corollary 14. (∃A, E ⊆ Σ∗)[E ≤p
T A ∧ E �≤p

li-T A ∧ E �≤p
ld-T A].

Theorem 15. (∃A, LA ⊆ Σ∗)[LA ≤p
2-tt A ∧ LA �≤p

li-T A ∧ LA �≤p
ld-T A].

Theorem 16. (∃A, LA ⊆ Σ∗)[LA ≤p
s-li-T A ∧ LA ≤p

s-ld-T A ∧ LA �≤p
tt A].

Theorem 17. For each class C of languages such that C is closed downward under≤p
m

reductions, Rp
T (C) = Rp

lni-T (C) = Rp
lnd-T (C)

3 So, as is now standard in complexity, we use “stronger” to refer to reductions that link at least
as many sets as the ones they are stronger than. To avoid confusion, we mention in passing
that recursion theorists sometimes exchange “strong” and “weak,” as they focus on the level of
refinement of the equivalence classes induced by the reductions, and a few computer science
papers – especially early ones – mirrored that notion

Query-Monotonic Turing Reductions 903

Corollary 18. For each class C ∈ {NP, coNP, BPP, C= P,⊕P, PP}, Rp
T (C) =

Rp
lni-T (C) = Rp

lnd-T (C).

5 Query-Monotonic Reductions to NP Sets

In the previous section, we saw that query-monotonic and Turing reductions are differ-
ent in general, though for many natural complexity classes the reduction closure of these
classes with respect to query-nonincreasing, query-nondecreasing, and Turing reduc-
tions are identical. In this section, we study the relationship between query-monotonic
and Turing reductions to NP sets. We ask the following question: For each A ⊆ Σ∗

and B ∈ NP, does A ≤p
T B imply A ≤p

li-T B? Since ≤p
T is stronger than ≤p

li-T , if
the answer to the above question is “yes,” then for each A ⊆ Σ∗ and for B ∈ NP,
A ≤p

T B if and only if A ≤p
li-T B. Similarly, we ask the following question: For each

A ⊆ Σ∗ and each B ∈ NP, does A ≤p
T B imply A ≤p

ld-T B? Since ≤p
T is stronger

than ≤p
ld-T , if the answer to the above question is “yes,” then for each A ⊆ Σ∗ and

B ∈ NP, A ≤p
T B if and only if A ≤p

ld-T B. Both these issues are currently open.

Theorem 19. (∃W ⊆ Σ∗)(∃A ∈ NPW)(∃LA ⊆ Σ∗)[LA ≤p,W
2-tt A ∧ LA �≤p,W

li-T
A ∧ LA �≤p,W

ld-T A].

Hypothesis S: (∀A ⊆ Σ∗)(∀B ∈ NP)[A ≤p
T B ⇐⇒ A ≤p

li-T B].

Theorem 20. There exists an infinite polynomial-time computable set L ⊆ N such
that if Hypothesis S holds then, for each set A in PNP, there is a C ∈ NP such that
A ∩ {x ∈ Σ∗ | |x| ∈ L} ≤p

1-tt C.

Theorem 21. Let S be a tight paddable set. Then, for each A ⊆ Σ∗, the following are
equivalent: A ≤p

T S, A ≤p
li-T S, A ≤p

ld-T S, and A ≤p
s-li-T S.

Theorem 22. The following problems (see [5] for definitions of these problems) are
tight Z-paddable (and thus, tight paddable): 3-SAT, VERTEX COVER, CLIQUE,
3-COLORABILITY, MONOCHROMATIC TRIANGLE, BIPARTITE SUBGRAPH,
MULTIPROCESSING SCHEDULING, CYCLIC ORDERING, QUADRATIC DIO-
PHANTINE EQUATIONS, MAX 2-SAT, and DECISION TREE.

Theorem 23. If Rp
T (3-SAT) = Rp

s-ld-T (3-SAT), then PNP = PNP[n].

Theorem 24. Each set, except ∅ and Σ∗, is polynomial-time many-one equivalent to a
set that is not tight paddable.

Theorem 25. Every set is polynomial-time many-one equivalent to a tight Z-paddable
set.

Acknowledgment

We thank Mitsunori Ogihara for helpful conversations.

904 Lane A. Hemaspaandra and Mayur Thakur

References

1. K. Ambos-Spies and L. Bentzien. Separating NP-completeness notions under strong hy-
potheses. Journal of Computer and System Sciences, 61(3):335–361, 2000.

2. L. Berman and J. Hartmanis. On isomorphisms and density of NP and other complete sets.
SIAM Journal on Computing, 6(2):305–322, 1977.

3. H. Buhrman and L. Torenvliet. On the structure of complete sets. In Proceedings of the 9th
Structure in Complexity Theory Conference, pages 118–133. IEEE Computer Society Press,
1994.

4. J. Cai, L. Hemaspaandra, and G. Wechsung. Robust reductions. Theory of Computing Sys-
tems, 32(6):625–647, 1999.

5. M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman and Company, 1979.

6. C. Glaßer, M. Ogihara, A. Pavan, A. Selman, and L. Zhang. Autoreducibility, mitocity, and
immunity. Technical Report TR 05-011, Electronic Colloquium on Computational Complex-
ity, http://www.eccc.uni-trier.de/eccc/, 2005.

7. J. Hartmanis. On log-tape isomorphisms of complete sets. Theoretical Computer Science,
7(3):273–286, 1978.

8. E. Hemaspaandra, L. Hemaspaandra, and H. Hempel. Query order in the polynomial hierar-
chy. Journal of Universal Computer Science, 4(6):574–588, 1998.

9. L. Hemaspaandra, H. Hempel, and G. Wechsung. Query order. SIAM Journal on Computing,
28(2):637–651, 1999.

10. L. Hemaspaandra and M. Thakur. Query-monotonic turing reductions. Technical Report TR-
818, Department of Computer Science, University of Rochester, Rochester, NY, November
2003.

11. S. Homer. Structural properties of nondeterministic complete sets. In Proceedings of the
5th Structure in Complexity Theory Conference, pages 3–10. IEEE Computer Society Press,
1990.

12. S. Homer. Structural properties of complete problems for exponential time. In L. Hema-
spaandra and A. Selman, editors, Complexity Theory Retrospective II. Springer-Verlag, 1997.

13. J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages, and Computation.
Addison-Wesley, 1979.

14. R. Ladner, N. Lynch, and A. Selman. A comparison of polynomial time reducibilities.
Theoretical Computer Science, 1(2):103–124, 1975.

15. S. Mahaney and P. Young. Reductions among polynomial isomorphism types. Theoretical
Computer Science, 39(2–3):207–224, 1985.

16. A. Meyer and L. Stockmeyer. The equivalence problem for regular expressions with squaring
requires exponential space. In Proceedings of the 13th IEEE Symposium on Switching and
Automata Theory, pages 125–129, October 1972.

17. A. Pavan. Comparison of reductions and completeness notions. SIGACT News, 34(2):27–41,
2003.

18. A. Pavan and A. Selman. Separation of NP-completeness notions. SIAM Journal on Com-
puting, 31(3):906–918, 2002.

19. L. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science, 3(1):1–22,
1976.

20. O. Watanabe. A comparison of polynomial time completeness notions. Theoretical Com-
puter Science, 54(2–3):249–265, 1987.

On Sequential and 1-Deterministic P Systems�

Oscar H. Ibarra1,��, Sara Woodworth1, Hsu-Chun Yen2, and Zhe Dang3

1 Department of Computer Science
University of California, Santa Barbara, CA 93106, USA

ibarra@cs.ucsb.edu
2 Department of Electrical Engineering

National Taiwan University, Taipei, Taiwan 106, R.O.C.
3 School of Electrical Engineering and Computer Science
Washington State University, Pullman, WA 99164, USA

Abstract. The original definition of P-systems calls for rules to be applied in a
maximally parallel fashion. However, in some cases a sequential model may be a
more reasonable assumption. Here we study the computational power of different
variants of sequential P-systems. Initially we look at cooperative systems operat-
ing on symbol objects and without prioritized rules, but which allow membrane
dissolution and bounded creation rules. We show that they are equivalent to vector
addition systems and, hence, nonuniversal. When these systems are used as lan-
guage acceptors, they are equivalent to communicating P systems which, in turn,
are equivalent to partially blind multicounter machines. In contrast, if such coop-
erative systems are allowed to create an unbounded number of new membranes
(i.e., with unbounded membrane creation rules) during the course of the computa-
tion, then they become universal. We then consider systems with prioritized rules
operating on symbol objects. We show two types of results: there are sequential
P systems that are universal and sequential P systems that are nonuniversal. In
particular, both communicating and cooperative P systems are universal, even if
restricted to 1-deterministic systems with one membrane. However, the reacha-
bility problem for multi-membrane catalytic P systems with prioritized rules is
NP-complete and, hence, these systems are nonuniversal.

1 Introduction

Initiated five years ago by Gheorghe Paun [17] as a branch of molecular computing,
membrane computing identifies an unconventional computing model, namely a P sys-
tem, from natural phenomena of cell evolutions and chemical reactions. A P system
abstracts from the way the living cells process chemical compounds in their compart-
mental structure. Thus, regions defined by a membrane structure contain objects that
evolve according to given rules. The objects can be described by symbols or by strings
of symbols, in such a way that multisets of objects are placed in regions of the mem-
brane structure. The membranes themselves are organized as a Venn diagram or a tree

� The work of Oscar H. Ibarra was supported in part by NSF Grants CCR-0208595 and CCF-
0430945. The research of Hsu-Chun Yen was supported in part by NSC Grant 93-2213-E-002-
003, Taiwan. The work of Zhe Dang was supported in part by NSF Grant CCF-0430531

�� Corresponding author

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 905–914, 2005.
© Springer-Verlag Berlin Heidelberg 2005

906 Oscar H. Ibarra et al.

structure where one membrane may contain other membranes. By using the rules in a
nondeterministic, maximally parallel manner, transitions between the system configu-
rations can be obtained. A sequence of transitions shows how the system is evolving.
Various ways of controlling the transfer of objects from a region to another and apply-
ing the rules, as well as possibilities to dissolve, divide or create membranes have been
studied.

Membrane computing has been quite successful: many models have been intro-
duced, most of them Turing complete and/or able to solve computationally intractable
problems (NP-complete, PSPACE-complete) in a feasible time (polynomial), by trad-
ing space for time. (See the P system website at http://psystems.disco.unimib.it for a
large collection of papers in the area, and in particular the monograph [18].) Due to the
built-in nature of maximal parallelism inherent in the model, P systems have a great
potential for implementing massively concurrent systems in an efficient way that would
allow us to solve currently intractable problems (in much the same way as the promise
of quantum and DNA computing) once future bio-technology (or silicon-technology)
gives way to a practical bio-realization (or chip-realization). In fact, the Institute for Sci-
entific Information (ISI) has recently selected membrane computing as a fast “Emerging
Research Front” in Computer Science (http://esi-topics.com/ erf/october2003.html).

In the standard definition of a P system, the computation is carried out in a maxi-
mally parallel and nondeterministic manner [17, 18]. However, an interesting class of P
systems with symport/antiport rules was studied in [5] where each system is determinis-
tic in the sense that the computation path of the system is unique; i.e., at each step of the
computation, the maximal multiset of rules that is applicable is unique. It was shown in
[5] that any recursively enumerable unary language L ⊆ o∗ can be accepted by a deter-
ministic 1-membrane symport/antiport system. Thus, for symport/antiport systems, the
deterministic and nondeterministic versions are equivalent.

The construction of the deterministic system in [5] is such that the size of the maxi-
mal multiset of rules that is applicable at every step of the computation is either 1 or 2.
We refer to this system as 2-deterministic. In general, a k-deterministic system is one in
which the maximal multiset of rules applicable at each step is at most k. An interesting
case is when k = 1, i.e., the system is 1-deterministic.

A concept, which is more general than 1-deterministic, is that of sequential mode of
computation in P systems; i.e., at every step, only one nondeterministically chosen rule
instance is applied. Clearly, when a P system is 1-deterministic, then the system (which,
by definition, is still maximally parallel) can be treated as a sequential system. So if a
class of systems is nonuniversal under the sequential mode, then any 1-deterministic
such system in the class is also nonuniversal. Sequential P systems (also called asyn-
chronous P systems) have been studied in various places in the literature (see, e.g., [1–
4, 6, 11]). Here, we present results that complement these earlier results. In particular,
we show the following:

1. Any sequential P system with cooperative rules (i.e., rules of the form u → v,
where u, v are strings of symbols) with rules for membrane creation and mem-
brane dissolution can be simulated by a vector addition system (VAS), provided the
rules are not prioritized and the number of membranes that can be created during
the computation is bounded by some fixed positive integer. Hence the reachability

On Sequential and 1-Deterministic P Systems 907

problem (deciding if a configuration is reachable from the start configuration) is
decidable. It follows that 1-deterministic such systems have a decidable reachabil-
ity problem. Interestingly and somewhat surprisingly, if such cooperative systems
are allowed to create an unbounded number of new membranes during the course
of the computation, then they become universal.

2. A sequential communicating P system language acceptor (CPA) is equivalent to a
partially blind multicounter machine (PBCM) [7]. Several interesting corollaries
follow from this equivalence, for example:
(a) The emptiness problem for CPAs is decidable.
(b) The class of CPA languages is a proper subclass of the recursive languages.
(c) The language {anbn | n ≥ 1}∗ cannot be accepted by a CPA.
(d) For every r, there is an s > r and a language that can be accepted by a quasire-

altime CPA with s membranes that cannot be accepted by a quasirealtime CPA
with r membranes. (In a CPA, we do not assume that the CPA imports an input
symbol from the environment at every step. Quasirealtime means that the CPA
has to import an input symbol from the environment with delay of no more than
k time steps for some nonnegative integer k independent of the computation.)

(e) A quasirealtime CPA is strictly weaker than a linear time CPA. (Here, linear
time means that the CPA accepts an input of length n within cn time for some
constant c.)

(f) The class of quasirealtime CPA languages is not closed under Kleene + and
complementation.

We note that the relationship between PBCMs and sequential symport/antiport P
systems (similar to communication P systems) has been studied recently in [6],
but only for systems with symbol objects and not as language acceptors. Thus, the
results in [6] deal only with tuples of nonnegative integers defined by P systems
and counter machines. For example, it was shown in [6] that a set of tuples of
nonnegative integers that is definable by a partially blind counter machine can be
defined by a sequential symport/antiport system with two membranes. Our new
results above cannot be derived from the results in [6].

3. The results for CPA above generalize to cooperative system acceptors with mem-
brane dissolution and bounded creation rules. Hence, the latter are also equivalent
to PBCMs.

4. Any recursively enumerable unary language can be accepted by a 1-deterministic
1-membrane CPA with prioritized rules.

5. The reachability problem for sequential catalytic systems with prioritized rules
(hence, for 1-deterministic such machines as well) is NP-complete. It follows from
this result that a 1-deterministic catalytic system with prioritized rules can only
accept recursive languages.

Note that from items 4 and 5 above, when the rules are prioritized, there are 1-determi-
nistic systems that are universal and 1-deterministic systems that are not universal. In
contrast, from item 1, without prioritized rules, 1-deterministic systems are not univer-
sal.

Due to page limitation, proofs are omitted. Complete proofs will appear later in an
expanded (journal) version of this paper.

908 Oscar H. Ibarra et al.

2 P Systems Without Prioritized Rules
Operating in Sequential Mode

In this section, we consider the general definition of a P system as given originally by
G. Paun in [17, 18], but with unprioritized rules. However, we allow rules for membrane
dissolution and membrane creation. We look at systems that operate in sequential mode,
i.e., exactly one rule instance is applied at each step (unless the system halts).

Before proceeding further, we need the definition of a vector addition system. An
n-dimensional vector addition system (VAS) is a pair G = 〈x, W 〉, where x ∈ Nn is
called the start point (or start vector) and W is a finite set of vectors in Zn, where Z is
the set of all integers (positive, negative, zero). The reachability set of the VAS 〈x, W 〉
is the set R(G) = {z | for some j, z = x + v1 + ... + vj , where, for all 1 ≤ i ≤ j,
each vi ∈ W and x+ v1 + ...+ vi ≥ 0}. An n-dimensional vector addition system with
states (VASS) is a VAS 〈x, W 〉 together with a finite set T of transitions of the form
p → (q, v), where p and q are states and v is in W . The meaning is that such a transition
can be applied at point y in state p and yields the point y + v in state q, provided that
y+v ≥ 0. The VASS is specified by G = 〈x, W, T, p0〉, where p0 is the starting state. It
is known that n-dimensional VASS can be effectively simulated by (n+3)-dimensional
VAS [8]. The reachability problem for a VAS (VASS) G is to determine, given a vector
y, whether y is in R(G). It is known that the reachability problem for VASS (and hence
also for VAS) is decidable [13]. It is also known that VAS, VASS, and Petri net are all
equivalent.

First, we study P systems with membrane dissolution but without rules for mem-
brane creation. Clearly, for sequential computations, it is sufficient to only have coop-
erative rules of the form u → v or of the form u → v; δ, where u and v are strings
of objects (symbols) where each symbol b in v has a designation or target, i.e., it is
written bx, where x can be here, out, or inj . The designation here means that the ob-
ject b remains in the membrane containing it (we usually omit this target, when it is
understood). The designation out means that the object is transported to the membrane
directly enclosing the membrane that contains the object. The designation inj means
that the object is moved into a membrane, labeled j, that is directly enclosed by the
membrane that contains the object. The δ attached to the rule means that after the appli-
cation of the rule, the membrane and the rules it contains are dissolved and the objects
in the membrane become part of the membrane that enclosed the dissolved membrane.

Theorem 1. A sequential P system with unprioritized cooperative rules (possibly with
membrane dissolution rules) can be simulated by a VASS. Hence its reachability prob-
lem is decidable.

Another type of P systems (called active P systems) introduced in [15] allows rules
to create new membranes during the computation. The objects of an active P system
consist of passive objects which do not create new membranes and active objects which
do create new membranes. A membrane creation rule is written as u → [iv]i. If a rule
of this form is applied in membrane r, this rule consumes u from r, creates a new
membrane i within r, and creates the string vini . Membrane creation changes how the
degree of a system is defined. In a P system without membrane creation, its degree is the

On Sequential and 1-Deterministic P Systems 909

number of membranes in the initial configuration. A P system which allows membrane
creation must take into consideration the membranes that may be created. Hence, the
degree of a system of this type is an ordered pair where the first component consists
of the number of membranes in the initial configuration and the second component
consists of the maximum number of membranes at any given time in the system during
computation. The concept of membrane creation in a P system has a biological basis. In
biology, reproduction is a fundamental function of most cells. Including this function
in the definition of a P system is a natural generalization of the model. We have the
following result:

Theorem 2. A sequential P system with unprioritized rules and with both membrane
dissolution and creation rules, where the total number of membranes that can be created
during the computation is at most t (for some positive integer t), can be simulated by a
VASS. Hence its reachability problem is decidable.

The key reason why Theorem 2 works is the bound t of the total number of mem-
branes created during any computation. What if we remove this condition? That is,
suppose the number of times membrane creation rules are invoked during the computa-
tion is unbounded (i.e., it is a function of the computation). In this case, a sequential P
system in Theorem 2 becomes universal. More precisely, we have the following:

Theorem 3. A sequential P system with unprioritized rules and with both membrane
dissolution and creation rules can simulate two-counter machines (and hence are uni-
versal).

In the P system of Theorem 3, objects can move in and move out a membrane (e.g.,
the object of a state symbol). This move-in/out is essential in simulating the state transi-
tions in a two-counter machine. We do not currently know whether the P systems in the
theorem become nonuniversal when, in addition to membrane creation and dissolution
rules, we only allow local rules in the form of u → v where the target of every object
in v is here (i.e., no move-in/out). This will be left as a topic for further investigation.

3 P Systems and Partially Blind Multicounter Machines

In a communicating P system CPS (with multiple membranes) [19], each rule is of
one of the following forms: (1) a → ax, (2) ab → axby , and (3) ab → axbyccome,
where a, b, c are objects, x, y (which indicate the directions of movements of a and b)
can be here, out, or inj (see Section 2 for their meanings). The come can only occur
within the outermost region (i.e., skin membrane), which brings in symbol c from the
environment.

Here, we consider a variant of the CPS which is used as a language acceptor. Con-
sider a CPS G with input alphabet Σ = {a1, ..., ak}. Let α be a new symbol not in Σ.
We assume that only α and the symbols in Σ occur abundantly in the environment. Let
Σα = Σ ∪ {α}. Thus, the CPS can import an unbounded number of symbols in Σα

from the environment. We assume that no symbol in Σα occurs in the initial configu-
ration. We can view the CPS G above as a language acceptor, which we call a CPA.
G accepts a string x ∈ Σ∗ if it constitutes all the symbols over Σ imported from the

910 Oscar H. Ibarra et al.

environment during the computation, in the order given in x, when the system halts.
Thus, x is built up as follows. At the start of the computation, x = λ (the null string).
Symbols from Σ are appended to x as they are imported into the skin membrane during
the computation. The CPA need not import a symbol (from Σα) at every step.

Note that in the “maximal parallelism” operating mode, an unbounded number of
symbols from Σ can enter the skin membrane in one step since several rules of type
(3) in the definition of G may be applicable to an unbounded number of ab pairs in the
skin membrane. If the input symbols (i.e., from Σ) that enter the membrane in the step
are σ1, ..., σk (note that k is not fixed), then σi1 ...σik

is the string appended to x, where
i1, ..., ik is some nondeterministically chosen permutation of 1, ..., k. Actually, it can be
shown [9] that, in fact, we can assume without loss of generality that k ≤ 1 (i.e., at most
one symbol enters the membrane in each step). A string x = σ1...σn ∈ Σ∗ is accepted if
G has a halting computation after importing symbols σ1, ..., σn from the environment.
It follows from the result in [19] that every recursively enumerable language can be
accepted by a CPA under the maximal parallelism semantics, and vice-versa.

In the rest of the paper, CPAs are assumed to operate in sequential mode, unless oth-
erwise noted. It turns out that such a CPA is equivalent to a partially blind multicounter
machine (PBCM), which is a one-way nondeterministic finite automaton augmented
with blind counters [7]. At every step, each counter can be incremented/decremented
by 1 or not changed, but it cannot be tested for zero. When there is an attempt to decre-
ment a zero counter, the machine gets stuck and the computation is aborted. The ma-
chine does not have to read an input symbol at every step (i.e., it can have ε moves).
An input string w is accepted if, when the machine is started in a distinguished initial
state with all counters zero, it processes all the input symbols in w and eventually en-
ters an accepting state with all the counters zero. Note that if in a computation, a zero
counter gets stuck (because of an attempt to decrement it), the computation is aborted
and the input is not accepted. It is well known that if “testing for zero” is allowed (i.e.,
the counters are not partially blind), such a machine can accept every recursively enu-
merable language, even when there are only two counters [14]. However, PBCM’s are
strictly weaker than TM’s – its emptiness problem (Is the accepted language empty?)
and, hence, also the membership problem are decidable. This follows from the decid-
ability of the reachability problem for VAS [13].

Theorem 4. Language L is accepted by a CPA if and only if it can be accepted by a
PBCM.

In what follows, we let CPA(n) (resp., CPA(linear)) denote the class of languages
accepted by CPA in quasirealtime (resp., linear time), and PBCM(n) (resp.,
PBCM(linear)) denote the class of languages accepted by PBCM in quasirealtime
(resp., linear time). We also write COUNTER(n) to denote {L | L is accepted by a mul-
ticounter machine in quasirealtime}. The following theorem then follows from similar
results for PBCM [7].

Theorem 5. 1. CPA has a decidable emptiness problem.
2. CPA is a proper subset of the family of recursive languages.
3. CPA does not contain the language L = ({anbn | n ≥ 0})∗ and is not closed under

Kleene +.

On Sequential and 1-Deterministic P Systems 911

4. CPA(n) is not closed under Kleene +.
5. CPA(n) is not closed under complementation.
6. CPA(n) is a proper subset of COUNTER(n).
7. CPA(n) is a proper subset of CPA(linear).
8. CPA(linear) - COUNTER(n) is not empty.

Lemma 1. (from [7]) For every k, there is a language that can be accepted accepted
by a quasirealtime PBCM with (k + 1) counters but not by any quasirealtime PBCM
with k counters.

We can now show the following result:

Theorem 6. For every r, there is an s > r and a language L that can be accepted
by a quasirealtime CPA with s membranes but not by any quasirealtime CPA with r
membranes.

A cooperative P system acceptor with dissolution rules and bounded membrane
creation rules can be defined in the usual manner (as in a CPA). Clearly, a CPA is a
special case of a cooperative P system acceptor. Hence, a PBCM can be simulated by a
cooperative system. For the converse, the constructions in Theorems 1, 2, and 4 can be
implemented on a PBCM. Hence, Theorems 4, 5, and 6 hold when CPA is replaced by
PBCM. We have:

Corollary 1. The following are equivalent: CPA, PBCM, cooperative P system accep-
tor with dissolution and bounded membrane creation rules.

In Theorem 4, the model of the CPA G has a sequence of input symbols coming in
from the environment, and this sequence constitutes the (one-way) input to the PBCM.
Now suppose we modify the way the input is given to G. As before, let Σ = {a1, ..., ak}
and Σα = Σ∪{α}, where α is a distinguished symbol. At the start of the computation,
G is given a multiset wai1

1 ...aik

k in its input membrane, where w is some fixed multiset
from an alphabet Δ disjoint from Σα, and each ij ≥ 0, 1 ≤ j ≤ k. The environment
only contains an abundance of α. Initially, there are no symbols from Σ ∪Δ in the en-
vironment, and only symbols from this set that are exported to the environment (during
the computation) can be imported from the environment. Thus, the multiplicity of each
symbol in Σ ∪ Δ in the system (including the environment) remains the same during
the computation. We say that ai1

1 ...aik

k is accepted if G, when given wai1
1 ...aik

k in its
input membrane, halts. We denote the language accepted by L(G). We call the new
model NCPA. Like CPAs, the language accepted by an NCPA can also be accepted by
a PBCM. Hence, the following holds.

Theorem 7. We can effectively construct, given an NCPA G, a PBCM M accepting
L(G). Hence, the emptiness problem for NCPAs is decidable.

4 1-Deterministic P Systems with Prioritized Rules

Now let us look at P systems which allow rules to be prioritized, meaning that a rule of
lower priority can only be used when rules of higher priority are no longer applicable.

912 Oscar H. Ibarra et al.

Previously we showed that sequential cooperative P systems without priority rules are
equivalent to VASS and hence nonuniversal. Allowing priority rules increases the power
of these systems causing them to be universal. In fact, even cooperative P systems with
the restriction of 1-determinism with only one membrane are already universal. We
have the following result:

Theorem 8. A prioritized 1-deterministic 1-membrane cooperative system (COS) with
rules of the form u → v, where |u| = 2, and |v| = 1 or 2, can simulate a 2-counter
machine (hence, it is universal).

The above result applies to a 1-deterministic 1-membrane symport/antiport system
(SAS) [12, 16]. This system has rules of the following forms: (x, out; y, in) which is
an antiport rule, and (x, out) or (x, in) which is an symport rule, where x, y are strings
of symbols. The radius of an antiport rule is (|x|, |y|). For a symport rule, the radius is
|x|.
Corollary 2. A prioritized 1-deterministic 1-membrane symport/antiport system (SAS)
whose rules are antiport of radius (2,1) or (2,2) can simulate a 2-counter machine.

Looking at the class of communicating P systems, we find similar results. The class
of 1-deterministic 1-membrane CPS with priority rules can also simulate a 2-counter
machine using a technique similar to the proof of Theorem 8.

Theorem 9. A prioritized 1-deterministic 1-membrane CPS can simulate a 2-counter
machine.

The above theorem is in contrast to a result in [11] that a sequential multi-membrane
CPS whose rules are not prioritized is equivalent to a VAS.

Finally, consider the model of a sequential multi-membrane CS where the rules are
prioritized. Specifically, there is a priority relation on the rules: A catalytic rule R′ of
lower priority than R cannot be applied if R is applicable. We refer to this system as
prioritized CS. We know that the reachability set of a sequential multi-membrane CS
is semilinear and, hence, its reachability problem is NP-complete. In [10], the status of
the reachability problem for systems with prioritized rules was left open. Here we show
that the reachability problem is also NP-complete. Taking advantage of the equivalence
between sequential multi-membrane CS and communication-free VAS1 [10], we first
show the reachability problem for prioritized communication-free VAS (which will be
defined in detail below) to be NP-complete, which immediately yields the mentioned
complexity result for prioritized sequential multi-membrane CS. For related results con-
cerning other types of prioritized concurrent models, the reader is referred to, e.g., [20].

Given a communication-free VAS G = 〈x, W 〉, a priority relation ρ over W is an
irreflexive, asymmetric, and transitive relation such that v2 takes precedence over v1 if
(v1, v2) ∈ ρ, meaning that v1 cannot be applied if v2 is applicable. Due to the nature
of communication-freeness, we further assume ρ to satisfy a property that if v and v′

subtract from the same coordinate, neither (v, v′) nor (v′, v) is in ρ; otherwise, one of
the two could never be applied. Let ρ̄ denote {(v, v′)|(v, v′) �∈ ρ and (v′, v) �∈ ρ}. In
this paper, ρ̄ is assumed to be an equivalence relation.

1 A communication-free VAS is a VAS where in every transition, at most one component is
negative, and if negative, its value is -1

On Sequential and 1-Deterministic P Systems 913

Theorem 10. The reachability problem for prioritized communication-free VAS is NP-
complete.

We now have the following:

Corollary 3. The reachability problem for sequential multi-membrane catalytic sys-
tems with prioritized rules is NP-complete.

5 1-Deterministic Language Acceptors with Prioritized Rules

It is known that any recursively enumerable unary language L ⊆ o∗ can be accepted
by a (deterministic) 2-counter machine M with a one-way input tape which operates
as follows: M , starting in its start state with both counters zero, when given a string
on$, reads the input symbols left-to-right and halts if and only if on ∈ L. Note that
M need not read a new input symbol at every step. We may assume that after the right
delimiter is read by the counter machine, it can continue with the computation (without
attempting to read another symbol on the tape). The input is accepted if M eventually
halts. The input is not accepted if the machine does not halt.

The 2-counter machine can be normalized, with each instruction taking one of the
following forms: (1) δ(q, ε, positive, na) = (q′,−1, d); (2) δ(q, a, na, na) = (q′, 0, 0),
where a = o or $ (meaning that q is a reading state and the machine reads an input sym-
bol and changes state without altering the counter contents); (3) δ(p, ε, na, positive) =
(p′, d,−1); (4) δ(p, a, na, na) = (p′, 0, 0), where a = o or $; (5) δ(q, ε, zero, positive)
= (p, d,−1); (6) δ(p, ε, positive, zero) = (q,−1, d). Note that the state can also be
“tagged” whether they are in a reading mode or nonreading mode. Transitions of the
form 1, 3, 5, 6 are non-reading (indicated by ε in the second parameter) and are han-
dled as before. Transitions 2 and 4 are reading and are translated to cooperative rules
qa → q′ and pa → p′, respectively.

It follows that all the results in the previous section can be reformulated for P sys-
tems that are acceptors when the 2-counter machine is an acceptor. For example, Theo-
rem 9 can be written to read:

Corollary 4. Every recursively enumerable unary language L can be accepted by a
deterministic 1-membrane CPS with prioritized rules.

6 Conclusion

In this paper we investigated the computational power of different types of sequential
and 1-deterministic P systems. We showed that without prioritized rules, sequential P
systems are equivalent to VAS, even if they are allowed to have dissolution rules and
bounded creation rules. We also showed that these systems when used as language ac-
ceptors are equivalent to communicating P system acceptors which, in turn, are equiv-
alent to to partially blind counter machines. When the rules are prioritized, there are
two types of results: there are sequential P systems that are universal and sequential
P systems that are nonuniversal. In particular, both communicating and cooperative

914 Oscar H. Ibarra et al.

P systems are universal, even if restricted to 1-deterministic systems with one mem-
brane. However, catalytic P systems with prioritized rules have NP-complete reachabil-
ity problem and, hence, nonuniversal.

References

1. E. Csuhaj-Varju, O. Ibarra, and G. Vaszil. On the computational complexity of P automata.
Proc. DNA 10, 2004.

2. Z. Dang and O. Ibarra. On P systems operating in sequential mode. Pre-Proc. DCFS’04,
2004.

3. R. Freund, Sequential P-systems, Available at http://psystems.disco.unimib.it, 2000.
4. R. Freund, Asynchronous P systems, in Pre-Proc. Fifth Workshop on Membrane Computing,

eds. G. Mauri, Gh. Paun, and C. Zandron (2004).
5. R. Freund and Gh. Paun. On deterministic P systems. See P Systems Web Page at

http://psystems.disco.unimib.it, 2003.
6. P. Frisco. About P systems with symport/antiport. Second Brainstorming Week on Membrane

Computing, Sevilla, Spain, pp.224-236, Feb 2-7, 2004.
7. S. Greibach. Remarks on blind and partially blind one-way multicounter machines. Theor.

Comput. Sci. 7:311-324, 1978.
8. J. Hopcroft and J. J. Pansiot. On the reachability problem for 5-dimensional vector addition

systems. Theor. Comput. Sci., 8(2):135–159, 1979.
9. O. Ibarra. On the computational complexity of membrane systems. Theor. Comput. Sci.

320(1): 89-109, 2004.
10. O. Ibarra, Z. Dang, and O. Egecioglu. Catalytic P systems, semilinear sets, and vector addi-

tion systems. Theor. Comput. Sci., 11(1):167–181, 2004.
11. O. Ibarra, H. Yen, and Z. Dang. On the power of maximal parallelism in P systems. Proc.

DLT, (LNCS 3340), pp. 212-224, 2004.
12. C. Martin-Vide, A. Paun, and Gh. Paun. On the power of P systems with symport rules.

Journal of Universal Computer Science, 8(2):317–331, 2002.
13. E. Mayr. An algorithm for the general Petri net reachability problem, SIAM J. Computing,

13(3):441–460, 1984.
14. M. Minsky. Recursive unsolvability of Post’s problem of tag and other topics in the theory

of Turing machines. Ann. of Math, 74:437-455, 1961.
15. M. Mutyam and K. Kriithivasan. P systems with active objects: Universality and efficiency.

Proc. of the 3rd Int’l Conf. on Machines, Computations, and Universality, pp. 276-287, May
23-27, 2001.

16. A. Paun and Gh. Paun. The power of communication: P systems with symport/antiport, New
Generation Computing, 20(3):295–306, 2002.

17. Gh. Paun. Computing with membranes. Journal of Computer and System Sciences,
61(1):108–143, 2000.

18. Gh. Paun. Membrane Computing: An Introduction. Springer-Verlag, 2002.
19. P. Sosik. P systems versus register machines: Two universality proofs. In Pre-Proceedings

of Workshop on Membrane Computing (WMC-CdeA2002), Curtea de Arges, Romania, pp.
371–382, 2002.

20. H. Yen. Priority conflict-free Petri nets. Acta Informatica, 35(8):673-688, 1998.

Global Optimality Conditions
and Near-Perfect Optimization in Coding

Xiaofei Huang

School of Information Science and Technology
Tsinghua University, Beijing, P.R. China, 100084

huangxiaofei@ieee.org

Abstract. Finding ways of recognizing global optimum is the very fun-
damental, unsolved problem in existing optimization theories. We can
not establish a true theory of optimization without it. Also, it is very
hard to construct effective algorithms for finding global optimum. This
paper presented a new optimization principle, called cooperative opti-
mization, for solving this extremely important problem in optimization
theory. A number of global optimality conditions are provided in a gen-
eral form. The application of cooperative optimization in coding yields
near-perfect results in finding global optima, significantly better than the
most powerful optimization algorithm ever found so far.

1 Introduction

Optimization is a core problem both in mathematics and computer science [1].
However, there is no satisfying theory of global optimization up to now. The fun-
damental reason is the lack of a theory for recognizing global optimum. Without
it, it is very hard to construct effective algorithms for finding global optimum.
Except a few special cases, the existing theories can only identify local optimum.
Often times, an optimization problem instance may have only one global opti-
mum but many local optima and the number of them can be overwhelming. It
defies the effectiveness of any search strategies built upon those theories.

To solve this very fundamental problem, a new principle of global optimiza-
tion, called cooperative optimization, has been proposed [2] which is completely
different any existing one. Its theoretical foundation has been established [3].
Within it there are a number of sufficient conditions for recognizing global opti-
mum in a very general form [3]. Optimization algorithms of different computa-
tional powers are also derived based on this new principle [4]. A system based on
those algorithms has a unique equilibrium. It converges to the equilibrium with
an exponential rate regardless of initial conditions. In many important cases, it
guarantees to find the global optima for difficult optimization problems when
conventional methods often fail.

This paper presents the cooperative optimization principle in the language of
mathematics in a more general form. This generalization leads to more powerful
forms of cooperative optimization. The application of generalized cooperative
optimization algorithms in coding is also given in this paper. It demonstrated

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 915–924, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

916 Xiaofei Huang

an outstanding performance that significantly outperforms the most powerful
optimization algorithm ever found so far. Optimization plays a key important
role in coding. Coding is at the heart of data communications and data storage,
two corner stones of modern information age. Many technologies we use daily
have coding involved, such as music CDs, video DVDs, HDTVs, digital radios,
cellular phones, hard disks and memories in our computers, modems that connect
our computers to the Internet, and many more. A technology advance in coding
can have a huge commercial value and a profound impact on everyone’s life.

2 Global Optimization Problem

Many optimization problems can be formulated as finding the global minimum
of an objective function of a general aggregate form

min
x1,x2,...,xn

m∑
j=1

fj(Xj) where Xj ⊂ X ≡ {x1, x2, . . . , xn} . (1)

The objective function in (1) is denoted as E(x1, x2, . . . , xn) in this paper, or
simply E(x). It is also referred as the energy function or the cost function.
fi(Xi) in (1) is a real valued function defined on a subset of variables Xi. It is
also referred to as a constraint or a component function of E.

Variable xi in (1) can be is a discrete variable or a continuous variable. If all
variables are continuous and fj(Xj)s are nonlinear, the optimization problem (1)
is called nonlinear unconstrained optimization (Chapter 5 in [1]). If all variables
are discrete, the problem is called combinatorial optimization (Chapter 3 in [1]).

The classical optimality condition for unconstrained nonlinear optimization
problems is

4 E(x∗) = 0, where 4 is the gradient operator . (2)

This condition is at the basis of most classical algorithms, such as Armijo’s
line-search algorithm, gradient methods, conjugate gradient methods, Newton’s
method, Quasi-Newton methods, and derivative-free methods. Because this op-
timality condition is only a local optimality condition, those algorithms only
guarantee to find a local optimal solution, not necessarily the global optimal
one. Often times, to a problem instance, there is only one global optimum and
many local optima. The local optimality does not guarantee the global optimal-
ity. To make the situation worse, those conventional optimization methods even
do not know if the solutions they found are the global optimal ones or not.

When all variables are discrete, the problem in the form of (1) is a very
general combinatorial optimization problem. The satisfiability problem, which is
NP complete and a core problem in computer science, can be described in this
form. The famous traveling salesman problem, which is NP hard, can also be
formulated in this way.

To find global optimal solution of combinatorial optimization, there are ex-
act methods like branch-and-bound, branch-and-cut, and dynamic programming.

Global Optimality Conditions and Near-Perfect Optimization in Coding 917

Those methods are not efficient in producing solutions because they find solu-
tions through exhaustive enumeration in one way or another. As the size of the
instances increases, the computing time of these methods goes up quickly with
a rate exponential to the size. Because of the complexity, people often employ
heuristics. The popular ones are local search, swarm optimization, simulated
annealing, tabu search, genetic algorithms, and variable neighborhood search.
Those methods are based on empirical rules and have no guaranteed effective-
ness. They also do not know when to stop searching because there is no solution
for recognizing global optima.

3 A Simple Sufficient Optimality Condition

To find and recognize the global optimum of a complex objective function, we
can use another function, called profile function, to help us. A profile function
is simpler than the original one in terms of finding global optimum.

Proposition 1. Let E be an objective function and E
′
be another function de-

fined on the same set of variables as E. Assume that x∗(E) be the global minimum
of E. Assume further that x∗(E

′
) be the global minimum of E

′
and it is unique.

If
E

′
(x∗(E

′
)) = E(x∗(E)) , (3)

then x∗(E
′
) must be the global optimum of E, i.e., x∗(E

′
) = x∗(E).

In contrary to the classic necessary optimality condition (2), the optimality
condition (3) is sufficient. Hence, if we can find a profile function such that its
global optimum is unique and satisfies Eq. (3), then the global optimum of the
original objective function can be found by searching the global optimum of the
profile function.

However, there are still two remaining questions. First one is: what forms
can we choose for profile function E

′
such that the search for x∗(E

′
) (the global

minimum of the profile function) is not hard in computation? Second one is:
how do we know that x∗(E) = x∗(E

′
) without the knowledge about the optimal

value x∗(E) most of the time?
Cooperative optimization presented in this paper provides answers to these

two basic questions. It is a global optimization method solely based on the use
of profile functions to search and recognize optimal solutions.

4 Cooperative Optimization

Cooperative optimization deploys an iterative process which computes a profile
function at each iteration. Because the profile function E

′
is introduced by the

cooperative optimization, it is free in choosing its form as long as we can easily
find its global optimum. A simple form used originally in [2, 3] is

E
′
(x1, x2, . . . , xn) =

n∑
i=1

ci(xi) . (4)

918 Xiaofei Huang

ci(xi) is a function defined on xi. Any profile function in this form is called the
unary profile function because all its component functions are unary (defined on
one variable). Obviously, to find the global minimum of the above function is
very simple,

x∗
i (E

′
) = argmin

xi

ci(xi) for i = 1, 2, . . . , n .

The concept of profile function can help us to generalize the unary profile
function further into any profile function, containing k-ary component functions
(k ≥ 1). One special form of generalization for the profile function (4) is to break
ci(xi) into several pieces,

ci1(xi), ci2(xi), . . . , ciNi(xi) .

That is, ci(xi) =
∑Ni

j=1 cij(xi) . Following that, the generalized profile function
comes as

E
′
(x1, x2, . . . , xn) =

n∑
i=1

Ni∑
j=1

cij(xi) . (5)

Such a simple generalization can greatly improve the performance of coopera-
tive optimization. In the following discussions, all the equations and the theorems
are given only for the original profile function (4). They can be generalized for
the new profile function (5) in a straightforward way.

The cooperative optimization method computes a unary profile function at
each iteration. This unary profile function is a lower bound function of the orig-
inal objective function, guaranteed to be tightened after each iteration.

Cooperative optimization has a number of sufficient conditions for recogniz-
ing global optimum. Those conditions are all derived from the simple sufficient
optimality condition (3). All of them can be used to identify global optimal
solutions without the knowledge about the optimal value x∗(E).

What is the basic idea behind cooperative optimization? How does it compute
the profile function? We will introduce these in the following subsection using a
simple example.

4.1 Basic Ideas

We can use a multi-agent system to solve a hard problem following the divide-
and-conquer principle. We first break up the problem into a number of sub-
problems of manageable sizes and complexities. Following that, we assign each
sub-problem to an agent, and ask those agents to solve the sub-problems in a
cooperative way. The cooperation is achieved by asking each agent to compromise
its solution with the solutions of others instead of solving the sub-problems
independently. We can make an analogy with team playing, where the team
members work together to achieve the best for the team, but not necessarily the
best for each member. In many cases, cooperation of this kind can dramatically
improve the problem-solving capabilities of the agents as a team, even when each
agent may have very limited power.

Global Optimality Conditions and Near-Perfect Optimization in Coding 919

4.2 A Simple Example

Let the problem be the optimization of the following objective function

E(x1, x2, x3) = f12(x1, x2) + f23(x2, x3) + f13(x1, x3) , (6)

which is expressed as an aggregation of three binary component functions,
f12(x1, x2), f23(x2, x3), and f13(x1, x3). These functions are binary because each
defines on two variables.

To illustrate the decomposition of this problem into simple sub-problems,
we map the objective function (6) into a graph (shown in the upper portion
of Fig. 1). We can view each variable as a node in the graph and each binary
component function as a connection between two nodes. This graph has one
loop and we can decompose it into three sub-graphs of no loop shown in the
lower portion of Fig. 1, one for each variable (double circled). Each sub-graph is
associated with one objective function, Ei, i = 1, 2, 3. Those objective functions
are

E1(x1, x2, x3) = (f12(x1, x2) + f13(x1, x2))/2 .

E2(x1, x2, x3) = (f23(x2, x3) + f12(x1, x2))/2 ,

E3(x1, x2, x3) = (f13(x1, x3) + f23(x2, x3))/2 .

Obviously,
E = E1 + E2 + E3 .

With such a decomposition, the original problem, min E, becomes three sub-
problems, min Ei, for i = 1, 2, 3.

X1

f13 /2f12/2

X3X2

X1

f23 /2

f12 /2

X3X2

X1

f23 /2

f13 /2

X3X2

X1

f23

f12

X3X2

f13

Fig. 1. The illustration of decomposing a graph into sub-graphs of tree-like structures

For the ith sub-problem, the preferences for picking values for variable xi

are used as the soft decisions for solving the sub-problem. Those preferences are
measured by some real values and are described as a function of xi, denoted as
ci(xi). It is also called the assignment constraint for variable xi. The different

920 Xiaofei Huang

function values, ci(xi), stand for the different preferences in picking values for
variable xi. Because we are dealing with minimizing E, for the convenience of the
mathematical manipulation, we choose to use smaller function values, ci(xi)s,
for more preferable variable values.

To introduce cooperation in solving the sub-problems, we iteratively update
the assignment constraints (soft decisions in assigning variables) as

c
(k)
1 (x1) = min

x2,x3
(1− λk)E1 + λk

∑
j

(1/3)c(k−1)
j (xj) (7)

c
(k)
2 (x2) = min

x1,x3
(1− λk)E2 + λk

∑
j

(1/3)c(k−1)
j (xj) (8)

c
(k)
3 (x3) = min

x1,x2
(1− λk)E3 + λk

∑
j

(1/3)c(k−1)
j (xj) (9)

where k is the iteration step.
It turns out that c

(k)
1 (x1), c

(k)
2 (x3), and c

(k)
3 (x3) computed by the above

different equations defines a lower bound function of E, i.e.,

c
(k)
1 (x1) + c

(k)
2 (x2) + c

(k)
3 (x3) ≤ E(x1, x2, x3), for any k .

Let
E

(k)
− (x1, x2, x3) ≡ c

(k)
1 (x1) + c

(k)
2 (x2) + c

(k)
3 (x3) .

Assume that λk is fixed. Then it also turns out that the series {min E
(k)
− } is

monotonically non-decreasing, i.e.,

min E
(1)
− ≤ min E

(2)
− ≤ . . . ≤ min E

(k)
− .

Hence, E
(k)
− is the profile function E

′
computed by cooperative optimization at

iteration k. We use the notation E
(k)
− to denote that it is a lower bound based

profile function.
Assume that

lim
k→∞

min E
(k)
− = E∗ ,

then the global optimum is found.
Variable x1 is contained in the three sub-problems. At each iteration, x1 has

a value in the optimal solution for each of the sub-problems. Those values may
not be the same. If all of them are of the same value, we say that all the sub-
problems reach a consensus assignment for variable x1. If all sub-problems reach
a consensus assignment for each variable (x1, x2, and x3), we say that a consensus
solution is reached at the iteration. Consensus solution is an important concept
of cooperative optimization for defining global optimality conditions. Normally,
a consensus solution is the global optimum.

Parameter λk controls the level of the cooperation at iteration step k. It is so
called the cooperation strength, satisfying 0 ≤ λk < 1. A higher value for λk will
weigh the solutions of the other sub-problems cj(xj) more than the one of the

Global Optimality Conditions and Near-Perfect Optimization in Coding 921

current sub-problem Ei. In other words, the solution of each sub-problem will
compromise more with the solutions of other sub-problems. As a consequence,
the cooperation in optimizing the sub-problems is stronger. The system is more
likely to find a consensus solution in solving the sub-problems, i.e., finding the
global optimum.

The update functions, (7),(8), and (9), are a set of difference equations of
the assignment constraints ci(xi). Unlike conventional difference equations used
by probabilistic relaxation algorithms [5], and Hopfield Networks [6], this set of
difference equations always has one and only one equilibrium given λ. Some im-
portant properties of this cooperative optimization will be shown in the following
subsections.

4.3 Cooperative Optimization in a General Form

Let E(x1, x2, . . . , xn) be a multivariate cost function, or simply denoted as E(x),
where each variable xi has a finite domain Di of size mi (mi = |Di|). We break
the function into n sub-functions Ei (i = 1, 2, . . . , n), one for each variable, such
that Ei contains at least variable xi, the minimization of each sub-function Ei

(the sub-problem) is computational manageable in complexity, and

E(x) =
n∑

i=1

Ei(x). (10)

The cooperative optimization is defined by the following set of difference
equations:

c
(k)
i (xi) = min

xj∈Xi\xi

⎛⎝(1− λk)Ei + λk

∑
j

wijc
(k−1)
j (xj)

⎞⎠ . (11)

λk (k = 1, 2, . . .) and wij (1 ≤ i, j ≤ n) are parameters we need to choose. As
mentioned before, parameter λk controls the level of the cooperation at step k.
Stronger cooperation levels may lead to better solutions, but slower convergence
rates. Intuitively, we might choose wij such that it is non-zero if xj is contained
by Ei. That asks the optimization of Ei to take into consideration of the variable
assignment decision, c

(k−1)
j (xj), made by the optimization of Ej at a previous

step. However, theory tells us that this is too restrictive. To make the algorithm
work, we need to choose (wij)n×n to be a propagation matrix defined as follows:

Definition 1. A propagation matrix W = (wij)n×n is a irreducible, nonnega-
tive, real-valued square matrix and satisfies

n∑
i=1

wij = 1, for 1 ≤ j ≤ n .

922 Xiaofei Huang

Definition 2. The system is called reaching a consensus solution at step k if,
for any i and j where Ej contains xi,

argmin
xi

Ẽ
(k)
i = arg min

xi

Ẽ
(k)
j ,

where Ẽ
(k)
i is defined as Ẽ

(k)
i ≡ (1− λk) Ei + λk

∑
j wijc

(k−1)
j (xj) .

To simplify the notations in the following discussions, let c(k)≡(c(k)
1 , . . . , c

(k)
n).

Let x̃
(k)
i ≡ argminxi c

(k)
i (xi) , the favorable value for assigning variable xi. Let

x̃(k) ≡ (x̃(k)
1 , . . . , x̃

(k)
n). It is the candidate solution obtained at iteration k.

4.4 Global Optimality Conditions

To recognize global optimum, there are sufficient conditions and necessary condi-
tions. Sufficient conditions are used to identify if a solution is the global optimum
or not. Necessary conditions are used to determine if any variable value can be
in the global optimum. They allow us to eliminate variable values that can not
be in any global optimum. If only one value is left for each variable after the
value elimination, the global optimum is found which consists of the remaining
values. All these conditions are all referred to as global optimality conditions to
differentiate them in name from the classical local optimality conditions.

Theorem 1 (Sufficient Condition 1). If a consensus, x̃, is found at some
step with the choice of λ = 0, then the consensus is also a global optimum.

This sufficient condition is, therefore, a weak sufficient condition since the
possibility of finding a consensus without cooperation (λ = 0) is quite low in
dealing with complex problems.

Theorem 2 (Sufficient Condition 2). Given a propagation matrix W and
the general initial condition c(0) = 0 or λ1 = 0. If E

(k+1)
− ≤ E

(k)
− at some step

k, then a consensus solution found at that step is also a global optimum.

The above theorem provides us the second sufficient condition for recognizing
a global optimum. This sufficient condition does not restrict the choice of coop-
eration strength λ. The whole range of the cooperation strength can be explored
to increase the chance of finding a consensus solution.

The second sufficient condition is stronger than the first one. Given any
problem, if a global optimum can be found under the first sufficient condition,
it can also be found under the second sufficient condition. At the same time,
there exist some problem instances whose global optima can be found under
the second sufficient condition only. Intuitively, the possibility of finding the
consensus solution is much higher for the cooperative system with cooperation
(λ > 0) than the one without cooperation (λ = 0).

Global Optimality Conditions and Near-Perfect Optimization in Coding 923

Theorem 3 (Sufficient Condition 3). Given the propagation matrix W =
(1/n)n×n, and the general initial condition c(0) = 0 or λ1 = 0. If a consensus
x̃ is found at each iteration from step k1 to step k2 with λ having a fixed value,
and the second minimum value of the variable assignment constraint c(k2)(x̂i)
satisfies the following inequality:

c(k2)(x̂i) > λ(k2−k1)(E(x̃)− E
(k1)
−) + λE(x̃)/n + (1 − λ)Ei(x̃), (12)

for all i, then x̃ is a global optimum.

This sufficient condition does not restrict the choice of cooperation strength
λ. The whole range of the cooperation strength can be explored to increase the
chance of finding a consensus.

Theorem 4 (Necessary Condition). Given a propagation matrix W , and the
general initial condition c(0) = 0 or λ1 = 0. If value x∗

i (x∗
i ∈ Di) is in the global

optimum, then c
(k)
i (x∗

i), for any k ≥ 1, must satisfy the following inequality,

c
(k)
i (x∗

i) ≤ (E∗ − E
∗(k)
−) + c

(k)
i (x̃(k)

i) (13)

where E
∗(k)
− is, as defined before, a lower bound on E∗ obtained by the cooperative

system at step k.

In practice, we use an upper bound E+ instead of the optimal value E∗ in
(13) because the former is easier to obtain than the latter.

5 Application in Coding

Recently, people found that turbo codes [7] and LDPC codes [8] can approach the
Shannon limit for channel coding. They will be the key to the next generation of
communications. Both types of codes use the most powerful optimization algo-
rithm, called the sum-product algorithm [9], ever found so far for decoding. The
popular optimization methods, such as simulated annealing and generic algo-
rithms, have terrible performances in solving the combinatorial problems raised
from decoding. To the surprise of many mathematicians, we have little theoret-
ical understanding of its computational properties despite of its effectiveness.

Two LDPC codes are used in our experiments. The first one defines a com-
binatorial optimization problem with 32, 768 variables and 15, 961 component
functions. The data rate is 0.513. 500 instances are randomly generated. If all
global optima for these 500 instances are found, the error rate is zero. The sec-
ond one has 46, 656 variables and 31, 031 component functions. The data rate
is 0.335 and 100 instances are randomly generated. The performance compari-
son is shown in Figure 2. In decoding both codes, the cooperative optimization
algorithm has much less bit error rates (BER) than those of the sum-product
algorithm. As the signal/noise rate (Eb/No) in decibel increases, the BER rates
of the cooperative optimization algorithm quickly drop to zero, much faster than
those of the sum-product algorithm.

924 Xiaofei Huang

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

Eb/No (dB)

B
E

R

Code 1 Decoded by SP

Code 1 Decoded by CO

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
Eb/No (dB)

B
E

R

Code 2 Decoded by SP

Code 2 Decoded by CO

Fig. 2. Performance comparison of the sum-product algorithm (SP) and the coopera-
tive optimization algorithm (CO) in decoding two LPDC codes

6 Conclusions

Cooperative optimization defines a basic principle for global optimization. It
solved a fundamental problem in existing optimization theories by offering global
optimality conditions. Based on that principle, cooperative optimization algo-
rithms are constructed which can be more efficient and effective than conven-
tional ones. The cooperative optimization algorithms have many excellent com-
putational properties, most of them are not possessed by any classical ones.

References

1. Pardalos, P., Resende, M.: Handbook of Applied Optimization. Oxford University
Press, Inc. (2002)

2. Huang, X.: A polynomial-time algorithm for solving np-hard problems in practice.
SIGACT Newsletter 34 (2003) 101–108

3. Huang, X.: Cooperative optimization for solving large scale combinatorial prob-
lems. In: Theory and Algorithms for Cooperative Systems. Series on Computers
and Operations Research. World Scientific (2004) 117–156

4. Huang, X.: A general framework for constructing cooperative global optimization
algorithms. 4th International Conference on Frontiers in Global Optimization (2003)

5. Rosenfeld, A., Hummel, R., Zucker, S.: Scene labelling by relaxation operations.
IEEE Transactions on System, Man, and Cybernetics SMC-6 (1976) 420

6. Hopfield, J.: Neural networks and physical systems with emergent collective com-
putational abilities. Proceedings of the National Academy of Sciences 79 (1982)
2554–2558

7. Berrou, C., Glavieux, A., Thitimajshima, P.: Near shannon limit error-correcting
coding and decoding: turbo codes. In: Proceedings of the 1993 IEEE International
Conference on Communication. (1993) 1064–1070

8. Gallager, R.G.: Low-Density Parity-Check Codes. PhD thesis, Department of Elec-
trical Engineering, M.I.T., Cambridge, Mass. (1963)

9. Kschischang, F.R., Frey, B.J., andrea Loeliger, H.: Factor graphs and the sum-
product algorithm. IEEE Transactions on Information Theory 47 (2001) 498–519

Angel, Devil, and King�

Martin Kutz1,�� and Attila Pór2

1 Max-Planck-Institut für Informatik, Saarbrücken, Germany
mkutz@mpi-sb.mpg.de

2 CASE Western Reserve University, Cleveland, USA
apor@renyi.hu

Abstract. The Angel-Devil game is played on an infinite chess board.
In each turn the Angel jumps from his current position to a square at
distance at most k. He tries to escape his opponent, the Devil, who blocks
one square in each move. It is an open question whether an Angel of
some power k can escape forever. We consider Kings, who are Angels
that can only walk, not jump. Introducing a general notion of speed
for such modified pieces, we obtain an improvement on the current best
Devil strategy. Our result, based on a recursive construction of dynamic
fractal barriers, allows the Devil to encircle Kings of any speed below 2.

1 Introduction

Two players, the Angel and the Devil, play a game on an infinite chess board
whose squares be indexed by pairs of integers. The Angel is an actual “person”
moving across the board like some chess piece, while his opponent does not live
on the board but only manipulates it. In each move, the Devil blocks an arbitrary
square of the board such that this location may no longer be stepped upon by the
Angel. The Angel in turn, flies in each move from his current position (x, y) ∈ Z2

to some unblocked square at distance at most k for some fixed integer k, i.e., to
some position (x′, y′) �= (x, y) with |x′−x|, |y′−y| ≤ k. Note that Devil moves are
not restricted to the Angel’s proximity or limited by any other distance bounds;
he can pick squares at completely arbitrary locations.

The Devil wins if he can stop the Angel, that is, if he manages to get him in
a position with all squares in the (2k + 1)× (2k + 1) area around him blocked.
The Angel wins if he succeeds to fly on forever. The open question is, whether
for some sufficiently large integer k the Angel with distance bound k, called the
k-Angel, can win this game.

First variants of this game were discussed by Martin Gardner [7], who names
D. Silverman and R. Epstein as original inventors. Though his article deals
mainly with finite configurations, i.e., the question whether a chess king (which
is simply a 1-Angel) can reach the boundary of a given rectangular board, he
also asks for a strategy against a chess knight on an infinite board. In its present
� This work was previously published as part of the first author’s PhD thesis [9]

�� Supported by the Deutsche Forschungsgemeinschaft within the European graduate
program “Combinatorics, Geometry, and Computation” (GRK 588/2)

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 925–934, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

926 Martin Kutz and Attila Pór

form the Angel game first appeared in Berlekamp, Conway, and Guy’s classic [2]
(Chapter 19). Amongst detailed analyses of games with kings and other chess
pieces on finite boards against Devils with certain additional restrictions, the
authors coin the names “Angel” and “Devil” and give a thorough proof that the
chess king can be caught. Then Conway [4] focused entirely on the infinite Angel
game, trying to explain possible pitfalls with certain natural escape attempts
and pointing out the hardness of the problem. Besides all variants, the central
open question remains whether some Angel of sufficient power can escape forever.
In his overview article [5], Demaine cites it as a difficult unsolved problem of
combinatorial game theory.

In this work, we present an improvement on the current best known Devil
strategy. Therefore we introduce a reformulation of the original game, which
allows us to focus on speed as the important parameter. We define a k-King to be
a k-Angel who cannot fly but runs; that is, a k-King is allowed to make k ordinary
chess-king steps per turn, where each single step has to use an unblocked square.
We shall see that Kings and Angels are asymptotically equivalent (if some Angel
can escape then also some King can, and vice versa) and that the concept of
k-Kings naturally extends to fractional and even irrational speed (Definition 1).
Our main result is the following:

Theorem 1. The Devil can catch any α-King with α < 2.

Many proof details, which have to be omitted here due to space constrains,
can be found in the first author’s thesis [9].

2 Basic Facts and Previous Results

The only case for which the k-Angel problem is solved is k = 1, the ordinary
chess king. We like to sketch a winning strategy for the Devil, which resembles
the analysis in [2]. These key ideas form the starting point for our proof of
Theorem 1.

Assume the Devil wants to prevent the king from crossing a certain horizontal
line. With three squares above the king already blocked on that line, like in the
left of Figure 1, this is easily achieved. The Devil simply answers a king move
a to the right with an extension of that triple block by a play at u. A further
move to b is countered by v and likewise, a left movement to a′ is blocked at
u′. Pushing along in this simple fashion ensures that the king cannot cross. It is
not difficult to get the three initial blocks placed on a blank line when a king is
just approaching. By inspection of cases, one can show that five approach moves
suffice for the Devil to create the basic triple.

The right of Figure 1 indicates how to turn the pushing argument into a Devil
win. With his first moves, the Devil blocks a finite number of squares in the four
corners of an imaginary box around the king, which is chosen large enough to
ensure that during this preparatory phase the king does not get too close to
the boundary. After that, the Devil plays the above wall-pushing strategy along
the dotted lines whenever the king approaches the border. The solid corners are

Angel, Devil, and King 927

u

aa′

u′

b

v

Fig. 1. Pushing the chess king along a line (left) and catching him in a box (right)

there to ensure that the Devil is never forced to play on two fronts at the same
time.

The Fool argument. The first general idea for an escape with a k-Angel might be
to run away in one direction. With sufficiently high power k, should not the Angel
be simply too fast for the Devil? The answer is no. Conway [4] defines a k-Fool to
be a k-Angel who commits himself to strictly increasing his y-coordinate in every
move. He shows that a Fool of any power k can be caught. The Fool counter
already indicates that devising an escape strategy for some Angel might be a
very difficult task. By a dove-tailing argument the result can even be turned into
the following surprising fact [4].

Theorem 2 (“Blass-Conway diverting strategy”). There is a strategy for
the Devil with the following property. For each point p of the plane and each
distance d, no matter how the Angel moves, there will be two times t1 < t2 such
that at time t2 the Angel will be d units nearer to p than at time t1.

Angels in higher dimensions. For three dimensions, the Angel problem is solved.
Independently, the first author [9] and Bollobás and Leader [3] proved that in
Z3, and thus also in all higher dimensions, some Angel can escape.

Winning and losing infinite games. General infinite games may behave a little
peculiar in so far as a clear winner need not always exist. The axiom of choice
allows the construction of games in which neither player has a winning strat-
egy, even though the game does not allow for draws [8, Sec. 43]. However, it is
known [6, 10] that for reasonably well-behaved games this cannot happen: they
are determined. For the Angel-Devil game it is not hard to show this property
directly by a compactness argument, so we know that either the Angel or the
Devil must have a winning strategy.

A further useful observation is that in a sense, the game is infinite only from
the point of the Angel. If the Devil wins, the game ends, by definition, after
finitely many moves. An application of König’s lemma shows that in this case
the Angel cannot delay his defeat arbitrarily.

Lemma 1. If the Devil has a winning strategy against some Angel, then there
exists a bound N such that the Devil can stop that Angel in at most N moves.
Conversely, if the Angel can survive for any arbitrarily large, previously given
number of steps then he can escape forever.

928 Martin Kutz and Attila Pór

3 The Need for Speed

There is pretty little known about even very weak Angels. Already the destiny of
the 2-Angel is not settled and even more, it is unknown whether a chess knight
can be caught. We do not have a solution for the 2-Angel, either, but we make a
first step in this direction by devising Devil strategies against opponents whose
power lies somewhere between that of a 1-Angel and a 2-Angel. The improvement
appears rather modest but the new concepts we need to introduce in order to
obtain them or even state them, reveal details of the game that seem to lie
hidden with Conway’s original Angel.

Let us take a closer look at what happens when we upgrade the original
chess king to a 2-Angel. This is already a large step; the improvement is actually
two-fold. Not only does the 2-Angel move at twice the speed, any barriers must
also be twice as thick to hold him back. In a sense, the 2-Angel can be said to
be 4 times stronger than the 1-Angel. We focus on the first aspect: speed. The
Angel’s ability to jump over obstacles shall be suppressed as an undesired side
effect. Define a k-King as a player who in each turn makes exactly k ordinary
chess-king moves, while the Devil still gets to place one block per turn. The point
is that every single chess-king move must be valid. The k-King cannot fly.

If we want to use Kings for the study of the Angel problem, they should, in
some qualitative sense at least, be equivalent to Angels. Obviously, a k-Angel is
stronger than a k-King: An escape strategy for a King can be used for an Angel
of the same power as well. The converse is, of course, not true—not for trivial
reasons at least—but we can show that if you can catch Kings of arbitrary power
k then you can also catch any Angel. Of course, the reduction from Angels to
Kings requires an increase in speed.

Proposition 1. If the k-Angel can escape then so can the 99k2-King.

Proof (sketch). We derive an escape strategy for the 99k2-King from an escape
strategy for the k-Angel. While the King plays against the “real” Devil, we set up
an additional, imaginary board with an imaginary k-Angel, where we simulate
the action on the King’s board through appropriate transformations. The King’s
board is partitioned into a regular grid of sidelength-18k2 boxes. Likewise, the
Angel’s board is segmented into blocks of sidelength k. The boxes of the two
worlds are in one-to-one correspondence with each other, in the obvious fashion:
the starting points lie in corresponding boxes and further, all adjacencies are
preserved. These partitions and the correspondences are fixed once and for all.

We play as follows. When the Devil blocks some square in the King’s world,
we cross out an arbitrary empty square from the corresponding box in the Angel’s
world or from one of the eight adjacent boxes there. When it is the King’s
turn, we use our escape strategy for the Angel to get a move in the imaginary
world. This move is then translated into the King’s plane by a movement of
the King into the corresponding box there. If, for example, the Angel jumps
from his current box into the next box to the north, then the King runs into the
northern box in his world, too. The precise position within that box is completely
independent of the Angel’s position in his box, however. It depends on technical

Angel, Devil, and King 929

details which we must skip here for brevity. They have to guarantee that the
King only stops at locations from where the four lines into the four axis parallel
directions within the current box are completely free. This invariant then ensures
a free passage for the King into the next target box, which takes no more than
99k2 steps. ��

We emphasize again that the quantitative proportion of the above reduction
is not our main concern. The purpose of Proposition 1 is to establish the quali-
tative equivalence between Angels and Kings, as a legitimation to use Kings as
a tool to attack the Angel problem.

4 Real Kings

For Theorem 1 to make sense at all, we need to define what Kings of fractional
speed shall be. So what is a 3/2-King? On average he should get to make three
King steps for 2 Devil steps, which we could realize by a move sequence like
KKKDDKKKDD. . . , which shall mean that the King makes 3 steps, then
the Devil blocks 2 squares, and so on. However, such a concept would depend
on the actual representation of a rational number. The 6/4-King would get a
different sequence. We could get around this by demanding reduced fractions but
then a 1001/8-King would behave completely different from a 1000/8-King, who
should simply be the 125-King. What is worse, the grouping of Devil moves could
be lethal for the King. For example, the eight consecutive Devil moves in the
sequence K1001D8K1001D8 . . . could be used to encircle the King completely,
even though his average speed would be greater than 125.

What we want are move sequences that approximate a given speed α ∈ R+

as fair as possible, avoiding unnecessarily large chunks of moves for either side.
The sequence (un)n∈N defined by

un =
⌊
(n + 1)γ + φ

⌋
−
⌊
nγ + φ

⌋
∈ {0, 1} with γ =

α

α + 1
∈ (0, 1) (1)

and some constant offset φ ∈ R shows this behavior—if we interpret 1’s in the
sequence as King and 0’s as Devil moves. The basic behavior of such sturmian
sequences is easy to understand (see [1] for a broad treatment and for historic
references). Expression (1) simply compares consecutive elements of the arith-
metic progression (nγ + φ). Whenever there lies an integer between the nth and
the (n + 1)st element of (nγ + φ) we have un = 1, otherwise, when the two
elements fall in a common integer gap, (1) evaluates to un = 0. We conclude
that the frequency of 1’s in (un) is γ; hence the frequency of 0’s is 1− γ and we
get (cf. [1])

lim
n→∞

|{i ≤ n : ui = 1}|
|{i ≤ n : ui = 0}| =

γ

1− γ
= α.

Definition 1. For α ∈ R+ we define the α-King to be a King whose move
sequence is given by (1) with φ = 0. This means that in the nth time step the
King moves by one square if un = 1 and the Devil gets to block a new square if
un = 0.

930 Martin Kutz and Attila Pór

The choice of the offset φ looks arbitrary. For a natural definition it is desir-
able that the chances of the α-King in the game do not depend on this parameter.
And in fact, this can be shown.

Lemma 2. Any two Kings with move sequences generated by (1) with the same
speed parameter α but different φ’s either can both escape or can both be caught.

For integral α, the above definition of an α-King obviously coincides with
the previous definition of a k-King. For α = k ∈ N+, the defining sequence (1)
produces exactly k many 1’s between any two consecutive 0’s, just as expected.
It is also clear that our notion of an α-King fulfills our wish for fairness. Large
chunks of Devil moves cannot occur. One easily checks that for α ≥ 1 the Devil
never gets to block two squares at a time. On the other hand, we can guarantee
that not only in the long run but also locally, the Devil always gets his share of
moves.

Definition 2. A 0/1-sequence is (s, t)-bounded, s, t ∈ N+, if every contiguous
subword that contains strictly more than s occurrences of 1’s contains at least t
occurrences of 0’s. We call a King with a given move sequence (s, t)-bounded if
that sequence is (s, t)-bounded.

Lemma 3. An α-King, α ∈ R+, is (s, t)-bounded for every pair s, t ∈ N+ with
α ≤ s/t.

The “strictly” in the definition appears for a technical reason. Namely, start-
ing from any 1 in the sequence, we count 0’s until we reach the (s + 1)st 1. By
then we have passed at least t many 0’s. When we read on until the (2s + 1)st 1
shows up, we are sure to have counted at least 2t many 0’s. And so on. Before
the (rs + 1)st 1 appears, we are guaranteed to read at least rt many 0’s.

5 Low-Density Barriers

Let us have a closer look at the Devil strategy against the 1-King from the
beginning. It seems we wasted some potential there. After the preparation of
the corners, the Devil simply sits and waits for the King to arrive at one of the
four sides. We can exploit this potential advantage.

The basic idea for the King counter was our dynamic-wall argument, where
we had the King pushing along a line without ever letting him break through.
Against a 2-King the Devil would need some blocks already in place in order to
carry out the same principle. With every second square blocked in advance, the
King cannot break through. Starting from the initial position in Figure 2 with
only two additional squares blocked, the Devil can push along with the 2-King
by answering the double move a1, a2 at u, then b1, b2 at v, and so on.

How long would it take the Devil to prepare such a density-1/2 wall against
the 2-King? Since he needs to block 1 square out of 2, he can set up such a wall
at an absolute speed of 2, which is exactly the speed of the 2-King. In other
words, the Devil can build such fences against the 2-King at the same speed
the 2-King runs. However, for Theorem 1 this will not be enough, yet; we need
barriers of lower, fractional densities.

Angel, Devil, and King 931

a1 a2

u

b1

v

b2

Fig. 2. A wall against the 2-King

Definition 3. An infinite (s, t)-fence is an infinite horizontal or vertical strip in
the plane with some squares blocked such that when an (s, t)-bounded King enters
the strip from one side, the Devil can play in a way that prevents the King from
leaving it on the other side. Formally, such a fence is a map F : Z × [1 .. w] →
{0, 1}, where F−1(1) is the set of blocked squares. The integer w is called the
width of F .

We call such a fence periodic if there exists some integer λ such that F (x, y) =
F (x+λ, y) for all x ∈ Z. Call the minimum such λ the period of F . In this case
we also define the density of the fence, as the ratio

1
λ

∣∣{(x, y) | 1 ≤ x ≤ λ, 1 ≤ y ≤ w, F (x, y) = 1
}∣∣.

Note that density is measured with respect to length, not area. Width is not
the crucial quantity, it appears for merely technical reasons.

Lemma 4. Against an (s, t)-bounded King, 1 < s/t ≤ 2, there exists a periodic
infinite fence of density 1− t/s and width 10s + 1.

Proof (sketch). We follow the idea of Figure 2 for the 2-King. Define F : Z ×
[1 .. 10s + 1] → {0, 1} by letting F be everywhere zero except at those points
(x, y) with 0 ≤ x mod s < s − t and y = 5s + 1. In other words, we group the
central horizontal line y = 5s+1 into segments of s squares and place s−t blocks
in each segment, as shown in Figure 3. The density of this pattern is obviously
the claimed (s− t)/s. We omit the precise mechanism of the fence due to space
constraints. The width of 10s+1 is required to grant the Devil some preparatory
moves when the King enters the strip. ��

s − t t

S−1 S0 S1

Fig. 3. An infinite (s, t)-fence

It is important to note that our fences are dynamic, in the sense that the
Devil has to play in them while the King tries to break through. So the Devil
will not have time to play somewhere else while he defends such a barrier. On
the other hand, the density describes the construction cost which has to be

932 Martin Kutz and Attila Pór

spent before the King reaches the fence. So what the Devil wants are fences of
low density. Of course, he cannot build infinite structures in finite time. Infinite
fences serve as a mere theoretical concept, which is easier to handle than finite
fences, whose existence can be easily derived from the infinite ones.

Definition 4. A finite (s, t)-fence is a rectangular box of size �×w in the plane
with some squares blocked, such that when an (s, t)-bounded King enters through
one of the length-� sides he can only leave through that side again, and such that
all squares along the two length-w sides are blocked. Formally, such a fence is a
map F : [1 .. �]× [1 .. w]→ {0, 1}, where F−1(1) is the set of blocked squares. The
integers � and w are called the length and width of F , respectively. The density
of the fence is the ratio

1
�

∣∣{(x, y) | 1 ≤ x ≤ �, 1 ≤ y ≤ w, F (x, y) = 1
}∣∣.

The following transformation of an infinite fence into a finite fence is not very
difficult.

Lemma 5. If there exists a periodic infinite (s, t)-fence of density σ then there
exist finite (s, t)-fences of the same width w and of density no more than σ+2w/�
for any length � ≥ 1.

The 2w/� term comes from the solid walls to the sides, which are of mere
technical relevance. It can always be made arbitrarily small by working with
sufficiently long fences, only.

6 A Fractal Fence

Lemma 4 provides us with an infinite fence of density 1− t/s, which is strictly
smaller than 1/2 for any α-King with α < 2. However, this does not yet suffice to
catch any such King, yet. The trick is to assemble many such fences into a huge
new fence of slightly smaller density. Iterating this process we will eventually
produce fences of arbitrarily small density, which will be very cheap for the
Devil to build. The key tool is the following lemma.

Lemma 6. If there exist finite (s, t)-fences, s/t ≤ 2, of any length above some
value �0, all of the same width w and with density bounded by a common σ < 1/2,
then there also exists a periodic infinite (s, t)-fence with density below (s/t)σ2.

Proof (sketch). The basic idea is to assemble infinitely many identical vertical
finite density-σ fences to a wide horizontal fence L. (Requiring only fences longer
than a lower bound �0 is a technical necessity. Because of the solid side walls
of size 2w, very short fences can never have low densities.) As the length � of
those finite fences we simply pick any multiple of s larger than �0 and w, and
the gaps between the fences be m := %t�/sσ& ≥ � squares wide. The width of
the big infinite fence L be 7�. The left of Figure 4 shows how the vertical fences
are placed in the central �-strip of L. Dashed lines depict the open borders, solid

Angel, Devil, and King 933

�

3�

3�

m w

Fig. 4. Assembling many finite vertical fences into one big infinite horizontal fence
(left) and blocking a slot (right)

lines the solid side walls. The gray areas are the regions that require permanent
Devil play as soon as the King enters if a break though to the other side shall
be avoided.

The density of L is easily computed to lie below the required (s/t)σ2. Showing
that L is indeed an (s, t)-fence is the difficult part. We sketch the key ideas.
Assume that the King enters L from the south, so we have to keep him from
reaching the upper border. The plan is to build a horizontal fence of length m
between the upper ends of two vertical fences whenever the King runs north
between them, as indicated in the right of Figure 4. The shaded area there,
between two vertical fences and below the (potential) horizontal fence, we call a
slot. We say that the King is in standard position if he is located within a slot
whose upper border is already closed or if he sits between two such blocked slots,
perhaps within the vertical fence between them.

It is not difficult for the Devil to reach an initial standard position. The first
3� King steps give him enough time to close two or three adjacent slots above the
approaching King. The harder part is to keep forcing the King from standard
position to standard position as long as he remains in L.

So assume that the King is in standard position. When he enters one of the
three surrounding fences, the Devil follows the strategy of that respective fence
to make sure that the King does not break through. (Since those fences do not
overlap, the Devil is never forced to play in two fences simultaneously.) Hence,
the King cannot leave the current slot above line 3� without rebouncing from
the fences. If the King leaves the slot that way below, to the left, say, the Devil
starts constructing the horizontal fence across the slot to the left. This takes
no more than mσ = %t�/sσ&σ ≤ t�/s Devil moves. During this time the Devil
completely ignores the King’s play. In particular, he does not respond to the
possible King’s crossing of any fences, thus rendering them ineffective. The clue
is that this period of inactive fences is too short for the King to reach any upper
fence or the fence to the right of the old slot, and crossing the vertical fence to
the left is useless because soon the Devil has the horizontal fence in place there,
too. So after the construction, the King will be in standard position again. ��

The proof of Theorem 1 is now straight-forward. Pick positive integers s
and t with α ≤ s/t < 2, so that the α-King is (s, t)-bounded by Lemma 3. Then
Lemma 4 provides us with an infinite periodic (s, t)-fence of density σ < 1/2
and repeated application of Lemmas 5 and 6 yields fences of smaller and smaller

934 Martin Kutz and Attila Pór

densities, which converge to zero. In a game against the α-King, the Devil can
now arrange four such finite (s, t)-fences of very small density along the four sides
of a huge square around the King, who will not be able to reach the boundary
of that square before the fences are ready and thus will never be able to leave
that prison.

7 Outlook

The immediate open question is, of course, whether the 2-King can be caught—
perhaps with the techniques from this paper. This appears probable but observe
that we do not have a simple compactness argument by which we could conclude
such a statement directly from Theorem 1.

More generally, we hope that α-Kings allow for further small improvements
that might bring us gradually closer to new Angel results. On the other hand,
it is not unlikely that—in case some Angel is able to escape at all—King speed
2 is already the threshold between winning and losing.

References

1. P. Arnoux. In V. Berthé, S. Ferenczi, C. Mauduit, and A. Siegel, editors, Sub-
stitutions in Dynamics, Arithmetics and Combinatorics, volume 1794 of LNM,
chapter 6, pages 143–198. Springer, 2002.

2. Elwyn R. Berlekamp, Hohn H. Conway, and Richard K. Guy. Winning Ways for
your mathematical plays, volume 2: Games in Particular. Academic Press, 1982.

3. Béla Bollobás and Imre Leader. The Angel and the Devil in three dimensions.
Manuscript.

4. John H. Conway. The angel problem. In Richard Nowakowski, editor, Games of
No Chance, volume 29 of MSRI Publications, pages 3–12. 1996.

5. Eric D. Demaine. Playing games with algorithms: Algorithmic combinatorial game
theory. In Jǐŕı Sgall, Aleš Pultr, and Petr Kolman, editors, Proceedings of the 26th
Symposium on Mathematical Foundations in Computer Science, volume 2136 of
LNCS, pages 18–32, Mariánské Lázně, Czech Republic, 2001.

6. David Gale and Frank M. Steward. Infinite games with perfect information. In
H. W. Kuhn and A. W. Tucker, editors, Contributions to the Theory of Games II,
volume 28 of Annals of Mathematics Studies, pages 245–266. Princeton University
Press, 1953.

7. Martin Gardner. Mathematical games. Scientific American, 230(2):106–108, 1974.
8. Thomas Jech. Set Theory. Academic Press, 1978.
9. Martin Kutz. The Angel Problem, Positional Games, and Digraph Roots. PhD

thesis, Freie Universität Berlin, 2004.
http://www.diss.fu-berlin.de/2004/250/ indexe.html.

10. Donald A. Martin. Borel determinacy. Annals of Mathematics, 102(2):363–371,
1975.

Overlaps Help: Improved Bounds
for Group Testing with Interval Queries

Ferdinando Cicalese1,�, Peter Damaschke2,��,
Libertad Tansini2, and Sören Werth3

1 AG Genominformatik, Technische Fakultät, Universität Bielefeld, Germany
nando@cebitec.uni-bielefeld.de

2 School of Computer Science and Engineering, Chalmers University,
41296 Göteborg, Sweden

{ptr,libertad}@cs.chalmers.se
3 Mathematisches Seminar Bereich 2, University Kiel, 24118 Kiel, Germany

swe@numerik.uni-kiel.de

Abstract. Given a finite ordered set of items and an unknown distin-
guished subset P of up to p positive elements, identify the items in P
by asking the least number of queries of the type “does the subset Q in-
tersect P ?”, where Q is a subset of consecutive elements of {1, 2, . . . , n}.
This problem arises e.g. in computational biology, in a particular method
for determining splice sites. We consider time-efficient algorithms where
queries are arranged in a fixed number s of stages: in each stage, queries
are performed in parallel. In a recent paper we devised query-optimal
strategies in the special cases p = 1 or s = 2, subject to lower-order
terms. Exploiting new ideas we are now able to provide a much neater
argument that allows doubling the general lower bound for any p ≥ 2 and
s ≥ 3. Moreover, we provide new strategies that match this new bound
up to the constant of the main term. The new query scheme shows an
effective use of overlapping queries within a stage. Remarkably, this con-
trasts with the known results for s ≤ 2 where optimal strategies were
implemented by disjoint queries.

1 Introduction

Group testing is a basic paradigm in the theory of combinatorial search: The
positive members of a set of objects O are to be determined by asking as few
queries as possible of the form “does the subset Q ⊆ O contain at least one
positive object?”. The main idea is to test for positivity of entire groups as
opposed to individually searching for each positive - a main advantage being
that a negative answer to a query gives information that all items belonging to
it are negative, i.e., non-positive, and then they can be ignored in the following.
� Supported by the Sofja Kovalevskaja Award of the Alexander von Humboldt Foun-

dation
�� Supported by the Swedish Research Council (Vetenskapsr̊adet), project “Algorithms

for searching and inference in genetics”, grant no. 621-2002-4574

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 935–944, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

936 Ferdinando Cicalese et al.

Group testing methodologies have proved to be useful in a variety of situ-
ations such as quality control, multiple access communication, computational
molecular biology, data compression, and Data Streams algorithms among the
others (see [1, 3, 4, 6, 9, 10]).

Problem Statement. In this paper we consider the variant of group testing
arising when the search space is a linearly ordered set and the queries are con-
strained to be intervals of this set. This is Interval Group Testing. More precisely,
an instance of the problem is given by two non negative integers p and n and a
subset P ⊆ O = {1, 2, . . . , n}, such that |P | ≤ p. The set O is the search space
and P is the set of positive objects that have to be identified. Queries (tests) are
constrained to be intervals {i, i + 1, . . . , j − 1, j}, for some i, j ∈ {1, 2, . . . , n}.
The target is to identify P by using the minimum possible number of queries.
We assume that tests are arranged in stages: in each stage a certain number of
tests is performed non-adaptively, while tests of a given stage can be determined
depending on the outcomes of the tests in the previous stages. For each value
of the parameters n, p, s, we want to determine N (n, p, s), the worst-case mini-
mum number of tests that are necessary (and sufficient) to successfully identify
all positives in a search space of cardinality n, under the hypothesis that the
number of positives is at most p and s-stage algorithms are used.

Our Results. In this paper we shall concentrate on s-stage interval group test-
ing procedures - in particular for all s ≥ 3. We determine the asymptotic for
N(n, p, s) up to the exact evaluation of the constant of the main term. In partic-
ular, we prove a new lower bound on N (n, p, s) that doubles the constant of the
main term with respect to the previously published results. Moreover, we show
that such bound can be matched up to that constant. A remarkably new feature
of our strategies is the use of overlapping queries within a stage in an effective
manner. This partially explains the difficulties encountered in the attempt to
generalize to the case s ≥ 3 the techniques employed for the case s ≤ 2 where
optimal strategies are implementable with disjoint queries.

Motivations and Related Research. Interval Group Testing naturally arises
in the problem of determining exon-intron boundaries within a gene [7, 8]. In
a very simplified model, a gene is modeled as a collection of disjoint substrings
within a long string representing the DNA molecule. These substrings are called
exons, and the substrings separating them are called introns. Only the concate-
nation of exons codes for a protein whilst the biological role of introns is rather
unclear. Each boundary point linking an exon and an intron is called a splice
site. The determination of splice sites is often a critical point in searching for mu-
tations associated with a gene responsible for a disease, because only mutations
in exons are relevant.

A typical approach to the splice sites identification problem consists in com-
paring the original genomic DNA to the cDNA obtained in laboratory. cDNA is
a “purified” version of the genomic DNA, in which all introns have been removed
and the exons spliced together. In [8] a new experimental protocol is proposed
that searches for the exons boundaries in the cDNA using group testing. In fact,

Overlaps Help: Improved Bounds for Group Testing with Interval Queries 937

using standard experimental procedures (polymerase chain reaction, PCR) one
can select two positions in the cDNA string and determine whether they are at
the same distance as they were in the original genomic DNA string. If these dis-
tances do not coincide then at least one intron (and hence a splice site) must be
present in the genomic DNA between the two selected positions. The formulation
of splice sites identification as a group testing problem with interval queries is
explicitly stated in [5, 7, 8], where an additional constraint on the queries sizes
takes into account technological limitations of the PCR procedures.

The work [8] and the book [7] report about the experimental evaluation, on
real data, of the algorithm ExonPCR, that finds exon-intron boundaries within a
gene. The authors of [8] give also a simple asymptotic analysis of their Θ(log n)-
stage algorithm. In [2] the first rigorous algorithmic study of Interval Group
Testing was presented and for the case s ≤ 2 a precise evaluation of N (n, p, s)
was given.

2 Preliminaries: Basic Results

In [2] optimal 1-stage and 2-stage interval group testing algorithms were fully
characterized. Moreover, for the case p = 1, s-stage optimal algorithms were also
presented. For later reference in the following three facts we summarize the main
results of [2] on multistage interval group testing.

Proposition 1 (1-stage). [2] For all non-negative integers n, p, it holds that

N (n, p, 1) =
{
�(n + 1)/2� if p = 1,
n otherwise.

Fact 1 says that in 1-stage (non-adaptive) interval group testing the size of
the optimal strategy is linear in the size of the search space. This negative result
gives more motivation to the study of multistage algorithms.

Definition 1. For any integer s ≥ 2, an s-stage interval group testing algorithm
A consists of s successive 1-stage algorithms A1, . . . ,As, confining the positives
in a collection of smaller and smaller subintervals. The last stage returns subin-
tervals of size one since it determines the exact positions of the positives.

Let A = (A1, . . . ,As) be an s-stage interval group testing algorithm. For
j = 1, 2, . . . , s, we let S(Aj) be the collection of disjoint maximal intervals,
henceforth called segments, that each contain at least one positive element as a
result of the tests performed in the first j stages. We let S(A0) = {{1, ..., n}}.

For s-stage interval group testing algorithm for at most one positive we have
the following.

Proposition 2 (s-stage for 1 positive). [2] Fix an integer s ≥ 1. For all
integers n > 2s − 1, we have N (n, 1, s) = s

2n1/s + O(s).

938 Ferdinando Cicalese et al.

As opposed to the case of one positive, for multistage interval group testing
with p ≥ 2 no exact results are known. A natural strategy consisting in asking
disjoint queries in each stage turns out to be optimal for the particular case
s = 2. The resulting characterization is captured by the following.

Proposition 3 (2-stage for more positives). [2] For p = o(
√

n), the 2-
stage interval group testing problem for at most p positives needs N (n, p, 2) =
2
√

p− 1
√

n + O(p) queries, and they are also sufficient.

Unfortunately, the attempt to extend to the case s ≥ 3 the techniques em-
ployed in the proof of proposition 3 hasn’t been successful.

In [2] the following general result was given and closing the gap between the
lower and upper bounds was left as a major open problem.

Proposition 4 (s-stage for p ≥ 2 positives). [2] For all non-negative integers
n, s, p such that n ≥ 2s(p− 1), we have

ps

4
s
√

n/p ≤ N (n, p, s) ≤ s(p−1)(s−1)/s(n−(n mod (p−1)))1/s+s+p+(n mod (p−1))−2.

The upper bound is by a slight modification of the natural strategy consisting
in asking, in each stage j, in each segment in S(Aj−1), s

√
n/p disjoint queries

evenly distributed. In the last stage the algorithm simply searches exhaustively
the segments returned by the previous phase.

3 Lower Bound for Multistage Interval Group Testing

For ease of presentation, in the following two sections, we use simplifications. For
example, we shall neglect rounding. It will always be clear that these inaccuracies
do not affect the asymptotic results.
We identify every element with a unit interval, so that query intervals have
endpoints with integer coordinates.

A left (right) endpoint of a query interval is also called a left (right) bracket.
Let F be a family of q intervals queried in a single stage of an algorithm. We will
consider sets of identical endpoints of intervals from F as sequences of brackets
with infinitesimal distances, i.e. without elements in between. The ordering is
arbitrary but fixed. Therefore, we will assume that the q intervals in F have 2q
different endpoints (brackets).

A piece is an interval flanked by two endpoints of some intervals from F ,
without other such brackets in between. Hence, a family F of q interval queries
always partition the search space into exactly 2q + 1 pieces, either of positive
integer length or of infinitesimal length.

Our lower bound proof is based on an adversary strategy. Given an arbitrary
s-stage algorithm, our adversary behaves as follows. First of all, the search space
is split in p intervals of length n/p called segments. In every stage, one positive
element is placed in a longest piece in every segment. The adversary answers
consistently. To simplify the argument, the adversary also reveals the pieces that

Overlaps Help: Improved Bounds for Group Testing with Interval Queries 939

contain positives. (Giving additional information can only improve the searcher’s
situation.) In the next stage, the new segments are these pieces.

Note that the adversary’s answering strategy is well defined, since the exact
locations of positive elements within the pieces need not be fixed. We will derive
a lower bound on the total number of queries needed to reduce all p segments
to single elements, in this constrained (for the adversary) setting.

Theorem 1. Fix non negative integers n, p ≥ 2, s ≥ 3. Then, N (n, p, s) ≥
1
2ps(s

√
n/p− 1) queries.

Proof. Recall that our adversary places exactly on positive element in a longest
piece of the jth segment, and this segment becomes the jth segment in the next
stage, for j = 1, . . . , p. The searcher must reduce the size of the jth segment
from n/p to 1 in s stages.

Consider any fixed j. We analyze the necessary number b of brackets used in
the jth segment during all stages. First of all, we can assume that the brackets in
every stage split the current segment in pieces of equal size, since this minimizes
the size of the longest piece.

Let bi be the number of brackets used in stage i in the considered segment,
hence

∑s
i=1 bi = b. By the previous observation, the segment length is reduced

by factor
∏s

i=1(bi + 1) after s stages. For any fixed “budget” b of brackets, this
product is maximized if all bi are equal, due to an elementary fact. On the other
hand, this product has to be at least n/p. Together this implies b ≥ s(s

√
n/p−1).

Since the argument applies to every j, the total number of brackets is p times
as large. Finally note that every query interval has two brackets. ��

A more elaborated analysis might be able to remove the negative lower-order
term.

4 A New Strategy for Multistage Interval Group Testing

In this section we present a strategy for s-stage interval group testing that
matches the lower bound presented in the previous section, as s grows.

A remarkable feature of this new strategy is the use of overlapping queries
in an effective manner. From the analysis we present, it seems that overlapping
queries are necessary for the optimality, as s grows. This is quite surprising since
it apparently contrasts with the optimal results for the case s = 2 where optimal
strategies are implementable by disjoint queries. Still the fact that, asymptoti-
cally, optimality requires overlapping explains the difficulties encountered in to
attempt to extend straightforwardly the results of [2] to the case s ≥ 3.

The intuition behind our strategy can be outlined as follows. There is an
obvious strategy with disjoint and equally long query intervals in every stage,
that needs ps s

√
n/p queries. Now we extend the query intervals to both sides,

so that they overlap. This makes the pieces between these overlaps shorter,
and our hope is that the positives are in these non-overlapping pieces. The
difficult case is when two intersecting query intervals say yes. Then, there could

940 Ferdinando Cicalese et al.

be positives in the intersection, but also in both “wings”, i.e., in the neighbored
pieces. Altogether we have to explore an interval that is longer than in the
obvious strategy. However, if both wings actually contain positives, we will detect
at least one new positive. The crucial idea is now to start the search for more
positives on the wings with fewer (but longer) intervals, compared to the obvious
strategy. This saves queries, but incurs extra costs to every new positive (because
we have to find it within a longer start interval). However, we have these extra
costs only once for every positive, and then we continue normally. If we choose
the lengths accordingly, we still get an improvement upon the obvious strategy.
(One may imagine that the extra costs are evenly distributed to the s stages.)

After this sketch of the idea, we formally describe the two different query
schemes our strategy relies on.

Definition 2. Given an interval [a, b] of length � and numbers u and α, an α-
query scheme of unit u on [a, b] is a set of �

u(1+α) overlapping queries1 covering
[a, b] defined as follows. The first2 query is of length 1 + α. The next queries,
until the last but first, are of length (1 + 2α)u and they overlap the previous and
the next by αu. The last query is either of length (1 + α)u or of length αu and
it overlaps the previous query by αu.

Definition 3. Given an interval [a, b] of length � and numbers u and λ, a λ-
query scheme of unit u on [a, b] is a set of �

λu disjoint queries. More precisely,
for j = 1, . . . , �

λu , Query j covers the interval [a + (λu)(j − 1), (a − 1) + (λu)j]
(its length is λu).

Figure 4.1 contains an example of both query schemes.
For each i = 1, . . . , s we define the unit length of our query schemes for stage

i as the value ui := n

p
(

s
√

n/p
)i . In each stage our strategy makes use only of

questions organized in α-query schemes and λ-query schemes of unit ui.
Answers assign weights to queries and pieces according to the following

scheme: A query in an α-scheme gets weight 2 if it answers yes and the in-
tersecting queries answer no. Otherwise it gets weight 1. A query in a λ-scheme
has weight 2.

A piece π has weight w(π) equal to the sum of the queries it intersects.
Note that the only possible weights for a piece in S(Ai) will be 1 and 2. As

an example, consider the α-querying schemes of stage 1 in Figure 4.1. Suppose
only the queries answer yes. Thus, only the first three pieces on the left and one
on the very right are selected for the next stage. In particular, the first and the
third piece from the left (both of length u1) get weight 1. The second piece from
the left (of length αu1) gets weight 2, as well as the last piece on the right.

Our algorithm is presented in Figure 4.2. We show it parameterized on the
choice of the values α and λ.
1 Here we are neglecting rounding again. But this might imply at most an additive

factor of ps to the upper bound we shall prove.
2 We assume the queries numbered from left to right.

Overlaps Help: Improved Bounds for Group Testing with Interval Queries 941

ba

1. stage

2. stage

λ λ −queries−queries α −

u_1 u_1u_1α

queries
α−queries

Fig. 4.1. Stage 2 - α and λ-schemes

P0 = {[a, b]}, w([a, b]) = 2
Algorithm Ai, (i = 1, 2, . . . , s − 1)
If |S(Ai−1)| = p

For each segment σ ∈ S(Ai−1) in parallel
Run an optimal s − i + 1-stage algorithm for one positive on σ.

Otherwise
Let Pi be the collection of pieces in S(Ai−1)
for each piece π ∈ Pi

if w(π) = 1, ask queries in π according to λ-query scheme of unit
(

n
p

)1− i
s

Else ask queries in π according to α-query scheme of unit
(

n
p

)1− i
s

Algorithm As

If |S(Ai−1)| = p
For each segment σ ∈ S(Ai−1) in parallel

Run an optimal 1-stage algorithm for one positive on σ.
Otherwise

For each object x in the segments of S(Ai−1)
Ask the query {x}

Return the objects that answered yes

Fig. 4.2. The algorithm A

We have the following result.

Theorem 2. Fix non-negative integers n, s ≥ 3, p. Then, there exists α and λ
such that the s-stage interval group testing algorithm A = A1, . . . ,As finds a set
of ≤ p positives in a set of cardinality n using at most

ps

(
1
2

+
√

p− 1
sp

)
s

√
n

p
+ 2(p− 1)

√
sp

p− 1
s

√
n

p
+
(

2 +
√

sp− 2
√

p− 1
√

sp + 2
√

p− 1

)
s

√
n

p

queries.

Proof. Let us first assume that in each stage j = 1, 2, . . . , s−1, we have |S(Aj | ≤
p− 1. Therefore the algorithm will never make use of the optimal procedure for
interval group testing with one positive. We shall later show that, conversely,
when this happens the algorithm can only save questions, so preserving our
bound.

Recall that S(A0) = {{1, 2, . . . , n}}. For j = 1, 2, . . . , s, each segment in
S(Aj) is of one of the following types:

942 Ferdinando Cicalese et al.

1. Segments consisting of a single piece of length uj . These are the ones pro-
duced by a query in an α-scheme that answers yes whilst all the queries it
intersects answer no.

2. Segments consisting of a sequence of pieces of alternating lengths uj and
αuj , starting and ending with pieces of length uj. These are the segments
produced when 2 or more contiguous queries in an α-scheme answer yes.

3. Segments consisting of a single piece of length λuj . This type of segments is
produced when a query in a λ-scheme answers yes. We denote the number
of the segments of this type in S(Aj) by lj .

We assume that the only segment in S(A0) is of type 1.
Let q be the number of queries used in a run of the algorithm. Let Q be the

set of such queries. Assume that the positives are labeled from 1 to p. For each
j = 1, 2, . . . , s and for each k = 1, 2, . . . , p, let Qjk be the set of questions among
the above q that in stage j were used3 to acquire information about the position
of the k-th positive. Let qjk = |Qjk|.

Since, in general a question can give information about more than one posi-

tive, we immediately have q = |Q| = |
p⋃

k=1

s⋃
j=1

Qjk| ≤
p∑

k=1

s∑
j=1

qjk.

We have the following claims:

Claim 1. For each j = 0, 2, . . . , s − 1 k = 1, 2, . . . , p and i = 1, 2, 3, let δ
[i]
jk be 1

if in S(Aj) the kth positive is in a piece of a segment of type i. Otherwise, let
δ
[i]
jk = 0. Then, for j = 1, 2, . . . , s− 1, and k = 1, 2, . . . , p,

qjk ≤
(

δ
[1]
j−1k

1
1 + α

+ δ
[2]
j−1k

(
α

1 + α
+

2
λ

)
+ δ

[3]
j−1k

λ

1 + α

)
s

√
n

p

and qsk ≤
(
δ
[1]
s−1k + δ

[2]
s−1k (α + 2) + δ

[3]
s−1kλ

)
s

√
n

p
.

This follows from the rules employed by the algorithm. We shall now clarify the
computation of the coefficients of the δ

[i]
jk’s. The coefficient of δ

[1]
jk is the number

of questions performed to apply an α-query scheme to pieces of segments of
type 1. In S(Aj−1) segments of type 1 consist of one piece of size uj−1. The
algorithm applies in such a segment an α-query scheme of unit uj. Thus, an
easy computation shows that the algorithm performs in this case 1

1+α
s
√

n/p

queries. The coefficient of the δ
[3]
jk can be similarly obtained. For computing the

coefficient of δ
[2]
jk , we observe that a positive in a segment of type 2 can (in the

worst case) produce queries in one of the pieces of length αuj−1 and in the two
surrounding pieces of length uj−1

4. This is the case when the positive is in the
intersection of two queries of an α-scheme.
3 Of course this is an a posteriori assignment of questions to positives that we do for

the analysis.
4 Note also that this association of pieces to positives is enough to cover all pieces, of

a segment of type 2, where new queries will be asked.

Overlaps Help: Improved Bounds for Group Testing with Interval Queries 943

Finally, to obtain the bound on qsk, it is sufficient to consider that in the last
stage the algorithm searches exhaustively the segment in S(As−1) that tested
positively because of the k-th positive. The coefficients of the δ’s are just the
sizes of the three types of pieces possibly returned by the s− 1-th stage.

Claim 2. We have that
∑s−1

j=1 lj ≤ 2(p− 1).
Recall that lj counts the number of segments of type 3. These are generated by
yes answers to queries in a λ-scheme. A λ-scheme always follows an α-scheme
where two intersecting queries have answered yes. A moment’s reflection shows
that a yes answer to a query in a λ-scheme indicates that the yes-queries in the
preceding α-scheme had split the set of positives into at least two parts. Note
that for a set of p positives there can be at most p− 1 steps in which the set is
divided in an α-scheme and the two parts of these partitions are identified with
the next λ-schemes. Hence, we have the desired bound.

Claim 3. For each i = 1, 2, 3, let Q[i]
jk be the subset of Qjk whose query are asked

in a piece of a segment of type i. We have that |
⋃p

k=1

⋃s
j=1Q

[3]
jk | =

∑s−1
j=1 lj.

Putting together the above claims we have:

q = |Q| = |
p⋃

k=1

s⋃
j=1

Qjk| =

∣∣∣∣∣
p⋃

k=1

s⋃
j=1

3⋃
i=1

Q[i]
jk

∣∣∣∣∣
≤
(

p∑
k=1

s−2∑
j=0

(
δ
[1]
jk

1

1+α
+δ

[2]
jk

(
α

1+α
+

2

λ

))
+
(
δ
[1]
s−1k + δ

[2]
s−1k (α+2)

)
+

s−1∑
j=1

ljλ

)
s

√
n

p

≤
(

p∑
k=1

s−2∑
j=0

(
δ
[1]
jk

1

1+α
+δ

[2]
jk

(
α

1+α
+

2

λ

))
+
(
δ
[1]
s−1k+δ

[2]
s−1k (α+2)

)
+2(p − 1)λ

)
s

√
n

p

≤
(

p∑
k=1

s−2∑
j=0

(
δ
[1]
jk

1

1+α
+δ

[2]
jk

(
α

1+α
+

2

λ

)
+

2(p − 1)

p

λ

s

)
+
(

δ
[1]
s−1k+δ

[2]
s−1k (α+2)

))
s

√
n

p
.

The values of the parameters α and λ that minimize the last expression for
all possible choices of the variables δ

[i]
jk, are given by

λ =
√

sp

(p− 1)
and α =

λ− 2
λ + 2

.

which gives the desired result for s ≥ 4.
Notice that, in fact, for s = 3, p ≥ 4 the above value for λ would imply that

α ≤ 0. As a matter of fact, when s = 3, we have a stronger version of Claim
2 which leads to a bound even slightly better. Due to the space constraints we
shall omit the proof of this case in this extended abstract.

944 Ferdinando Cicalese et al.

References

1. G. Cormode, S. Muthukrishnan, What’s hot and what’s not: Tracking most frequent
items dynamically, in: ACM Principles of Database Systems, 2003

2. F. Cicalese, P. Damaschke, U. Vaccaro, Optimal group testing strategies with in-
terval queries and their application to splice site detection, to appear in Proc. of
the 2005 Int. Workshop on Bioinformatics Research and Applic. (IWBRA), 2005.
Journal version to appear in Int. Journal of Bioinformatics Research and Applica-
tions.

3. D.Z. Du and F.K. Hwang, Combinatorial Group Testing and its Applications,
World Scientific, Singapore, 2000.

4. M. Farach, S. Kannan, E.H. Knill, S. Muthukrishnan, Group testing with sequences
in experimental molecular biology, in: Proc. of Compression and Complexity of
Sequences 1997, B. Carpentieri, A. De Santis, U. Vaccaro, J. Storer (Eds.), IEEE
CS Press, pp. 357-367, 1997.

5. R. Karp, ISIT’98 Plenary Lecture Report: Variations on the theme of ‘Twenty
Questions’, IEEE Information Theory Society Newsletter, vol. 49, No.1, March
1999.

6. E. H. Hong and R.E. Ladner, Group testing for image compression, IEEE Trans-
actions on Image Processing, 11(8), pp. 901-911, 2002.

7. P.A. Pevzner, Computational Molecular Biology, An Algorithmic Approach, MIT
Press, 2000.

8. G. Xu, S.H. Sze, C.P. Liu, P.A. Pevzner, N. Arnheim, Gene hunting without se-
quencing genomic clones: Finding exon boundaries in cDNAs, Genomics, 47, pp.
171-179, 1998.

9. Hung Q. Ngo and Ding-Zhu Du, A survey on combinatorial group testing algorithms
with applications to DNA library screening, in: Discrete Mathematical Problems
with Medical Applications, DIMACS Ser. Discrete Math. Theoret. Comput. Sci.,
55, Amer. Math. Soc., pp. 171-182, 2000.

10. J. Wolf, Born again group testing: Multiaccess communications, IEEE Trans. In-
formation Theory, IT-31, pp. 185-191, 1985.

New Efficient Simple Authenticated
Key Agreement Protocol

Eun-Jun Yoon and Kee-Young Yoo�

Department of Computer Engineering, Kyungpook National University
Daegu 702-701, Republic of Korea

ejyoon@infosec.knu.ac.kr, yook@knu.ac.kr

Abstract. Recently, Kim et al. proposed an improvement to the Simple
Authenticated Key Agreement (SAKA) protocol that has the same sta-
bility as the existing methods, and that has a much efficient processing
performance. However, this improved scheme is still susceptible to off-
line password guessing attacks and the integrity violence of a session key
from illegal modification. The current paper demonstrates the vulnera-
bility of Kim et al.’s scheme to off-line password guessing attacks and
the integrity violence of the session key from illegal modification, and
then presents an improved protocol based on the elliptic curve discrete
logarithm problem (ECDLP) to resolve such problems. As a result, the
proposed protocol resists off-line password guessing attacks and modifi-
cation attack, while also providing more security and efficiency.

Keyword: Authenticated key agreement, Password guessing attack,
Modification attack, Elliptic curve discrete logarithm problem

1 Introduction

The Dffie-Hellman key agreement scheme [1] was proposed as a solution to pro-
duce a common session key between two parties, and it is seen as an epochal
breakthrough that can produce a common session key without any prior com-
mon information. However, this method has a weakness of possible man-in-the
middle attacks [2].

There have been several methods to solve this problem, such as key exchange
protocol using certificates [3] and the authenticated key exchange protocol in
which two parties share a secret password (pre-shared password) beforehand
[4, 5]. The former has a weakness in that it needs a trusted third certification
party. In such a system, if the number of users is increased, larger storage for
saving the user’s certification and higher network bandwidth due to the veri-
fication of digital signature are needed. Therefore, it is difficult to extend the
system including the key exchange protocol. In addition, there is a weak point
in that this system undergoes negative influences if any point of certification
processes, and two communication parties share a secret password (pre-shared

� Corresponding author: Tel.: +82-53-950-5553; Fax: +82-53-957-4846

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 945–954, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

946 Eun-Jun Yoon and Kee-Young Yoo

password) before initiation. Thus, the safety of the system depends on each user,
not on a third certification party. Recently, Seo and Sweeney proposed a new
key agreement protocol based on the Diffie-Hellman protocol called the simple
authenticated key agreement algorithm (SAKA). In the SAKA protocol, two
parties have a pre-shared password for data communication, produce a session
key by exchanging messages, and confirm each other. Because of the advantages
that can simplify key agreement, SAKA-like protocols are widely used in re-
search on key agreement, and therefore there are numerous articles [5–14] to
continuously enhance SAKA-like protocols.

In 2004, Kim et al. [14] also proposed an improvement to the SAKA pro-
tocol that has the same stability as the existing methods, but that possesses a
much more efficient processing performance. However, this improved scheme is
still susceptible to the off-line password guessing attacks and the integrity vio-
lence of the session key from illegal modification. Accordingly, the current paper
demonstrates the vulnerability of Kim et al.’s scheme to off-line password guess-
ing attacks and the integrity violence of the session key from illegal modification,
and then presents a more efficient and simple key agreement protocol (ESAKA)
based on the elliptic curve discrete logarithm problem (ECDLP) to resolve such
problems. The Elliptic Curve Cryptosystem (ECC) presents an attractive alter-
native cryptosystem because its security is based on the elliptic curve discrete
logarithm problem (ECDLP). ECC operates over a group of points on an elliptic
curve and offers a level of security comparable to classical cryptosystems that
use much larger key sizes. As a result, the proposed ESAKA protocol resists
off-line password guessing attacks and the integrity violence of the session key
from illegal modification, while also providing more security and efficiency.

The remainder of this paper is organized as follows: Section 2 briefly re-
views their protocol and demonstrates an off-line password guessing attacks and
modification attack on Kim et al.’s protocol. The proposed ESAKA protocol is
presented in Section 3, while Section 4 discusses the security and efficiency of
the proposed protocol. Final conclusions are given in Section 5.

2 Cryptanalysis of Kim et al.’s Protocol

This section briefly reviews Kim et al.’s SAKA protocol [14] and then shows
the security flaws of their protocol. Notations used in Kim et al.’s protocol and
proposed protocol are defined as follows:

• A, B: two communicating parties;
• C: an attacker;
• idA, idB: the identities of A and B;
• n: a large prime number;
• g: a generator ∈ Z∗

n with the order n− 1;
• P : the common password shared between A and B;
• Q: an integer computed from P ;
• Q−1: the inverse of Q (modn− 1);

New Efficient Simple Authenticated Key Agreement Protocol 947

• E(GFq): an additive group of points on an elliptic curve E over a finite field
GF (q);

• G: the generating element(point) of E(GFq) under consideration, GF (q);
• P ∗: an elliptic curve point ∈ E(GFq) computed from P ;
• a: a secret random integer chosen by A;
• b: a secret random integer chosen by B;
• H(·): a secure one-way hash function, where H : {0, 1}∗ → {0, 1}k, e.g. H(x)

is a secure hash function at the x-coordinate of point X ∈ E(GFq).

2.1 Review of Kim et al.’s Protocol

Figure 1 illustrates Kim et al.’s SAKA-like protocol. Their protocol proceeds
with the following 4 steps:

1. A chooses a random number a, computes X1 = gaQ mod n, and sends X1 to
B.

2. B chooses a random number b, computes Y1 and X , where Y1 = gbQ mod n

and X = XQ−1

1 = ga mod n. Then, sends back X and Y1 to A.
3. A verifies if X is equal to ga mod n. If they match each other, A authenticates

B. Then, A computes Y = Y Q−1

1 = gb mod n and the session key K1 = Y a =
gab mod n. Then, A sends Y to B.

4. B verifies if Y is equal to gb mod n. If they match each other, B authenticates
A. Then, B computes the session key K2 = Xb = gab mod n.

A B

a ∈ RZ∗
n

X1 ← gaQ mod n X1−−−−−→ b ∈ RZ∗
n

Y1 ← gbQ mod n

X
?
= ga mod n X, Y1←−−−−− X ← (X1)

Q−1
mod n

Y ← (Y1)
Q−1

mod n

K1 ← Y a mod n Y−−−−−→ Y
?
= gb mod n

K2 ← Xb mod n

Session key K1 = K2 = gab mod n

Fig. 1. Kim et al.’s SAKA protocol

2.2 Off-Line Password Guessing Attack

Unfortunately, Kim et al.’s protocol is vulnerable to off-line password guess-
ing attack. An attacker C who can capture messages exchanged over network
can easily obtain a legitimate communication parties’ password P . The attack
proceeds as follows:

948 Eun-Jun Yoon and Kee-Young Yoo

Step 1*. An attacker C records a pair of information {X1, X} exchanged in a
valid key agreement session. It is easy to obtain the information since
it is readily available over the open network.

Step 2*. In order to obtain the password P shared two legitimate parties, the
attacker C makes a guess at the secret password P ∗ and derives corre-
sponding Q∗ and Q∗−1 mod n− 1.

Step 3*. Computes XQ∗
and checks if X1 = XQ∗

mod n, where X1 and X are
the information that he or she captured.

Step 4*. If it is not correct, the attacker C repeatedly performs it until X1 =
XQ∗

mod n.

Furthermore, if an attacker C records an information pair {Y1, Y } exchanged
in a valid key agreement session, then the attacker can also obtain the password
P shared by two legitimate parties as described above. In fact, attacker C only
can get Q instead of P from the above attack. Thus, the damage of the attack
is limited to one session. However, suppose f(·) is a function to get an integer Q
computed from P ; that is, Q = f(P). To get password P , the attacker C must
break function f(·) since the function f(·) is public, meaning that its description
is known, and that anyone can compute it.

Unlike typical private keys, the password has limited entropy, constrained
by the memory of the user. Roughly speaking, the entropy of human memo-
rable passwords is about 2 bits per character. Therefore, an attacker’s goal of
obtaining a legitimate communication parties’ password can be achieved within
a reasonable time. Thus, the off-line password guessing attack in Kim et al.’s
protocol should be considered as the realistic one.

2.3 Integrity Violence of the Session Key from Illegal Modification

Kim et al.’s protocol is also vulnerable to an integrity violence of the session key
from illegal modification. Suppose that attacker C interposes the communication
between A and B. Then, attacker C can perform the illegal modification attack
as follows:

Step 1*. Upon intercepting message X1 = gaQ mod n sent by A, the attacker
can replace it with (X1)t = gaQt mod n, where t is a randomly chosen
integer.

Step 2*. Similarly, upon intercepting message {X, Y1} sent back by B, the at-
tacker can replace X with (X)t−1

mod n = ga mod n and Y1 with
(Y1)t = gbQt mod n, respectively.

After all, A and B can compute the same wrong session key K ′
1 = K ′

2 =
gabt mod n, respectively. However, A and B cannot detect the generation of
this wrong session key because they have the same session key. From now, A
and B shall use the wrong session key in encrypting/decrypting their messages.
Through this illegal modification attack, attacker C can neither obtain K ′

1 nor
K ′

2 but can make two parties believe and use an unintended session key. In fact,

New Efficient Simple Authenticated Key Agreement Protocol 949

an illegal modification attack is not a serious attack, since it cannot prevent
the two communication parties from reaching a common secret key, even though
this key is not the correct one. Most important, the attacker cannot access the
agreed common key from this illegal modification attack. However, since the
Diffie-Hellman session key gab is invalid, it cannot guarantee the integrity of the
session key.

3 ESAKA Protocol

This section proposes a much simpler protocol based on ECDLP that, unlike
Kim et al.’s protocol, can withstand the off-line password guessing attack and
the integrity violence of the session key from illegal modification. The proposed
protocol can gain benefits from the key block size, speed, and security. The
weakness of Kim et al.’s protocol is due to the two values X1 and X in their
key establishment and key validation phase, respectively. Since the values are
publicly visible, an attacker capturing them can easily guess legitimate commu-
nication parties’ passwords by judging the correctness of the guess. Thus, the
most important requirement to prevent a guessing attack is to eliminate the in-
formation that can be used to verify the correctness of the guess. The main idea
of our scheme is to isolate such information by using an asymmetric structure
in the messages exchanged. Figure 2 illustrates the proposed ESAKA protocol
based on ECDLP. A and B choose an elliptic curve E over a finite field GF (q).
A and B only need to store a mutual password. The proposed ESAKA protocol
proceeds with the following 4 steps:

1. A chooses a secret random integer a, computes X1 = a ·G + P ∗, and sends
X1 to B.

2. B chooses a secret random integer b, and computes Y1, X and SKB as
follows:

Y1 = b ·G,

X = X1 − P ∗ = a ·G,

SKB = b ·X = a · b ·G.

(1)

Then, B sends back Y1 and H(X, SKB) to A.
3. A computes SKA as follows:

SKA = a · Y1 = a · b ·G. (2)

Then, A verifies the validation of the equation H(a ·G, SKA) = H(X, SKB).
If it holds, A authenticates B and sends H(Y1, SKA) to B.

4. B verifies the validation of the equation H(b ·G, SKB) = H(Y1, SKA). If it
holds, B authenticates A.

After the Step 4, A and B are now convinced the common secret session key
K = H(SKA) = H(SKB).

950 Eun-Jun Yoon and Kee-Young Yoo

A
B

Choose random a

X1 ← a · G + P ∗ X1−−−−−−−−−−−−−→ Choose random b

Y1 ← b · G
X ← X1 − P ∗

SKA ← a · Y1 Y1, H(X, SKB)←−−−−−−−−−−−−− SKB ← b · X
H(a · G, SKA)

?
=H(X, SKB)

K ← H(SKA) H(Y1, SKA)−−−−−−−−−−−−−→
H(b · G, SKB)

?
= H(Y1, SKA)

K ← H(SKB)

Session key K = H(SKA) = H(SKB)

Fig. 2. Proposed ESAKA protocol

4 Security Analysis and Performance Comparison

This section discusses the security and efficiency of the proposed ESAKA pro-
tocol.

4.1 Security Analysis

This subsection provides the security analysis of the proposed ESAKA protocol.
First, we define the security terms needed for security analysis of the proposed
ESAKA protocol as follows:

Definition 1. A weak secret (password) is a value of low entropy W (k), which
can be guessed in polynomial time.

Definition 2. The elliptic curve discrete logarithm problem (ECDLP) is as
follows: given a public key point Qi = xi ·G, it is hard to compute secret key xi.

Definition 3. The elliptic curve Diffie-Hellman problem (ECDHP) is as fol-
lows given point elements a ·G and b ·G, it is hard to find a · b ·G.

Definition 4. A secure one-way hash function y = H(x) is one where given x
to compute y is easy and given y to compute x is hard.

Here, seven security properties: replay attack, password guessing attack, man-
in-middle attack, modification attack, known-key security, session key security,
and perfect forward secrecy, must be considered for the proposed ESAKA pro-
tocol. Under the above definitions, the following theorems are used to analyze
seven security properties in the proposed protocol.

Theorem 1. ESAKA protocol can resist the replay attack.

New Efficient Simple Authenticated Key Agreement Protocol 951

Proof: Attacker C intercepts X1 = a · G + P ∗ from A in Step 1 and uses it to
impersonate A. However, C cannot compute a correct H(Y1, SKA) and deliver
it to B unless he/she can correctly guess password P to obtain Y1 and guess
the right b, and then C must face the ECDLP. On the other hand, suppose C
intercepts Y1, H(X, SKB) from B in Step 2 and uses it to impersonate B. For the
same reason, if C cannot gain the correct a, A will find out that H(a ·G, SKA) is
not equivalent to H(X, SKB), and then A will not send H(Y1, SKA) back to C.

Theorem 2. ESAKA protocol can resist the password guessing attack.

Proof: An on-line password guessing attack cannot succeed since B can choose
appropriate trail intervals. On the other hand, in an off-line password guessing
attack, C can try to find out a weak password by repeatedly guessing possible
passwords and verifying the correctness of the guesses based on information
obtained in an off-line manner. In our protocol, C can gain the knowledge of X1 =
a · G + P ∗, Y1, H(X, SKB) and H(Y1, SKA) in Steps 1, 2, and 3, respectively.
Assume that C wants to impersonate A. He/she first guesses password P ′ and
then finds X∗

1 = X1 − P ′ and Y1. However, C has to break the ECDLP and
ECDHP to find the keying material SKA = SKB to verify his/her guess. C
cannot gain the session key without X∗

1 and the keying material SKA, SKB.

Theorem 3. ESAKA protocol can resist the man-in-middle attack.

Proof: A mutual password between A and B is used to prevent the man-in-middle
attack. The illegal attacker C cannot pretend to be A or B to authenticate the
other since he/she does not own the mutual password.

Theorem 4. ESAKA protocol can resist the modification attack.

Proof: An attacker may modify the messages X1, Y1, H(X, SKB), and H(Y1,
SKA) being transmitted over an insecure network. However, although the at-
tacker forges them, ESAKA protocol can detect this attack, because it can ver-
ify not only the equality of SKA and SKB computed by each party, but also
the correctness of X1, Y1 transmitted between two parties through validating
H(X, SKB) and H(Y1, SKA) in the protocol.

Theorem 5. ESAKA protocol provides known-key security.

Proof: Known-key security means that each run of a key agreement protocol
between two entities A and B should produce unique secret keys; such keys are
called session keys. Knowing a session key K and the random values a and b
are of no use for computing the other session keys H(a′ · b′ · G), since without
knowing a′ and b′ it is impossible to compute the session key K.

Theorem 6. ESAKA protocol provides session key security.

Proof: Session key security means that at the end of the key exchange, the session
key is not known by anyone but A and B. The session key H(a · b · G) is not
known by anyone but A and B since the random value a and b are protected
by the ECDHP and the secure one-way hash function. None of this session key
K = H(a · b ·G) is known to anybody but A and B.

952 Eun-Jun Yoon and Kee-Young Yoo

Theorem 7. ESAKA protocol provides perfect forward secrecy.

Proof: Perfect forward secrecy means that if long-term private keys of one or
more entities are compromised, the secrecy of previous session keys established
by honest entities is not affected. If the user’s password itself is compromised, it
does not allow an attacker to determine the session key K for past sessions and
decrypt them, since the attacker is still faced with the ECDHP. Therefore, the
ESAKA protocol satisfies the property of perfect forward secrecy.

4.2 Performance Comparison

The computation costs of the proposed ESAKA protocol and previous SAKA-
like protocols are summarized in Table 1. The elliptic curve discrete logarithm
problem (ECDLP) with an order of 160 bit prime offers approximately the same
level of security as the discrete logarithm problem(DLP) with 1024 bit modulus
[2].

The ESAKA protocol requires four multiplications of a number and a point
on the elliptic curve and six hash operations during the protocol. Therefore, the
ESAKA protocol has a low computational load. In terms of network resource
efficiency and network delay, it is advantageous to have as few communication
rounds as possible. Therefore, the number of messages to be exchanged between
communication parties should be kept to a minimum.

The ESAKA protocol requires three passes to perform a mutual authentica-
tion and key agreement. Therefore, the ESAKA protocol has a minimum number
of message exchanges. The protocol message should be as short as possible. The
ESAKA protocol requires four messages during the protocol. Among these four
messages, two are exponentiation bits and two are hash output bits. Therefore,
the ESAKA protocol uses a minimum communication bandwidth.

Table 1. Computation costs of ESAKA and Previous SAKA-like protocols

SAKA
[5]

T-SAKA
[6]

KW-SAKA
[8]

KHHL-SAKA
[12]

ESAKA

of
steps

4 4 4 3 3

of
random numbers

2 2 2 2 2

of
exponentiations

10 8 9 8 4

of
hash functions

0 0 0 0 6

security DLP DLP DLP DLP ECDLP

We compared ESAKA with other password-based key agreement protocols
submitted to IEEE P1363.2 (Password-based Techniques) [15, 16] . Table 2 com-

New Efficient Simple Authenticated Key Agreement Protocol 953

pares various password-based protocols based on an asymmetric model. To com-
pare the computational workload, we considered the number of exponentiations
that consume the most execution time. In table 2, we use this counting method
for a number of exponentiations.

AMP and SRP are four-pass protocols for password-based authenticated key
exchange, but B-SPEKE and PAK-Z are three-pass protocols. AMP requires the
smallest exponentiations and PAK-Z requires the smallest computational passes
among the previously proposed protocols.

By contrast, ESAKA implements a three-pass protocol. In ESAKA, each
party performs approximately two exponentiations and the exchanged data size
is only 2|q| + 2|k|. Therefore, as in Table 2, we can see that ESAKA has the
smallest computational and communicational workloads.

Table 2. Computation costs of ESAKA and Various password-based protocols

B-SPEKE SRP AMP PAK-Z ESAKA

of steps 3 4 4 3 3

of client’s
exponentiations

3 3 2 4 2

of server’s
exponentiations

4 3 2.4 2 2

of total
exponentiations

7 6 4.4 6 4

5 Conclusions

The SAKA-like protocols are widely used in research for key agreement. However,
previous SAKA-like protocols have some weakness. Therefore, several articles
have been proposed to continuously enhance SAKA-like protocols. The current
paper demonstrated the vulnerability of Kim et al.’s SAKA-like protocol to off-
line password guessing attacks and the integrity violence of the session key from
illegal modification. Then, to resolve such problems, we presented an ESAKA
protocol based on the elliptic curve discrete logarithm problem (ECDLP). The
proposed ESAKA protocol resists those attacks, while also providing more secu-
rity and efficiency which can be executed faster than other previously proposed
password-based protocols.

Acknowledgements

We would like to thank the anonymous reviewers for their helpful comments to
improve our manuscript. This research was supported by the MIC (Ministry of
Information and Communication), Korea, under the ITRC (Information Tech-
nology Research Center) support program supervised by the IITA (Institute of
Information Technology Assessment).

954 Eun-Jun Yoon and Kee-Young Yoo

References

1. Diffie, W., Hellman, M.: New Directions in Cryptography. IEEE Transaction on
Information Theory. Vol. IT-22. No. 6. (1976) 644-654

2. Schneier, B.: Applied Cryptography-Protocols. Algorithms and Source Code in C.
2nd edi. John Wiley & Sons Inc. (1995)

3. Diffie, W., Van Oorschot, P.C., Wiener, M.J.: Authentication and Authenticated
Key Exchanges. Design, Codes and Cryptography. Vol. 2. (1992) 107-125

4. Bellovin, S., Merritt, M.: Encrypted Key Exchange: Password-based Protocols Se-
cure Against Dictionary Attacks. Proc. of IEEE Conf. on Research in Security and
Privacy. (1992) 72-84

5. Seo, D.H., Sweeney, P.: Simple Authenticated Key Agreement Algorithm. Elec-
tronics Letters. Vol. 35. No. 13. (1999) 1073-1074

6. Tseng, Y.M.: Weakness in Simple Authenticated Key Agreement Protocol. Elec-
tronics Letters. Vol. 36. No. 1. (2000) 48-49

7. Lin, I.C., Chang, C.C., Hwang, M.S.: Security Enhancement for the Simple Authen-
tication Key Agreement Algorithm. Proceedings of the 24th Annual International
Computer Software and Application Conference. (2000) 113-115

8. Ku, W.C., Wang, S.D.: Cryptanalysis of Modified Authenticated Key Agreement
Protocol. Electronics Letters. Vol. 36. No. 21. (2000) 1770-1771

9. Hsu, C.L., Wu, T.S., Wu, T.C., Mitchell, C.: Improvement of Modified Authenti-
cated Key Agreement Protocol. Applied Mathematics and Computation. Vol. 142.
No. 2-3. (2003) 305-308

10. Lee, N.Y., Lee, M.F.: Further Improvement on the Modified Authenticated Key
Agreement Scheme. Applied Mathematics and Computation. Vol. 157. No. 3.
(2004) 729-733

11. Ryu, E.K., Kim, K.W., Yoo, K.Y.: A Promising Key Agreement Protocol. ISAAC
2003. LNCS 2906. (2003) 655-662

12. Lee, S.W., Kim, H.S., Yoo, K.Y.: Improvement of Lee and Lee’s Authenticated
Key Agreement Scheme. Applied Mathematics and Computation. Vol. 162. No. 3.
(2005) 1049-1053

13. Lee, S.W., Kim, H.S., Yoo, K.Y.: Improvement of HWWM-Authenticated Key
Agreement Protocol. Applied Mathematics and Computation. Vol. 162. No. 3.
(2005) 1315-1320

14. Kim, Y.S., Huh, E.N., Hwang, J.H., Lee, B.W.: An Efficient Key Agreement Pro-
tocol for Secure Authentication. ICCSA 2004. LNCS 3043. (2004) 746-754

15. Hwang, Y.H., Yum, D.H., Lee, P.J.: EPA: An Efiicient Password-Based Protocol
for Authenticated Key Exchange. ACISP 2003. LNCS 2727. (2003) 452-463

16. The latest draft of IEEE P1363.2.: Standard Specifications for Password-
Based Public Key Cryptography Techniques. Draft D19. December 17. (2004)
http://grouper.ieee.org/groups/1363/

A Quadratic Lower Bound for Rocchio’s
Similarity-Based Relevance Feedback Algorithm

Zhixiang Chen1 and Bin Fu2,3

1 Department of Computer Science, University of Texas-Pan American
Edinburg, TX 78541, USA

chen@cs.panam.edu
2 Department of Computer Science, University of New Orleans

New Orleans, LA 70148, USA
fu@cs.uno.edu

3 Research Institute for Children
200 Henry Clay Avenue, New Orleans, LA 80118, USA

Abstract. It is shown in [4] that Rocchio’s similarity-based relevance
feedback algorithm makes Ω(n) mistakes in searching for a collection of
documents represented by a monotone disjunction of at most k relevant
features (or terms) over the n-dimensional binary vector space {0, 1}n.
In practice, Rocchio’s algorithm often uses a fixed query updating factor
and a fixed classification threshold. When this is the case, we strengthen
the work in [4] in this paper and prove that Rocchio’s algorithm makes
Ω(k(n − k)) mistakes in searching for the same collection of documents
over the binary vector space {0, 1}n. A quadratic lower bound is ob-
tained when k is proportional to n. An O(k(n−k)2) upper bound is also
obtained.

1 Introduction

Research on relevance feedback in information retrieval has a long history and
becomes a necessary part of our daily life due to the popularity of the Web. It
is regarded as the most popular query reformation strategy [1, 10]. The central
idea of relevance feedback is to improve search performance for a particular
query by modifying the query step by step, based on the user’s judgments of
the relevance or irrelevance of some of the documents retrieved. In his popular
textbook [13], van Vijsbergen describes the relevance feedback as a fixed error
correction procedure and relates it to the linear separation problem. When the
inner product similarity is used, relevance feedback is just a Perceptron-like
learning algorithm [6]. Wong, Yao and Bollmann [14] studied the linear structure
in information retrieval. They designed a very nice gradient descent procedure
to compute the coefficients of a linear function and analyzed its performance. In
[2, 3], multiplicative adaptive algorithms are devised for user preference retrieval
with provable, efficient performance.

There are many different variants of relevance feedback in information re-
trieval. However, in this paper we only study Rocchio’s similarity-based relevance

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 955–964, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

956 Zhixiang Chen and Bin Fu

feedback algorithm [5, 10]. In spite of its popularity in various applications, there
is little rigorous analysis of its complexity as a learning algorithm in literature.
As a first step towards formal analysis of Rocchio’s similarity-based relevance
feedback algorithm, the work in [4] establishes a linear lower bound on classifi-
cation mistakes for the algorithm over the binary vector space {0, 1}n, when any
of the four typical similarities (inner product, dice coefficient, cosine coefficient,
and Jaccard coefficient) listed in [10] is used. The linear lower bound obtained in
[4] is independent of the query updating factor and the classification threshold
that are used by the algorithm. A number of challenging problems regarding
further analysis of the algorithm remain open [4].

In practice, a fixed query updating factor and a fixed classification threshold
are often used in Rocchio’s similarity-based relevance feedback algorithm [1, 10].
Using a fixed query updating factor has many merits, such as simplicity and
efficiency. As another example, the popular Winnow algorithm [7] uses a fixed
updating factor. When this is the case, one shall naturally ask whether the linear
lower bound obtained in [4] can be further strengthened? The main contribution
of this paper is to give a positive answer to this question.

2 Rocchio’s Similarity-Based Relevance
Feedback Algorithm

Let R be the set of all real values, and let R+ be the set of all non-negative
real values. Let n be a positive integer. In the binary vector space model in
information retrieval [10, 12], a collection of n features (or terms) T1, T2, . . . , Tn

are used to represent documents and queries. Each document d is represented as
a vector vd = (d1, d2, . . . , dn) such that for any i, 1 ≤ i ≤ n, the i-th component
of vd is one if the i-th feature Ti appears in d or zero otherwise. Each query q
is represented by a vector vq = (q1, q2, . . . , qn) such that for any i, 1 ≤ i ≤ n,
the i-th component of vq ∈ R is a real value used to determine the relevance
(or weight) of the i-th feature Ti. Because of the unique vector representations
of documents and queries, for convenience we simply use d and q to stand for
their vector representations vd and vq, respectively. A similarity in general is
a function m from Rn × Rn to R+. A similarity m is used to determine the
relevance closeness of documents to the search query and to rank documents
according to such closeness. The following four typical similarities were listed in
[10]: For any q,x ∈ Rn,

inner product : m1(q,x) =
n∑

i=1

qixi,

dice coefficient : m2(q,x) =
2m1(q,x)

m1(q,q) + m1(x,x)
,

cosine coefficient : m3(q,x) =
m1(q,x)√

m1(q,q)
√

m1(x,x)
,

Jaccard coefficient : m4(q,x) =
m1(q,x)

m1(q,q) + m1(x,x) −m1(q,x)
.

A Quadratic Lower Bound for Relevance Feedback Algorithm 957

To make the above definitions valid for arbitrary q and x, we define that the
similarity between two zero vectors is zero, i.e.,

mi(0,0) = 0, for 1 ≤ i ≤ 4.

Definition 1. Let m from Rn ×Rn to R+ be a similarity. A classifier with re-
spect to m over the n-dimensional binary vector space {0, 1}n is a triple (q, ψ, m),
where q ∈ Rn is a query vector, and ψ ∈ R is a threshold. The classifier (q, ψ, m)
classifies any documents d ∈ {0, 1}n as relevant if m(q,d) ≥ θ or irrelevant oth-
erwise. The classifier (q, ψ, m) is called a linear classifier with respect to the
similarity m, if m is a linear function from Rn ×Rn to R+.

Definition 2. An adaptive supervised learning algorithm A for learning a tar-
get classifier (q, ψ, m) over the n-dimensional binary vector space {0, 1}n from
examples is a game played between the algorithm A and the user in a step by
step fashion, where the query vector q and the threshold θ are unknown to the
algorithm A, but the similarity m is. At any step t ≥ 1, A gives a classifier
(qt, θt, m) as a hypothesis to the target classifier to the user, where qt ∈ Rn

and θt ∈ R. If the hypothesis is equivalent to the target, then the user says
“yes” to conclude the learning process. Otherwise, the user presents an example
xt ∈ {0, 1}n such that the target classifier and the hypothesis classifier differ at
xt. In this case, we say that the algorithm A makes a mistake. At step t + 1,
the algorithm A constructs a new hypothetical classifier (qt+1, θt+1, m) to the
user based on the received examples x1, . . . ,xt. The learning complexity (or the
mistake bound) of the algorithm A is in the worst case the maximum number of
examples that it may receive from the user in order to learn some classifier.

Definition 3. Rocchio’s similarity-based relevance feedback algorithm is an
adaptive supervised learning algorithm for learning any classifier (q, θ, m) over
the n-dimensional binary vector space {0, 1}n from examples. Let q1 be the ini-
tial query vector. At any step t ≥ 1, the algorithm presents a classifier (qt, θt, m)
as its hypothesis to the target classifier to the user, where θt ∈ R is the threshold,
and the query vector qt is modified as follows. Assume that at the beginning of
step t the algorithm has received a sequence of examples x1, . . . ,xt−1, then the
algorithm uses the following modified query vector qt for its next classification:

qt = αt0q1 +
t−1∑
j=1

αtj xj , (1)

where αtj ∈ R, for j = 0, . . . , t− 1, are called query updating factors.
In particular, when a fixed query updating factor α > 0 and a fixed classifica-

tion threshold θ are used, at any step t ≥ 1, Rocchio’s algorithm uses (qt, θ, m)
as its hypothesis to the target classifier, and the query vector qt is modified as

qt = q1 +
t−1∑
j=1

α(y∗
j − yj)xj , (2)

958 Zhixiang Chen and Bin Fu

where y∗
j is the binary classification value of the target classifier (q, ψ, m) on xj ,

and yj is the binary classification value of the hypothesis classifier (qt, θ, m) on
xj .

Please note that our definition above is a generalized version of Rocchio’s
original algorithm.

3 When the Classification Threshold Is Zero

We will use the sets of documents represented by monotone disjunctions of rele-
vant features to study the mistake bounds of Rocchio’s algorithm. The efficient
learnability of monotone disjunctions of relevant features (or attributes) has been
extensively studied in machine learning (for example, [7]). Although very simple
in format, monotone disjunctions are very common ways of expressing search
queries, especially in the case of Web search. All existing popular search engines
support disjunctions of keywords as search query formations.

Proposition 1. Let qt+1 be the query vector of Rocchio’s algorithm at step
t + 1 ≥ 2. Then, for any s, 2 ≤ s ≤ 4, and any x ∈ {0, 1}n, we have

m1(qt+1,x) ≥ 0⇐⇒ m1(
t∑

j=1

(y∗
j − yj)xj ,x) ≥ 0

⇐⇒ ms(
t∑

j=1

(y∗
j − yj)xj ,x) ≥ 0, if q1 = 0,

m1(qt+1,xj) ≥ 0⇐⇒ ms(qt+1,xj) ≥ 0, if q1 �= 0.

Proof. It follows from expression (2) in Definition 3 and the fact that the enu-
merator of ms is m1 and the denominator of ms is positive. �

Theorem 1. Rocchio’s similarity-based relevance feedback algorithm with sim-
ilarity ms, 1 ≤ s ≤ 4, makes at least 3k(n − k) mistakes in searching for the
collection of documents represented by a monotone disjunction of k relevant fea-
tures over the binary vector space {0, 1}n, when the initial query vector q1 = 0,
and the algorithm uses a fixed query updating factor α > 0 and a fixed classifi-
cation threshold θ = 0.

Proof. By Proposition 1, we only need to consider the similarity m1 and the
query updating factor α = 1. Without loss of generality, let us work on the
monotone disjunction of k relevant features

Fk = X1 ∨ · · · ∨Xk. (3)

The idea is that, for j = 1, . . . , k, we construct a sequence of examples that
allow the algorithm to focus on the learning of the relevant feature Xj exclusively.

A Quadratic Lower Bound for Relevance Feedback Algorithm 959

The algorithm gains no information for the other relevant features, hence it
is unable to update the components of the query vector corresponding to the
relevant features other than Xj .

We consider the phrase for learning the relevant feature X1. This phrase is
divided into two steps: The preprocessing step and the learning step. We start
with the preprocessing step. We construct examples xt, t = 1, . . . , n − k, such
that xt,k+t = 1 and all its other components are 0. x1 does not satisfy Fk.
But m1(q1,x1) = 0, classifying x1 as relevant. Hence, the algorithm makes one
mistake, and the query vector q2 is updated as q2,k+1 = −1 and q2,j = q1,j for
1 ≤ j ≤ n and j �= k + 1. Similarly, for t ≥ 2, the algorithm makes a mistake
on xt and sets qt+1,k+t = −1 and qt+1,j = qt,j for 1 ≤ j ≤ n and j �= k + t.
At the end of this step, the query vector qn−k+1 is updated as qn−k+1,j = 0 for
j = 1, . . . , k, and qn−k+1,k+j = −1 for j = 1, . . . , n− k.

We then begin the learning step. We construct examples yt for t = 1, . . . ,
2(n − k). We set yt,1 = 1 if t is odd and yt,1 = 0 if t is even. For all t, we set
yt,l = 0 for 2 ≤ l ≤ k, and yt,k+l = 1 for 1 ≤ l ≤ n− k. Obviously, yt satisfies Fk

if t is odd, and it does not if t is even. For y1, m1(qn−k+1,y1) = −(n− k) < 0.
This implies that the algorithm makes a mistake, and the query vector qn−k+2

is updated as qn−k+2,1 = 1, qn−k+2,l = 0 for l = 2, . . . , k, and qn−k+2,k+l = 0 for
l = 1, . . . , n− k. For y2, m1(qn−k+2,xn−k+2) = 0, implying that the algorithm
makes another mistake, and the query vector qn−k+3 is updated as qn−k+3,1 = 1,
qn−k+3,l = 0 for l = 2, . . . , k, and qn−k+3,k+l = −1 for l = 1, . . . , n−k. It follows
from the similar analysis that the algorithm makes one mistake for each yt,
and the query vector has the following property: For t = 1, 3, . . . , 2(n− k) − 1,
qn−k+t+1,1 = (t +1)/2, qn−k+t+1,l = 0 for l = 2, . . . , k, and qn−k+t+1,k+l = 0 for
l = 1, . . . , n− k; for t = 2, 4, . . . , 2(n− k), qn−k+t+1,1 = t/2, qn−k+t+1,l = 0 for
l = 2, . . . , k, and qn−k+t+1,n+l = −1 for l = 1, . . . , n− k.

In summary, both the preprocessing step and the learning step for the relevant
feature X1 force the algorithm to make at least 3(n− k) mistakes. Moreover, at
the end of this phrase, the query vector q3(n−k)+1 is updated as q3(n−k)+1,1 =
n− k, q3(n−k)+1,l = 0 for l = 2, . . . , k, and q3(n−k)+1,k+l = 0 for l = 1, . . . , n− k.
By simple induction, we can utilize the similar preprocessing and learning steps
to force the algorithm to make 3(n− k) mistakes to learn each of the remaining
k−1 relevant features. Therefore, the algorithm makes at least 3k(n−k) mistakes
in searching for the collection of documents represented by Fk. �

Theorem 2. Rocchio’s similarity-based relevance feedback algorithm with sim-
ilarity ms, 1 ≤ s ≤ 4, makes Ω(k(n − k)) mistakes in searching for documents
represented by a monotone disjunction of k relevant features over the binary vec-
tor space {0, 1}n, when the initial query vector q1 ∈ {0, 1}n is not 0, the query
updating factor α is a constant and the classification threshold θ = 0.

Proof. By Proposition 1, we only need to consider the similarity m1. Again, we
work on the monotone disjunction Fk, defined in expression (3), of k relevant
features. The idea of proof is similar to that of Theorem 1, i.e., for each relevant
feature, we construct examples that force the algorithm to focus on the learning
of that feature exclusively.

960 Zhixiang Chen and Bin Fu

We shall address two cases, the initial query vector q1 has either at least k
zero components or less than k zero components.

Case 1: In this case, we assume without loss of generality that q1,i = 0 for i =
1, . . . , k, q1,k+j = 0 for j = 1, . . . , m, and q1,k+m+j = 1 for j = 1, . . . , n− k−m,
where 0 ≤ m ≤ n− k.

We start with the initial phrase to set the (k + j)-th component of the query
vector to −α for j = 1, . . . , m. We construct examples xt for t = 1, . . . , m such
that xt,k+t = 1 and all its other components are 0. xt does not satisfy the given
monotone disjunction Fk. By simple induction, m1(qt,xt) = 0, implying that
xt is classified by the algorithm as relevant. Hence, the algorithm makes one
mistake on xt, and the (k+ t)-th component of the query vector qt+1 is updated
as qt+1,k+t = −α and all the other components are the same as those in qt.
At the end, the query vector qm+1 is updated as qm+1,j = 0 for 1 ≤ j ≤ k or
m + k + 1 ≤ j ≤ n, and qm+1,k+j = −α for j = 1, . . . , m. To simplify notation,
we let A1 = qm+1.

The second phrase is to manipulate the n − k − m many components of
A1 with value 1. Let T be the smallest integer satisfying T > 1/α. For each
j with k + m + 1 ≤ j ≤ n, we construct examples yt for t = 1, . . . , T such
that yt,j = 1 and all the other components are 0. yt does not satisfy the given
monotone disjunction Fk. By simple induction, m1(At,yt) = 1− (t−1)α, which
is greater than or equal to zero because of the choice of T . This implies that the
algorithm classifies yt as relevant. Hence, the algorithm makes one mistake on
yt, and the (k + m + j)-th component of the query vector At+1 is updated as
At+1,j = 1 − tα and all the other components are the same as those in At. At
the end of this phrase, the algorithm makes at least T (n− k−m) mistakes, and
the query vector AT (n−k−m)+1 is updated as AT (n−k−m)+1,l = 0 for 1 ≤ l ≤ k,
AT (n−k−m)+1,k+l = −α for j = 1, . . . , m, and AT (n−k−m)+1,k+m+l = 1− Tα for
l = 1, . . . , n− k −m. To simplify notation, we let B1 = AT (n−k−m)+1

The third phrase is for learning the relevant feature X1. We construct exam-
ples zt for t = 1, . . . , 2(m + (n− k−m)(T − 1

α)). We set zt,1 = 1 if t is odd, and
zt,1 = 0 if t is even. For all t, we set zt,l = 0 for 2 ≤ l ≤ k, and zt,k+l = 1 for
1 ≤ l ≤ n − k. Obviously, zt satisfies the given monotone disjunction Fk if t is
odd, and it does not if t is even. By simple induction, when t is odd, we have
m1(Bt, zt) = (t−1)α−mα+(n−k−m)(1−Tα) < 0; and when t is even, we have
m1(Bt, zt) = (n− k−m)(1− (T − 1)α− 1) ≥ 0. This means that the algorithm
makes a mistake for each example zt, and the query vector is updated as follows:
For t = 1, 3, . . . , 2(m + (n − k −m)(T − 1

α)) − 1, Bt+1,1 = (t+1)α
2 , Bt+1,l = 0

for l = 2, . . . , k + m, and Bt+1,l = 1 − (T − 1)α for l = k + m + 1, . . . , n; for
t = 2, 4, . . . , 2(m+(n−k−m)(T − 1

α)), Bt+1,1 = tα
2 , Bt+1,l = 0 for j = 2, . . . , k,

Bt+1,l = −α for l = k+1, . . . , k+m, and Bt+1,l = 1−Tα for l = k+m+1, . . . , n.
The above analysis implies that the algorithm makes 2(m+(n−k−m)(T− 1

α))
mistakes in the phrase of learning the relevant feature X1. It is interesting to
notice that the query vector at the beginning and at the end of this phrase
remains the same, except its first component. Precisely, we have

A Quadratic Lower Bound for Relevance Feedback Algorithm 961

B1,1 = 0, but B2(m+(n−k−m)(T− 1
α))+1,1 = m + (n− k −m)(T − 1

α
),

B1,j = B2(m+(n−k−m)(T− 1
α))+1,j = 0, j = 2, . . . , k,

B1,j = B2(m+(n−k−m)(T− 1
α))+1,j = −α, j = k + 1, . . . , k + m, and

B1,j = B2(m+(n−k−m)(T− 1
α))+1,j = 1− Tα, j = k + m + 1, . . . , n.

We can apply a similar phrase to the phrase for learning the relevant feature
X1 for each of the remaining relevant features Xi, 2 ≤ i ≤ k. That is, we can
construct a new example z′t from each zt. The new example z′t is obtained via
changing the i-th component of zt to 1 if t is odd, and to 0 if t is even, the
j-th component to zero for 1 ≤ j ≤ k and j �= i, and letting the other n − k
components remain the same as in zt. By simple induction, the algorithm will
make one mistake on each z′t, the query vector satisfies the similar invariant
property as shown in the above expressions. Therefore, the algorithm makes at
least 2k(m + (n − k − m)(T − 1

α)) mistakes in all the k phrases of learning
the relevant feature Xi for 1 ≤ i ≤ k. Combining with the first two phrases, the
algorithm makes in total at least m+(n−k−m)T +2k(m+(n−k−m)(T− 1

α)) =
Ω(k(n− k)) mistakes.

Case 2: In the second case, we assume without loss of generality that q1,i = 0
for i = 1, . . . , m′ where 0 ≤ m′ < k, q1,i = 1 for i = m′ +1, . . . , k, and q1,k+j = 1
for j = 1, . . . , n− k.

In this case, we do not need the initial phrase in Case 1. For consistence with
Case 1, we let A1 = q1. We first follow the second phrase in Case 1 to manipulate,
for each j, 1 ≤ j ≤ n − k, the 1-component A1,k+j by constructing examples
yt for t = 1, . . . , T . Like in the second phrase in Case 1, each of such examples
forces the algorithm to make a mistake, and to update At+1,j to 1− tα. At the
end of this phrase, the algorithm makes (n−k)T mistakes, and the query vector
A(n−k)T+1, denoted as B1 to simply notation, becomes B1,l = 0 for 1 ≤ l ≤ m′,
B1,l = 1 for m′ + 1 ≤ l ≤ k, and B1,k+l = 1− Tα for l = 1, . . . , n− k.

For i, 1 ≤ i ≤ m′, we follow the same phrase as that in Case 1 for learning the
relevant feature Xi by constructing examples zt for t = 1, . . . , 2(n− k)(T − 1

α).
The only difference is that here we have m = 0. Like in that phrase in Case 1,
these examples force the algorithm to make 2(n− k)(T − 1

α) mistakes, and the
query vector maintains the similar invariant property as in Case 1.

For i, m′ + 1 ≤ i ≤ k, we again follow the same phrase as that in Case 1 for
learning the relevant feature Xi by constructing examples zt for t = 1, . . . , 2((n−
k)(T − 1

α)− 1
α). The two differences that we have here are m = 0 and B1,i = 1.

The fact of m = 0 will not change the process. But the fact of B1,i = 1 will
change the number of examples to 2((n − k)(T − 1

α) − 1
α), because the i-th

component of the query vector becomes 1+ (t+1)α
2 for odd t, and 1+ tα

2 for even
t. Again, these examples force the algorithm to make 2((n − k)(T − 1

α) − 1
α)

mistakes, and the similar invariant property is maintained for the query vector.
Putting the above analysis together, an Ω(k(n− k)) lower bound is obtained in
Case 2. �

962 Zhixiang Chen and Bin Fu

4 When the Classification Threshold Is Not Zero

One can introduce an auxiliary feature variable to deal with the threshold so that
a linear classifier over the n-dimensional vector space with a non-zero threshold
is equivalent to a linear classifier over the (n + 1)-dimensional vector space with
a zero threshold. Thus, it is tempting to use Theorems 1 and 2 to derive lower
bounds for Rocchio’s algorithm with non-zero classification threshold over the
(n + 1)-dimensional binary vector space. However, one shall notice that the
auxiliary feature variable will always maintain a value 1 in any example given
to the algorithm and the threshold may have arbitrary values other than just 1
or 0, therefore the proofs of these two theorems cannot be applied here.

Theorem 3. Rocchio’s similarity-based relevance feedback algorithm with sim-
ilarity m1 makes Ω(k(n − k)) mistakes in searching for the collection of doc-
uments represented by a monotone disjunction of k relevant features over the
binary vector space {0, 1}n, when the query updating factor α is a constant, the
initial query vector q1 = 0, and the classification threshold θ �= 0.

Proof. As in the previous section, let us consider the monotone disjunction Fk

defined in expression (3), and for each i, 1 ≤ i ≤ k, we construct examples that
allow the algorithm to focus on the learning of the relevant feature Xi exclusively.
We shall analyze several cases for the classification threshold θ.

Case 1: θ ≥ (n − k)α. For each relevant feature Xi, 1 ≤ i ≤ k, we construct a
sequence of examples xt, t = 1, . . . , (n−k+1), such that xt,i = 1 and xt,j = 0 for
1 ≤ j ≤ n and j �= i. Note that xt satisfies Fk. Since q1 = 0, by simple induction,
we have m1(q(i−1)(n−k+1)+t,xt) = (t− 1)α < θ. This implies that the algorithm
makes a mistake on xt, and the query vector is updated as q(i−1)(n−k+1)+t+1,i =
tα, q(i−1)(n−k+1)+t+1,j = (n−k+1)α for 1 ≤ j ≤ i−1, and q(i−1)(n−k+1)+t+1,j =
0. At the end, the algorithm makes at least k(n− k + 1) mistakes in learning all
the k relevant features in Fk.

Case 2: 0 < θ < (n−k)α. We choose the integer T such that (T−1)α < θ ≤ Tα,
1 ≤ T ≤ (n − k). Let N = %n−k

T &. We first construct an example x1 such that
x1,i = 1 for 1 ≤ i ≤ k, x1,k+j = 1, j = 1, . . . , NT , and the remaining components
are zero. This example satisfies Fk, but m1(q1,x1) = 0 since q1 = 0. Hence, the
algorithm makes a mistake, and the query vector is updated as q2,i = α for
1 ≤ i ≤ k, q2,k+j = α for j = 1, . . . , NT , and all the other components remain
0. Now, for each relevant feature Xi, 1 ≤ i ≤ k, we construct examples xt for
t = 2, . . . , T such that xt,i = 1 and all its other components are zero. This
example satisfies Fk, but m1(qt,xt) = (t − 1)α, which is less than θ. Hence,
the algorithm makes one mistakes on each xt, and the query vector is updated
as qt+1,i = tα and all the other components remain unchanged. At the end, the
algorithm makes k(T −1)+1 mistakes, and qk(T−1)+1,i = Tα, qk(T−1)+1,k+j = α
for 1 ≤ j ≤ NT , and all the other components are zero.

Next, we construct examples yt for t = 1, . . . , N−1 such that yt,k+T (t−1)+j =
1, j = 1, . . . , T , and all its other components are zero. Each yt does not satisfy

A Quadratic Lower Bound for Relevance Feedback Algorithm 963

Fk, but m1(qk(T−1)+t,yt) = Tα ≥ θ. This forces the algorithm to make one
mistake on yt and to set qk(T−1)+t+1,k+T (t−1)+j = 0 for j = 1, . . . , T , while
keeping all the other components unchanged. For t = N , we set yt,k+j = 1 for
j = 1, . . . , NT , and all the other components are zero. Again, this example does
not satisfy Fk and forces the algorithm to make one mistake. The query vector
is updated as qk(T−1)+N+1,i = Tα, qk(T−1)+N+1,j = 0 for 1 ≤ j ≤ k and j �= i,
qk(T−1)+N+1,k+j = −α, for j = 1, . . . , (N − 1)T , and qk(T−1)+N+1,k+j = 0, for
j = (N − 1)T + 1, . . . , NT . We let A1 = qk(T−1)+N+1 to simplify notation.

We now consider the phrase to continue the learning of the relevant feature
Xi, for 1 ≤ i ≤ k. We construct examples zt for t = 1, . . . , 2(N − 1)T + 1 such
that zt,i = 1 if t is odd and zi = 0 if t is even, zt,k+j = 1 for j = 1, . . . , NT , and
all the other components are zero. Notice that zt satisfies Fk if and only if t is
odd. By simple induction, the algorithm makes one mistake on each zt, and the
query vector is updated as At+1,i = Tα + (t+1)α

2 for odd t, At+1,i = Tα + tα
2 for

even t, At+1,j = 0 for 1 ≤ j ≤ k and j �= i or NT + 1 ≤ j ≤ n, At+1,k+j = 0 for
odd t and 1 ≤ j ≤ (N − 1)T , At+1,k+j = −α for even t and 1 ≤ j ≤ (N − 1)T ,
At+1,k+j = α for odd t and (N − 1)T + 1 ≤ j ≤ NT , At+1,k+j = 0 for even t
and (N − 1)T + 1 ≤ j ≤ NT . At the end of this phrase, the algorithm makes
2(N−1)T+1 mistakes and, the query vector A2(N−1)T+1 maintains the following
invariant property: all its components are the same as those in A1, except that
the i-component is updated successfully to learn the relevant feature Xi. This
invariant property allows us to follow the similar phrase for all the other relevant
features to force the algorithm to make 2(N − 1)T + 1 mistakes for each of such
phrase. Therefore, the algorithm makes 2k(N − 1)T + k mistakes during these
phrases.

In summary, in this case the algorithm make at least k(T − 1) + N + 1 +
2k(N − 1)T + k = Ω(k(n− k)) mistakes, since 1 ≤ T ≤ (n− k) and N = %n−k

T &.
We omit the analysis for Case 3 of θ < −(n−k)α and Case 4 of −(n−k)α <

θ < 0 due to space limitation. �

Theorem 4. Rocchio’s similarity-based relevance feedback algorithm with simi-
larity m1 makes Ω(k(n−k)) mistakes in searching for the collection of documents
represented by a monotone disjunction of k relevant features over the binary vec-
tor space {0, 1}n, when the query updating factor α is a constant, the initial query
vector is q1 ∈ {0, 1}n is not 0, and the classification threshold θ �= 0.

Proof Sketch. We follow the similar approach as in the proof for Theorem 3. But
here we need to consider the additional value 1 that appear at the initial query
vector when constructing examples forcing the algorithm to make mistakes. �

Remark 1. Theorems 3 and 4 can be extended to similarities ms, 2 ≤ s ≤ 4.
The underlying analysis is, however, more complicated, and will be presented in
the full version of the paper.

5 Conclusions

We devise the following upper bound for Rocchio’s algorithm:

964 Zhixiang Chen and Bin Fu

Theorem 5. When a fixed updating factor and a zero classification threshold
are used, Rocchio’s algorithm with similarity m1 makes at most O(k(n − k)2)
mistakes in searching for the collection of documents represented by a monotone
disjunction of k relevant features over the n-dimensional binary vector space.

It is interesting to close the (n−k)-factor gap between the above upper bound
and the lower bounds obtained in the previous two sections. Since Rocchio’s
algorithm uses linear classifiers as its hypotheses, it would be interesting to
investigate the learning complexity of the algorithm in searching for documents
represented by a linear classifier.

References

1. R. Baeza-Yates and B. Ribeiro-Neto B, Modern Information Retrieval, Addison-
Wesley, 1999.

2. Z. Chen, Multiplicative adaptive algorithms for user preference retrieval, Proceed-
ings of the Seventh Annual International Computing and Combinatorics Confer-
ence, LNCS 2108, pp. 540-549, Springer-Verlag, 2001.

3. Z. Chen, Multiplicative adaptive user preference retrieval and its applications to
Web search, In: Zhang G, Kandel A, Lin T, and Yao Y, eds. Computational Web
Intelligence: Intelligent Technology for Web Applications, pp. 303-328, World Sci-
entific, 2004.

4. Z. Chen and B. Zhu, (2002) Some formal analysis of Rocchio’s similarity-based rel-
evance feedback algorithm, Information Retrieval 5: 61-86, 2002. (The preliminary
version of this paper appeared in Proceedings of the Eleventh International Sym-
posium on Algorithms and Computation (ISAAC’00), LNCS 1969, pp. 108-119,
2000.)

5. J. Rocchio, Relevance feedback in information retrieval, In: Salton G, ed. The
Smart Retrieval System - Experiments in Automatic Document Processing, pp.
313-323, Prentice-Hall, Englewood Cliffs, NJ, 1971.

6. D. Lewis, Learning in intelligent information retrieval, Proceedings of the Eighth
International Workshop on Machine Learning, pp. 235-239, 1991.

7. N. Littlestone, Learning quickly when irrelevant attributes abound: A new linear-
threshold algorithm, Machine Learning, 2:285–318, 1988.

8. V. Raghavan and S. Wong, A critical analysis of the vector space model for informa-
tion retrieval, Journal of the American Society for Information Science, 37(5):279-
287, 1986.

9. F. Rosenblatt, The perceptron: A probabilistic model for information storage and
organization in the brain, Psychological Review, 65(6):386-407, 1958.

10. G. Salton, Automatic Text Processing: The Transformation, Analysis, and Re-
trieval of Information by Computer, Addison-Wesley, 1989.

11. G. Salton and C. Buckley, Improving retrieval performance by relevance feedback,
Journal of the American Society for Information Science 41(4):288-297, 1990.

12. G. Salton, S. Wong and C. Yang, A vector space model for automatic indexing,
Comm. of ACM, 18(11):613-620, 1975.

13. C.J. van Vijsbergen, Information Retrieval. Butterworths, 1979.
14. S. Wong, Y. Yao and P. Bollmann, Linear structures in information retrieval,

Proceedings of the 1988 ACM-SIGIR Conference on Information Retrieval, pp.
219-232, 1988.

The Money Changing Problem Revisited:
Computing the Frobenius Number

in Time O(k a1)
�

Sebastian Böcker and Zsuzsanna Lipták

AG Genominformatik, Technische Fakultät
Universität Bielefeld

PF 100 131
33501 Bielefeld, Germany

{boecker,zsuzsa}@CeBiTec.uni-bielefeld.de

Abstract. The Money Changing Problem (also known as Equality Con-
strained Integer Knapsack Problem) is as follows: Let a1 < a2 < · · · < ak

be fixed positive integers with gcd(a1, . . . , ak) = 1. Given some integer
n, are there non-negative integers x1, . . . , xk such that

∑
i aixi = n?

The Frobenius number g(a1, . . . , ak) is the largest integer n that has no
decomposition of the above form.
There exist algorithms that, for fixed k, compute the Frobenius num-
ber in time polynomial in log ak. For variable k, one can compute a
residue table of a1 words which, in turn, allows to determine the Frobe-
nius number. The best known algorithm for computing the residue table
has runtime O(k a1 log a1) using binary heaps, and O(a1(k + log a1)) us-
ing Fibonacci heaps. In both cases, O(a1) extra memory in addition to
the residue table is needed. Here, we present an intriguingly simple al-
gorithm to compute the residue table in time O(k a1) and extra memory
O(1). In addition to computing the Frobenius number, we can use the
residue table to solve the given instance of the Money Changing Problem
in constant time, for any n.

1 Introduction

In the classical Money Changing Problem (MCP), we are given coins of k dif-
ferent values a1 < a2 < · · · < ak with gcd(a1, . . . , ak) = 1. We want to know
what change n =

∑
i aixi we can generate from these coins for non-negative

integers xi, assuming that we have an infinite supply of coins. Then, there ex-
ists an integer g(a1, . . . , ak) called the Frobenius number of a1, . . . , ak, such that
g(a1, . . . , ak) does not allow a decomposition of the above type, but all integers
n > g(a1, . . . , ak) do. There has been considerable work on bounds for Frobenius
numbers (see [16] for a survey) but here we concentrate on exact computations.

In 1884, Sylvester asked for the Frobenius number of k = 2 coins a1, a2,
and Curran Sharp showed that g(a1, a2) = a1a2 − a1 − a2 [17]. For three coins
� Supported by “Deutsche Forschungsgemeinschaft” (BO 1910/1-1 and 1-2) within the

Computer Science Action Program

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 965–974, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

966 Sebastian Böcker and Zsuzsanna Lipták

a1, a2, a3, Greenberg [9] provides a fast algorithm with runtime O(log a1), and
Davison [6] independently discovered a simple algorithm with runtime O(log a2).
Kannan [11] establishes algorithms that for any fixed k, compute the Frobenius
number in time polynomial in log ak. For variable k, the runtime of such algo-
rithms has a double exponential dependency on k, and is not competitive for
k ≥ 5. Also, it does not appear that Kannan’s algorithms have actually been im-
plemented. Computing the Frobenius number is NP-hard [15], so we cannot hope
to find algorithms polynomial in k and log ak simultaneously unless P = NP.

There has been a considerable amount of research on computing the exact
Frobenius number if k is variable, see again [16] for a survey. Heap and Lynn [10]
suggest an algorithm with runtime O(a3

k log g), and Wilf’s “circle-of-light” algo-
rithm [18] runs in O(kg) time, where g = O(a1ak) is the Frobenius number of the
problem. Until recently, the fastest algorithm to compute g(a1, . . . , ak) was due
to Nijenhuis [14]: It is based on Dijkstra’s method for computing shortest paths
[7] using a priority queue. This algorithm has runtime O(k a1 log a1) using binary
heaps, and O(a1(k+log a1)) using Fibonacci heaps as the priority queue. To find
the Frobenius number, the algorithm computes a data structure (called “residue
table” in the following) of a1 words, which in turn allows simple computation of
g(a1, . . . , ak). Nijenhuis’ algorithm requires O(a1) extra memory in addition to
the residue table. Recently, Beihoffer et al. [3] developed algorithms that work
faster in practice, but none obtains asymptotically better runtime bounds than
Nijenhuis’s algorithm, and all require extra memory linear in a1.

Here, we present an intriguingly simple algorithm to compute the residue
table – and hence, to find g(a1, . . . , ak) – in time O(k a1) with constant extra
memory. In addition to the improved runtime bound, our algorithm also outper-
forms Nijenhuis’ algorithm in practice.

Moreover, access to the residue table allows us to solve subsequent MCP
decision problems on the same coin set in constant time: Here, the input is
a1, . . . , ak, n and we ask the question “Is n decomposable?” The MCP decision
problem, also known as Equality Constrained Integer Knapsack Problem, is also
NP-hard [13]. In principle, one can solve MCP decision problems using generating
functions, but the computational cost for coefficient expansion and evaluation
are too high in applications [8, Chapter 7.3]. It is computer science folklore
that the question can be answered in time O(k n) using dynamic programming1,
but the linear runtime dependence on n is unfavorable. Aardal et al. [1, 2] use
lattice basis reduction to find a decomposition of n. In Section 6 we show that
computing the complete residue table using our algorithm is often faster than
solving a single MCP decision instance with the method suggested by Aardal
et al.

We show in [4] that a slightly modified version of the algorithm presented
here allows its application for the analysis of mass spectrometry data: There, one
is given a weighted alphabet (such as amino acids) and an input mass m, and
one wants to find all decompositions of m. To this end, an “extended residue

1 Wright [19] shows how to find a decomposition using a minimal number of coins in
time O(k n)

The Money Changing Problem Revisited 967

table” of size O(ka1) is generated in runtime O(ka1), where a1 is the smallest
mass in the alphabet and k the size of the alphabet. This data structure allows
for computation of all decompositions in time linear in the size of the output,
and otherwise independent of the input mass m. Confer [4] for details.

2 Residue Classes and the Frobenius Number

For integers a and b, let “a mod b” denote the unique integer p ∈ {0, . . . , b− 1}
such that p ≡ a (mod b) holds.

Let a1 < · · · < ak with gcd(a1, . . . , ak) = 1 be an instance of the Money
Changing Problem. Brauer and Shockley [5] suggest to construct a residue table
(np)p=0,...,a1−1, where np is the smallest integer with np ≡ p (mod a1) that
can be decomposed into a non-negative integer combination of a1, . . . , ak. The
np are well-defined: If n has a decomposition, so has n + a1, and n ≡ n + a1

(mod a1). Clearly,
∑

i aixi = np implies x1 = 0 because otherwise, np − a1 has
a decomposition, too. If the np are known, then we can test in constant time
whether some number n can be decomposed: Set p = n mod a1, then n can be
decomposed if and only if n ≥ np.

Given the values np for p = 0, . . . , a1−1, we can compute the Frobenius num-
ber g(a1, . . . , ak) and the number of omitted values ω that cannot be decomposed
over a1, . . . , ak [5]:

g := g(a1, . . . , ak) = max
p
{np} − a1 and ω =

∑
p

⌊
np

a1

⌋
=

1
a1

∑
p

np −
a1 − 1

2
.

Many algorithms for computing the Frobenius number rely on the above
result. For example, Davison’ algorithm [6] makes implicit use of this table.
To explicitly compute the values np for p = 0, . . . , a1 − 1, Nijenhuis [14] gave
an algorithm with runtime O(k a1 log a1), where the log a1 factor is due to a
binary heap structure that must be updated in every step. One can easily modify
Nijenhuis’ algorithm by using a Fibonacci heap instead of a binary heap, thereby
reaching a O(a1(k + log a1)) runtime bound, but the constant factor overhead
(runtime and memory) is much higher for a Fibonacci heap.

3 The Round Robin Algorithm

We compute the values np, for p = 0, . . . , a1−1, iteratively for the sub-problems
“Find np for the instance a1, . . . , ai” for i = 1, . . . , k. For i = 1 we start with
n0 = 0 and np =∞, p = 1, . . . , a1 − 1.

Suppose we know the correct values n′
p for the sub-problem a1, . . . , ak−1 and

want to calculate those of the original problem a1, . . . , ak. We first concentrate
on the simple case that gcd(a1, ak) = 1. We initialize np ← n′

p for all p =
0, . . . , a1 − 1 and n ← n0 = 0. In every step of the algorithm, set n ← n + ak

and p ← n mod a1. Let n ← min{n, np} and np ← n. We repeat this loop until
n equals 0.

968 Sebastian Böcker and Zsuzsanna Lipták

p a1 = 5 a2 = 8 a3 = 9 a4 = 12

0 0 0 0 0
1 ∞ 16 16 16
2 ∞ 32 17 12
3 ∞ 8 8 8
4 ∞ 24 9 9

Fig. 1. Table np for the MCP instance 5, 8, 9, 12

In case all a2, . . . , ak are coprime to a1, this short algorithm is already suffi-
cient to find the correct values np. We have displayed a small example in Figure 1,
where every column corresponds to one iteration of the algorithm as described in
the previous paragraph. For example, focus on the column a3 = 9. We start with
n = 0. In the first step, we have n ← 9 and p = 4. Since n < n4 = 24 we update
n4 ← 9. Second, we have n ← 9 + 9 = 18 and p = 3. In view of n > n3 = 8
we set n ← 8. Third, we have n ← 8 + 9 = 17 and p = 2. Since n < n2 = 32
we update n2 ← 17. Fourth, we have n ← 17 + 9 = 26 and p = 1. In view of
n > n1 = 16 we set n ← 16. Finally, we return to p = 0 via n ← 16 + 9 = 25.

From the last column we can see that the Frobenius number for this example
is g(5, 8, 9, 12) = 16− 5 = 11.

It is straighforward how to generalize the algorithm for d := gcd(a1, ai) > 1:
In this case, we do the updating independently for every residue r = 0, . . . , d−1:
Only those np for p ∈ {0, . . . , a1 − 1} are updated that satisfy p ≡ r (mod d).
To guarantee that the round robin loop completes updating after a1/d steps, we
have to start the loop from a minimal np with p ≡ r (mod d). For r = 0 we
know that n0 = 0 is the unique minimum, while for r �= 0 we search for the
minimum first.

Round Robin Algorithm
1 initialize n0 = 0 and np =∞ for p = 1, . . . , a1 − 1
2 for i = 2, . . . , k do
3 d = gcd(a1, ai);
4 for r = 0, . . . , d− 1 do
5 Find n = min{nq | q mod d = r, 0 ≤ q ≤ a1 − 1}
6 If n <∞ then repeat a1/d− 1 times
7 n ← n + ai; p = n mod a1;
8 n ← min{n, np}; np ← n;
9 done;

10 done;
11 done.

The inner loop (lines 6–9) will be executed only if the minimum min{nq} is
finite; otherwise, the elements of the residue class cannot be decomposed over
a1, . . . , ai because of gcd(a1, . . . , ai) > 1.

Lemma 1. Suppose that n′
p for p = 0, . . . , a1−1 are the correct residue table en-

tries for the MCP instance a1, . . . , ak−1. Initialize np ← n′
p for p = 0, . . . , a1−1.

The Money Changing Problem Revisited 969

Then, after one iteration of the outer loop (lines 3–10) of the Round Robin Al-
gorithm, the residue table entries equal the values np for p = 0, . . . , a1 − 1 for
the MCP instance a1, . . . , ak.

Since for k = 1, n0 = 0 and np = ∞ for p �= 0 are the correct values for
the MCP with one coin, we can use induction to show the correctness of the
algorithm. To prove the lemma, we first note that for all p = 0, . . . , a1 − 1,

np ≤ n′
p and np ≤ nq + ak for q = (p− ak) mod a1

after termination. Assume that for some n, there exists a decomposition n =∑k
i=1 aixi. We have to show n ≥ np for p = n mod a1. Now,

∑k−1
i=1 aixi =

n − akxk is a decomposition of the MCP instance a1, . . . , ak−1 and for q =
(n− akxk) mod a1 we have n− akxk ≥ n′

q. We conclude

np ≤ nq + akxk ≤ n′
q + akxk ≤ n.

By an analogous argument, we infer np = n for minimal such n. One can easily
show that np =∞ if and only if no n with n ≡ p (mod a1) has a decomposition
with respect to the MCP instance a1, . . . , ak.

Under the standard model of computation, time and space complexity of the
algorithm are immediate and we reach:

Theorem 1. The Round Robin Algorithm computes the residue table of an in-
stance a1, . . . , ak of the Money Changing Problem, in runtime Θ(k a1) and extra
memory O(1).

To obtain a decomposition of any n in k steps, we save for every p =
0, . . . , a1 − 1 the minimal index i such that a decomposition x1, . . . , xk of np

has xi > 0, and we also save the maximal xi for any such decomposition. This
can be easily incorporated into the algorithm retaining identical time complexity,
and requires 2a1 additional words of memory. Doing so, we obtain a lexicograph-
ically maximal decomposition. Note that unlike the Change Making Problem,
we do not try to minimize the number of coins used.

4 Heuristic Runtime Improvements

We can improve the Round Robin Algorithm in the following ways: First, we do
not have to explicitly compute the greatest common divisor gcd(a1, ai). Instead,
we do the first round robin loop (lines 6–9) for r = 0 with n = n0 = p = 0 until
we reach n = p = 0 again. We count the number of steps t to this point. Then,
d = gcd(a1, ai) = a1

t and for d > 1, we do the remaining round robin loops
r = 1, . . . , d− 1.

Second, for r > 0 we do not have to explicitly search for the minimum in
Nr := {nq : q = r, r + d, r + 2d, . . . , r + (a1 − d)}. Instead, we start with n = nr

and do exactly t− 1 steps of the round robin loop. Here, nr = ∞ may hold, so

970 Sebastian Böcker and Zsuzsanna Lipták

we initialize p = r (line 5) and update p ← (p + ai) mod a1 separately in line 7.
Afterwards, we continue with this loop until we first encounter some np ≤ n in
line 8, and stop there. The second loop takes at most t−1 steps, because at some
stage we reach the minimal np = min Nr and then, np < n must hold because
of the minimality of np. This compares to the t steps for finding the minimum.

Third, A. Nijenhuis suggested the following improvement (personal commu-
nication): Suppose that k is large compared to a1, for example k = O(a1). Then,
many round robin loops are superfluous because chances are high that some ai is
representable using a1, . . . , ai−1. To exclude such superfluous loops, we can check
after line 2 whether np ≤ ai holds for p = ai mod a1. If so, we can skip this ai

and continue with the next index i + 1, since this implies that ai has a decom-
position over a1, . . . , ai−1. In addition, this allows us to find a minimal subset of
{a1, . . . , ak} sufficient to decompose any number that can be decomposed over
the original MCP instance a1, . . . , ak.

Fourth, if k ≥ 3 then we can skip the round robin loop for i = 2: The
Extended Euclid’s Algorithm [12] computes integers d, u1, u2 such that a1u1 +
a2u2 = d = gcd(a1, a2). Hence, for the MCP instance a1, a2 we have np =
1
d ((p a2u2) mod (a1a2)) for all p ≡ 0 (mod d), and np = ∞ otherwise. Thus, we
can start with the round robin loop for i = 3 and compute the values n′

p of the
previous instance a1, a2 on the fly using the above formula.

5 Cache Optimizations

Our last improvement is based on the following observation: The residue table
(np)p=0,...,a1−1 is very memory consuming, and every value np is read (and even-
tually written) exactly once during any round robin loop. Nowadays processors
usually have a layered memory access model, where data is temporarily stored in
a cache that has much faster access times than the usual memory. The following
modification of the Round Robin Algorithm allows for cache-optimized access of
the residue table: We exchange the r = 0, . . . , gcd(a1, ai) − 1 loop (lines 4–10)
with the inner round robin loop (lines 6–9). In addition, we make use of the
second improvement introduced above and stop the second loop as soon as none
of the np+r was updated. Now, we may assume that the consecutive memory
access of the loop over r runs in cache memory.

We want to roughly estimate how much runtime this improvement saves us.
For two random numbers u, v drawn uniformly from {1, . . . , n}, the expected
value of the greatest common divisor is approximately E

(
gcd(u, v)

)
≈ 6/π2Hn,

where Hn is the n’th harmonic number [12]. This leads us to the approximation
E
(
gcd(u, v)

)
≈ 1.39 · log10 n + 0.35, so the expected greatest common divisor

grows logarithmically with the coin values, for random input2. Even so, the
improvement has relatively small impact on average: Let tmem denote the run-
time of our algorithm in main memory, and tcache the runtime for the same
2 For simplicity, we ignore the fact that due to the sorting of the input, a1 =

min{a1, . . . , ak} is not drawn uniformly, and we also ignore the dependence between
the drawings

The Money Changing Problem Revisited 971

instance of the problem if run in cache memory. For an instance a1, . . . , ak of
MCP, the runtime tmod of our modified algorithm roughly depends on the values
1/ gcd(a1, ai):

tmod ≈ tcache + (tmem − tcache)
1

k − 1

k∑
i=2

1
gcd(a1, ai)

.

For random integers u, v uniformly drawn from {1, . . . , n} we estimate (analo-
gously to [12], Section 4.5.2)

E

(
1

gcd(u, v)

)
≈

n∑
d=1

p

d2

1
d

= p

n∑
d=1

1
d3

= pH(3)
n with p = 6/π2,

where the H
(3)
n are the harmonic numbers of third order. The H

(3)
n form a mono-

tonically increasing series with 1.2020 < H
(3)
n < H

(3)
∞ < 1.2021 for n ≥ 100, so

E
(
1/ gcd(u, v)

)
≈ 0.731. If we assume that accessing main memory is the main

contributor to the overall runtime of the algorithm, then we reduce the overall
runtime by roughly one fourth. This agrees with our runtime measurements for
random input as reported in the next section.

Round Robin Algorithm (optimized version for k ≥ 3)
1 Initialize n0, . . . , na1−1 for the instance a1, a2, a3; // fourth improvement
2 For i = 4, . . . , k do
3 If np ≤ ai for p = ai mod a1 then continue with next i; // third improvement
4 d = gcd(a1, ai);
5 p ← 0; q ← ai mod a1; // p is source residue, q is destination residue
6 Repeat a1/d − 1 times
7 For r = 0, . . . , d − 1 do
8 nq+r ← min{nq+r , np+r + ai};
9 done;

10 p ← q; q ← (q + ai) mod a1;
11 done;
12 // update remaining entries, second improvement
13 Repeat
14 For r = 0, . . . , d − 1 do
15 nq+r ← min{nq+r , np+r + ai};
16 done;
17 p ← q; q ← (q + ai) mod a1;
18 until no entry nq+r was updated;
19 done.

Fig. 2. Optimized version of the Round Robin Algorithm

In Figure 2 we have incorporated all but the first improvements into the
Round Robin Algorithm; note that the first and last improvement cannot be
incorporated simultaneously. All presented improvements are runtime heuristics,
so the resulting algorithm still has runtime O(k a1).

972 Sebastian Böcker and Zsuzsanna Lipták

6 Computational Results

We generated 12 000 random instances of MCP, with k = 5, 10, 20 and 103 ≤
ai ≤ 107. We have plotted the runtime of the optimized Round Robin Algorithm
against a1 in Figure 3. As expected, the runtime of the algorithm is mostly
independent of the structure of the underlying instance. The processor cache, on
the contrary, is responsible for major runtime differences. The left plot contains
only those instances with a1 ≤ 106; here, the residue table of size a1 appears
to fit into the processor cache. The right plot contains all random instances; for
a1 > 106, the residue table has to be stored in main memory.

 0

 1

 2

 3

 4

 5

 6

1*1068*1056*1054*1052*1050

tim
e

[s
ec

]

k=20

k=10

k=5

k=20
k=10

k=5

RoundRobin

Nijenhuis

 0

 50

 100

 150

 200

1*1078*1066*1064*1062*1060

tim
e

[s
ec

]
k=20

k=10

k=5

k=20

k=10

k=5

RoundRobin

Nijenhuis

Fig. 3. Runtime vs. a1 for k = 5, 10, 20 where a1 ≤ 106 (left) and a1 ≤ 107 (right)

To compare runtimes of the Round Robin Algorithm with those of Nijenhuis’
algorithm [14], we re-implemented the latter in C++ using a binary heap as
the priority queue. As one can see in Figure 3, the speedup of our optimized
algorithm is about 10-fold for a1 ≤ 106, and more than threefold otherwise.
Regarding Kannan’s algorithm [11], the runtime factor kkk

> 102184 for k = 5
makes it impossible to use this approach.

Comparing the original Round Robin Algorithm with the optimized version,
the achieved speedup was 1.67-fold on average (data not shown).

We also tested our algorithm on some instances of the Money Changing
Problem that are known to be “hard”: Twenty-five examples with 5 ≤ k ≤ 10
and 3719 ≤ a1 ≤ 48709 were taken from [2], along with runtimes given there
for standard linear programming based branch-and-bound search. The runtime
of the optimized Round Robin Algorithm (900 MHz UltraSparc III processor,
C++) for every instance is below 10 ms, see Table 1. Note that in [2], Aardal and
Lenstra do not compute the Frobenius number g but only verify that g cannot
be decomposed. In contrast, the Round Robin Algorithm computes the residue
table of the instance, which in turn allows to answer all subsequent questions
whether some n is decomposable, in constant time. Still and all, runtimes usually
compare well to those of [2] and clearly outperform LP-based branch-and-bound
search (all runtimes above 9000 ms), taking into account the threefold processor
power running the Round Robin Algorithm.

The Money Changing Problem Revisited 973

Table 1. Runtimes on instances from [2] in milliseconds, measured on a 359 MHz
UltraSparc II (Aardal & Lenstra) and on a 900 MHz UltraSparc III (Round Robin)

Instance c1 c2 c3 c4 c5 p1 p2 p3 p4 p5 p6 p7 p8

Aardal& Lenstra 1 1 1 1 1 1 1 2 1 2 1 2 1
Round Robin 0.8 0.9 0.9 1.1 1.6 3.1 1.2 4.9 9.2 4.0 3.4 3.1 2.8

Instance p9 p10 p11 p12 p13 p14 p15 p16 p17 p18 p19 p20

Aardal& Lenstra 3 2 5 12 6 12 80 80 150 120 100 5
Round Robin 0.4 6.5 1.8 2.1 2.4 1.8 2.1 6.4 2.5 3.7 3.2 9.0

7 Conclusion

We have presented the Round Robin Algorithm that generates a residue table
which allows us to find the Frobenius number, as well as to answer whether any
number n can be decomposed, the latter in constant time. The advantages of
our algorithm are (i) its simplicity, making it easy to implement and allowing
further improvements; (ii) its guaranteed worst case runtime of O(k a1), inde-
pendent of the structure of the underlying instance; and (iii) its constant extra
memory requirements. To the best of our knowledge, no other algorithm with
worst case runtime O(k a1) is known. In addition, runtimes of the Round Robin
Algorithm compare well to other, more sophisticated approaches, see [3]. It is
rather surprising that despite the simplicity and efficiency of the Round Robin
algorithm, it has not been reported in literature.

Simulations clearly show that the time consuming part of the Round Robin
algorithm is accessing memory. We are currently working on a modification that
performs cache-optimized memory access as described in Section 5, even when
gcd(a1, ai) is small.

As mentioned in the introduction, we can use a slightly modified version of
the Round Robin Algorithm to compute a data structure, which in turns allows
us to find all decompositions of any input n. To this end, we generate an ex-
tended residue table of size O(ka1) in runtime O(ka1) that stores not only the
“final” column of the residue table, but also all intermediate steps, confer Fig. 1.
If we denote the number of decompositions of n by γ(n), then this data struc-
ture allows us to generate all decompositions in time O(ka1γ(n)) backtracking
through the extended residue table, see [4].

Acknowledgments

Implementation and simulations by Henner Sudek. We thank Stan Wagon and
Albert Nijenhuis for helpful discussions.

References

1. K. Aardal, C. Hurkens, and A. K. Lenstra. Solving a system of diophantine equa-
tions with lower and upper bounds on the variables. Math. Operations Research,
25:427–442, 2000.

974 Sebastian Böcker and Zsuzsanna Lipták

2. K. Aardal and A. K. Lenstra. Hard equality constrained integer knapsacks. Lect.
Notes Comput. Sc., 2337:350–366, 2002.

3. D. E. Beihoffer, J. Hendry, A. Nijenhuis, and S. Wagon. Faster algorithms for
Frobenius numbers. In preparation.

4. S. Böcker and Zs. Lipták. Efficient mass decomposition. In Proc. of ACM Sympo-
sium on Applied Computing 2005, pages 151–157, Santa Fe, USA, 2005.

5. A. Brauer and J. E. Shockley. On a problem of Frobenius. J. Reine Angew. Math.,
211:215–220, 1962.

6. J. L. Davison. On the linear diophantine problem of Frobenius. J. Number Theory,
48(3):353–363, 1994.

7. E. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1:269–271, 1959.

8. R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics. Addison-
Wesley, Reading, Massachusetts, second edition, 1994.

9. H. Greenberg. Solution to a linear diophantine equation for nonnegative integers.
J. Algorithms, 9(3):343–353, 1988.

10. B. R. Heap and M. S. Lynn. A graph-theoretic algorithm for the solution of a
linear diophantine problem of Frobenius. Numer. Math., 6:346–354, 1964.

11. R. Kannan. Lattice translates of a polytope and the Frobenius problem. Combi-
natorica, 12:161–177, 1991.

12. D. E. Knuth. The Art of Computer Programming: Seminumerical Algorithms,
volume 2. Addison-Wesley, Reading, Massachusetts, third edition, 1997.

13. G. S. Lueker. Two NP-complete problems in nonnegative integer programming.
Technical Report TR-178, Department of Electrical Engineering, Princeton Uni-
versity, March 1975.

14. A. Nijenhuis. A minimal-path algorithm for the “money changing problem”. Amer.
Math. Monthly, 86:832–835, 1979. Correction in Amer. Math. Monthly, 87:377,
1980.

15. J. L. Ramı́rez-Alfonśın. Complexity of the Frobenius problem. Combinatorica,
16(1):143–147, 1996.

16. J. L. Ramı́rez-Alfonśın. The Diophantine Frobenius Problem. Oxford University
Press, 2005. To appear.

17. J. J. Sylvester and W. J. Curran Sharp. Problem 7382. Educational Times, 37:26,
1884.

18. H. S. Wilf. A circle-of-lights algorithm for the “money-changing problem”. Amer.
Math. Monthly, 85:562–565, 1978.

19. J. W. Wright. The change-making problem. J. Assoc. Comput. Mach., 22(1):125–
128, 1975.

W -Hardness Under Linear FPT-Reductions:
Structural Properties and Further Applications�

Jianer Chen1, Xiuzhen Huang2, Iyad A. Kanj3, and Ge Xia4

1 Dept. of Computer Science, Texas A&M University, College Station, TX 77843
College of Information Science and Engineering, Central South University

Changsha 410083, P.R. China
chen@cs.tamu.edu

2 Computer Science Department, Arkansas State University, State University,
Arkansas 72467, USA

xzhuang@csm.astate.edu
3 School of Computer Science, Telecommunications and Information Systems

DePaul University, 243 S. Wabash Avenue, Chicago, IL 60604-2301, USA
ikanj@cs.depaul.edu

4 Department of Computer Science, Lafayette College, Easton, PA 18042, USA
gexia@cs.lafayette.edu

Abstract. The notion of linear fpt-reductions has been recently used to
derive strong computational lower bounds for well-known NP-hard prob-
lems. In this paper, we formally investigate the notions of W [t]-hardness
and W [t]-completeness under the linear fpt-reduction, and study struc-
tural properties of the corresponding complexity classes. Additional com-
plexity lower bounds on important computational problems are also es-
tablished.

1 Introduction

A parameterized problem Q is a decision problem consisting of instances of the
form (x, k), where the integer k ≥ 0 is called the parameter. The parameterized
problem Q is fixed-parameter tractable [8] if it can be solved in time f(k)|x|O(1),
where f is a recursive function1. Certain NP-hard parameterized problems, such
as vertex cover, are fixed-parameter tractable, and hence can be solved prac-
tically for small parameter values [7]. On the other hand, the inherent compu-
tational difficulty of solving many other NP-hard parameterized problems with
even small parameter values has suggested that certain parameterized prob-
lems be not fixed-parameter tractable, which has motivated the theory of fixed-
parameter intractability [8]. The W -hierarchy

⋃
t≥0 W [t] has been introduced

to characterize the inherent level of intractability for parameterized problems.
� This research is supported in part by US NSF under Grants CCR-0311590 and

CCF-0430683, by China NNSF under Grants No.60373083 and No.60433020, and
by DePaul University Competitive Research Grant

1 In this paper, we always assume that complexity functions are “nice” with both
domain and range being non-negative integers and the values of the functions and
their inverses can be easily computed

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 975–984, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

976 Jianer Chen et al.

A large number of parameterized problems have been proved to be hard or com-
plete for various levels in the W -hierarchy [8]. Examples of W [1]-hard problems
include many well-known NP-hard problems such as clique, dominating set,
set cover, and weighted cnf satisfiability. The theory of parameterized
intractability has found important applications in a variety of areas such as
database systems and model checking [9, 10, 16].

The W [1]-hardness of a parameterized problem provides a strong evidence
that the problem is not solvable in time f(k)nO(1) for any function f . However,
W [1]-hardness dose not provide further information on how precisely the problem
complexity depends on the parameter k. For example, the W [1]-hardness of the
clique problem does not exclude the possibility of solving the problem in time
O(nlog log k). Note that such an algorithm would be practically acceptable for
moderate values of the parameter k, such as k = 1000.

Recent investigation has started along this line of research. In particular, the
concept of linear fpt-reduction has been introduced to derive stronger computa-
tional lower bounds for well-known NP-hard parameterized problems [4, 5]. For
example, based on the linear fpt-reduction, it has been shown that unless an
unlikely collapse occurs in the parameterized complexity theory, any algorithm
solving the clique problem takes time at least nΩ(k). Note that this lower bound
is asymptotically tight in the sense that the trivial algorithm that enumerates
all subsets of k vertices in a given graph to test the existence of a clique of size
k runs in time O(nk).

Therefore, the linear fpt-reduction has provided a powerful method for deriv-
ing strong computational lower bounds. In this paper, we formally investigate the
concepts of W [t]-hardness and W [t]-completeness under the linear fpt-reduction,
and systematically study the structural properties of the corresponding com-
plexity classes. These complexity classes are defined based on generic complete
problems under the linear fpt-reduction, instead of on computational models as
for most traditional complexity classes. Therefore, it is natural to ask whether
the familiar structural properties for traditional complexity hierarchies still hold
true for the new parameterized complexity hierarchy. Moreover, the study of the
structural properties of the new complexity classes has a direct impact on the
applications of the theory to derive strong computational lower bounds.

We then illustrate the power of our techniques by deriving complexity lower
bounds for further computational problems. We note that many of the fpt-
reductions proposed in the literature are actually linear fpt-reductions or can
be easily modified to become linear fpt-reductions. This enables us to quickly
expand the list of computational problems with strong complexity lower bounds.
We also study the parameterized complexity of the problems in the classes lognp
and logsnp introduced by Papadimitriou and Yannakakis [15]. These problems
are solvable in time nO(log n) and therefore look “easier” than NP-hard problems
in general. In particular, we study the problems tournament dominating set,
rich hypergraph cover, and v-c dimension in these classes, and prove that,
these problems are W [1]-hard under the linear fpt-reduction. In consequence,
unless an unlikely collapse occurs in the parameterized complexity theory, these
problems cannot be solved in time f(k)no(k), neither can the optimization ver-

W -Hardness Under Linear FPT-Reductions 977

sions of these problems have polynomial time approximation schemes of running
time f(1/ε)no(1/ε), for any function f . These results either improve or comple-
ment previous research on the problems, and advance our understanding on the
complexity of the problems.

We briefly review the related terminologies. Denote by FPT the class of all
fixed-parameter tractable problems. A circuit C is a Πt-circuit if its output gate
is an and gate and it has depth t. The weight of an assignment τ to a circuit
is the number of variables assigned value 1 by τ . The parameterized problem
weighted satisfiability on Πt-circuits, abbreviated wcs[t], is to determine
for a given Πt-circuit C and an integer k, whether C has a satisfying assignment
of weight k. The weighted monotone satisfiability (resp. weighted anti-
monotone satisfiability) problem on Πt-circuits, abbreviated wcs+[t] (resp.
wcs−[t]) is defined similarly as wcs[t] except that the circuit C is required to
be monotone (resp. antimonotone). To simplify our statements, we will denote
by wcs∗[t] the problem wcs+[t] if t is even and the problem wcs−[t] if t is odd.
Finally, the weighted antimonotone cnf 2sat problem, abbreviated wcnf
2sat−, consists of the pairs of the form (F, k), where k is an integer k and F
is a CNF formula in which all literals are negative and each clause contains at
most 2 literals, such that F has a satisfying assignment of weight k.

Due to the space limit, proofs for Theorems 1, 2, 3, and 5 have been omitted.
We refer interested readers to the full version of the paper [6].

2 Wl-Hardness and Wl-Completeness

Each instance (C, k) of the wcs[t] problem can be regarded as a search problem,
in which we need to select k elements from a search space consisting of a set of n
input variables, and assign them value 1 so that the circuit C is satisfied. Many
well-known computational problems, such as weighted cnf sat, set cover,
and hitting set, have similar formulations. The interested reader is referred to
[5] for detailed discussion on this issue.

We will concentrate on parameterized problems that seek a subset in a search
space satisfying certain properties. Thus, each instance of our parameterized
problem is associated with a triple (k, n, m), where k is the parameter, n is the
size of the search space, and m is the instance size2.

Definition 1. A parameterized problem Q is linear fpt-reducible, shortly fptl-
reducible, to a parameterized problem Q′ if there exist a function f and an
algorithm A of running time f(k)mO(1) that, on each (k, n, m)-instance x of Q,
produces a (k′, n′, m′)-instance x′ of Q′, where k′ = O(k), n′ = nO(1), m′ =
mO(1), and x is a yes-instance of Q if and only if x′ is a yes-instance of Q′.

It is easy to verify that the fptl-reducibility is transitive. Similar to the W -
hierarchy defined in terms of the standard fpt-reducibility [8], we introduce a
W -hierarchy based on the fptl-reducibility.
2 For most problems in our consideration, the search space can be easily identified.

For problems in which the search space is not easily identified, we simply let n = m

978 Jianer Chen et al.

Definition 2. A parameterized problem Q is W [1]-hard under the fptl-reduction,
shortly Wl[1]-hard, if the wcnf 2sat− problem is fptl-reducible to Q. The prob-
lem Q is W [t]-hard under fptl-reduction, shortly Wl[t]-hard, for t ≥ 2 if the
wcs∗[t] problem is fptl-reducible to Q. For all t ≥ 1, a parameterized problem
Q is Wl[t]-complete if Q is in W [t] and is Wl[t]-hard.

The Wl[t]-hardness has been used to derive strong complexity lower bounds.
For Wl[t]-hard problems where t ≥ 2, we have the following result.

Proposition 1. (Theorem 5.1, [5]) For any integer t ≥ 2, unless W [t − 1] =
FPT, no Wl[t]-hard problem can be solved in time f(k)no(k)mO(1) for any recur-
sive function f .

Computational lower bounds for Wl[1]-hard problems have been closely re-
lated to the exponential time hypothesis (ETH), which was first articulated in
[12]. This hypothesis conjectures that the problem 3-satisfiability cannot be
solved in time 2o(n). To support the hypothesis, Impagliazzo and Paturi [12] have
shown that if ETH fails then many well-known NP-hard problems, including all
SNP problems formulated in [14], are solvable in subexponential time. Note that
many of the SNP problems have been the targets for exact algorithms for decades
but no subexponential time algorithms for them have been developed.

It is known [8] that ETH implies W [1] �= FPT.

Proposition 2. (Theorem 5.2, [5]) Unless ETH fails, no Wl[1]-hard problem is
solvable in time f(k)mo(k) for any recursive function f .

The main result in this section is that for any t ≥ 1, Wl[t+1]-hardness implies
Wl[t]-hardness. There are a number of reasons why this result is not trivial and
should be examined carefully:
– In most hierarchies in complexity theory, the hardness for an upper level

implies trivially the hardness for a lower level. For example, a Σp
t+1-hard

problem in the polynomial time hierarchy is automatically Σp
t -hard by the

definitions [13]. Therefore, it will be interesting to check whether such a
common property is also shared by the Wl-hierarchy.

– Such a result does not trivially follow from the definitions. The Wl[t]-hardness
is defined differently according to the parity of the integer t: for an even inte-
ger t, Wl[t]-hardness is defined based on the satisfiability problem wcs+[t] on
monotone circuits, while for an odd integer t, Wl[t]-hardness is defined based
on the satisfiability problem wcs−[t] on antimonotone circuits. In particu-
lar, the fpt-reduction from the problem wcs∗[t− 1] to the problem wcs∗[t]
proposed in the literature [8] is not a linear fpt-reduction (see Chapter 12 in
[8] for details).

– Note that the lower bound in Proposition 2 is actually stronger than that
in Proposition 1 since the search space size n is in general not larger than
the instance size m. That is, Wl[1]-hardness in fact implies a stronger lower
bound (although also under a stronger working hypothesis) than that implied
by Wl[t]-hardness for t > 1. Therefore, proving that Wl[t]-hardness implies
Wl[t− 1]-hardness will immediately provide a stronger computational lower
bound for Wl[t]-hard problems when t > 1.

W -Hardness Under Linear FPT-Reductions 979

Theorem 1. For any t ≥ 2, Wl[t + 1]-hardness implies Wl[t]-hardness.

Theorem 2. Wl[2]-hardness implies Wl[1]-hardness.

3 New Lower Bounds

Propositions 1 and 2 offer powerful techniques for deriving strong complexity
lower bounds for well-known NP-hard problems. In particular, it has been shown
[4, 5] that the following parameterized problems are Wl[2]-hard: weighted cnf
satisfiability, set cover, hitting set, and dominating set, and that the
following parameterized problems are Wl[1]-hard: weighted cnf q-sat for any
integer q ≥ 2, clique, and independent set. According to Proposition 2, none
of these problems can be solved in time f(k)mo(k) for any recursive function f
unless ETH fails.

In this section we expand the list of Wl[1]-hard problems by developing linear
fpt-reductions from the known Wl[1]-hard problems. In fact, many existing fpt-
reductions proposed in the literature are linear fpt-reductions. Therefore, these
fpt-reductions can be directly used or modified for our purpose. Using this ap-
proach, we can quickly get a much longer list of Wl[1]-hard problems and claim
strong complexity lower bounds for these problems. The reader is referred to [8]
for precise definitions for these problems.

Theorem 3. (1) The following parameterized problems are Wl[2]-hard: red-
blue dominating set, dominating clique, precedence constrained
processor scheduling, feature set, and weighted binary integer pro-
gramming; and (2) The problem set packing is Wl[1]-hard.

In particular, none of these problems can be solved in time f(k)mo(k) for any
recursive function f unless ETH fails.

Again, Theorem 3 gives asymptotically tight complexity lower bounds in a
very strong sense for these well-known NP-hard problems. For example, even
though the dominating clique problem can be trivially solved by exhaustive
enumeration in time O(nkm) of all subsets of k vertices, where n is the number
of vertices and m is the instance size of the graph, solving the problem in time
f(k)mo(k) is very unlikely for any recursive function f .

We further apply our technique to study two important problems in compu-
tational biology.

longest common subsequence: given a set S = {s1, s2, ..., sk} of k
strings over a finite alphabet Σ, and an integer λ > 0, is there a string
s ∈ Σ∗ of length λ, which is a subsequence of all of the k strings in S?
Here the parameter is k.

shortest common supersequence: given a set S = {s1, s2, ..., sk} of
k strings over a finite alphabet Σ, and an integer λ > 0, is there a string
s ∈ Σ∗ of length λ, which is a supersequence of all of the k strings in S?
Here the parameter is k.

980 Jianer Chen et al.

Theorem 4. The problems longest common subsequence and shortest
common supersequence are Wl[1]-hard. In consequence, they cannot be solved
in time f(k)mo(k) for any function f , unless ETH fails.

Proof. Pietrzak [17] has recently proved the W [1]-hardness for the problems
longest common subsequence and shortest common supersequence
by fpt-reductions from clique. For longest common subsequence, Pietrzak
developed a polynomial time algorithm A1 that, on an instance (G, k) of clique,
produces an instance (S1, λ1, k1) for longest common subsequence, where
k1 = k + 1 and |S1| = O(k8n7) = O(n15), such that (G, k) is a yes-instance of
clique if and only if (S1, λ1, k1) is a yes-instance of longest common subse-
quence. This fpt-reduction is obviously a linear fpt-reduction. In consequence,
the longest common subsequence problem is Wl[1]-hard. Note that here
we have simply let the search space size in an instance of longest common
subsequence to be equal to the instance size.

The other polynomial time algorithm developed by Pietrzak transforms an
instance (G, k) of clique to an instance (S2, λ2, k2) for shortest common
supersequence, where k2 = k + 1 and |S2| = O(k8n7) = O(n15), which gives
a linear fpt-reduction from clique to shortest common supersequence. In
consequence, shortest common supersequence is Wl[1]-hard. ��

To see the significance of Theorem 4, we quote a sentence from [17]:

Unless an unlikely collapse in the parameterized hierarchy occurs, this3

rules out the existence of exact algorithms with running time f(k)nO(1)

(i.e., exponential only in k) for those problems. This does not mean
that there are no algorithms with much better asymptotic time-complexity
than the known O(nk) algorithms based on dynamic programming, e.g.,
algorithms with running time n

√
k are not deemed impossible by our re-

sults.

Therefore, Theorem 4 has strengthened the results in [17] significantly and ad-
vanced our understanding on the complexity of the problems: it is actually un-
likely that the problems can be solved in time nγ(k) for any sublinear function
γ(k), and the known dynamic programming algorithms of running time O(nk)
for the problems are actually asymptotically optimal.

4 On the Complexity of lognp and logsnp Problems

To further illustrate the power of our methods, we consider another group of
computational problems introduced by Papadimitriou and Yannakakis [15].

A directed graph G is a tournament if between each pair of vertices in G,
there is exactly one directed edge. A hypergraph H is a rich hypergraph if every
edge in H is incident on at least half of the vertices in H . In their study for the
3 This refers to the results proved in [17] that the problems longest common sub-

sequence and shortest common supersequence are W [1]-hard

W -Hardness Under Linear FPT-Reductions 981

complexity classes lognp and logsnp, Papadimitriou and Yannakakis [15] have
in particular considered the following problems:

rich hypergraph cover: given a rich hypergraph H = (V, E) and a
parameter k, is there a subset C of k vertices in H such that every edge
in H is incident on at least one vertex in C?

tournament dominating set: given a tournament graph T , and a
parameter k, is there a subset D of k vertices in T such that for each
vertex v not in D, there is at least one vertex w in D and [w, v] is a
directed edge in T ?

v-c dimension: given a family F of subsets of a universe U , and a
parameter k, is there a subset S of U such that |S| = k and for each
subset T of S, there is a set CT ∈ F satisfying S ∩ CT = T ?

It can be shown [15] that if the parameter value k is larger than log m,
where m is the instance size, then the answer to rich hypergraph cover and
tournament dominating set is always positive while the answer to v-c di-
mension is always negative. Therefore, the problem instances of these problems
become non-trivial only when k ≤ log m. In consequence, all these problems can
be solved in time O(mlog m). Hence, these problems are unlikely to be NP-hard.
On the other hand, it is unknown whether any of these problems is solvable in
polynomial time.

Theorem 5. The problems rich hypergraph cover and tournament
dominating set are Wl[2]-hard, and the problem v-c dimension is Wl[1]-
hard. In consequence, they cannot be solved in time f(k)mo(k) for any function
f , unless ETH fails.

The approximability of the problems in Theorem 5 has drawn research inter-
ests recently [1, 2]. Recall that an NP optimization problem Q has a polynomial
time approximation scheme if there is an approximation algorithm AQ that takes
a pair (x, ε) as input, where x is an instance of Q and ε > 0 is a real number, and
returns a solution y for x such that the approximation ratio of the solution y is
bounded by 1 + ε, and for a fixed ε > 0, the running time of the algorithm AQ

is bounded by a polynomial of |x|. The algorithm AQ is a fully polynomial time
approximation scheme for Q if the running time of AQ is bounded by a polyno-
mial of 1/ε and |x|, and is an efficient polynomial time approximation scheme
for Q [3] if the running time of Q is bounded by f(1/ε)|x|O(1) for a function f .

An NP optimization problem Q can be systematically parameterized [5] into
a parameterized problem Para(Q), whose instances take the form (x, k) asking
whether the optimal value for x is not larger than k (resp. not smaller than k)
in case Q is a minimization (resp. maximization) problem.

Theorem 6. (Theorem 6.1, [5]) If the parameterized version Para(Q) of an NP
optimization problem Q is Wl[1]-hard, then Q has no polynomial time approxima-
tion scheme of running time f(1/ε)mo(1/ε) for any recursive function f , unless
ETH fails.

982 Jianer Chen et al.

Consider the following optimization problems.

rich hypergraph cover-opt: given a rich hypergraph H = (V, E),
find a minimum set C of vertices such that each edge in H is incident
on at least one vertex in C.

tournament dominating set-opt: given a tournament graph T , find
a minimum set D of vertices such that for each vertex v not in D, there
is at least one vertex w ∈ D and [w, v] is a directed edge in T .

v-c dimension-opt: given a family F of subsets of a universe U , find a
maximum subset S of U such that for each subset T of S, there is a set
CT ∈ F satisfying S ∩ CT = T .

Theorem 7. Unless ETH fails, none of the problems rich hypergraph
cover-opt, tournament dominating set-opt, and v-c dimension-opt
has polynomial time approximation schemes of running time f(1/ε)mo(1/ε) for
any recursive function f .

Proof. The parameterized versions of these problems are just the corresponding
parameterized problems in Theorem 5. The theorem follows immediately from
Theorem 5 and Theorem 6. ��

Theorem 7 improves or complements a number of previous results. Papadim-
itriou and Yannakakis [15] introduced the classes lognp and logsnp, and proved
that rich hypergraph cover and tournament dominating set are com-
plete under the polynomial time reduction for the class logsnp, and that v-c
dimension is complete under the polynomial time reduction for the class lognp.
These results hint that it is unlikely that these problems can be solved in poly-
nomial time. Theorem 7 shows that these problems are not only difficult for
being solved precisely in polynomial time, but also difficult for being solved
approximately in polynomial time. Cai and Chen [1] showed that the param-
eterized version of every NP optimization problem with fully polynomial time
approximation schemes is fixed-parameter tractable, and Cesati and Trevisan [3]
extended this result and proved that the parameterized version of every NP opti-
mization problem with efficient polynomial time approximation schemes is fixed-
parameter tractable. As a consequence, these results plus the W [1]-hardness of
the problems rich hypergraph cover, tournament dominating set, and
v-c dimension imply that these problems have no fully or efficient polynomial
time approximation schemes. Theorem 7 further strengthens these results by
showing the impossibility for these problems to have polynomial time approxi-
mation schemes of running time f(1/ε)mo(1/ε) for any recursive function f . Cai,
Juedes, and Kanj [2] studied the approximability of these problems and proved
that tournament dominating set and rich hypergraph cover cannot be
approximated to a ratio c > 1 unless dominating set can be approximated to
a ratio 2c in time O(2nδ

) for some δ < 1. Theorem 7 complements this result by
showing the inpracticability of approximation algorithms with small approxima-
tion ratio for tournament dominating set and rich hypergraph cover

W -Hardness Under Linear FPT-Reductions 983

(under a different working hypothesis). Moreover, it was posed as an open prob-
lem in [2] to study the inapproximability of v-c dimension, and Theorem 7
provides an answer to this question.

We point out that the results in Theorems 5 and 7 can be extended to many
other problems, such as the problems log clique, log dominating set, log
hypergraph cover, log adjustment, log chordless path studied in [15].
For detailed discussions, interested readers are referred to [11].

5 A Remark on the W -Hierarchy

In this section, we provide an interesting observation on the original W -hierarchy.
Most complexity hierarchies have the “hierarchical collapsing property” so that
the collapsing of a lower level in the hierarchy implies the collapsing of all higher
levels. For example, if for any integer t > 0, the t-th level of the polynomial time
hierarchy collapses to the (t−1)-st level, Σp

t = Σp
t−1, then the entire polynomial

time hierarchy collapses to the (t − 1)-st level: Σp
t+h = Σp

t−1 for all h ≥ 0
[13]. Most important complexity hierarchies, such as the NC hierarchy, the AC
hierarchy, and the Boolean hierarchy, share a similar collapsing result [13].

It has been a well-known open problem in parameterized complexity theory
whether the W -hierarchy satisfies a similar collapsing result. In particular, we
are interested in knowing whether the following result holds true for the W -
hierarchy:

Collapsing. If W [t] = FPT for an integer t ≥ 1, then W [h] = FPT for all
integer h ≥ t.

One would expect naturally that the collapsing results such as Collapsing
hold true. In the following, we discuss the consequence of Collapsing.

Theorem 8. If Collapsing holds true, then the problem wcs∗[t] either cannot
be solved in time f1(k)no(k)mO(1) for any function f1, or can be solved in time
f2(k)mO(1) for a fixed function f2.

Proof. Suppose that the problem wcs∗[t] can be solved in time f1(k)no(k)mO(1)

for a function f1. By Proposition 1, this implies that W [t − 1] = FPT . By
collapsing, this would imply W [t] = FPT . Since wcs∗[t] is in W [t], we derive
that wcs∗[t] can be solved in time f2(k)mO(1) for a function f2. ��

Obviously, the problem wcs∗[t] in Theorem 8 can be replaced by any Wl[t]-
complete problem.

Note that if Collapsing can be proved, then the conclusion in Theorem 8
holds true unconditionally, not depending on any complexity assumptions such
as P �= NP or W [1] �= FPT . This would exclude the possibility that, for example,
the complexity of the clique problem is in the order of Θ(n

√
k).

984 Jianer Chen et al.

References

1. L. Cai and J. Chen, On fixed parameter tractability and approximability of NP
optimization problems, Journal of Computer and System Sciences 54, pp. 465-474,
(1997).

2. L. Cai, D. Juedes, and I. A. Kanj, Inapproximability of non NP-hard opti-
mization problems, Theoretical Computer Science 289, pp. 553-571, (2002).

3. M. Cesati and L. Trevisan, On the efficiency of polynomial time approximation
schemes, Information Processing Letters 64, pp. 165-171, (1997).

4. J. Chen, B. Chor, M. Fellows, X. Huang, D. Juedes, I. Kanj, and G.
Xia, Tight lower bounds for certain parameterized NP-hard problems, Proc. 19th
Annual IEEE Conference on Computational Complexity (CCC 2004), pp. 150-160,
(2004). Journal version is to appear in Information and Computation.

5. J. Chen, X. Huang, I. Kanj, and G. Xia, Linear FPT reductions and computa-
tional lower bounds, Proc. 36th Annual ACM Symposium on Theory of Computing
(STOC 2004), pp. 212-221, (2004).

6. J. Chen, X. Huang, I. Kanj, and G. Xia, W -hardness under linear FPT-
reductions: structural properties and further applications, Tech. Report, Dept.
Computer Science, Texas A&M University, (2005).

7. J. Chen, I. A. Kanj, and W. Jia, Vertex cover: further observations and further
improvements, Journal of Algorithms 41, pp. 280-301, (2001).

8. R.G. Downey and M.R. Fellows, Parameterized Complexity, Springer-Verlag,
1999.

9. J. Flum and M. Grohe, Model-checking problems as a basis for parameter-
ized intractability, Proc. 19th IEEE Symposium on Logic in Computer Science,
(LICS’04), pp. 388-397, (2004).

10. M. Grohe, The parameterized complexity of database queries, Proc. 20th ACM
Symposium on Principles of Database Systems, (PODS’01), pp. 82-92, (2001).

11. X. Huang, Parameterized Complexity and Polynomial-time Approximation
Schemes, Ph.D. Dissertation, Department of Computer Science, Texas A&M Uni-
versity, December, 2004.

12. R. Impagliazzo and R. Paturi, Which problems have strongly exponential
complexity? Journal of Computer and System Sciences 63, pp. 512-530, (2001).

13. C.H. Papadimitriou, Computational Complexity, Addison-Wesley Pub., Reading,
Mass., 1995.

14. C. H. Papadimitriou and M. Yannakakis, Optimization, approximation, and
complexity classes, Journal of Computer and System Sciences 43, pp. 425-440,
(1991).

15. C.H. Papadimitriou and M. Yannakakis, On limited nondeterminism and the
complexity of VC dimension, Journal of Computer and System Sciences 53, pp.
161-170, (1996).

16. C.H. Papadimitriou and M. Yannakakis, On the complexity of database
queries, Journal of Computer and System Sciences 58, pp. 407-427, (1999).

17. K. Pietrzak, On the parameterized complexity of the fixed alphabet shortest
common supersequence and longest common subsequence problems, Journal of
Computer and System Sciences 67, pp. 757-771, (2003).

Some New Results on Inverse Sorting Problems�

Xiao Guang Yang1 and Jian Zhong Zhang2

1 Academy of Mathematics and Systems Science, Chinese Academy of Sciences,
Beijing, 100080, China

2 Department of Mathematics, City University of Hong Kong, Hong Kong

Abstract. In this paper, we consider two types of inverse sorting prob-
lems. The first type is an inverse sorting problem under weighted Ham-
ming distance with bound constraints, which can be solved in O(n2)
time. The second type is a family of partial inverse sorting problems
which we can further divide into two kinds, with free positions and with
fixed positions. We show that both types of partial inverse sorting prob-
lems can be solved by a combination of a sorting problem and an inverse
sorting problem.

Keywords: sorting problem, inverse problem, partial inverse problem,
Hamming distance, optimization.

1 Introduction

Given a set of numbers, say {a1, a2, · · · , an}, the sorting problem is to arrange
these numbers in a non-decreasing order (or non-increasing order). Mathemati-
cally it is to find a permutation ω of I = {1, 2, · · · , n} such that

aω(1) ≤ aω(2) ≤ · · · ≤ aω(n).

Sorting is a basic problem in daily life. It has many applications in various
combinatorial and management problems. It is also a building block for many
heuristic algorithms. It is well-known that the sorting problem can be solved in
O(n ln(n)) time.

Conversely, an inverse sorting problem is to modify the numbers such that
a given order of the modified numbers can form a non-decreasing (or non-
increasing) sequence. Without loss of generality, an inverse sorting problem can
be stated as follows:

min C(x− a) (1)
s.t. x1 ≤ x2 ≤ · · · ≤ xn (2)

where C(x − a) is a (weighted) deviation of vector x from vector a, or the cost
of changing a into x. Applications of the inverse sorting problems and some
� Supported by the Hong Kong Universities Grant Council (CERG CITYU 1153/01P,

internal code number 9040883) and the National Key Research and Development
Program of China (2002CB312004) and the National Natural Science Foundation of
China (700221001, 70425004)

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 985–992, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

986 Xiao Guang Yang and Jian Zhong Zhang

algorithms to handle inverse sorting problems under different cost functions can
be found in [1, 2].

In this paper, we consider two types of inverse sorting problems. The first
one is an inverse sorting problem under weighted Hamming distance. Note that
so far in all studied inverse sorting problems, C(x − a) is a continuous function
about the changes x− a of the given numbers. But sometimes for each number
ai, we might care about only whether it is changed, and without considering the
magnitude of its change, i.e. what we are concerned about is to change as few
numbers as possible. To be a bit more general, suppose that different numbers
in the set {a1, a2, · · · , an} have different weights. Then C(x − a) under such a

circumstance can be written as C(x − a) =
n∑

i=1

wih(xi − ai), where wi is the

weight associated with number ai, h(t) is a Hamming function which is defined
by h(0) = 0 and h(t) = 1 for any t �= 0. Following the terminology of [3, 4], we
call the inverse sorting problem with such C(x − a) an inverse sorting problem
under weighted Hamming distance. In the next section, we will consider such an
inverse problem with bound constraints, i.e. |xi − ai| ≤ bi for each number ai

and present an O(n2) algorithm to solve the inverse problem.
The second type of inverse sorting problems that we consider in this paper

is some partial inverse sorting problems. Here “partial inverse sorting” means
that, given a fixed order among a part of the numbers a1, · · · , an, we want to
modify the n numbers such that the modified numbers have a complete order
which agrees with the given partial order. Mathematically, the partial inverse
sorting (PIS) problem can be described as the following:
(PIS) Given a set of numbers a1, · · · , an and a permutation π of a subset J ⊂
I = {1, 2, · · · , n}, modify a to a∗ such that there exists a permutation ω of the
whole set I with a∗

ω(1) ≤ a∗
ω(2) ≤ · · · ≤ a∗

ω(n), and a∗ and ω satisfy that
(1) the order of ω agrees with that of π over J .
(2) C(a∗ − a) is minimum.

To clarify this, in the above statement, ω(i) = k means that under the
permutation ω, the number k in I is arranged to the i−th position. π(i) = k has
a similar meaning, but with respect to the numbers in set J . So, the condition (1)
requests that if two numbers p, q in J have p = π(i) = ω(i′) and q = π(j) = ω(j′),
then (i− j)(i′ − j′) ≥ 0.

The partial inverse sorting problems are further classified into two sub-types.
(PIS-1) The partial inverse sorting problem with free positions, i.e. the positions
of π within ω can be arbitrary.
(PIS-2) The partial inverse sorting problem with fixed positions, i.e. the positions
of π within ω are fixed.

2 Inverse Sorting Problem
Under Weighted Hamming Distance

In this section, we consider the inverse sorting problem under weighted Hamming
distance with bound constraints for changes.

Some New Results on Inverse Sorting Problems 987

The corresponding inverse sorting problem can be stated as follows:

min
n∑

i=1

wih(xi − ai) (3)

s.t. x1 ≤ x2 ≤ · · · ≤ xn, (4)
|xi − ai| ≤ bi, i = 1, 2, · · · , n. (5)

To tackle this inverse problem, we introduce a concept first.
For the sequence {a1, a2, · · · , an}, a subsequence {ai1 , ai2 , · · · , aik

} is called a
well-ordered subsequence if ai1 ≤ ai2 ≤ · · · ≤ aik

and 1 ≤ i1 < i2 < · · · < ik ≤ n.
We first consider a feasible solution of (3)-(5). If we throw out all the changed

items, the remaining items consist of a well-ordered subsequence.
For any feasible solution x, we can divide the entries of x into two parts, the

changed part and the unchanged part. Let the unchanged part be {ai1 , ai2 , · · · ,
aik
} with il < il+1 for 1 ≤ l ≤ k − 1. Then {ai1 , ai2 , · · · , aik

} is a well-ordered

subsequence. The cost of x is equal to
n∑

i=1

wi−
k∑

l=1

wil
. Thus the well-ordered sub-

sequences play a core rule in searching the best solution for the inverse problem.
But well-ordered subsequences may not correspond to feasible solutions be-

cause of the bound constraints. Our task now is to find feasible well-ordered
subsequences.

For this purpose, let us define a new concept. (i, j) is called a feasible pair if
(a) 1 ≤ i < j ≤ n, and ai ≤ aj ,
(b) there exist xi+1, xi+2, · · · , xj−1 such that ai ≤ xi+1 ≤ xi+2 ≤ · · · ≤ xj−1 ≤
aj , and |xl − al| ≤ bl for i + 1 ≤ l ≤ j − 1.

Using the feasible pairs, we can define a digraph Gb = (V, Ab) such that
V = {vi | 1 ≤ i ≤ n}∪{s, t}, Ab = {(vi, vj) | (i, j) is a feasible pair}∪{(s, vi) | 1 ≤
i ≤ n} ∪ {(vi, t) | 1 ≤ i ≤ n}.

Let P be an s − t path in Gb such that P = {s, vi1 , vi2 , · · · , vik
, t}. Then

we know that (it, it+1) are feasible pairs for t = 1, · · · , k − 1. If there are
{x1, x2, · · · , xi1−1} and {xik+1, xik+2, · · · , xn} such that

x1 ≤ x2 ≤ · · · ≤ xi1−1 ≤ ai1 , and |xl − al| ≤ bl for 1 ≤ l ≤ i1 − 1, (6)

aik
≤ xik+1 ≤ xik+2 ≤ · · · ≤ xn, and |xl − al| ≤ bt for ik + 1 ≤ l ≤ n, (7)

then we call such an s − t path a feasible path. For a vertex satisfying (6), we
call it a feasible starting vertex, and for a vertex vi satisfying (7), we call it a
feasible ending vertex.

We define lengths of arcs of Gb as follows.

l(s, vi) = wi, (s, vi) ∈ Ab and vi is a feasible starting vertex;
l(s, vi) = −∞, (s, vi) ∈ Ab and vi is not a feasible starting vertex;
l(vi, t) = 0, (vi, t) ∈ Ab and vi is a feasible ending vertex;
l(vi, t) = −∞, (vi, t) ∈ Ab and vi is not a feasible ending vertex;
l(vi, vj) = wj , (vi, vj) ∈ Ab.

988 Xiao Guang Yang and Jian Zhong Zhang

We can easily show that an optimal solution of the inverse sorting problem
(3)–(5) corresponds to the longest feasible path from s to t in Gb.

The remaining problems are how to check whether a given pair (i, j) is a
feasible one and how to find the longest feasible path. First, we can design the
algorithm below to check the feasibility of a given pair.

Checking Algorithm (to check if a pair (i, j) is feasible)
Step 0: Let xi = ai, l = i.
Step 1: If l = j − 1, go to Step 4.
Step 2. If xl > aj , stop and output False.
Step 3: If al+1 + bl+1 < xl, stop and output False. Otherwise set

xl+1 = max{xl, al+1 − bl+1}, (8)

and l ← l + 1, go to Step 1.
Step 4: If xj−1 ≤ aj , output True, otherwise output False.
Consider any two feasible pairs starting from the same i, say (i, j) and (i, k)

with j < k. Then the sequence (xi+1, · · · , xj−1) generated by the Checking Algo-
rithm for the feasible pair (i, j) will also appear in the subsequence generated by
the Checking Algorithm for the feasible pair (i, k). In fact these xi+1, · · · , xj−1

are fully determined by ai, · · · aj−1 and bi+1, · · · , bj−1. Thus to check the feasi-
bility of (i, k), we do not need to use the checking algorithm from xi = ai, and
it is enough to compute xl for l from j to k − 1. Therefore finding all feasible
pairs starting from i can be achieved in O(n− i) time. This idea can be realized
by the following greedy algorithm.

Greedy Algorithm (to check pairs (i, k) for all k > i)
Step 0: Let xi = ai.
Step 1: For l = i + 1 to n− 1, set xl = max{xl−1, al − bl}.
Step 2. For l from i+1 to n, check if ai ≤ al and xl−1 ≤ al. (i, l) is a feasible

pair if yes and infeasible otherwise.
Step 3. Set l(vi, vl) = wl for all such feasible pairs.
Now let us check if a vertex i can be a starting vertex or an ending vertex of

a feasible path.

Checking Algorithm for Beginning and Ending Vertices (to check
whether i can be a starting/ending vertex of a feasible path)

Step 0: Let xi = yi = ai.
Step 1: For l = i + 1 to n− 1, set xl = max{xl−1, al − bl}, and for l = i− 1

to 1, set yl = min{yl+1, al + bl}.
Step 2. If there exists an l within i + 1 ≤ l ≤ n such that xl > al + bl, then

set l(vi, t) = −∞. Otherwise set l(vi, t) = 0.
Step 3. If there exists an l within 1 ≤ l ≤ i− 1, such that yl < al − bl, then

set l(s, vi) = −∞, otherwise set l(s, vi) = wi.
Running the Greedy Algorithm backward from n to 1, together with the

Checking Algorithm for Beginning and Ending Vertices, it is not difficult to see
that we can construct the graph Gb in O(n2) time.

Some New Results on Inverse Sorting Problems 989

Finally for each vertex vi in Gb, let L(i) be the length of the longest path
from vi to t. Since Gb is an acyclic graph, it is clear that

L(i) = max{l(vi, vj) + L(j) | (vi, vj) ∈ Ab}. (9)

If L(i) = wj +L(j) for (vi, vj) ∈ Ab, then we define β(i) by the formula β(i) = j.
In other words, vβ(i) is the next vertex after vi to realize the longest length L(i).

Now we design a backward algorithm to find the optimal solution for the
inverse sorting problem (3) - (5).

Backward Algorithm (to find the longest path in Gb)
Step 0: Let L(t) = −∞, and i = n.
Step 1: If i = 0, then go to Step 4.
Step 2: Obtain L(i) by (9) and define β(i).
Step 3: i ← i− 1, go to Step 1.
Step 4: Set L(s) = max{l(s, vi) + L(i) | (s, vi) ∈ A′

b} and let β(s) = i′ if in
the above formula the maximum value is attained at i = i′. Stop.

Obviously the L(s) obtained from the above algorithm must be the length
of the longest s− t path in Gb. If L(s) = −∞, then the inverse sorting problem
has no feasible solution. When a feasible solution exists, the maximum weight
well-ordered subsequence can be identified by:

i1 = β(s) → i2 = β(i1)→ i3 = β(i2) → · · · · · · ik,

where the last ik meets the condition that β(ik) = t.
Now we consider the complexity of the Backward Algorithm. In Step 2, the

computing time is O(n), and in Step 4, the computing time is O(n) too. As these
two steps should be executed from i = n to i = 0, the total complexity of the
Backward Algorithm is O(n2).

Since the construction of Gb can be achieved in O(n2) time, and the complex-
ity of the Backward Algorithm is O(n2) time too, the inverse sorting problem
under Hamming distance can be solved in O(n2) time.

3 Partial Inverse Sorting Problems

3.1 Partial Inverse Sorting Problem with Free Positions

In this subsection, we consider the partial inverse sorting problem with free
positions, i.e. the problem (PIS-1) stated in Section 1. We show that the problem
can be solved by a combination of an inverse sorting problem and a sorting
problem. Let π be the given permutation over the subset J of I and (a∗, ω) be
an optimal solution to the problem (PIS-1) under some separable convex cost
function C(x− a). We denote by a∗|J the part of a∗ restricted on the subset J .
Then a∗|J is a feasible solution of the inverse sorting problem restricted on J as
follows:

min C(x|J − a|J) =
∑
i∈J

ci(xi − ai) (10)

s.t. xπ(1) ≤ xπ(2) ≤ · · · ≤ xπ(|J|). (11)

990 Xiao Guang Yang and Jian Zhong Zhang

Denote by Copt and Copt|J respectively the minimum value (cost) of the
problem (PIS-1) and the minimum value of the restricted inverse sorting problem
defined by (10) and (11). It is obvious that

Copt =
n∑

i=1

ci(a∗
i − ai) ≥

∑
i∈J

ci(a∗
i − ai) ≥ Copt|J .

Therefore, Copt|J is a lower bound of Copt.
Now let x∗|J be the optimal solution of the restricted inverse sorting problem

(10)-(11). We define

bi = x∗
i , i ∈ J ; (12)

bi = ai, i ∈ J̄ = I \ J, (13)

and consider the sorting problem of arranging {b1, b2, · · · · · · bn} in a non-decreas-
ing order. Let ω be the permutation of this sorting problem. From (11) and (12),
we know that

bπ(1) ≤ bπ(2) ≤ · · · ≤ bπ(|J|),

that is, ω covers π. So, (b, ω) is a feasible solution of the partial inverse sorting
problem with free positions (PIS-1). Moreover, the objective value of (PIS-1)
under this feasible solution is

C(b − a) =
n∑

i=1

ci(bi − ai) =
∑
i∈J

ci(x∗
i − ai) = Copt|J ,

which reaches the lower bound of Copt. Therefore, C(b− a) = Copt and (b, ω) is
the optimal solution to the problem (PIS-1).

To summarize, the partial inverse sorting problem with free positions can
be solved by two steps. In the first step, we solve a restricted inverse sorting
problem (10)-(11); and in the second step, we solve a full size sorting problem
(12)-(13).

3.2 Partial Inverse Sorting Problem with Fixed Positions

Now we consider the partial inverse sorting problem with fixed positions. i.e.
the problem (PIS-2) stated in Section 1. In this section, We consider only the
three simplest cost functions. They are l2, l∞ and l1 norms of the deviation,
i.e., C2(x − a) =

∑
i∈I

(xi − ai)2, C∞(x − a) = max{|xi − ai| : i ∈ I} and

C1(x− a) =
∑
i∈I

|xi − ai|. We show that the partial inverse problem under these

three cost functions can be solved by a combination of a sorting problem and an
inverse sorting problem

Let π be a given permutation over the subset J of I and the positions of
numbers in J are fixed in I. Let J̄ = I \ J . We claim that

Some New Results on Inverse Sorting Problems 991

Claim For the three cost functions above, there exists an optimal solution (a∗, ω)
for the problem (PIS-2) such that

a∗
i ≤ a∗

j if ai ≤ aj for i, j ∈ J̄ . (14)

That is ω|J̄ is in the non-decreasing order of {ai : i ∈ J̄}. Where ω|J̄ is the
permutation ω restricted on J̄ .

In fact, suppose that there exist i, j ∈ J̄ such that a∗
i ≤ a∗

j but ai > aj .
Suppose that ω(i′) = i and ω(j′) = j with i′ < j′.

Let us construct a new solution (b, �) such that

�(k) = ω(k) k �= i′, j′ (15)
�(i′) = ω(j′) = j (16)
�(j′) = ω(i′) = i (17)

b�(k) = a∗
ω(k) k �= i′, j′ (18)

b�(i′) = a∗
ω(i′) = a∗

i (19)

b�(j′) = a∗
ω(j′) = a∗

j (20)

That is, the new solution is gotten by interchanging the positions of numbers
at positions i′ and j′ in ω, but keeping the positions of other numbers within ω
unchanged, and keeping the modified number unchanged at each position.

Let us investigate the changes of the costs. For the l2 norm cost function, the
original cost of modifying numbers ai and aj is (a∗

i − ai)2 + (a∗
j − aj)2, and the

corresponding new cost is (bj − aj)2 +(bi− ai)2 = (a∗
i − aj)2 +(a∗

j − ai)2. Notice
that a∗

i ≤ a∗
j and ai > aj . So, (ai − aj)(a∗

i − a∗
j) ≤ 0. Using this inequality, we

can easily deduce that

(a∗
i − ai)2 + (a∗

j − aj)2 ≥ (a∗
i − aj)2 + (a∗

j − ai)2 = (bj − aj)2 + (bi − ai)2.

Hence the interchange may reduce but never increase the total modification cost.
By enumerating all possible cases, we can also show that C∞(a∗ − a) ≥

C∞(b− a) and C1(a∗− a) ≥ C1(b− a). That is, the Claim is true under both l∞
and l1 norm functions.

By this claim, we can sort the numbers in J̄ to obtain a partial order π′

first. Then we construct a permutation ω by combining π′ and π. Since the
positions of numbers in J are fixed in ω, both π′ and π are known, and hence ω
is well-defined. Then we solve an inverse sorting problem as follows

min C∞(x − a) (or C1(x− a), C2(x− a)) (21)
s.t. xω(1) ≤ xω(2) ≤ · · · ≤ xω(n) (22)

The optimal solution x∗ of (21) and (22) together with ω form an optimal solution
(x∗, ω) of (PIS-2) under l2, l∞ and l1 norm functions.

Since the complexity of sorting at the first stage is O((n− |J |) ln((n− |J |))),
and the complexity of inverse sorting at the second stage is O(n), O(n) and

992 Xiao Guang Yang and Jian Zhong Zhang

O(n ln(n)) with respect to l2, l∞ and l1 cost functions respectively, the total
complexity for (PIS-2) under l2, l∞ and l1 norm functions is at most O(n ln(n)).

We would like to note that solving the partial inverse sorting problem with
fixed positions under l2, l∞ and l1 norm cost functions can be divided into two
steps too. Interestingly, in contrast to the procedure for solving (PIS-1), the first
step to solve (PIS-2) is to solve a restricted version of a sorting problem, and
the second step is to solve a full size inverse sorting problem. That is, the order
and size of such two subproblems are reversed.

4 Concluding Remarks

In this paper, we first consider an inverse sorting problem under weighted Ham-
ming distance with bound constraints and show that this inverse problem can
be solved in O(n2) time. Then we consider two partial inverse sorting problems,
the partial inverse sorting problem with free positions and the partial inverse
sorting problem with fixed positions and show that both problems can be solved
under some special cost functions. There are many unsolved problems about
the partial inverse sorting problems. For example, for the partial inverse sorting
problem with fixed positions under weighted l1, l∞ and l2 norm cost functions,
the partial inverse sorting problem with fixed positions under l1, l∞ and l2 norm
cost functions but with bound constraints on changes, and both types of partial
inverse sorting problems under Hamming distance, it is so far unknown whether
there are polynomial algorithms. A further effort is needed.

References

1. R.K. Ahuja, Inverse optimization, Slides of talk given at Georgia Institute of Tech-
nology, Atlanta, GA; November 1998, downloadable from
http://www.ise.ufl.edu/ahuja/

2. R.K. Ahuja, and J.B. Orlin, A fast scaling algorithm for minimizing separable
convex functions subject to chain constraints, Operations Research, 49, 2001, 784-
789.

3. Y. He, B.W. Zhang, and E.Y. Yao, Weighted inverse minimum spanning tree prob-
lems under Hamming distance, Journal of Combinatorial Optimization, 9, 2005,
91-100.

4. B.W. Zhang, J.Z. Zhang, and Y. He, The center location improvement problem
under the Hamming distance, Journal of Combinatorial Optimization, to appear.

Author Index

Abu-Khzam, Faisal N. 717
Ackerman, Eyal 554
Allulli, Luca 728
Angelopoulos, Spyros 596
Apostolico, Alberto 9
Ausiello, Giorgio 728

Bachmaier, Christian 401
Bae, Sung E. 621
Baille, Fabien 308
Bampis, Evripidis 308
Barequet, Gill 554
Bazgan, Cristina 829
Beivide, Ramón 777
Bereg, Sergey 32
Berry, Vincent 115
Blin, Guillaume 22
Boros, Endre 767
Braeken, An 577
Böcker, Sebastian 965

Cai, Jin-Yi 339
Cai, Zhipeng 136
Caminiti, Saverio 251
Cardinal, Jean 701
Chakaravarthy, Venkatesan T. 339
Chalermsook, Parinya 380
Chan, Wun-Tat 318
Chang, Maw-Shang 808
Chaudhuri, Kamalika 632
Chen, Danny Z. 737
Chen, Guantao 870
Chen, Jianer 975
Chen, Xiaomin 680
Chen, Xujin 199
Chen, Zhixiang 490, 955
Chin, Francis Y.L. 318
Chrobak, Marek 654
Chua, Kok Seng 74
Chung, Fan 329
Cicalese, Ferdinando 935
Coelho de Pina, José 369
Csűrös, Miklós 104

Dai, Wenqiang 481
Damaschke, Peter 935

Dang, Zhe 905
Dehne, Frank 859
Deng, Xiaotie 586
Deogun, Jitender S. 690
Desmedt, Yvo 156
Ding, Q. 471
Dom, Michael 757
Dósa, György 885
Dubey, Chandan K. 690

Elbassioni, Khaled 767

Fakcharoenphol, Jittat 380
Fellows, Michael 859
Fischer, Florian 401
Forster, Michael 401
Fu, Bin 490, 955
Fukunaga, Takuro 747

Gao, Zhicheng 870
Ghodsi, Mohammad 710
Giancarlo, Raffaele 273
Gómez, Domingo 777
Graham, Ron 329
Grandoni, Fabrizio 839
Gu, Xun 12
Gualà, Luciano 390
Guillemot, Sylvain 115
Guo, Jiong 757
Gupta, Prosenjit 544
Gurvich, Vladimir 767
Gutierrez, Jaime 777

Hallgren, Sean 420
He, Yong 297, 885
Hemaspaandra, Lane A. 895
Hoefer, Martin 167
Hsu, Wen-Jing 146
Hsu, Wen-Lian 787
Hu, Xiaodong 199
Huang, Li-Sha 586
Huang, Xiaofei 915
Huang, Xiuzhen 975

Ibarra, Oscar H. 905
Ibeas, Álvar 777

994 Author Index

Icking, Christian 524
Ito, Takehiro 798

Janardan, Ravi 544
Jia, Xiaohua 230
Jowhari, Hossein 710

Kára, Jan 849
Kamphans, Tom 524
Kanj, Iyad A. 975
Kato, Akira 798
Katoh, Naoki 481
Kenyon, Claire 654
Khachiyan, Leonid 767
Klein, Rolf 524
Kloks, Ton 808
Ko, Ker-I 349
Könemann, Jochen 839
Kothari, Anshul 608, 632
Kratochv́ıl, Jan 849
Kratsch, Dieter 808
Krysta, Piotr 167, 179
Kuhn, Fabian 188
Kutz, Martin 925

Labbé, Martine 701
Laforest, Christian 308
Langerman, Stefan 701
Langetepe, Elmar 524
Langston, Michael A. 717, 859
Latapy, Matthieu 440
Laura, Luigi 728
Law, Ken C.K. 220
Lee, Der-Tsai 818
Lefmann, Hanno 514
Levy, Eythan 701
Li, Hengwu 94
Li, Jianping 220
Li, Kang 220
Li, Minming 283, 586
Li, Xiang-Yang 126, 210
Liao, Chung-Shou 818
Liben-Nowell, David 263
Lin, Guohui 136
Lipták, Zsuzsanna 965
List, Beatrice 450
Liu, Becky Jie 283
Liu, Hai 230
Liu, Jiping 808
Liu, Tao 63

Ma, Bin 104
Ma, Guoxuan 661
Magen, Avner 596
Mao, Jia 329
Mart́ınez, Carmen 777
Maucher, Markus 450
Mélot, Hadrien 701
Mehta, Shashank K. 690
Misio�lek, Ewa 737
Moret, Bernard M.E. 63

Na, Joong Chae 273
Nagamochi, Hiroshi 747
Nakhleh, Luay 84
Ng, Yen Kaow 240
Nicolas, François 115
Niedermeier, Rolf 757
Nikov, Ventzislav 577
Nikova, Svetla 577
Nishizeki, Takao 798

Ohsaki, Makoto 481
Ono, Hirotaka 240

Panconesi, Alessandro 839
Park, Kunsoo 273
Paul, Christophe 115
Pendavingh, Rudi 632
Peng, Jiming 661
Peng, Sheng-Lung 808
Petreschi, Rossella 251
Pinter, Ron Y. 554
Pór, Attila 925
Poon, Chung Keung 560
Proietti, Guido 390

Qian, J. 471

Rettinger, Robert 359
Rizzi, Romeo 22
Rosamond, Frances 859
Ruskey, Frank 570
Russell, Alexander 420
Ruths, Derek 84

Safavi-Naini, Rei 156
Sagot, Marie-France 42
Samatova, Nagiza F. 717
Sankoff, David 52
Sankowski, Piotr 461

Author Index 995

Sarma, Atish Das 596
Schöning, Uwe 450
Schuler, Rainer 450
Shen, Hong 318
Shparlinski, Igor E. 420
Shuai, Tianping 199
Smid, Michiel 544
Soares, José 369
Song, Xiaoyu 411
Stevens, Kim 859
Sun, Zheng 210
Suri, Subhash 608
Suters, W. Henry 717
Swaminathan, Ram 632
Symons, Christopher T. 717
Szegedy, Mario 680

Takaoka, Tadao 621
Tan, Jinsong 74
Tan, Xuehou 534
Tan, Zhiyi 297
Tang, Jijun 63
Tang, Yong 490
Tannier, Eric 42
Tansini, Libertad 935
Tarjan, Robert 632
Teng, Shang-Hua 10
Thakur, Mayur 895
Thibault, Nicolas 308
Tsang, W. 471
Tuza, Zsolt 829

Valiant, Leslie G. 1
Vanderpooten, Daniel 829
Vee, Erik 263
Viduani Martinez, Fábio 369
Viger, Fabien 440
Viglas, Anastasios 596
von Rickenbach, Pascal 188

Wan, Peng-Jun 126, 230
Wang, C. 471
Wang, Huaxiong 156
Wang, Lei 680
Wang, Li-San 84
Wang, Tao-Ming 671
Wang, WeiZhao 210
Wang, Yongge 156
Wattenhofer, Roger 188

Wei, Yu 661
Welzl, Emo 188
Werth, Sören 935
Williams, Aaron 570
Wong, Prudence W.H. 318
Wood, David R. 849
Woodworth, Sara 905
Wu, Shiquan 12
Wu, Xiaodong 504

Xia, Ge 975
Xie, Fei 411
Xu, Guang 644
Xu, Jinhui 644
Xu, Yinfeng 481
Xue, Guoliang 136

Yang, Guowu 411
Yang, Hannah H. 411
Yang, Xiao Guang 985
Yao, Andrew 329
Yao, Frances F. 283
Yen, Hsu-Chun 905
Yiu, Wai Keung 560
Yoo, Kee-Young 945
Yoon, Eun-Jun 945
Young, Neal E. 654
Yu, Fuxiang 349
Yu, Xingxing 870

Zang, Wenan 870
Zeng, Jianyang 146
Zhang, Jian Zhong 985
Zhang, Louxin 74
Zhang, Shengyu 430
Zhang, Yong 318
Zhang, Yun 717
Zhao, Hao 220
Zheng, Chunfang 52
Zheng, Xizhong 359
Zhou, Suiping 146
Zhou, Xiao 798
Zhou, Yunhong 608, 632
Zhu, An 263
Zhu, Binhai 32, 490
Zhu, Daming 94
Zhu, Hong 318
Zollinger, Aaron 188

	Frontmatter
	Invited Lectures
	Completeness for Parity Problems
	Monotony and Surprise
	Smoothed Analysis of Algorithms and Heuristics

	Bioinformatics
	Gene Network: Model, Dynamics and Simulation
	Conserved Interval Distance Computation Between Non-trivial Genomes
	RNA Multiple Structural Alignment with Longest Common Subsequences
	Perfect Sorting by Reversals
	Genome Rearrangements with Partially Ordered Chromosomes
	Quartet-Based Phylogeny Reconstruction from Gene Orders
	Algorithmic and Complexity Issues of Three Clustering Methods in Microarray Data Analysis
	RIATA-HGT: A Fast and Accurate Heuristic for Reconstructing Horizontal Gene Transfer
	A New Pseudoknots Folding Algorithm for RNA Structure Prediction
	Rapid Homology Search with Two-Stage Extension and Daughter Seeds
	On the Approximation of Computing Evolutionary Trees

	Networks
	Theoretically Good Distributed CDMA/OVSF Code Assignment for Wireless Ad Hoc Networks
	Improved Approximation Algorithms for the Capacitated Multicast Routing Problem
	Construction of Scale-Free Networks with Partial Information
	Radio Networks with Reliable Communication
	Geometric Network Design with Selfish Agents
	Bicriteria Network Design via Iterative Rounding
	Interference in Cellular Networks: The Minimum Membership Set Cover Problem
	Routing and Coloring for Maximal Number of Trees
	Share the Multicast Payment Fairly
	On Packing and Coloring Hyperedges in a Cycle
	Fault-Tolerant Relay Node Placement in Wireless Sensor Networks

	String Algorithms
	Best Fitting Fixed-Length Substring Patterns for a Set of Strings
	String Coding of Trees with Locality and Heritability
	Finding Longest Increasing and Common Subsequences in Streaming Data
	{\itshape O}({\itshape n}<Superscript>2</Superscript> log {\itshape n}) Time On-Line Construction of Two-Dimensional Suffix Trees

	Scheduling
	Min-Energy Voltage Allocation for Tree-Structured Tasks
	Semi-online Problems on Identical Machines with Inexact Partial Information
	On-Line Simultaneous Maximization of the Size and the Weight for Degradable Intervals Schedules
	Off-Line Algorithms for Minimizing Total Flow Time in Broadcast Scheduling

	Complexity
	Oblivious and Adaptive Strategies for the Majority and Plurality Problems
	A Note on Zero Error Algorithms Having Oracle Access to One NP Query
	On the Complexity of Computing the Logarithm and Square Root Functions on a Complex Domain
	Solovay Reducibility on D-c.e Real Numbers

	Steiner Trees
	Algorithms for Terminal Steiner Trees
	Simple Distributed Algorithms for Approximating Minimum Steiner Trees
	A Truthful (2--2/{\itshape k})-Approximation Mechanism for the Steiner Tree Problem with {\itshape k} Terminals

	Graph Drawing and Layout Design
	Radial Coordinate Assignment for Level Graphs
	A Theoretical Upper Bound for IP-Based Floorplanning

	Quantum Computing
	Quantum Noisy Rational Function Reconstruction
	Promised and Distributed Quantum Search

	Randomized Algorithms
	Efficient and Simple Generation of Random Simple Connected Graphs with Prescribed Degree Sequence
	Randomized Quicksort and the Entropy of the Random Source
	Subquadratic Algorithm for Dynamic Shortest Distances
	Randomly Generating Triangulations of a Simple Polygon

	Geometry
	Triangulating a Convex Polygon with Small Number of Non-standard Bars
	A PTAS for a Disc Covering Problem Using Width-Bounded Separators
	Efficient Algorithms for Intensity Map Splitting Problems in Radiation Therapy
	Distributions of Points in {\itshape d} Dimensions and Large {\itshape k}-Point Simplices
	Exploring Simple Grid Polygons
	Approximation Algorithms for Cutting Out Polygons with Lines and Rays
	Efficient Non-intersection Queries on Aggregated Geometric Data
	An Upper Bound on the Number of Rectangulations of a Point Set

	Codes
	Opportunistic Data Structures for Range Queries
	Generating Combinations by Prefix Shifts
	Error-Set Codes and Related Objects

	Finance
	On Walrasian Price of CPU Time
	On-Line Algorithms for Market Equilibria
	Interval Subset Sum and Uniform-Price Auction Clearing

	Facility Location
	Improved Algorithms for the {\itshape K}-Maximum Subarray Problem for Small {\itshape K}
	Server Allocation Algorithms for Tiered Systems
	An Improved Approximation Algorithm for Uncapacitated Facility Location Problem with Penalties
	The Reverse Greedy Algorithm for the Metric {\itshape K}-Median Problem
	On Approximate Balanced Bi-clustering

	Graph Theory
	Toroidal Grids Are Anti-magic
	Optimally Balanced Forward Degree Sequence
	Conditionally Critical Indecomposable Graphs

	Graph Algorithms
	A Tight Analysis of the Maximal Matching Heuristic
	New Streaming Algorithms for Counting Triangles in Graphs
	A New Approach and Faster Exact Methods for the Maximum Common Subgraph Problem
	On the Power of Lookahead in On-Line Vehicle Routing Problems
	Efficient Algorithms for Simplifying Flow Networks
	Approximation Algorithms for the {\itshape b}-Edge Dominating Set Problem and Its Related Problems
	Bounded Degree Closest {\itshape k}-Tree Power Is NP-Complete
	A New Algorithm for the Hypergraph Transversal Problem
	On Finding a Shortest Path in Circulant Graphs with Two Jumps
	A Linear Time Algorithm for Finding a Maximal Planar Subgraph Based on PC-Trees
	Algorithms for Finding Distance-Edge-Colorings of Graphs
	On the Recognition of Probe Graphs of Some Self-Complementary Classes of Perfect Graphs
	Power Domination Problem in Graphs
	Complexity and Approximation of Satisfactory Partition Problems
	Distributed Weighted Vertex Cover via Maximal Matchings
	On the Complexity of the Balanced Vertex Ordering Problem
	An {\itshape O}(2<Superscript>{\itshape O}({\itshape k})</Superscript>{\itshape n}<Superscript>3</Superscript>) FPT Algorithm for~the~Undirected~Feedback~Vertex~Set~Problem
	Approximating the Longest Cycle Problem on Graphs with Bounded Degree

	Others
	Bin Packing and Covering Problems with Rejection
	Query-Monotonic Turing Reductions
	On Sequential and 1-Deterministic P Systems
	Global Optimality Conditions and Near-Perfect Optimization in Coding
	Angel, Devil, and King
	Overlaps Help: Improved Bounds for Group Testing with Interval Queries
	New Efficient Simple Authenticated Key Agreement Protocol
	A Quadratic Lower Bound for Rocchio's Similarity-Based Relevance Feedback Algorithm
	The Money Changing Problem Revisited: Computing the Frobenius Number in Time {\itshape O}({\itshape ka}<Subscript>1</Subscript>)
	{\itshape W}-Hardness Under Linear FPT-Reductions: Structural Properties and Further Applications
	Some New Results on Inverse Sorting Problems

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

